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ABSTRACT
Overlay network monitoring enables distributed Internet ap-
plications to detect and recover from path outages and peri-
ods of degraded performance within seconds. For an overlay
network with n end hosts, existing systems either require
O(n2) measurements, and thus lack scalability, or can only
estimate the latency but not congestion or failures. Unlike
other network tomography systems, we characterize end-to-
end losses (this extends to any additive metrics, including
latency) rather than individual link losses. We find a mini-
mal basis set of k linearly independent paths that can fully
describe all the O(n2) paths. We selectively monitor and
measure the loss rates of these paths, then apply them to es-
timate the loss rates of all other paths. By extensively study-
ing synthetic and real topologies, we find that for reasonably
large n (e.g., 100), k is only in the range of O(n log n). This
is explained by the moderately hierarchical nature of Inter-
net routing.

Our scheme only assumes the knowledge of underlying IP
topology, and any link can become lossy or return to normal.
In addition, our technique is tolerant to topology measure-
ment inaccuracies, and is adaptive to topology changes.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network monitoring

General Terms
Measurement, Algorithms

Keywords
Overlay networks, Network measurement and monitoring,
Network tomography, Numerical linear algebra

1. INTRODUCTION
With the rapid growth of the Internet, new large-scale

globally distributed network services and applications have
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emerged, such as overlay routing and location systems, application-
level multicast, and peer-to-peer file sharing. As these sys-
tems have flexibility in choosing their communication paths
and targets, they can benefit significantly from dynamic net-
work distance prediction (e.g., latency and loss rate).

Existing network distance estimation systems can be grouped
into two categories: static estimation [18, 23] and dynamic
monitoring [13, 8, 3]. Previous static estimation systems,
such as Global Network Positioning (GNP) [18], achieve a
high level of accuracy, but also incur high overhead for con-
tinuously updating the estimates.

Dynamic monitoring can detect path outages and periods
of degraded performance within seconds. However, existing
schemes either require pair-wise measurements for all end
hosts, and thus lack scalability [3]; or they can only esti-
mate latency, but not congestion or failures [13, 8]. Existing
scalable systems, such as [13, 8], cluster end hosts based on
their network proximity or latency similarity under normal
conditions. However, end hosts in the same cluster may not
have similar losses, especially when the losses happen in the
last mile.

In this paper, we describe a scalable overlay network con-
gestion/failure monitoring system which is highly accurate
and incrementally deployable. Consider an overlay network
of n end hosts; we define a path to be a routing path be-
tween a pair of end hosts, and a link to be an IP link between
routers. A path is a concatenation of links. There are O(n2)
paths among the n end hosts, and we wish to select a min-
imal subset of paths to monitor so that the loss rates and
latencies of all other paths can be inferred. The loss rates
are used to estimate the congestion/failures on the overlay
paths.

To this end, we propose a tomography-based overlay net-
work monitoring system in which we selectively monitor a
basis set of k paths (typically k � n2). Any end-to-end path
can be written as a unique linear combination of paths in
the basis set. Consequently, by monitoring loss rates for the
paths in the basis set, we infer loss rates for all end-to-end
paths. This can also be extended to other additive met-
rics, such as latency. The end-to-end path loss rates can be
computed even when the paths contain unidentifiable links
for which loss rates cannot be computed. We provide an
intuitive picture of this characterization process in terms of
virtual links.

Although congestion outbursts within seconds are hard to
detect and bypass, the delay in Internet inter-domain path
failovers averages over three minutes [16]. Our loss rate
estimation will filter out measurement noise with smoothing
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techniques, such as exponentially-weighted moving average
(EWMA), and detect these path failovers quickly to have
applications circumvent them.

Our key observation is that k grows relatively slowly as a
function of n. The dimension k is bounded by the number
of links in the subgraph induced by the routing paths. In
an Internet-like topology with a power-law degree distribu-
tion, there are O(N) links, where N is the total number of
end hosts in the network. This is because a small number of
nodes have high degree and the links between them are heav-
ily used [12]. Consequently, if n = O(N), then k < O(n).
However, even when n � N , the moderately hierarchical
structure of the network causes many routing paths to over-
lap [26], so that the number of links in the routing path sub-
graph grows much slower than O(n2). Our extensive study
of both synthetic and real Internet topologies suggests that
for a randomly selected subset of n end hosts, k grows like
O(n log n) when n is sufficiently large (say 100).

Furthermore, our technique is tolerant to topology mea-
surement inaccuracies, and is adaptive to topology changes.

Besides simulating our system with various synthetic and
real topologies, we implemented our system on the Planet-
Lab testbed [22]. We deployed it on 51 global hosts (each
from a different organization) and ran the experiments over
four weekdays with a total of 76.5M UDP packets. Both
simulation and implementation results show we achieve high
accuracy when estimating path loss rates with k measure-
ments. For example, the average absolute error of loss rate
estimation for the Internet experiments is only 0.0027 with
average k = 872 out of a total of 51 × 50 = 2550 paths. On
average, for 248 of the 2550 paths, the routing information
obtained via traceroute is unavailable or incomplete, which
shows that our technique is robust against topology mea-
surement errors. See our tech report [7] for details on both
simulation and experiments on PlanetLab.

The rest of the paper is organized as follows. We survey
related work in Sec. 2, describe our model and basic theory
in Sec. 3 and present algorithms in Sec. 4. Finally, we discuss
the generalization of our framework in Sec. 5 and conclude
in Sec. 6.

2. RELATED WORK
Network tomography has been extensively studied ( [10]

provides a good survey). Most existing systems assume that
limited measurement information is available (often in a
multicast tree-like structure), and they try to infer the char-
acteristics of the links [1, 2, 6, 20] or shared congestion [24]
in the middle of the network.

In many cases, these inferences are limited due to limited
measurement and the irregularity of Internet topologies. In
contrast, we do not care about the characteristics of indi-
vidual links. Furthermore, we do not have any restriction
on the paths to measure. Our goal is to selectively measure
a small subset of paths so that we can infer the loss rates of
all other paths.

As the closest work to ours, Shavitt et al. also use alge-
braic tools to compute the distances that are not explicitly
measured [25]. Given certain “Tracer” stations deployed
and some direct measurements among the Tracers, they
search for path or path segments whose loss rates can be in-
ferred from these measurements. Thus their focus is not on
Tracer/path selection. Neither do they examine the topol-
ogy measurement errors or the topology change problems.

Overlay Network 
Operation Center

End hosts

Figure 1: Architecture of a tomography-based over-
lay network monitoring system

Recently, Ozmutlu et al. selected a minimal subset of
paths to cover all links for monitoring, assuming link-by-link
latency is available via end-to-end measurement [19]. Their
approach has the following three limitations. 1) Traceroute
cannot give accurate link-by-link latency. Many routers in
the Internet hide their identities. Besides, traceroute uses
the ICMP protocol for measurement, and routers often treat
ICMP packet differently from TCP/UDP packets. There-
fore, latency data is not representative. 2) It is not applica-
ble for loss rate, because it is difficult to estimate link-by-link
loss rates from end-to-end measurements. Loss rate is often
more important for applications than latency. 3) It assumes
static routing paths and does not consider topology changes.

Many of the previous findings can be leveraged to refine
loss rate prediction. For example, [20] finds that the end-to-
end losses are dominated by a small number of lossy links.
Thus, the path space to be monitored can be reduced to
those paths that include lossy links. Consequently, the basis
set and the amount of measurement will be reduced.

3. THE MODEL
In this section, we develop the model for tomography-

based overlay monitoring.
Given n end hosts to be monitored, we assume that they

belong to an overlay network (such as a virtual private net-
work), or that they cooperate to share the monitoring ser-
vices. Thus, we can measure the routing topology and loss
rate of any path. The end hosts are under the control of a
central authority (e.g., an overlay network operation center
(ONOC)) to measure the topology and loss rates of paths,
though in the future we plan to investigate techniques to
distribute the work of the central authority.

For simplicity, we mostly assume symmetric routing and
undirectional links in the paper. But our techniques work
without changes for asymmetric routing, as used in the In-
ternet experiments. Fig. 1 shows an example where there
are four end hosts on the overlay network. There are six
paths and four links. The end hosts measure the topology
and report to the ONOC, which selects four paths and in-
struments two of the end hosts to measure the loss rates of
the four paths. The end hosts periodically report the loss
rates measured to the ONOC. Then the ONOC infers the
loss rates of every link, and consequently the loss rates of
the other two paths. Applications can query the ONOC for
the loss rate of any path, or they can set up triggers to re-
ceive alerts when the loss rates of paths of interest exceed a
certain threshold.

The path loss rates can be measured by either passive ob-
servation of normal traffic to estimate packet drop rate [20]
or active measurement. The measurements of selected paths
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do not have to be taken at exactly the same time because
Zhang et al. report that the loss rate remains operationally
stable in the time scale of an hour [27]. The network topol-
ogy can be measured via traceroute or other advanced tools [15,
9]. We discuss topology changes in Sec. 4.4.

3.1 Theory and Notations

Symbols Meanings
M total number of nodes
N number of end hosts
n number of end hosts on the overlay

r = O(n2) number of end-to-end paths
s # of IP links that the overlay spans on
t number of identifiable links
G ∈ {0, 1}r×s original path matrix

Ḡ ∈ {0, 1}k×s reduced path matrix
k ≤ s rank of G
li loss rate on ith link
pi loss rate on ith measurement path
xi log(1 − li)
bi log(1 − pi)
v vector in {0, 1}s (represents path)
p loss rate along a path
N (G) null space of G

R(GT ) row(path) space of G (== range(GT ))

Table 1: Table of notations

Suppose an overlay network spans s IP links. We repre-
sent a path by a column vector v ∈ {0, 1}s, where the jth
entry vj is one if link j is part of the path, and zero other-
wise. Suppose link j drops packets with probability lj ; then
the probability p of packet loss on the path represented by
v is given by

1− p =
Y

j s.t. vj=1

(1− lj) (1)

By taking logarithms on both sides of (1), we have

log (1 − p) =
sX

j=1

vj log (1 − lj) (2)

If we define a column vector x ∈ R
s with elements xj :=

log (1 − lj), and write vT for the row vector which is the
transpose of v, we can rewrite (2) in the following dot prod-
uct form:

log (1− p) =
sX

j=1

vjxj = vT x (3)

Considering all r = O(n2) paths in the overlay network,
there are r linear equations of the form (3). Putting them
together, we form a rectangular matrix G ∈ {0, 1}r×s to
represent these paths. Each row of G represents a path in
the network: Gij = 1 when path i contains link j, and
Gij = 0 otherwise. Let pi be the probability of packet loss
during transmission on the ith path, and let b ∈ R

r be
a column vector with elements bi := log (1− pi). Then we
write the system of equations relating the link losses to path
losses as

Gx = b (4)

In general, the measurement matrix G may be rank deficient:
i.e., k = rank(G) and k < s. If G is rank deficient, we will

be unable to determine the loss rate of some links from (4).
We call these links unidentifiable as in [6].
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Figure 2: Sample overlay network.

We illustrate how rank deficiency can occur in Fig. 2.
There are three end hosts (A, B, and C) on the overlay,
three links (1, 2 and 3) and three paths between the end
hosts. Because links 1 and 2 always appear together, their
individual loss rates cannot be computed from the measure-
ments. For example, suppose that x1 + x2 = b1 = −0.06
and x3 = b2 = −0.01. We know that x1 = −0.03 + α and
x2 = −0.03 − α for some α, but the value of α cannot be
determined from the end-to-end measurements. The set of
vectors α

�
1 −1 0

�T
which are not defined by (4) can be

added to x without affecting b. This set of vectors is the
null space of G.

To separate the identifiable and unidentifiable components
of x, we write x as x = xG + xN , where xG ∈ R(GT ) is in
the row space of G and xN ∈ N (G) is in the orthogonal null
space of G (i.e. GxN = 0). The vector xG contains all the
information we can know from (4) and the path measure-
ments. For instance, we can determine x1+x2 in Fig. 2, but
not x1 −x2. Intuitively, links 1 and 2 together form a single
virtual link with an identifiable loss rate x1 + x2. All end-
to-end paths can be written in terms of such virtual links,
as we describe in more details in Sec. 3.3. So xG involves all
the links, while xN only involves unidentifiable links. The
decomposition of x for the sample overlay network is shown
below.

xG =
(x1 + x2)

2

2
411
0

3
5 + x3

2
400
1

3
5 =

2
4b1/2

b1/2
b2

3
5 (5)

xN =
(x1 − x2)

2

2
4 1
−1
0

3
5 (6)

Because xG lies in the k-dimensional space R(GT ), only k
independent equations of the r equations in (4) are needed
to uniquely identify xG. By measuring k independent paths,
we can compute xG. Since b = Gx = GxG + GxN = GxG,
we can compute all elements of b from xG, and thus obtain
the loss rate of all other paths. For example, in Fig. 2, we
only need to measure b1 and b2 to compute xG, from which
we can calculate b3. Detailed algorithms are described in
Sec. 4.

3.2 Dimension Analysis of Path Space (R(GT ))
In this section, we will examine asymptotically how big k

is in terms of n.

Theorem 1. Given a power-law degree network topology
of M nodes, the frequency fd of nodes with outdegree d is
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Figure 3: Sample parts of IP network and overlay
paths.

proportional to dc, where c is the outdegree exponent con-
stant (i.e., fd _ dc). With d ≥ 1 and c < −2 (as found
in [12]), the number of end hosts N is at least M/2.

See the Appendix for the proof. It also follows the intu-
ition that the number of end hosts should be more than the
number of routers in the Internet.

Meanwhile, Faloutsos et al. prove that such a topology
has only O(M) links (Lemma 2 in [12]). Combining the two
facts, given N end hosts, there are at most O(N) links in
the topology. Thus, if the majority of the end hosts are on
the overlay network (n = O(N)), the dimension of R(GT )
is O(n).

What about if only a small portion of the end hosts are on
the overlay? Tangmunarunkit et al. found that the power-
law degree Internet topology has moderate hierarchy due
to the heavy-tailed degree distribution [26]. Because G is
an r by s matrix, k is bounded by the number of links s.
If it is a strict hierarchy like a tree, s = O(n), thus k =
O(n). But if there is no hierarchy at all (e.g., clique), k =
O(n2) because all the O(n2) paths are linearly independent.
Moderate hierarchy should fall in between. We found that
for reasonably large n (e.g, 100), k = O(n log n). Refer to
our tech report [7] for full regression analysis and results.

3.3 Intuition through Virtual Links
In Sec. 3.1, we explain in algebraic terms how to compute

all end-to-end path loss rates from only k path measure-
ments. Our actual computations are based completely on
this algebraic picture; however, these formulas may not seem
intuitive. We now describe a more intuitive picture using the
notion of virtual links. The key idea is that although the loss
rates of some individual links are incomputable (unidentifi-
able links), each of them is covered by some path segment
whose loss rate is computable, and the loss rates of these
path segments are sufficient to compute the path loss rates
in which we are interested.

We choose a minimal set of such path segments that can
fully describe all end-to-end paths, and refer to them as
virtual links. If a link is identifiable, the link itself is a virtual
link.

Fig. 3 illustrates some examples. In the top figure, the vir-
tual link is a concatenation of two sequential physical links
as we discussed before. In the middle figure, there are three
links, but only two paths traverse these links. Thus, rank(G)
= 2 and none of the links are identifiable. In the bottom
figure, there are four links, and a total of four paths travers-
ing them. But the four paths are linearly dependent, so
rank(G) = 3, and none of the link loss rate are computable.
We can use any three out of the four paths as virtual links,
and the other one can be linearly represented by the virtual
links. For example, path 4′ can be described as virtual links
2+3-1.

Since the dimension of R(GT ) is k, the minimum number
of virtual links which can fully describe R(GT ) is also k.
xG is a linear combination of the vectors representing the
virtual links. Since virtual links are identifiable, xG is also
computable. From xG, we can compute the loss rates of all
end-to-end paths as we can do with virtual links.

4. ALGORITHMS
In this section, we describe implementation techniques.

4.1 Selecting Measurement Paths
To characterize all O(n2) end-to-end paths, we monitor k

linearly independent end-to-end paths and form a reduced
system

ḠxG = b̄ (7)

where Ḡ ∈ {0, 1}k×s and b̄ ∈ R
k consist of k rows of G

and b, respectively. Linearly independent sets of rows and
columns in rank-deficient problems are usually computed
using rank-revealing decompositions [14]. For a dense r by
s matrix with rank k, common rank-revealing decomposi-
tions include Gaussian elimination with complete pivoting
(as used in [25]), QR with column pivoting, and the singu-
lar value decomposition (SVD). The former two cost O(rks),
and the SVD costs O(rs2). Our G matrix is very sparse; that
is, there are only a few nonzeros per row. Rank-revealing
decompositions for many sparse problems can be computed
much more quickly than in the dense case. However, the ex-
act cost depends strongly on the structure of the problem,
and efficient computation rank-revealing decompositions of
sparse matrices is an open area of research [17], [21].

We select rows using Algorithm 1, which is a variant of
the QR procedure [14, p.223]. The procedure incrementally
builds a decomposition

ḠT = QR (8)

where Q ∈ Rs×k is a matrix with orthonormal columns and
R ∈ Rk×k is upper triangular. We do not store Q explicitly;
instead, we write Q as R−1ḠT . The idea is the same as the
classical Gram-Schmidt algorithm: as each row is inspected,
we subtract off any components in the space spanned by the
previous rows, so that the remainder is orthogonal to all
previous rows. If the remainder is zero, then the row was
linearly dependent upon the previous rows; otherwise, we
extend the factorization.

In practice, we use a variant of Algorithm 1 which uses op-
timized routines from the LAPACK library [4] and inspects
several rows at a time. The time complexity of processing
each vector is dominated by the solution of a triangular sys-
tem to compute R̂12, which costs O(k2). The total cost of
the algorithm is O(rk2) and the constant in the bound is
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procedure SelectPath(G)
1 for every row v in G do
2 R̂12 := R−T ḠvT = QT vT

3 R̂22 := ‖v‖2 − ‖R̂12‖2

4 if R̂22 �= 0 then
5 Mark v as a measurement path

6 Ḡ :=

�
Ḡ
v

�

7 R :=

�
R R̂12

0 R̂22

�

end
end

Algorithm 1: Path (row) selection algorithm

modest: on a Pentium 4 running at 1.5 GHz, our code takes
just over ten minutes to process a problem with n = 350
(r = 61075) and k = 2958. The memory cost is roughly
k2/2 single-precision floating point numbers for storing the
R factor.

When k exceeds 10000 the O(k2) memory requirement be-
comes too onerous. We note that dense factorization meth-
ods may still be feasible if the number of overlay end-hosts
is small or if we relax our original problem statement.

4.2 Path Loss Calculations
The QR decomposition which we use to select measure-

ment paths is also used to compute a solution to the un-
derdetermined system (7). To choose a unique solution
xG to ḠxG = b̄, we impose the additional constraint that
xG = ḠT y. We can then compute

y := R−1R−T b̄

xG := ḠT y.

This is a standard method for finding the minimum norm
solution to an underdetermined system (see [14], [11]). The
dominant cost in the computation is the solution of two
triangular linear systems for y, which costs O(k2). Once we
have computed xG, we can compute b := GxG, and from
there infer the loss rates of the remaining paths.

4.3 Topology Measurement Error Tolerance
Our technique is tolerant to network topology measure-

ment errors because our goal is to estimate the end-to-end
path loss rate instead of any interior link loss rate. For
example, poor alias resolution of routers may present one
physical link as several links. At worst, our failure to rec-
ognize the links as the same will result in a few more path
measurements because the rank of G is higher. But we can
still get accurate path loss rate estimation as verified by
Internet experiments in [7].

4.4 Topology Changes
During normal operation, new links may appear or dis-

appear, routing paths between end hosts may change, and
hosts may enter or exit the overlay network. These changes
may cause rows or columns to be added to or removed from
G, or entries in G may change. We designed a set of efficient
algorithms to add/remove end hosts and to handle routing
changes. We incrementally add/remove paths from G and
Ḡ, and each path change takes at most O(k2) time (see [7]).

4.5 Robustness and Real-time Response
There are some scenarios such that the overlay monitoring

system can fail to provide real-time loss rate estimation for
some paths. This can happen when a routing change is just
detected, or the measurement node(s) crash, or some node(s)
just join or leave the overlay network. Before we incremen-
tally set up new measurement path(s) and collect results,
for a short period, there are some paths for which we can
not compute loss rates. However, we can still return bounds
on the computed loss rate (see Sec. 5). For example, we can
check whether all the links on the incomputable path are
covered by Ḡ, and if so, yield an upper bound (though pos-
sibly a pessimistic one) quickly. Furthermore, such bounds
may be already sufficient for some applications.

5. DISCUSSION
In this section, we generalize our framework to infer the

path loss rate bound when we have only restricted measure-
ments.

We note that, in addition to the equations (4), the un-
known xj must satisfy the inequalities xj ≤ 0. While we do
not make use of them in our current work, these inequalities
can be used in conjunction with (4) to bound failure proba-
bilities, both from below and from above. For example, the
loss probability lj is bounded above by the loss probability
of the least lossy path that includes link j. More generally,
we have the following theorem:

Theorem 2. Let v ∈ {0, 1}s represent a network path
with loss probability p, and let w = GT c for some c ∈ R

r

(i.e. w ∈ R(GT )). Then

1. If v ≤ w elementwise, then log(1− p) ≥ cT b

2. If v ≥ w elementwise, then log(1− p) ≤ cT b

Proof. In the first case, v ≤ w so that v − w ≤ 0 el-
ementwise. Since x ≤ 0 elementwise, (v − w)T x ≥ 0, or
vT x ≥ wT x. We know log(1 − p) = vT x from (3), and
wT x = cT Gx = cT b. By substitution, we have log(1 − p) ≥
cT b. The second case is nearly identical.

In principle, we can compute good upper and lower bounds
on path loss rates by solving two linear programming prob-
lems:

1. Maximize cT
u b subject to GT cu ≥ v,

2. Minimize cT
l b subject to GT cl ≤ v.

Then 1−exp(cT
l b) ≤ p ≤ 1−exp(cT

u b). When v ∈ R(GT ), we
have v = GT cu = GT cl, and the bound is tight. While this
approach seems to offer bounds on path loss probabilities
that are possibly optimal given the measured data, we have
not yet applied the technique in practice.

6. CONCLUSIONS
In this paper, we present a tomography-based overlay net-

work monitoring system. For an overlay of n end hosts,
the space of O(n2) paths can be characterized by a basis of
O(n log n) paths. We selectively monitor these basis paths,
then use the measurements to infer the loss rates of all other
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paths. Both simulation and real implementation on the In-
ternet show that our techniques achieve accurate loss rate
estimation.

For more efficient monitored path selection, we plan to in-
vestigate the use of iterative methods [5], [17] such as CGNE
or GMRES both to select rows and to compute loss rate vec-
tors. In our preliminary experiments, the path matrix G has
been well-conditioned, which suggests that iterative meth-
ods may converge quickly. We are also applying the inequal-
ity bounds in Sec. 5 for diagnostics, to detect which links or
path segments fail when end-to-end congestion occurs.
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APPENDIX
Proof for Theorem 1

Proof. Given that the power-law distribution topology
has out-degree exponent: the frequency fd of an outdegree d
is proportional to the outdegree to the power of a constant,
i.e., fd = Ndc, where N is the proportion constant. Assume
that end hosts have degree 1, then the number of end hosts
is N .

If c < −1, then

M = N
M−1X
d=1

dc (9)

≤ N

�
1 +

Z M−1

1

xc dx

�
(10)

≤ N

�
1 +

Z ∞

1

xc dx

�
(11)

= N

�
1 − 1

1 + c

�
(12)

= N
c

1 + c
(13)

Therefore, the fraction N
M

is at least 1+c
c

= 1+ 1
c
. If c ≤ −2

then N
M

≥ 1
2
.
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