
promoting access to White Rose research papers

White Rose Research Online

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Proceedings of the
ACM Symposium on Virtual Reality Software and Technology.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/4964/

Published paper
Jones, D.M., Ruddle, R.A. and Savage, J.C. (2002) Implementing flexible rules of
interaction for object manipulation in cluttered virtual environments. In:
Proceedings of the ACM Symposium on Virtual Reality Software and Technology.
VRST'02, November 11 - 13, 2002, Hong Kong, China. ACM , pp. 89-96.
http://dx.doi.org/10.1145/585740.585756

eprints@whiterose.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193325665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.whiterose.ac.uk/4964/
http://dx.doi.org/10.1145/585740.585756

Proceedings of ACM Virtual Reality Software and Technology (VRST’02), pages 89-96

Implementing Flexible Rules of Interaction for
Object Manipulation in Cluttered Virtual Environments

Roy A Ruddle
Informatics Research Institute

School of Computing
University of Leeds, UK

+44 113 343 5430

royr@comp.leeds.ac.uk

Justin CD Savage
School of Psychology
Cardiff University, UK.

+44 292 087 4007

savagejc@cardiff.ac.uk

Dylan M Jones
School of Psychology
Cardiff University, UK

+44 292 087 4007

jonesdm@cardiff.ac.uk

ABSTRACT
Object manipulation in cluttered virtual environments (VEs)
brings additional challenges to the design of interaction
algorithms, when compared with open virtual spaces. As the
complexity of the algorithms increases so does the flexibility with
which users can interact, but this is at the expense of much
greater difficulties in implementation for developers. Three rules
that increase the realism and flexibility of interaction are outlined:
collision response, order of control, and physical compatibility.
The implementation of each is described, highlighting the
substantial increase in algorithm complexity that arises. Data are
reported from an experiment in which participants manipulated a
bulky virtual object through parts of a virtual building (the piano
movers’ problem). These data illustrate the benefits to users that
accrue from implementing flexible rules of interaction.

Categories and Subject Descriptors
I.3.6 [Computer Graphics]: Methodology and Techniques -
Interaction Techniques. I.3.6 [Computer Graphics]: Three-
Dimensional Graphics and Realism - Virtual Reality. H.5.2
[Information Interfaces and Presentation]: User Interfaces -
Input devices and strategies.

General Terms
Algorithms, Measurement, Performance, Design,
Experimentation, Human Factors.

Keywords
Virtual Environments, Object Manipulation, Rules of Interaction.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
VRST’02, November 11-13, 2002, Hong Kong.
Copyright 2002 ACM 1-58113-530-0/02/0011…$5.00.

1. INTRODUCTION
Many different algorithms have been proposed for the
manipulation of objects in virtual environments (VEs), and
examples include arm extension techniques such as the “go-go”
[9], ray casting techniques such as HOMER [1], and image plane
interaction [8]. Experimental comparisons of some of these have
been performed [2]. However, a limitation is that they have all
been designed from the point of view of manipulating objects in
open (uncluttered) virtual spaces.
A wide variety of VE applications use environments that are
cluttered. These applications range from those used to design the
interior layouts of buildings, to simulating the manual handling of
materials in new factories (e.g., automotive), and assessing the
buildability and maintainability of complex mechanical and
pharmaceutical equipment. All of these types of application bring
major challenges to the design of algorithms used to control
interaction. First, objects must be prevented from moving through
or penetrating each other. Collision detection is only part of this
problem because the application must also define what happens
after a collision has occurred. This latter part is termed collision
response, and the algorithms available have widely-varying
effects on the ease and realism with which users can interact.
Second, visual continuity must be preserved, so objects don’t
appear to “jump” from one position to another, especially in the
aftermath of a collision. Third, interaction in cluttered VEs is
characterized by movements that are small and precise, for
example, avoiding an obstacle or manipulating an object through
a tightly-fitting gap, and the ease with which these can be
achieved is affected by the order of control that is used. Fourth,
human-in-the-loop design considerations often need to be
addressed, and for these it is important that users adopt postures
in their VE interaction that are physically compatible with those
that they would adopt when performing the task in the real world.

1.1 Interaction and Software Complexity
Interaction algorithms can be thought of as comprising a set of
rules. As the number and scope of the rules is increased, users are
able to interact in a much more flexible manner. This allows them
to develop their own interaction strategies, and use the interface
in the way that they wish, not just the way intended by the
developer.
Unfortunately, increases in interaction flexibility produce a very
large increase in the complexity of the user interface software,
making both development and testing much more time consuming
and expensive. As a result, most VE interfaces end up being

Proceedings of ACM Virtual Reality Software and Technology (VRST’02), pages 89-96

implemented in a rather simplistic manner and users are left to
cope as best they can.
This article describes the implementation of rules that allow users
to interact flexibly when manipulating objects in cluttered VEs.
The article focuses on the complexity of the interface software
that arises when flexible rules are implemented. The rules chosen
are applicable to a wide range of application situations, but are
considered here within the context of the general purpose task of
moving a large object through a tightly-fitting environment, a task
that is known as the piano movers’ problem. In the virtual version
of the task, the user controls a virtual human (the user’s
embodiment within the VE; the user “is” the virtual human) that
carries an object through the VE (see Figure 1). The virtual
human and object are two parts of a coupled system in which the
position and orientation of both parts can be varied independently
even though they remain linked together (the human grasps the
object in both hands at all times).
The task is ideally suited to studying VE manipulation because
the difficulty can be increased simply by reducing the clearance
between the object and the environment. As the task gets more
difficult flexible rules of interaction will produce greater and
greater benefits, with the benefits that accrue to users
outweighing the extra demands made on developers. Following
the description of the three types of rule (collision handling, order
of control, and physical compatibility) the results of an
experiment are reported that investigated participants’ interaction
behavior when using the rules.

Figure 1. A virtual human carrying an object through one

doorway of the offset VE used in the experiment. The second
doorway is beyond the human.

2. COLLISION HANDLING
Collision handling involves the detection of collisions and
defining a system’s subsequent response. Collision detection is a
topic that is well-researched (for a recent review, see [5]). In most
VE applications the speed at which users manipulate objects is
relatively slow, so polygon-polygon collision checks, carried out
at the end of each graphics frame, are sufficiently accurate. Once
a collision has been detected, feedback should be given to the
user using visual, auditory, or haptic information. In theory, any
of these could be used. Haptic feedback has been shown to aid
user performance [7] but, unfortunately, can only be provided
over a small working volume (e.g., 41 x 58 x 84 cm for the
PHANTOM Premium 3, Sensable Technologies Inc.). This makes

it unsuitable for large-range object manipulation of the type
considered in this paper.
In terms of collisions, we restrict ourselves to different types of
response algorithm. Before choosing a form of collision response,
a distinction needs to be drawn between VE applications where
interaction is required to be as easy as possible, and those where
it should be as realistic as possible. If interaction is required to be
as easy as possible then the interface should automatically guide
the virtual human and the object through the environment and
around obstacles, for example, by using a slip or force-field
algorithm [4, 14]. All the user has to do is to indicate the general
direction of movement and the algorithm will do the rest.
However, this also makes interaction artificial because the object
can be moved through even tiny gaps with apparent ease,
reducing a VE’s utility for applications such as making human-in-
the-loop design decisions. More realistic interaction will occur if
the user is required to make precise manipulations to maneuver
the object through each gap. The user only makes progress if they
avoid collisions, in the same way as people avoid collisions when
moving objects around in the real world (if a person scraped an
item of furniture along the walls of their house while moving it to
another room they would then have to redecorate the walls).
The extent to which movement is prevented in response to each
collision can be varied. In the task used in the present study, both
the object and the virtual human may collide with the fabric of the
environment (the floor, ceiling and walls), and with each other.
When a collision occurs, the developer has the option of
preventing the movement of all parts of the coupled system, or
only preventing movement of the parts that are actually in
collision. We refer to these two types of response algorithm as
stop-as-a-whole or stop-by-parts, respectively. Clearly, stop-by-
parts allows much more flexible interaction, but stop-as-a-whole
is substantially more straightforward to implement.
In any given graphics frame, the user attempts to move the virtual
human to a new position and, by manipulating the human’s
hands, maneuver the object through the VE. With stop-as-a-whole
collision response there are two possible sets of resultant
positions in each frame (see Figure 2). If there is no collision then
the VE software allows the attempted movements to take place.
Otherwise, the human and the object are reset to the (non-
colliding) positions that they had at the end of the previous frame.
In effect, the positions of the human and object are momentarily
frozen. Stop-by-parts allows four sets of positions, depending on
which entities, if any, are in collision (see Figure 3) so, under
most circumstances, some movement will be allowed. The two
extra sets of positions are extremely important because they allow
the user to manipulate the object even if they are against a “solid”
obstacle such as a wall, or make small adjustments in the human’s
position, by an amount that is equal and opposite to their hand
movements, even if the object is in collision. There are even
greater benefits in situations where the object was being carried
collaboratively by two (or more) users because each can
independently adjust their position when collisions occur (see
[10]).
As can be seen from the flow charts in Figures 2 and 3, stop-by-
parts involves the implementation of a substantially more
complex algorithm to govern interaction. However, this additional
complexity can only be justified to a developer if it produces a
significant increase in the ease with which users can interact.

Proceedings of ACM Virtual Reality Software and Technology (VRST’02), pages 89-96

Figure 2. Flow chart for stop-as-a-whole collision response.
VH = virtual human.

3. ORDER OF CONTROL
VEs offer a choice between the precision and speed with which
movements are made. Precision is greatest when zero-order
(displacement) control is used and movements of an interface
device produce corresponding changes of position and orientation
inside a VE (stimulus-response compatibility is maintained). An
alternative is first-order control, where displacements of the
device, or the holding down of an interface button, change the
velocity of an entity within the VE. First-order control allows
large movements to be made with minimal input, but is unsuitable
for the precision that is central to interaction in cluttered VEs.
Positions and orientations cannot be adjusted directly and,
instead, the user must make small adjustments in velocity to
complete the required maneuvers. Ideally, therefore, it should be
possible to achieve all forms of movement in a cluttered VE using
zero-order control.
The movements that users need to make in cluttered VE can be
divided into three types: (a) changes of position of their virtual
body, (b) changes of their view direction, and (c) manipulations
of objects they are holding, produced by movements of their
virtual hands. Zero-order control is the norm for object
manipulation, and can be achieved by tracking a user’s hands or
using a prop-type interface such as the Polhemus 3Ball. In
immersive VEs, zero-order control is also the norm for the user’s
direction of view and is performed via head tracking. In desktop

VEs, however, first-order control is more common. An example is
where the user’s view is rotated when they move the cursor away
from the center of the display. The rate of rotation can either be
constant, or increase with the distance of the cursor from the
center.
Zero-order control for changes of position of a user’s virtual body
is more problematic. If a large physical space and wide-range
sensors are available then the user can actually walk round a VE,
but the facilities required usually render this approach
impractical. Another option is for the user to “walk in place” to
travel through a VE and, while this approach seems promising,
developments have not yet reached the stage where such an
interface can be implemented commercially ([13]; personal
communication J. N. Templeman, 11 January 2001). Therefore,
large translationary movements are usually made using first-order
(velocity) or second-order (acceleration) control, for example, by
holding down a button to accelerate in the user’s direction of
view. However, current sensor technology is ideally suited for
implementing a hybrid interface for translationary movements in
a cluttered VE.
In this hybrid interface, large changes of position are performed
using first- or second-order control, but small changes of position
can be performed using two variants of zero-order control. The
first of these occurs when the object that a user is carrying is in
collision with the VE and stop-by-parts collision response is
being used. To compensate for the fact that the object cannot be
moved, the user’s body is moved in an equal and opposite
direction to movements of their hands, as shown in Figure 3. The
second is similar but involves a mode switch in the interface that
the user uses to indicate that the human’s hands should be kept
stationary and the human’s body should move by an amount that
is equal and opposite to the user’s physical hand movements. The
only difference between these two types of control is that, in the
second, the user makes an input to the interface (e.g., by holding
down a button) to temporarily lock their virtual hand position,
instead of relying on a collision. The three different forms of
movement are easily combined. Referring back to Figure 3, the
only change required is in the initial calculation of the new
position of the virtual human and the object (the uppermost box in
the figure). If the mode switch is invoked then these positions
become:
 on+1 = on + bn+1

 pn+1 = pn + bn+1 - (hn+1 - hn)

4. PHYSICAL COMPATIBILITY
The purpose of physical compatibility in an interface is to help
ensure that a user adopts a realistic posture when they manipulate
a virtual object. It does this by making the user’s physical and
virtual hand position the same as each other, relative to their
body, so that interaction that would be awkward in the real world
(e.g., assembling something above head height) cannot be
performed in a more comfortable position in a VE (e.g., at waist
level). The converse is also true, and may aid interaction by
helping to prevent users from adopting unnecessarily awkward
postures during interaction.
Unfortunately, physical compatibility further complicates a VE’s
interface software. This section first describes the implementation
of manipulation in a cluttered VE without physical compatibility,
and then describes the modifications that are required to preserve
it. Throughout, we are only concerned with the physical

VH or obj collide
with anything?

yes no

Calculate new position of VH & object:
pn+1 = pn + bn+1

on+1 = on + bn+1 + (hn+1 - hn)

Reset position of VH
& object:
pn+1 = pn

on+1 = on

Render scene: VH &
object positions

unchanged

Render scene: VH &
object change

position

pn , pn+1 Resultant position of virtual human’s body at
end of previous (n) and current (n+1) frames

on , on+1 Resultant position of object at end of previous
and current frames

bn+1 Attempted movement of virtual human’s body
during current frame (e.g., movement produced
by holding down an interface button)

hn , hn+1 Position of user’s hands relative to their body at
the end of the previous and current frames (e.g.,
measured using magnetic sensors)

VH or obj collide
with anything?

yes no

Calculate new position of VH & object:
pn+1 = pn + bn+1

on+1 = on + bn+1 + (hn+1 - hn)

Reset position of VH
& object:
pn+1 = pn

on+1 = on

Render scene: VH &
object positions

unchanged

Render scene: VH &
object change

position

pn , pn+1 Resultant position of virtual human’s body at
end of previous (n) and current (n+1) frames

on , on+1 Resultant position of object at end of previous
and current frames

bn+1 Attempted movement of virtual human’s body
during current frame (e.g., movement produced
by holding down an interface button)

hn , hn+1 Position of user’s hands relative to their body at
the end of the previous and current frames (e.g.,
measured using magnetic sensors)

Proceedings of ACM Virtual Reality Software and Technology (VRST’02), pages 89-96

Figure 3. Flow chart for stop-by-parts collision response. b, h, o and p are as in Figure 2.
compatibility of the user’s hand position, although the concept
could be extended to include posture as a whole.
The occurrence of collisions means that there are frequently
occasions when a virtual human’s hand cannot be in a position
that is physically compatible with that of the user, for example,
the human’s hand cannot be in the middle of a virtual wall. The
most straightforward way of handling this within the VE software
is to implement an offset between the virtual and physical hand
positions, as shown in Figure 4. During non-colliding movement,
the virtual and physical hand positions change by an identical
amount (the hand position offset vector, ho, remains constant). If a
collision occurs then either the position of the human’s body is
moved by an amount that is equal and opposite to the movements
of the user’s hands (as described above; see Figure 3) or, if
collisions make that impossible, then the virtual hand and body
positions remain unchanged and the offset vector is altered to

compensate. A similar offset can be implemented for the
orientation of the human’s hand and a clutch [15] used to redefine
both offsets without altering the position and orientation of the
virtual hand. One further piece of functionality needs to be
implemented, and that is to check whether the user is extending
the virtual human’s reach beyond a realistic region. When that
occurs, the human’s hand remains stationary and the offset is
redefined. Clearly, feedback should also be provided so the user
is informed of the reason for the hand being momentarily frozen
in position.
If physical compatibility is to be maintained then there are a
number of differences in the rules that govern interaction. First, a
user’s reach does not have to be checked because it is the same as
their physical reach. Second, a clutch cannot be used to redefine
the relative position of the user’s virtual and physical hand
because, by definition, they must be the same. The orientation

yes

Calculate new position of VH & object:
pn+1 = pn + bn+1

on+1 = on + bn+1 + (hn+1 - hn)

VH &
object collide with

each other?

Object
collides with static parts

of VE?

yes
no

VH
collides with static parts

of VE?

Reset position of VH &
recalculate new
position of object:
pn+1 = pn

on+1 = on + (hn+1 - hn)

yes

yes

no Object
collides with static parts

of VE?

VH
collides with static parts

of VE?

Reset position of object &
recalculate new
position of VH:
pn+1 = pn - (hn+1 - hn)
on+1 = on

yes

Render scene: VH &
object positions

unchanged

Reset position of VH
& object:
pn+1 = pn

on+1 = on

Reset position of
VH:
pn+1 = pn

Reset position of
object:
on+1 = on

Render scene: VH
position unchanged, but
object moved relative to

VH

Render scene: VH &
object change

positions

Render scene: Object
position unchanged, but
VH moved relative to

object

no

nono

Virtual human and object change position relative to
each other, but remain in the same region of space
because there is a collision

Virtual human and object
travel through VE

Virtual human and object
temporarily frozen in
position

yes

Calculate new position of VH & object:
pn+1 = pn + bn+1

on+1 = on + bn+1 + (hn+1 - hn)

VH &
object collide with

each other?

Object
collides with static parts

of VE?

yes
no

VH
collides with static parts

of VE?

Reset position of VH &
recalculate new
position of object:
pn+1 = pn

on+1 = on + (hn+1 - hn)

yes

yes

no Object
collides with static parts

of VE?

VH
collides with static parts

of VE?

Reset position of object &
recalculate new
position of VH:
pn+1 = pn - (hn+1 - hn)
on+1 = on

yes

Render scene: VH &
object positions

unchanged

Reset position of VH
& object:
pn+1 = pn

on+1 = on

Reset position of
VH:
pn+1 = pn

Reset position of
object:
on+1 = on

Render scene: VH
position unchanged, but
object moved relative to

VH

Render scene: VH &
object change

positions

Render scene: Object
position unchanged, but
VH moved relative to

object

no

nono

Virtual human and object change position relative to
each other, but remain in the same region of space
because there is a collision

Virtual human and object
travel through VE

Virtual human and object
temporarily frozen in
position

Proceedings of ACM Virtual Reality Software and Technology (VRST’02), pages 89-96

offset can, however, be redefined because that is the equivalent of
a person changing their grasp on an object. Third, a complication
occurs when there is a collision and physical compatibility cannot
be maintained. Feedback can be provided to indicate where the
physically compatible position would be (see Figure 5) but the
object will suddenly jump in position when the user moves their
hand to a new non-colliding position and this position could lie on
another side of the obstacle with which the original collision took
place. For example, the object could be jumped from one side of a
virtual wall to another.

Figure 4. The offset between a user’s physical and virtual
hand positions.

Figure 5. View inside the C-shaped VE used in the

experiment. The object is being moved through the doorway
but is in collision with the wall (indicated by graphical

highlighting) and the wireline image of the object indicates its
physically compatible position.

Fortunately a solution is at hand which avoids the disturbing
break in visual continuity that is caused by the object jumping
and prevents the object from being moved across an obstacle. The
solution is to limit the rate at which the object can be moved in
the immediate aftermath of a collision, using a rapid controlled
movement algorithm based on that proposed by [6]. The object
moves quickly, but smoothly, to the new non-colliding position,
but the collision detection performed at the end of each frame
prevents it from being moved through an obstacle during this
automatic movement. The sequence of movements is shown in
Figure 6. At all times, the object attempts to move toward its
physically compatible position, and a wireline image (see Figure
5) is provided as feedback when it is not in that position.

5. EVALUATION OF FLEXIBLE
INTERACTION
Formal experiments show that object manipulation takes 30% less
time in highly cluttered VEs (the C-shaped VE, see below) when
stop-by-parts collision response is implemented than with stop-as-
a-whole [11]. This large advantage for flexible rules of interaction
arose even in an experimental situation where participants may

have been able to compensate for some of the deficiencies of
stop-as-a-whole by being more precise with their actions for the
duration of the experimental task, even though they could not
sustain that precision over an extended period of time.
The experiment described below followed on from the one
mentioned above [11]. Given that the magnitude of the
performance advantage had already been demonstrated, this new
experiment investigated the interaction behavior of participants
when they used a single (flexible) set of rules of interaction. The
rules allowed individuals to use the interface in a variety of ways,
with the extent to which they used each aspect of flexibility being
measured.

6. EXPERIMENT
Each participant underwent a period of training and then
performed test trials in which they carried a Shepard-Metzler (SM
[12]) object through two parts of a virtual building. These were
two doors that were offset from each other, and a C-shaped
section of corridor. The offset VE provided an easier task than the
C-shaped VE because there was more space in which to
maneuver the object.

6.1 Method
6.1.1 Participants
Six participants (five men and one woman) took part in the
experiment, and their ages ranged from 24 to 37 years. All the
participants volunteered for the experiment and were paid an
honorarium for their participation.

6.1.2 Materials
The VE software was a C++ Performer application that was
designed and programmed by the authors, and ran on a SGI
Maximum IMPACT workstation. The application update rate was
20 Hz.
Interior views of the two environments are shown in Figures 1
and 5, and plan views in Figure 7. The offset VE contained two
doorways that were offset by 1.0 m. The other VE contained a C-
shaped corridor. Each VE contained a “finish line” that indicated
where participants had to carry the object to. The object had a
cross section of 0.5 x 0.5 m, was 1.5 m long and had a 1.0 m stub
at each end (see Figures 1 and 5). These were at 90 degrees to
each other.
Each participant performed the experiment while physically
standing up, facing an 86 cm (34 inch) monitor that was
positioned 1.60 m away on a table. A participant’s position and
orientation in an environment was indicated by a 3D model of a
virtual human that held the object being manipulated (see Figures
1 and 5). The participant’s viewpoint was positioned 3 m behind
the position of the virtual human, allowing them to see the
human’s immediate surroundings in the VE. This type of over-
the-shoulder viewpoint has been used successfully in a number of
previous systems (e.g., [3]), but meant that the participant’s
viewpoint was sometimes on the opposite side of a wall to the
human. When this occurred, the walls in question were rendered
transparent. The field of view was 48 x 36 degrees.
The rules of interaction were as described in the introduction (i.e.,
stop-by-parts collision response, hybrid movement control, and
physical compatibility). Participants controlled their movement
using a cuboid prop (100 x 75 x 40 mm) that they held in their
hands. The prop had a Polhemus Fastrak sensor mounted on the
top and four buttons. The position and orientation of the prop was

Virtual hand position, hv
Physical hand position, hp
Offset between virtual and physical
hand position, ho = hv - hp

hv

ho
hp

Virtual hand position, hv
Physical hand position, hp
Offset between virtual and physical
hand position, ho = hv - hp

hv

ho
hp

hv

ho
hp

Proceedings of ACM Virtual Reality Software and Technology (VRST’02), pages 89-96

Figure 6. Flow chart showing the implementation of physical compatibility (PC) with controlled movement to prevent an object
from jumping in the aftermath of a collision. For clarity, only position changes are shown. Changes of orientation are similar. The
30 mm criterion assumes a constant frame rate of 20 Hz. The criterion used in the experiment varied with the frame rate to give a

constant limiting speed of movement of 0.6ms-1.

Figure 7. Plan views of the offset (a) and C-shaped VEs (b). In both cases, the ceiling was at a height of 2.4 m and the narrow
openings were 2.0 m high.

Calculate new PC
position of object

Object collides?

Position PC in
last frame?

Render scene
(no feedback)

yes

Move object by 30 mm
towards new PC position

Render scene: Show feedback (wireline version
of object) in PC position

yes

no

no

no

Reset object to
previous position

yes

Previous (actual)
position within 30 mm
of new PC position?

Object collides?
yes

Move object to
new PC position

no

Calculate new PC
position of object

Object collides?

Position PC in
last frame?

Render scene
(no feedback)

yes

Move object by 30 mm
towards new PC position

Render scene: Show feedback (wireline version
of object) in PC position

yes

no

no

no

Reset object to
previous position

yes

Previous (actual)
position within 30 mm
of new PC position?

Object collides?
yes

Move object to
new PC position

no

Narrow opening
(width 0.8 m)

Finish line

Starting position/orientation
of virtual human and object

3.0 m

2.0 m

3.2 m

Wall (thickness 0.1 m)

(a) Offset VE

Narrow opening
(width 0.8 m)

Finish
line

Starting position/orientation
of virtual human and object

2.8 m
1.8 m 1.8 m

(b) C-shaped VE

Narrow opening
(width 0.8 m)

Finish line

Starting position/orientation
of virtual human and object

3.0 m

2.0 m

3.2 m

Wall (thickness 0.1 m)

(a) Offset VE

Narrow opening
(width 0.8 m)

Finish line

Starting position/orientation
of virtual human and object

3.0 m

2.0 m

3.2 m

Wall (thickness 0.1 m)

Narrow opening
(width 0.8 m)

Finish line

Starting position/orientation
of virtual human and object

3.0 m

2.0 m

3.2 m

Wall (thickness 0.1 m)

(a) Offset VE

Narrow opening
(width 0.8 m)

Finish
line

Starting position/orientation
of virtual human and object

2.8 m
1.8 m 1.8 m

(b) C-shaped VE

Narrow opening
(width 0.8 m)

Finish
line

Starting position/orientation
of virtual human and object

2.8 m
1.8 m 1.8 m

Narrow opening
(width 0.8 m)

Finish
line

Starting position/orientation
of virtual human and object

2.8 m
1.8 m 1.8 m

(b) C-shaped VE

Proceedings of ACM Virtual Reality Software and Technology (VRST’02), pages 89-96

measured using the sensor and the MR Toolkit. If a participant
held down one button they accelerated forwards (i.e., in their
direction of view) at 0.5 ms-2, to a maximum speed of 0.5 ms-1,
and if they held down another button they accelerated backwards
at the same rate. The third button acted as a clutch that allowed
participants to reorient the prop and, therefore, their hands
without changing the orientation of the object. The fourth button
was used to change the mode of the Fastrak sensor. When the
button was held down, changes of the prop’s orientation caused
the participant’s direction of view to be rotated (this was done
because a large monitor was being used, rather than an head-
mounted display). If the participant held down the third and
fourth button then their virtual hand position was locked and they
could reposition the human’s body relative to their hands (zero-
order control). At all other times, the prop directly controlled the
orientation of the object (hand-centered manipulation was used;
Bowman & Hodges, 1997).

6.1.3 Procedure
All the participants had previously taken part in other
experiments that investigated the use of less flexible rules of
interaction (e.g., stop-as-a-whole collision response) to perform
the piano movers’ problem in VEs. This meant that every
participant was familiar with the experimental task and with the
concept of manipulating bulky virtual objects through cluttered
VEs.
In the present experiment, the experimenter started by
demonstrating how to use the interface and explaining the rules of
interaction. Then they demonstrated how to move the object
through the offset VE. A participant then performed five trials in
this VE carrying the object from the start position to the finish
line. The first two of these were practice trials, and the other three
were test trials. After this the experimenter demonstrated how to
move the object through the C-shaped VE, and the participant
performed two practice trials and three test trials. Each participant
took approximately 30 mins to complete the experiment.

6.2 Results and Discussion
There was little difference between participants’ use of the
interface in the three test trials with each VE so only mean data
are reported. The mean time that participants took to complete the
trials in the offset and C-shaped VEs was 48.8 s and 77.8 s,
respectively. However, the focus of the experiment was to
investigate the extent to which participants used the flexibility
provided by the rules of interaction to move the object through
the VEs. Therefore, participants’ interaction in each test trial was
broken down into periods when they were: (a) using the clutch to
re-orient their hands relative to the object, (b) repositioning their
body relative to their hands while using the buttons on the prop to
indicate that the object’s position should be frozen, (c) the object
was in collision, or (d) there was no collision (i.e., the object was
being freely manipulated or carried). If two of these occurred
simultaneously, for example, a participant used the clutch while
the object was in collision, then the first one took precedence.
The amount of each type of interaction that took place was then
expressed as a percentage of the relevant trial’s completion time.
The percentage of time that participants spent performing each
type of interaction is shown in Figure 8. For the majority of the
time the object was not in collision. A further breakdown of this
time showed that in the offset VE participants spent an average of
33% of the trial time stationary (standing in one place and either
manipulating the object or deciding on a course of action) and

43% of the time moving through the VE. In the C-shaped VE
these figures were 37% and 32%.

Offset C-shaped

%
 ti

m
e

0

20

40

60

80

100

Clutch
Reposition
Collision
Not in collision

Figure 8. Percentage of time spent performing each type of
interaction in the offset and C-shaped VEs. Error bars

indicate the standard error.
For a substantial minority of each trial participants were using the
flexibility provided by the interface and it is this with which we
are primarily concerned. The percentage of time that participants
spent using the clutch ((a) above) was similar in the two VEs. The
percentage of time that participants spent repositioning their
virtual body ((b) above) was also similar. In the offset VE this
was mainly performed when participants sidestepped between the
two doors. In the other VE participants tended to use this
functionality to align themselves for negotiating the C-shaped
bend.
The remainder of the time (7% and 17% of the trial time in the
offset and C-shaped VEs, respectively) was when the object was
in collision with the environment but the clutch was not being
used and sidestepping was not being performed. The stop-by-
parts collision response algorithm allowed a participant to
reposition the virtual human even if the object was in collision
with the fabric of the VE (the floor, walls or ceiling), thereby
facilitating progress through the environment. However, the
amount of time spent in collision does not indicate the extent to
which the virtual human was repositioned. To determine this,
collision time in each trial was divided into periods when the
position of the human was either being changed by a participant
moving their hands (if the object was in collision the virtual
human’s hands remained stationary but their body moved in an
equal and opposite direction, unless this caused the human to
collide with a wall), or “stationary”. Stationary was defined as
any graphics frame in which the position change of the human’s
body was equivalent to a speed of movement of less than 0.05 ms-

1 (this filtered out movements caused by sensor noise). In the
offset VE, the virtual human was being repositioned for half of
the collision time, but in the C-shaped VE repositioning took
place for two-thirds of collision time.

7. CONCLUSIONS
This article described ways of implementing flexible rules of
interaction for object manipulation in cluttered virtual spaces.
These rules can be (and were) implemented as extensions to make
existing forms of interaction suitable for cluttered VEs.
The rules focused on three aspects of interaction: collision
response, order of control, and physical compatibility. Collisions
are unavoidable in these VEs, and occur progressively more often

Proceedings of ACM Virtual Reality Software and Technology (VRST’02), pages 89-96

as the space becomes more cluttered. Stop-by-parts collision
response, however, allows a user to progress through a VE at
times when a less flexible algorithm would not. The extent to
which this is useful is indicated by the 12% of trial time in which
the position of the human was adjusted while a collision took
place in the C-shaped VE. This type of adjustment took
advantage of the zero-order movement provided by the interface
and, to this, should be added the time when participants used the
mode switch in the interface to reposition the human’s body
without there being a collision.
Data for the usage of a clutch have been reported before in studies
of object manipulation [15], and the present experiment provides
additional evidence for the utility of such a feature. Physical
compatibility does not, by itself, improve the ease with which
users can interact in VEs, but it does play a role in providing
realism to those interactions.
In conclusion, participants used the flexible features provided by
the interface for approximately a quarter of each trial. The user of
any computer system knows that even small hiccups in
interaction cause immense frustration and a substantial increase in
the time taken to accomplish tasks. This paper indicates the
benefits that will accrue if flexible rules are built into future VE
interfaces for almost any application that involves the
manipulation of objects in tight spaces.

8. ACKNOWLEDGMENTS
This work was supported by grant GR/L95496 from the
Engineering and Physical Sciences Research Council, and
performed while Roy Ruddle was employed in the School of
Psychology at Cardiff University.

9. REFERENCES
[1] D.A. Bowman, and L.F. Hodges, “An evaluation of

techniques for grabbing and manipulating remote objects in
immersive virtual environments”, Proceedings of the 1997
Symposium on Interactive 3D Graphics, ACM, New York,
1997, pp. 35-38.

[2] D.A. Bowman, D.B. Johnson, and L.F. Hodges, “Testbed
evaluation of virtual environment interaction techniques”,
Presence: Teleoperators and Virtual Environments, 2001,
vol. 10, pp. 75-95.

[3] J. Hindmarsh, M. Fraser, C. Heath, S. Benford, and C.
Greenhalgh, “Object-focused interaction in collaborative
virtual environments”, ACM Transactions on Computer-
Human Interaction, 2000, vol. 7, pp. 477-509.

[4] J. Jacobson, and M. Lewis, “An experimental comparison of
three methods for collision handling in virtual
environments”, Proceedings of the Human Factors and
Ergonomics Society 41st Annual Meeting, Human Factors
Society, Santa Monica, CA, 1997, pp. 1273-1277.

[5] P. Jimenez, F. Thomas, and C. Torras, “3D collision
detection: A survey”, Computer & Graphics, 2001, vol. 25,
pp. 269-285.

[6] J.D. Mackinlay, S.K. Card, and G.G. Robertson, “Rapid
controlled movement through a virtual 3D workspace”,
Computer Graphics, 1990, vol. 24, pp. 171-176.

[7] W.A. McNeely, K.D. Puterbaugh, and J.J. Troy, “Six
degree-of-freedom haptic rendering using voxel sampling”,
Proceedings of the 1999 ACM Conference on Graphics
(SIGGRAPH ‘99), ACM, New York, 1999, pp. 401-408.

[8] J.S. Pierce, A. Forsberg, M.J. Conway, M. J., S. Hong, R.
Zeleznik, and M.R. Mine, “Image plane interaction
techniques in 3D immersive environments”, Proceedings of
the 1997 Symposium on Interactive 3D Graphics, ACM,
New York, 1997, pp. 39-44.

[9] I. Poupyrev, M. Billinghurst, S. Weghorst, and T. Ichikawa,
“The go-go interaction technique: Non-linear mapping for
direct manipulation in VR”, Proceedings of ACM User
Interface Software & Technology (UIST '96). ACM, New
York, 1996, pp. 79-80.

[10] R.A. Ruddle, J.C. Savage, and D.M. Jones, “Symmetric and
Asymmetric Action Integration During Cooperative Object
Manipulation in Virtual Environments”, ACM Transactions
on Computer-Human Interaction, in press.

[11] R.A. Ruddle, J.C. Savage, and D.M. Jones, “Evaluating rules
of interaction for object manipulation in cluttered virtual
environments”, Presence: Teleoperators and Virtual
Environments, in press.

[12] R.N. Shepard, and J. Metzler, “Mental rotation of three-
dimensional objects”, Science, 1971, vol. 171, pp. 701-703.

[13] J.N. Templeman, P.S. Denbrook, and L.E. Sibert, “Virtual
locomotion: Walking in place through virtual environments”,
Presence: Teleoperators and Virtual Environments, 1999,
vol. 8, pp. 598-617.

[14] D. Xiao, and R. Hubbold, “Navigation Guided by Artificial
Force Fields”, Proceedings of the Computer Human
Interfaces Conference (CHI'98), ACM, New York, 1998, pp.
179-186.

[15] S. Zhai, P. Milgram, and W. Buxton, “The influence of
muscle groups on performance of multiple degree-of-
freedom input”, Proceedings of the Computer Human
Interfaces Conference (CHI’96), ACM, New York, 1996, pp.
308-315.

10. APPENDIX A
Two MPEG videos support this submission, illustrating trials in
the offset and C-shaped VEs. These can be accessed from
http://www.comp.leeds.ac.uk/royr/video/. The videos use the
same over-the-shoulder viewpoint as was provided to
participants. The white line seen on the floor at the end of each
video is the finish line. Neither video contains sound.

