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ABSTRACT: Abduction of generalizations is the process in which explanatory hypotheses are formed
for generalizations such as “pineapples taste sweet” or “rainbows appear when the sun breaks
through the rain”. This phenomenon has received little attention in formal logic and philos-
ophy of science. The current paper remedies this lacuna by first giving an overview of some
general characteristics of this process, elaborating on its ubiquity in scientific and everyday
reasoning. Second, the adaptive logic LA∀ is presented to explicate this process formally.
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RESUMEN: La abducción de generalizaciones es el proceso en el que se forman hipótesis explicativas
para generalizaciones tales como "las piñas saben dulce" o "el arcoiris aparece cuando el sol
sale a través de la lluvia". Este fenómeno ha recibido poca atención tanto en lógica formal
como en filosofía de la ciencia. Este artículo viene a llenar este hueco. En primer lugar,
ofrecemos una panorámica de algunas características generales de este proceso, analizando
su ubicuidad en el razonamiento científico y cotidiano. En segundo lugar, se presenta la
lógica adaptativa LA∀ para dar una explicación formal de este proceso.
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1. Introduction

Abduction is generally defined as “the process of forming an explanatory hy-
pothesis” (Peirce 1998, p. 216). In this paper we will focus on a specific “pattern
of abduction” (to use a phrase introduced by Schurz (2008)). Consider the fol-
lowing example (Schurz 2008, p. 212):

(P1) Pineapples taste sweet.
(P1) Everything that contains sugar, tastes sweet.
(C) Pineapples contain sugar.

Schurz called this type of inference “law abduction”. The name “rule abduc-
tion” has also been used for a similar pattern (Thagard 1988). But, as “law”
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and “rule” are heavily debated concepts in philosophy of science and philoso-
phy in general, we will use the more neutral term abduction of generalizations
(henceforth AG) for this specific pattern. More examples and a general char-
acterization of AG will be presented in Section 2. It will be argued that this
pattern is ubiquitous in both everyday and scientific reasoning, and is com-
monly recognized as a useful – be it fallible – way to extend one’s knowledge.

Notwithstanding the importance of AG, little effort has been made so far to
study the characteristics of this inference pattern, and to explicate it by means
of a formal logic. As will be explained in Section 2.2, most scholars in AI and
formal logic have focused on singular fact abduction, whereas philosophers of
science have taken a more general, but informal point of view on abduction. It
is our aim to treat AG as a distinct subject matter, and to see how one may
understand and formalize it.

Outline A first analysis of AG is provided in Section 2. We describe this
pattern informally, showing that it is a widespread inference pattern; secondly,
we explain why it has been neglected in formal logic and philosophy of science;
finally, we argue for the specific importance of AG in scientific contexts.

In Section 3, we turn our focus to problems that emerge when representing
AG formally. We argue that a distinction in the object language is needed
between what we call mere generalizations and the explanatory framework for
any logic that models AG and, moreover, that this distinction is useful in any
logic for abduction. As AG is a non-monotonic inference form, we also discuss
how the dynamic features can be represented.

In the last section before the conclusion, Section 4, the logic LA∀ is pre-
sented. This is a logic for AG, formulated in the standard format of adaptive
logics. After we argue why this framework is well-suited for the current appli-
cation, we will illustrate the proof theory of LA∀, which allows us to model
the dynamic interaction of AG and classical inferences.

Preliminaries Let L be the standard language of classical first-order pred-
icate logic, obtained from a set of constants C = {a, b, c, . . .}, a set of vari-
ables V = {x, y, z, . . .}, a set of predicates P = {P,Q,R, . . .}, the connectives
¬,∨,∧,⊃,≡ and quantifiers ∀,∃. W is the set of formulas in L. Depending on
the context, A,B,C are used either as metavariables for members of W, or for
(conglomerates of) predicates, e.g. (P ∧ Q) ∨ ¬R. The metavariables α, β, . . .
refer to constants and variables.

2. Abduction of General Explanations

2.1. The phenomenon

We define abduction of generalizations (AG) as every inference that fits the
following pattern:
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It has been observed that all A are B.
Also, being C is regarded as an explanation for being B.
Therefore, the hypothesis that all A are C is raised.

Hence, by AG we generate hypotheses that explain why all observed objects of
a certain class have a specific property. In Section 3, we will explain how this
definition can be operationalized in a first-order modal language. But first, let
us point out some general characteristics of AG.

First of all, consider classical abduction as defined by Peirce (1958, 5.189):

The surprising fact, X, is observed;
But if Y were true, X would be a matter of course,
Hence, there is reason to suspect that Y is true.1

Note that AG does not entirely fit this definition. In AG we do not seek an
explanation for a certain observation, but for a generalization based on a series
of such observations. However, if one is willing to accept this natural extension
of the concept, we can make AG nicely fit the above schema. Both the surprising
fact X and the hypothesis Y are generalizations, respectively “all A are B”,
and “all A are C”. The second line of Peirce’s schema follows deductively if
“being C” implies “being B”.2

This leads to another important consideration about the Peircean or clas-
sical notion of abduction: it is defined in a deterministic way, i.e. the truth
of Y implies X. Although we do not suggest that this notion of abduction
cannot be meaningfully extended to other accounts in which the motivation to
adopt the abductive hypothesis is, for instance, probabilistic (P (X|Y ) is high)
or comparative (P (X|Y ) > P (X|¬Y )), we restrict ourselves in this paper, as
most of the literature on abduction does, to the classical case. As it is also
assumed that Y explains X,3 this restriction will have consequences for the
formalization of AG in Section 3.1.

Secondly, AG is distinct from what is called singular fact abduction, in
which both the surprising fact and the hypothesis are singular facts. In a
first-order language, both the explanandum and explanatory hypothesis of a
singular fact abduction are modeled as objects having a certain property (such
as Pa). In contrast, in AG they will be modeled by generalizations (such as
∀x(Px ⊃ Qx)). Existing models for abduction usually limit themselves to
singular fact abduction, as we will see in the next section.

Thirdly, AG is not a novel reasoning pattern. It has been known at least
since Aristotle who treats something similar in his Posterior Analytica when

1 To avoid confusion with our definition of AG, the schematic letters A and C originally
used by Peirce are replaced by X and Y .

2 This may be easier to grasp when spelled out in first order predicate logic: we have that
∀x(Cx ⊃ Bx) ⊢CL ∀x(Ax ⊃ Cx) ⊃ ∀x(Ax ⊃ Bx).

3 Applying the above schema as such is only justified in case of abduction, i.e. the formation
of explanatory hypotheses. If Y does not explain X, flagrant examples of the logical
fallacy affirming the consequent that have little value qua hypothesis will be obtained.
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he considers the “middle term” of a definition. This pattern is, according to his
view, the essence of a good definition: it should not only say what the definien-
dum (A) is, it should also be an explanation (C) for its observed properties
(B). As an example, he explains why horned animals (A) lack upper incisors
(B) by defining horned animals as a subclass of animals that have inflected
hard material from their mouth to their heads (C). According to Aristotle, this
is a good definition of a class because it explains the properties of that class.4

However, the reasoning pattern we are considering is much broader than what
Aristotle had in mind. A, B and C can be any properties, and neither should
A be a definiendum, nor C a definiens.

Fourthly, AG is frequently applied in human reasoning, often in combi-
nation with or following an instance of singular fact abduction. For instance,
people do not only wonder why their heads hurt (they drank too much last
night) or why there is a thunderstorm (it was very hot during the day). Not
much of a reflective mind is needed to also start asking questions such as why
it is that every time one drinks a bit too much, one suffers from headaches, or
why thunderstorms often follow hot days. In other words, people do not only
wonder why certain facts are the case, they also wonder why certain regularities
occur.

2.2. The Lack of Models for AG

The lack of models for AG will be explained by pointing out how the application
of the concept of abduction in a variety of fields has caused a growing divergence
in definitions and interpretations. This will also clarify the relation between
our current project and the literature on abduction.

Broadly speaking, two main currents in research on abduction can be dis-
cerned. On the one hand, research in AI and formal logic mostly focuses on a
syllogistic interpretation of Peirce’s work, in which abduction is introduced as
part of a tripod that is clarified with the following famous beans-example of
Peirce (1958, 2.623):

All the beans from this bag are white. (Rule)
These beans are from this bag. (Case)
These beans are white. (Result)

All reasoning deriving a result from a case and a rule is called deductive, all

4 See (Aristotle nd, II.10) for Aristotle’s distinction between two types of definitions and
(Aristotle nd, II.12-14) for his view on the role of the middle term in a definition. A
good treatment of the analogy between Aristotelian definitions and Peircean abduction
can be found in Eco (1983). Schurz (2008) refers to the wrong concept when he links
AG (in his words: law abduction) to Aristotle. The concept “hitting upon the middle
term” is only employed in the definition of quick wit (Aristotle nd, I.34), in which it
is illustrated with an example of a singular fact abduction. In our view, a predecessor
of AG can only be found in Aristotle’s treatment of the role of the middle term in
definitions.
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reasoning deriving a rule from a case and a result inductive, and all reasoning
deriving a case from a rule and a result abductive. Having this schema in mind,
researchers in AI or formal logic generally focus on instances of singular fact
abduction, which are variations on the following pattern:

Bα,∀β(Aβ → Bβ)/Aα

This pattern is usually combined with the condition that the hypothesis should
be explanatory. Aliseda (2006) even adds a further condition suggested by
Peirce, i.e. that the observed fact should be surprising (in the sense that Bα
cannot be derived from the background theory alone). One noteable exception
to the exclusive focus on singular fact abduction is Thagard (1988). He obtains
a similar pattern as AG, which he calls “rule abduction”, by adding to his logic
program PI the ability to generalize the results of singular fact abductions.
Although his model does not abduce from generalizations, it has the same
goal as an AG, i.e. to derive an explanation for why all elements of a given
class share a certain property.

On the other hand, research in philosophy of science usually departs from
a methodological interpretation of Peirce. In his later writings Peirce distin-
guishes abduction, induction and deduction as different steps in a methodol-
ogy of science (Peirce 1998, p. 212–218). Abduction is the process of forming
an explanatory hypothesis, from which deduction can draw predictions, which
then can be tested by induction.5 Research in this tradition, see e.g. Magnani
(2009), Schurz (2008), considers abduction as a very broad concept including
analogical reasoning, visual abduction, common cause reasoning, etc. Here,
Peirce’s definition of abduction (see Section 2.1) is seen as an expression in
metalanguage, in which a “fact” could be any proposition. Some, see e.g. Har-
man (1965), Lipton (2004), Douven (2011), still try to capture the concept of
abduction under the single schema of inference to the best explanation (IBE).6

However, these attempts to reduce the broadness of the considered concept
prevent the discovery of interesting features of more specific patterns of ab-
duction. Schurz explains this as follows (Schurz 2008, p. 205):

The majority of the recent literature on abduction has aimed at one most general
schema of abduction (for example IBE) which matches every particular case. I do
not think that good heuristic rules for generating explanatory hypotheses can be
found along this route, because these rules are dependent of the specific type of
abduction scenario.

In this article, Schurz subsequently presents a taxonomy of distinct patterns of
abduction. Having this in mind, we think that it is best to remain pluralistic on

5 It is generally acknowledged (see e.g. Flach and Kakas 2000, p. 5–8) that both interpre-
tations can be found in Peirce’s work, although they are not fully compatible. They
represent an evolution in his thinking, as Peirce hinted himself when he remarked that
he “was too much taken up in considering syllogistic forms” (Peirce 1958, 2.102).

6 These scholars consider Peirce’s remark that abduction should be as economical as pos-
sible (Peirce 1958, 7.220), as an essential and crucial condition.
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the logical form of abduction. We should maintain the rich concept of abduction
as it is understood in the philosophy of science, but, in order to provide the
formal rigor which is characteristic of the logic and AI community, we have to
focus on each of the different specific forms of abduction separately.

2.3. The Ubiquity of AG in Scientific Practice

At the end of Section 2.1, we mentioned several examples in which abduction
of generalizations is triggered by a question concerning the result of a singular
fact abduction. This question is brought up by a need for a deeper under-
standing of the observed relations. We can recognize this curious spirit in the
endeavors of many scientists. For instance, Descartes was not satisfied with
the folk explanation of the rainbow, i.e. that a rainbow appears because the
sun breaks through shortly after a rain shower. He wanted to understand why
rainbows appear whenever the sun shines while it rains. We will argue that
AG is at least as important in scientific practice as singular fact abduction by
considering two general characteristics of this practice.7

Firstly, in scientific practice one attempts to formulate theories, which have
both a universal and falsifiable nature.8 One does not want an explanation
why, for instance, this particular person suffers from this disease. One wants
to understand why and how this disease is transmitted in general. Formulating
theories about particularities is seldom considered as good scientific practice;
such theories are often labeled as ad hoc. Theories are thus mainly formulated
for a whole class of objects and, by consequence, formulated in terms of gener-
alizations. These generalizations allow us to derive singular fact predictions by
means of which theories can be tested. Therefore, in the formation process of
such theories, reasoning methods resulting in generalizations, such as inductive
generalization or AG, are essential.

Secondly, augmented unification (as characterized, for instance, by Kitcher
(1993)) is generally seen as an indicator of scientific progress.9 Each application
of AG is in essence a unification step, because it explains an observational
generalization, e.g. “All A are B”, by characterizing its antecedent (A) as a
subclass of a more general class (C) for which the observed properties (B) hold.
Therefore, AG is a key method to enhance unification in scientific practice. The
most interesting examples in the history of science can be found when a new
theory is proposed as a solution for some anomalies of an existing theory. In
that case, the proponents of the new theory also need to show that most of the

7 This claim is about scientific practice and not about scientific explanation. In scientific
explanation, a scientific theory is employed to explain a certain fact (which can be either
a singular fact or a generalization). Scientific practice is the activity of forming such
scientific theories and expanding current scientific knowledge.

8 Universality should not be taken as an absolute notion, but as an achievable level of
generality that is relative to the methods and scope of the specific field.

9 Both the instrumentalist and realist view concerning the nature of scientific progress
seem to agree on this point (Niiniluoto 2011).
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already known and well-tested observational laws, which are explained by the
old theory, can be explained by the new theory. For instance, Newton could
explain Huygens’ pendulum law using his general laws of motion by pointing
out how the different parameters of the pendulum law could be translated
into his general mathematical framework. In the same way, Bohr could explain
by means of his atomic model why the wave lengths of the visible emission
spectrum of hydrogen can be calculated by the Balmer formula.10

3. Introducing the Formal Framework

3.1. The Explanatory Framework

The pattern presented in the definition of AG (see Section 2) could be formally
explicated as follows:

(P1) ∀x(Ax ⊃ Bx)
(P2) ∀x(Cx ⊃ Bx)
(H) ∀x(Ax ⊃ Cx)

However, we must be careful here: the definition stipulates that C-hood ex-
plains B-hood, not just that everything that has the property C also has the
property B. In other words, where (P1) and (H) can be of any kind, the set
of possible candidates for (P2) is restricted.11 We call this set the explanatory
framework. It consists of all generalizations of the form ∀x(Fx ⊃ Gx) where
being F provides an explanation for being G. Whether or not a generalization
belongs to the explanatory framework, may depend on the phenomenon we are
trying to explain. In other words, it is contextually defined. All we assume is
that it is clear for each generalization, given the abductive problem at hand,
whether it is a member of the explanatory framework or not. In the latter case
we call it a mere generalization.

With this new terminology, we are now able to characterize all the lines
of the above schema: (P1) is the explanandum, i.e. the mere generalization
that is to be explained; (P2) is a generalization that is part of the explanatory
framework for the current abductive context; (H) is the explanatory hypothesis.
An explanation or explanans for (P1) consists of an explanatory hypothesis
together with one or more elements of the explanatory framework that connect
the hypothesis to the explanandum.

Now what does it actually mean that F -hood explains G-hood? Needless
to say, the philosophical literature abounds in theories of explanation. How-
ever, as we chose to restrict ourselves to classical abduction (see Section 2.1),

10A philosophical introduction to the circumstances of these two major milestones in science
can be found in Smith (2008), resp. Faye (2008).

11 In our opinion, Schurz (2008) puts too little emphasis on this point in his discussion of
AG, or “law abduction” as he calls it. In his schema, (P2) is called a “background law”,
but as far as we see, no explicit definition or circumscription is provided.
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certain preconditions apply. First, if F -hood explains G-hood, then F -hood
should also imply G-hood. Second, as abduction is an inference, only argu-
mentative accounts of explanation are relevant. Hence, the choices to explicate
the notion of “explanation” in the definition of the explanatory framework of a
(classical) abductive problem are limited to accounts of explanation that have
the structure of a deductive argument such as a DN-argument (e.g. Hempel
1965), a causal argument (e.g. Hausman 1998) or an augmented unification
argument (e.g. Kitcher 1993).12

In any of these accounts, (P2) has a specific status – it must be either
lawlike, refer to an underlying causal mechanism, or be a more general argu-
mentation scheme. We use the more abstract term explanatory framework to
express this status of (P2). This specific status turns AG into a fundamentally
asymmetric inference. It is not possible to derive ∀x(Cx ⊃ Ax) from the same
premises, since A-hood does not explain B-hood. Hence, if a logic explicates
AG, it should be able to represent this asymmetry between (P1) and (P2) in
its object language.

Before we explain how this can be done, let us briefly give an extra reason
to motivate the distinction between the explanatory framework and mere gen-
eralizations as a valuable asset for any logic that models abductive processes in
general. Mere generalizations are often used in abductions that involve knowl-
edge about methods or procedures. Consider the following premises:

(P1) The Geiger counter produces audible clicks close to the object a.
(P2) If the Geiger counter produces audible clicks, β-radiation is present.
(P3) If an object contains C-14, β-radiation is emitted.

Without the distinction between the explanatory framework and mere general-
izations, a logic for singular fact abduction treats (P2) and (P3) as having the
same formal structure. But a physicist interested in explaining the presence
of β-radiation is only interested in the hypothesis suggested by (P3), as the
behaviour of the Geiger counter provides no explanation. On the other hand,
(P2) is needed to derive the fact that there is β-radiation in the first place
(as it is not directly observable). Hence, (P2) cannot be omitted from this ab-
ductive reasoning context. Only a logic that is able to represent explanatory
frameworks can handle this case properly.

3.2. A Modal Approach

In Section 4, we will present the logic LA∀. This system is a non-monotonic
extension of the well-known modal logic T, and allows us to model instances of
AG in the modal language L�. Therefore, let us first define L� and T formally,
after which we add some comments on our choice for them.

12 It is not implied that there are no other valuable accounts of explanation. We only claim
that (classical) abductive hypotheses (the only ones that are our concern here) are part
of a deductive argument that forms an explanation for the explanandum.
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Let L� denote the extension of L with the modal necessity operator �.
The set of formulas W� is the smallest set for which the following holds:

For all A ∈ W : A,�A ∈ W�

For all A,B ∈ W� : ¬A,A ∨B,A ∧B,A ⊃ B,A ≡ B ∈ W�

Note that by this definition, we exclude the occurrence of boxes in the scope
of quantifiers, of iterations of boxes and more generally, of nested boxes.13

Hence, �∀x(Px ⊃ Qx) and Pa ∨ �∃x(¬Rx) are, for instance, members of
W�, whereas ��∀xPx or ∀x�Px are not.

An axiomatization for the predicative version of T over the language W�

is obtained by taking the axioms of classical predicate logic (henceforth CL),
and adding the following axioms (closed under modus ponens):

K �(A ⊃ B) ⊃ (�A ⊃ �B)
RN where A ∈ W: if ⊢ A then ⊢ �A
T �A ⊃ A

A semantics of T that is sound and complete with this axiomatization can be
found in Batens et al. (2003, pp. 46-47). This is a typical Kripke-semantics in
terms of a set of worlds and an accessibility relation on them – we will return
to it in the conclusion.

The language L� allows us to represent the premises involved in abductive
reasoning processes with the expressive power of classical first-order logic, but
gives us the extra operator �, which allows us to indicate at the object level
that a certain generalization is in the explanatory framework. Let F◦ denote
the set of purely functional formulas, i.e. formulas that do not contain individ-
ual constants, quantifiers, or sentential letters. For example, Px∧ (Qxy ∨Rx)
is a purely functional formula, whereas Pa ∨ Qxy and Px ∧ ∃yQxy are not.
Where A ∈ F◦, let ∀A be the universal quantification over every variable that
is free in A. The logic LA∀ treats any formula of the form �∀(A ⊃ B) with
A,B ∈ F◦ as an element of the explanatory framework.

The choice for T in order to model the explanatory framework has two
important consequences. First of all, in view of the rule RN and the axiom K,
classical logic consequences of the explanatory framework may themselves be
used to generate explanatory hypotheses. For instance, if �∀x(Px ⊃ Qx) and
�∀x(Qx ⊃ Rx) are premises of a particular abductive problem, not only these
formulas but also �∀x(Px ⊃ Rx) will be part of the explanatory framework.
Second, in view of axiom T, a generalization that is part of the explanatory
framework is also assumed to be true as such. This is the formal expression

13 It might be possible to do without these restriction on the language, given a number of
additional axioms such as the 4-axiom (�A ⊃ ��A), the Barcan formula and/or the
inverse Barcan formula. This would however severely complicate the logical apparatus,
whereas the extended language would contain several expressions that have no sensible
interpretation in terms of explanatory frameworks.
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of our restriction to the classical account of abduction, where “A explains B”
implies “A implies B”.

As we will explain below, the logic LA∀ is a non-monotonic extension of
T. Also, T is itself a monotonic extension of CL. Hence, LA∀ only provides
sensible consequences under the assumption that the explanatory framework
and the set of known facts relevant to the abductive problem are mutually
consistent – otherwise it results in plain triviality.

Our logic for AG is in a sense minimal: iterations of boxes are excluded, and
explanation is expressed by rather simple formal tools. It is a topic for further
research whether our model can be meaningfully extended to include specific,
more fine-grained accounts of explanation (e.g. adding asymmetric axioms to
specify causal arguments in the sense of Hausman (1998)).

3.3. The Dynamics of AG

Apart from the distinction between the explanatory framework and mere gen-
eralizations, several other difficulties arise when we try to model abduction
in general, and AG in particular. First of all, abduction is a non-monotonic
reasoning method: new information may contradict the hypotheses we have
raised. Moreover, it may not always be clear whether the currently available
information contradicts some of these hypotheses - this requires classical in-
ferences, which might not yet have been drawn. As a result, we can discern
a double dynamics in abductive reasoning: previously drawn inferences can
become retracted in view of additional premises, but also in view of further
inferences from the same body of evidence. A formal logic for AG should hence
be able to frame this double dynamics, yet still define a sensible and stable
output for any given premise set.

Second, every realistic model of AG should allow us to combine deductive
(or classical) inferences with ampliative (or supraclassical) steps. That is, it
should allow the user to draw new inferences on the basis of previously inferred
hypotheses, and it should allow the classical consequences of the evidence to
falsify such hypotheses (and whatever we derived from them). This relates to a
third important desideratum, i.e. that the hypotheses yielded by a formal logic
for AG should be mutually consistent with the evidence and the explanatory
framework. Ampliative reasoning should not only allow us to go beyond the
mere deductive consequences of our knowledge, but it should also remain within
the boundaries of consistency.

The fourth problem is specific to the context of abduction: explanatory
hypotheses should be as logically parsimonious as possible. For instance, if “Y ”
suffices to explain “X”, then we should not raise the explanatory hypothesis “Y
and Z”. More generally, we want to derive only the logically weakest hypotheses
that suffice to explain the explananda.14

14 As indicated by one of the referees, logical parsimony should be distinguished from
expressive parsimony. For instance, if “Y or Z” explains “X”, than the explanatory
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Finally, any logic for abduction should be able to handle cases of multiple
explanatory hypotheses in a consistent and uniform way – see Section 4.3 where
we discuss two distinct ways in which this can be done.

We chose to use the framework of adaptive logics (henceforth ALs) to for-
mulate the logic LA∀ for AG. ALs are powerful formal systems that explicate
various forms of defeasible reasoning such as reasoning on the basis of inconsis-
tent premises Batens (1999), inductive generalization Batens (2011), reasoning
on the basis of conflicting norms Van De Putte and Straßer (2012), etc. Several
adaptive logics have also already been developed for singular fact abduction
Meheus (2011), Gauderis (2012), and all of them were shown to meet the above
desiderata.

One of the most important developments within the AL program is the
definition of a canonical format, the so-called standard format for ALs. This
format encompasses a generic dynamic proof theory and a selection semantics.
A rich and attractive metatheory has been shown to hold generically for all
ALs in standard format (see Batens (2007)): they are sound and complete, have
the reassurance property, their consequence relation is idempotent, cautiously
monotonic, etc. Most ALs have been successfully expressed within this format,
so it provides a good basis for a unifying study of defeasible reasoning forms
in general, and patterns of abduction in particular.

The main motivation to choose this non-monotonic framework is its dy-
namic proof theory, which enables us to construct proofs that are very similar
to actual human reasoning processes, as will become clear from the examples
in Section 4. There we will also argue that each of the other desiderata from
the current section are met by LA∀.

4. The Logic LA∀

4.1. The Definition of LA∀

Let us briefly explain the general characteristics of adaptive logics in standard
format. These are characterized by a triple 〈LLL,Ω,x〉. The so-called lower
limit logic LLL is a monotonic, reflexive and transitive logic, the rules of which
are unconditionally valid in the AL. Ω is called the set of abnormalities; this
set is specified in terms of a logical form. Every AL strengthens its LLL by
allowing for a specific kind of defeasible inferences, which are determined by Ω
and the strategy x. This will be clarified below.

The adaptive logic LA∀ employs T as its lower limit logic. The set of
abnormalities of LA∀ requires a bit more explanation. Consider once more the
inference schema of AG introduced in Section 3, only this time capturing the
distinction between mere generalizations and the explanatory framework:

hypothesis “Y ” is expressively more parsimonious because it contains less different terms
(assuming that Y and Z differ), but logically less parsimonious than the explanatory
hypothesis “Y or Z” because “Y ” logically entails “Y or Z”.
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(P1) ∀(A ⊃ B)
(P2) �∀(C ⊃ B)
(H) ∀(A ⊃ C)

The LA∀-abnormalities are all formulas which imply that the premises in the
above schema are true, whereas its conclusion is false, for a particular A, B
and C. To simplify notation, we introduce two abbreviations. First of all, let

A 6→C B =def ∀(A ⊃ B) ∧�∀(C ⊃ B) ∧ ¬∀(A ⊃ C)

A 6→C B can be read as: “although all A are B, and although C-hood explains
B-hood, it is not the case that all A are C”. Secondly, where A,B ∈ F◦, let
A‖B denote the fact that A and B share no predicates.

Using these two abbreviations, we can now define a set of abnormalities:

Ω = {A 6→C B | A,B,C ∈ F◦, A‖B and B‖C}

The restrictions A‖B and B‖C are added to avoid that certain trivial self-
explanatory hypotheses block the derivation of other hypotheses.15

The strategy of LA∀ is reliability – we will explain its role in Section 4.2.16

There we will focus on the proof theory of LA∀, which allows us to explicate the
interaction of AG and classical inferences. As for all ALs in standard format,
the LA∀-semantics is obtained from the same triple 〈T,Ω, reliability〉 – we
refer to Batens (2007) for a generic definition of the AL-semantics. In Section
4.3, we will present some particular features of LA∀ that show how it meets
the desiderata from Section 3.3.

4.2. The Proof Theory of LA∀

The LA∀-proof theory is a mere instantiation of the generic proof theory for
ALs in standard format – see Batens (2007). As spelled out before, inferences
such as AG are by definition defeasible. Hence if we want to formalize them, we
should be able to model the retraction of previously drawn conclusions in view
of later insights. For this purpose, a line in an LA∀-proof has – apart from a line
number, a formula and a justification – a fourth element, the condition. This
condition consists of n (∈ N) members of Ω, and it specifies the assumptions on
which the formula of that line is derived. More precisely, the formulas in this
set are assumed to be false until and unless proven otherwise. A line becomes
defeated, if one of these assumptions becomes untenable in light of further
derivations in the proof.

The inference rules of LA∀-proofs reduce to three generic rules. This re-
quires some notational conventions. For any finite Θ ⊂ Ω, let Dab(Θ) denote

15 We refer to Van De Putte (2012, pp. 206-207) for examples that motivate these restric-
tions.

16 ALs in standard format can also use the minimal abnormality strategy. For reasons of
space and simplicity, we restrict ourselves to the reliability-variant of LA∀.
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the classical disjunction of the members of Θ. In general, we use the term Dab-
formula to refer to finite disjunctions of abnormalities. Where Γ is a premise
set, and where

A ∆

abbreviates that A occurs in the proof on a line with the condition ∆, the
inference rules are given by the following generic rules:

PREM If A ∈ Γ:
...

...

A ∅

RU If A1, ..., An ⊢T B: A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, ..., An ⊢T B ∨Dab(Θ) A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

The premise rule PREM states that a premise may be introduced at any line
of a proof on the empty condition. The unconditional inference rule RU states
that, if A1, . . . , An ⊢T B and A1, . . . , An occur in the proof on the conditions
∆1, . . . ,∆n, we may add B on the condition ∆1 ∪ . . . ∪ ∆n. The strength of
an adaptive logic comes with the third rule, the conditional inference rule RC,
which works analogously to RU, but allows us to push abnormalities from
the formula to the condition. Put differently, if we can derive the formula A in
disjunction with one or more abnormalities, then RC states that we may derive
A, relying on the defeasible assumption that those abnormalities are false.

To get an idea of how these generic rules allow us to model AG, consider
the formalization of the pineapple-example from the introduction:

Γ1 = {∀x(Px ⊃ Qx),�∀x(Rx ⊃ Qx),∃xPx}

The last premise is added to avoid certain unwelcome results – see Section
4.3. Note that in view of the interpretation of the premises, this is a harmless
addition: if we want to explain the fact that all pineapples taste sweet, then it
seems evident that we also know that pineapples exist.

We start an LA∀-proof from Γ1 by writing down two of the premises:

1 ∀x(Px ⊃ Qx) PREM ∅
2 �∀x(Rx ⊃ Qx) PREM ∅
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Note that {∀x(Px ⊃ Qx),�∀x(Rx ⊃ Qx)} ⊢T ∀x(Px ⊃ Rx) ∨ (P 6→R Q).
Hence we may apply the rule RU to derive ∀x(Px ⊃ Rx) ∨ (P 6→R Q), and
from the latter, derive that all P are R by RC:17

3 ∀x(Px ⊃ Rx) ∨ (P 6→R Q) 1,2;RU ∅
4 ∀x(Px ⊃ Rx) 3;RC {P 6→R Q}

The interesting aspect of adaptive logics is of course their dynamic flavor,
which can only be illustrated if we add more premises to Γ1. Suppose that
we learn about a genetically modified pineapple a, which contains no sugar,
but nevertheless tastes sweet because it has been injected with a synthetic
sweetener. So we have to add the premise Pa ∧ ¬Ra, which contradicts the
hypothesis ∀x(Px ⊃ Rx). Let us call the extended premise set Γ2. A nice
advantage of ALs is that, since the proofs are dynamic, we need not start a
proof all over again whenever premises are added; we can just pick up where
we ended our line of thought. Hence we may continue our proof as follows:

...
...

...
...

4 ∀x(Px ⊃ Rx) 3;RC {P 6→R Q} X
7

5 Pa ∧ ¬Ra PREM ∅
6 ¬∀x(Px ⊃ Rx) 5;RU ∅
7 P 6→R Q 1,2,6;RU ∅

For the time being, ignore the X7-sign on line 4 – this will be clarified below.
At line 7, we have reached the insight that P 6→R Q follows from our premises
by T. Hence, we need a way to indicate that there is something wrong with
the condition of line 4. This is done by a marking criterion, which depends on
what we have derived so far. Let a stage of a proof be a list of lines, obtained
by application of the three generic rules. A proof is then a list of subsequent
stages. At every stage s, a marking definition stipulates which lines are marked
and which are not, and, hence, which have become marked or unmarked with
respect to the previous stage. If A is derived on an unmarked line at stage s,
we say that A is derived at stage s; otherwise, A is not derived at stage s.

For LA∀, a line is marked at stage s, whenever at this stage, a member of
its condition is derived on the empty condition, either by itself, or as part of a
minimal disjunction of abnormalities. In that case, we say that the condition
is unreliable at stage s. Putting everything together, we obtain the following
standard definitions:

Definition 1. A Dab-formula Dab(∆) is a minimal Dab-formula at stage s iff
Dab(∆) is derived on the empty condition at stage s, and there is no ∆′ ⊂ ∆
for which Dab(∆′) is derived on the empty condition at stage s.

17 We added line 3 for the sake of clarity – in view of the definition of the rule RC, it is also
possible to derive the formula on line 4 from those on lines 1 and 2 in one step.
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Definition 2. The set of unreliable formulas Us(Γ) at stage s is the union of
all ∆ for which Dab(∆) is a minimal Dab-formula at stage s.

Definition 3 (Marking for Reliability). The line i with condition ∆ is marked
at stage s iff ∆ ∩ Us(Γ) 6= ∅.

In view of these definitions, line 4 is marked at stage 7 of the above proof, as
indicated by the X

7-sign. In the remainder, we use the sign X
i to denotes the

fact that a given line is marked from stage i up to the stage under consideration.
It is important to remark that, despite the dynamic character of the proofs,

adaptive logics are proper proof-invariant logics. Given a Γ and A, the logic
defines whether A is a consequence of Γ or not. This does not depend on
the way we start a proof or proceed throughout one. To avoid confusion with
formulas that are derivable at a certain stage of a proof (but can be defeated
at a later stage), formulas in the consequence set are called finally derivable.
The final derivability relation of an adaptive logic is defined as follows:18

Definition 4. A formula A is finally derived from Γ at stage s of a proof if
and only if A is derived at line i, line i is not marked at stage s and every
extension of the proof in which i is marked may be further extended in such a
way that line i is unmarked.

Definition 5 (Final Derivability). Γ ⊢LA∀
A (A ∈ CnLA∀

(Γ)) if and only
if A is finally derived in an LA∀-proof from Γ.

To illustrate the above definitions, consider again our proof from Γ2. Since
the Dab-formula at line 7 is a single abnormality, it will be a minimal Dab-
formula in every extension of the proof. Hence, line 4 will remain marked in
every such extension. More generally, ∀x(Px ⊃ Rx) is not finally derivable
from Γ2, i.e. there is no proof in which we can finally derive ∀x(Px ⊃ Rx)
from this premise set.

4.3. Some Salient Features of the Logic

We end this section with a brief survey of the ways in which LA∀ solves some
typical problems for any formal model of abduction. First of all, as any AL in
standard format, LA∀ has the Reassurance property (Batens 2007, Corollary
1):

Theorem 6. If Γ is not T-trivial, then neither is CnLA∀
(Γ). (Reassurance)

Theorem 6 implies that if our explanatory framework and our factual
knowledge are mutually consistent, then LA∀ will always yield a consistent
set of explanatory hypotheses. This is an immediate consequence of the fact
that CL is included in T and of the axiom T.

Second, as explained in Section 3.3, a logic for abduction should only yield
the most parsimonious hypotheses. Consider the following proof from Γ1:

18 As explained in Batens (2007), adaptive logics in general lack a positive test. We refer
to Meheus (2011) for an extensive discussion of this fact.
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1 ∀x(Px ⊃ Qx) PREM ∅
2 �∀x(Rx ⊃ Qx) PREM ∅
3 �∀x((Rx ∧ Sx) ⊃ Qx) 2;RU ∅
4 ∀x(Px ⊃ (Rx ∧ Sx)) 1,3;RC {P 6→R∧S Q} X

9

5 ∀x(Px ⊃ Sx) 4;RU {P 6→R∧S Q} X
9

6 ∃xPx PREM ∅
7 ∃x(Px ∧ ¬Sx) ∨ ∃x(Px ∧ Sx) 6;RU ∅
8 ¬∀x(Px ⊃ (Rx ∧ Sx)) ∨ ¬∀x(Px ⊃ (Rx ∧ ¬Sx)) 7; RU ∅
9 (P 6→R∧S Q) ∨ (P 6→R∧¬S Q) 1,2,8;RU ∅

As the material implication has the property A ⊃ B ⊢ (A∧C) ⊃ B (strength-
ening the antecedent), the hypothesis on line 5, which states that anything
that is P also has the random property S, could be derived. However, using
the premise ∃xPx, we can derive the Dab-formula on line 9 which defeats lines
4 and 5.

Third, the dynamic proof theory and the form of the abnormalities also
ensure that no hypotheses can be finally derived from tautologies, and that
no contradictions can be finally derived as a hypothesis. The following proof
from Γ1 illustrates how the logic enables us to defeat both self-contradictory
hypotheses and hypotheses derived from tautotologies – see line 3, resp. lines
7 and 8:

1 ∀x(Px ⊃ Qx) PREM ∅
2 �∀x((Sx ∧ ¬Sx) ⊃ Qx) -;RU ∅
3 ∀x(Px ⊃ (Sx ∧ ¬Sx)) 1,2;RC {P 6→S∧¬S Q} X

6

4 ∃xPx PREM ∅
5 ∃x(Px ∧ ¬(Sx ∧ ¬Sx)) 4;RU ∅
6 P 6→S∧¬S Q 1,2,5;RU ∅
7 ∀x(Px ⊃ (Sx ∨ ¬Sx)) -;RU ∅
8 �∀x(Tx ⊃ (Sx ∨ ¬Sx))) -;RU ∅
9 ∀x(Px ⊃ Tx) 7,8;RC {P 6→T (S ∨ ¬S)} X

12

10 �∀x(¬Tx ⊃ (Sx ∨ ¬Sx)) -;RU ∅
11 ¬∀x(Px ⊃ Tx) ∨ ¬∀x(Px ⊃ ¬Tx) 4;RU ∅
12 (P 6→T S ∨ ¬S) ∨ (P 6→¬T S ∨ ¬S) 7,8,10,11;RU ∅

The final feature that will be illustrated is how this logic handles multiple
explanatory hypotheses. Suppose that we learn about a property S, which
explains Q-hood just as well as the property R does. Hence we have to add
the premise �∀x(Sx ⊃ Qx) to Γ1, which results in the following set:

Γ3 = {∀x(Px ⊃ Qx),�∀x(Rx ⊃ Qx),�∀x(Sx ⊃ Qx),∃xPx}

At first sight, both the hypotheses ∀x(Px ⊃ Rx) and ∀x(Px ⊃ Sx) can be
derived from Γ3. But, as shown in the proof below, these two formulas are not
finally derivable.The composed hypothesis ∀x(Px ⊃ (Rx ∨ Sx)) is, however,
finally derivable from Γ3.
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1 ∀x(Px ⊃ Qx) PREM ∅
2 �∀x(Rx ⊃ Qx) PREM ∅
3 �∀x(Sx ⊃ Qx) PREM ∅
4 ∀x(Px ⊃ Rx) 1,2;RC {P 6→R Q} X

9

5 ∀x(Px ⊃ Sx) 1,3;RC {P 6→S Q} X
10

6 ∃xPx PREM ∅
7 ¬∀x(Px ⊃ Rx) ∨ ¬∀x(Px ⊃ (Sx ∧ ¬Rx)) 6;RU ∅
8 �∀x((Sx ∧ ¬Rx) ⊃ Qx) 3;RU ∅
9 (P 6→R Q) ∨ (P 6→S∧¬R Q) 1,2,7,8;RU ∅
10 (P 6→S Q) ∨ (P 6→R∧¬S Q) 1,2,3,6;RU ∅
11 �∀x((Rx ∨ Sx) ⊃ Qx) 2,3;RU ∅
12 ∀x(Px ⊃ (Rx ∨ Sx)) 1,11;RC {P 6→R∨S Q}

In view of this last feature, LA∀ models a kind of practical abduction: when-
ever multiple explanatory hypotheses are available, LA∀ only allows for the
(undefeated) derivation of a disjunctive combination of these hypotheses. This
is opposed to theoretical abduction, in which each of the individual hypotheses
can be separately derived. For a thorough discussion of this distinction, see
Gauderis (2012).

5. Conclusion

As argued in this paper, abduction of generalizations (AG) is ubiquitous in
everyday and scientific reasoning. We provided a first general analysis of this
pattern, and argued that the notion of an explanatory framework should be
embodied in any formal model for AG. This idea was implemented in LA∀,
which is a well-behaved formal logic that allows us to apply AG, and to with-
draw its applications in those cases where a conflict with the other premises
occurs.

An open question remains whether one may obtain a sensible interpretation
of the Kripke-semantics for this application of (extensions of) T. In this way,
assumptions about the notion of the explanatory framework may be translated
into formal properties of the accessibility relation and vice versa. Since we
focused mostly on the proof theoretic aspects of our formal model, we consider
this a topic for future research.

Several enrichments of our formal model can be studied, in order to deal
with e.g. probabilistic information (see Section 2.1), causal arguments (see Sec-
tion 3.1), and abductive anomalies.19 Also, it seems worthwhile to develop ways
in which singular fact abduction and AG can be integrated in the framework
of adaptive logics. Finally, case studies of some of the examples mentioned
in Section 2 may shed new light on the relation between AG, unification and
other patterns of abduction.

19 In Aliseda’s terminology, an anomaly is a fact, the negation of which follows from our
background theory.
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