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Abstract We describe an extension of the FEYNRULES

package dedicated to the automatic generation of the mass
spectrum associated with any Lagrangian-based quantum
field theory. After introducing a simplified way to imple-
ment particle mixings, we present a new class of FEYN-
RULES functions allowing both for the analytical compu-
tation of all the model mass matrices and for the genera-
tion of a C++ package, dubbed ASPERGE. This program
can then be further employed for a numerical evaluation of
the rotation matrices necessary to diagonalize the field ba-
sis. We illustrate these features in the context of the Two-
Higgs-Doublet Model, the Minimal Left-Right Symmetric
Standard Model and the Minimal Supersymmetric Standard
Model.

1 Introduction

Although the Standard Model of particle physics is very well
verified empirically at the current accessible energies, nu-
merous extensions to its Lagrangian are proposed. These
extensions describe new or alternative fundamental interac-
tions that typically accommodate possible new physics phe-
nomena at higher energies as well as at the current collider
energies. In this top-down approach, the phenomenology of
the proposed extensions is to be confronted with experimen-
tal observations. In order to obtain the mass spectrum of any
new physics model reflected by its Lagrangian, the mixing
matrices of the gauge eigenstates into the mass eigenstates
are needed. An automated mass spectrum generator, AS-
PERGE1 is developed within the framework of the FEYN-
RULES program [1–5] to determine the mixing matrices nu-

1The acronym ASPERGE stands for Automated Spectrum Generation.

a e-mail: benjamin.fuks@iphc.cnrs.fr

merically. This allows for a study of the direct relation be-
tween the parameters of any new physics model and the ob-
servable masses of the fundamental particles.

This paper describes in Sects. 2 and 3 the relevant parts of
the FEYNRULES program to introduce the new ASPERGE

package, detailed in Sect. 4. To illustrate its application sev-
eral examples are presented in Sect. 5.

2 The FEYNRULES package

The program FEYNRULES [1–5] is a MATHEMATICA2

package that allows for the automated extraction of Feyn-
man rules from any Lagrangian describing the dynamics
of a perturbative quantum field theory. The Feynman rules,
together with general information such as the definitions
of the model particles or of the Lagrangian parameters,
can subsequently be exported by means of several trans-
lation interfaces to matrix-element generators. Up to now,
interfaces to COMPHEP and CALCHEP [6–9], FEYNARTS

and FORMCALC [10–13], MADGRAPH and MADEVENT

[14–18], SHERPA [19, 20] and WHIZARD [21, 22] have been
developed.

In addition, any model can also be converted to a
PYTHON library containing classes and objects representing
particles, parameters and vertices. This format is dubbed the
Universal FEYNRULES Output (UFO) format [23] and is ap-
propriate to address the implementation of any high-energy
physics model into computational tools. Its strength lies in
its agnosticism with respect to the allowed Lorentz and/or
color structures appearing in the Lagrangian, in contrast to
any other more conventional model format for which restric-
tions are imposed. Presently, the UFO is used by ALOHA

[24], MADANALYSIS 5 [25], and MADGRAPH 5 [18], and

2MATHEMATICA is a registered trademark of Wolfram Research, Inc.
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will be used, in the future, by GOSAM [26, 27] and HER-
WIG++ [28].

The FEYNRULES model structure extends the format em-
ployed in FEYNARTS [11] so that particles, parameters and
gauge groups are now all defined in a similar fashion. Fol-
lowing the FEYNARTS conventions, particles are collected
into classes describing multiplets having exactly the same
quantum numbers, but possibly different masses. Each of
these classes is defined as a set of MATHEMATICA replace-
ment rules referring to its properties. For example, the three
vector fields Wi associated to the SU(2)L gauge subgroup
of the Standard Model could be declared as

V[1] == {
ClassName -> Wi,
Unphysical -> True,
SelfConjugate -> True,
Indices -> { Index[SU2W] },
FlavorIndex -> SU2W,
Definitions -> {
Wi[mu_,1]->(Wbar[mu]+W[mu])/Sqrt[2],
Wi[mu_,2]->(Wbar[mu]-W[mu])/(I*Sqrt[2]),
Wi[mu_,3]->cw Z[mu] + sw A[mu]}

}

This set of MATHEMATICA rules defines a vector field
(V[1]) represented by the symbol Wi (its ClassName)
and carrying a flavor index SU2W associated with the adjoint
gauge index of SU(2)L. As this field is declared as unphys-
ical3 (Unphysical->True), it must be linked to one or
several of the mass eigenstates of the model by means of
appropriate mixing relations. As illustrated in the example,
these relations are passed through the attribute Defini-
tions of the particle class. They can either be purely nu-
merical, as for the W1 and W2 bosons that are rotated to
the charged W+ and W− bosons, or depend on some of the
model parameters, as for the W3 field which is re-expressed
in terms of the photon A and the Z boson through a relation
depending on the sine and cosine of the electroweak mixing
angle (sw and cw).

In contrast, declaring physical particles requires the im-
plementation of extra information such as their masses
(Mass), widths (Width) and Particle Data Group codes
(PDG) [29]. The Z-boson field introduced above could
hence be declared as

V[2] == {
ClassName -> Z,
SelfConjugate -> True,
Mass -> {MZ, 91.1876},
Width -> {WZ, 2.4952},
PDG -> 23

}

3In this work, we denote as unphysical any field that is not a mass
eigenstate of the theory.

The declaration of the model parameters and gauge group
is similar and based on dedicated classes with their own
set of attributes. Since only the particle class properties in-
troduced above are sufficient for the understanding of the
present work, we omit any further detail and refer the reader
to Refs. [1, 4] for more information on particle, parameter
and gauge group implementation in FEYNRULES.

The last key ingredient to achieve a model implemen-
tation consists of its Lagrangian. It is provided using stan-
dard MATHEMATICA commands, augmented by some spe-
cial symbols representing objects such as Dirac matrices,
vector field strength tensors or covariant derivatives. The
user has then the possibility to perform basic checks on the
Lagrangian, such as verifying its hermiticity, the normaliza-
tion of kinetic terms, etc. We again refer to the FEYNRULES

manual for more information [1].
After having imported the FEYNRULES package into the

current MATHEMATICA session, the model is loaded by is-
suing

LoadModel[ "file1.fr", "file2.fr", ... ]

where its implementation can be possibly spread among
the files "file1.fr", "file2.fr", etc., according to
the convenience of the user. It can also be directly imple-
mented within the MATHEMATICA session so that the func-
tion LoadModel is called, in that case, without any argu-
ment.

The Feynman rules can be subsequently extracted by
means of the command

FeynmanRules[ Lag ]

where Lag is the MATHEMATICA symbol containing the
expression of the Lagrangian, written in four-dimensio-
nal spacetime and employing four-component spinors for
fermions. The FeynmanRules method extracts the inter-
action vertices included in the Lagrangian Lag so that they
can be further employed within MATHEMATICA for dedi-
cated studies.

All the interfaces to Monte Carlo event generation tools
can be invoked in a similar procedure,

WriteXXX[ Lag ]

where the sequence of letters XXX takes one of the val-
ues CHOutput (CALCHEP), FeynArtsOutput (FEYN-
ARTS), SHOutput (SHERPA), UFO or WOOutput
(WHIZARD).

In the context of supersymmetric theories, the most natu-
ral and convenient way to construct a Lagrangian consists of
employing the superspace formalism. Therefore, the FEYN-
RULES package includes a module allowing for superfield
declarations and Lagrangian implementation in terms of su-
perfields. Dedicated functions are then provided to convert
superfield expressions into a form more suitable with respect
to the requirements of the interfaces to the Monte Carlo
event generators [4].
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3 Implementing mixings in FEYNRULES

In this work, we propose an extension of the FEYNRULES

package aiming to simplify the declaration of the mixing
relations linking the unphysical degrees of freedom of the
theory to the physical fields. This new module allows to au-
tomatically fill the Definitions attribute of the fields,
where relevant, and declare the mixing matrices as parame-
ters. In addition, we have developed an interface generating
a C++ code dedicated to the diagonalization of the mass ma-
trices of the model (see Sect. 4) after having implemented in
FEYNRULES a function allowing for their analytical extrac-
tion from the Lagrangian. In this way, the values of all the
mixing parameters are derived numerically and can be re-
imported into FEYNRULES.

3.1 Mixing declarations

For an efficient declaration of the mixing relations, we
have extended the FEYNRULES model file structure by ad-
joining a new class dedicated to particle mixings. Conse-
quently, all mixing relations among the states can be de-
clared on the same spirit as particles, gauge groups and
parameters, after having been gathered into a list dubbed
M$MixingsDescription

M$MixingsDescription = {
Mix["l1"] == { options1 },
Mix["l2"] == { options2 },

...
}

Each element of this list consists of an equality dedicated
to one specific mixing relation. It associates a label, given
as a string, ("l1", "l2", etc.) with a set of MATHE-
MATICA replacement rules defining the mixing properties
(options1, options2, etc.).

In order to illustrate the choice of options offered to the
user, we consider the example of Sect. 2 where we have fo-
cused on the mixing of the SU(2)L gauge bosons. We start
by implementing the mixing of the W1 and W2 gauge fields,

W+
μ = W 1

μ − iW 2
μ√

2
and W−

μ = W 1
μ + iW 2

μ√
2

, (1)

which stems from the diagonalization of the third generator
of SU(2)L in the adjoint representation. As Eq. (1) is purely
numerical, i.e., it does not involve any model parameter, it
can be declared in the model file in a very compact form,

Mix["Wmix"] == {
MassBasis -> {W, Wbar},
GaugeBasis -> {Wi[1], Wi[2]},
Value -> { {1/Sqrt[2], -I/Sqrt[2]},

{1/Sqrt[2], I/Sqrt[2]} }
}

The command above declares a mixing relation, dubbed
Wmix, that can be schematically written as

MassBasis = Value . GaugeBasis

where the dot product stands for the usual matrix product.
The information on the gauge basis is provided as the value
of the attribute GaugeBasis which refers here to the un-
physical fields W1 (Wi[1]) and W2 (Wi[2]). Similarly,
the MassBasis attribute refers to the mass basis, contain-
ing here the symbols associated with the W+ (W) and W−
(Wbar) bosons. Finally, the mixing matrix is given under a
numerical form as the argument of the attribute Value.

Some remarks are in order. First, the gauge basis only
contains unphysical fields, while the mass basis can contain
either physical fields, unphysical fields or both. Particle mix-
ings can therefore be possibly implemented in several steps,
as illustrated in Sect. 5.2. Next, spin and Lorentz indices can
be omitted and the index ordering is defined when declar-
ing the fields (through the attribute Indices of the particle
class [1]). Finally, if some indices are irrelevant, i.e., if they
are identical for all the involved fields, underscores can be
employed to simplify the mixing declaration. For instance,
the three left-handed down-type squarks d̃c

L (sdL[1,c]),
s̃c
L (sdL[2,c]), and b̃c

L (sdL[3,c]) are related to the

squark gauge-eigenstates Q̃
if c
L (QLs[i,f,c]), the index

i being a fundamental SU(2)L index, the index f a flavor
index and the index c a fundamental color index. The corre-
sponding declaration reads

Mix["sdleft"] == {
MassBasis ->
{sdL[1,_], sdL[2,_], sdL[3,_]},

GaugeBasis ->
{QLs[2,1,_], QLs[2,2,_], QLs[2,3,_]},

...
}

where the mixing matrix is the identity. The underscore re-
flects that the same color index is carried by all fields.

We now get back to weak gauge boson mixings and turn
to the neutral sector. We hence focus on the rotation of the
third weak boson W3 and the hypercharge gauge boson B to
the photon and Z-boson states,

(
Aμ

Zμ

)
= Uw

(
Bμ

W 3
μ

)
, (2)

after introducing the a priori unknown weak mixing matrix
Uw

4. The computation of the numerical values of its matrix

4Following more standard conventions, the relation of Eq. (2) is usually
written in terms of the cosine and sine of the electroweak mixing angle,
as in Sect. 2. However, we have adopted the choice of staying fully
general for the sake of the example.
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elements is addressed by means of the C++ package gener-
ated by FEYNRULES (see Sect. 4) and is only possible if the
mixing is declared according to the syntax

Mix["AZmix"] == {
MassBasis -> {A, Z},
GaugeBasis -> {B, Wi[3]},
MixingMatrix -> UW,
BlockName -> WEAKMIX

}

The declaration of the gauge and mass bases is similar to the
case of the charged W bosons, while the attribute Value
has been removed as the numerical value of the mixing
matrix is not known. The user provides instead the sym-
bol referring to the mixing matrix (UW) by means of the
MixingMatrix attribute, without declaring it as one of
the model parameters. This last task is internally handled by
FEYNRULES which assumes that the mixing matrix is com-
plex and which creates two external tensorial parameters,
one for the real part and one for the imaginary part of the
matrix, together with one internal tensorial parameter being
the matrix itself.

When a symbol for a mixing matrix is provided, it
is mandatory to specify, in addition, the name of a Les
Houches block which will contain the numerical values
associated with the elements of the matrix. We indeed
recall that both FEYNRULES and most of the interfaced
Monte Carlo event generators order the model parameters
according to a structure inspired by the Supersymmetry Les
Houches Accord (SLHA) [30, 31]. In our example, we im-
pose the real part of the elements of Uw to be stored in a Les
Houches block WEAKMIX and their imaginary part in an au-
tomatically created block IMWEAKMIX, i.e., a block of the
same name with the prefix IM appended.

Implementing model Lagrangians might require to ex-
plicitly use one or several of the mixing matrices for some
of the model interactions, as for the Minimal Supersymmet-
ric Standard Model where the CKM matrix is employed in
the superpotential [4]. In this case, the matrices must be
declared according to the standard syntax presented in the
FEYNRULES manual, numerical values being provided as
inputs. This subsequently renders the attribute BlockName
of the mixing class obsolete and ignored by FEYNRULES.
Contrary, mixing matrices automatically declared through a
mixing declaration cannot be employed in Lagrangians.

In the Standard Model, the CKM matrix VCKM relates the
left-handed down quark gauge-eigenstates d0

L to the mass-
eigenstates dL as

d0
L = VCKM · dL. (3)

To be compliant with the syntax presented so far, a sym-
bol for the hermitian-conjugate matrix has to be created. To
avoid such a complication, the optional attribute Inverse

can be used and set to True, which enforces a relation
among the mass and gauge bases given by

GaugeBasis = MixingMatrix . MassBasis

3.2 More advanced cases

3.2.1 Scalar/pseudoscalar splittings

When neutral scalar fields are mixing, the gauge eigen-
states in general split into their real degrees of freedom
so that one scalar and one pseudoscalar mass basis are re-
quired. Consequently, a list of two bases is provided as
argument of the MassBasis attribute, instead of a sin-
gle basis as in Sect. 3.1. Consistently, the arguments of
the attributes Value, BlockName, MixingMatrix and
Inverse are also upgraded to lists. The first element of
those lists always refers to the scalar fields, while the sec-
ond one is related to the pseudoscalar fields. It may ap-
pear that some of the elements of those lists are irrele-
vant, as for instance when the scalar mixing matrix is un-
known (MixingMatrix and BlockName are used) and
the pseudoscalar mixing matrix is known (Value is used).
The irrelevant list components are in this case replaced by
underscores, as illustrated with

Mix["scalar"] == {
MassBasis -> { {h1, h2}, {a1, a2} },
GaugeBasis -> { phi1, phi2 },
BlockName -> { SMIX, _ },
MixingMatrix -> { US, _ },
Value -> { _, ... }

}

where the (pseudo)scalar mass-eigenstates are represented
by the symbols h1 and h2 (a1 and a2) and the gauge eigen-
states by phi1 and phi2. In this example, the mixing ma-
trix related to the scalar sector is denoted by US and is as-
sociated with the Les Houches block SMIX. Concerning the
pseudoscalar sector, a numerical mixing matrix is instead
provided (in the ellipses). A concrete example is given for
the Two-Higgs-Doublet Model in Sect. 5.1.

3.2.2 Dirac and Weyl fermion mixings

Several options are left to the user concerning the implemen-
tation of Dirac fermion mixings. Either one single gauge ba-
sis is employed, so that FEYNRULES internally takes care of
the chirality projectors that appear in the related mass terms,
or different particle classes can be used for the left-handed
and right-handed components of the fermions. In this case,
the GaugeBasis attribute refers to a list of two gauge
bases instead of to a single basis. For both options, the ar-
guments of the attributes Value, BlockName, Mixing-
Matrix and Inverse consist of lists, the first component
being related to the mixing of the left-handed fermions and
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the second one to the mixing of the right-handed fermions.
As for neutral scalar mixing, underscores are used for irrel-
evant list elements.

Lagrangian mass terms for charged Weyl fermions are
generically written as

(
ψ−

1 , . . . ,ψ−
n

)
M

⎛
⎜⎝

χ+
1
...

χ+
n

⎞
⎟⎠ , (4)

where M stands for the mass matrix and ψi and χi are Weyl
fermions which have been assigned an electric charge of ±1
for the sake of the example. The diagonalization of the ma-
trix M proceeds through two unitary rotations U and V ,
⎛
⎜⎝

ψ̃−
1
...

ψ̃−
n

⎞
⎟⎠ = U

⎛
⎜⎝

ψ−
1
...

ψ−
n

⎞
⎟⎠ and

⎛
⎜⎝

χ̃+
1
...

χ̃+
n

⎞
⎟⎠ = V

⎛
⎜⎝

χ+
1
...

χ+
n

⎞
⎟⎠ , (5)

which introduces two mass bases. Therefore, all the at-
tributes MassBasis, GaugeBasis, Value, Mixing-
Matrix, and BlockName now take lists as arguments
(with underscores included where relevant). The only extra
rule to obey to is that the first components of these lists are
associated with one of the two rotations and the second com-
ponents with the second of them. An example is provided in
Sect. 5.3.

3.3 Vacuum expectation value declarations

In realistic new physics models, the ground state of the the-
ory is non-trivial and fields must be shifted by their vac-
uum expectation value. Since Lorentz invariance and elec-
tric charge conservation impose that only electrically neu-
tral scalar fields can get non-vanishing vacuum expectation
values, only shifts of (electrically) neutral scalar fields are
allowed to be included in the mixing relations. This infor-
mation is encompassed within the variable M$vevs which
consists of a list of two-component elements. The first one
refers to an unphysical field while the second one is the asso-
ciated vacuum expectation value. For instance, the declara-
tion of a configuration where two fields phi1 and phi2 get
non-vanishing vacuum expectation values vev1 and vev2
could be performed as

M$vevs = { { phi1, vev1 }, { phi2, vev2 } }

The vacuum expectation values vev1 and vev2 must be
declared as any other model parameter, as described in the
FEYNRULES manual [1].

3.4 User functions

Once both the mixing relations and the vacuum expecta-
tion values have been properly declared, the mass matri-
ces of the model can be extracted by means of the function
ComputeMassMatrix,

ComputeMassMatrix[ Lag, options ]

where Lag is the model Lagrangian and the symbol
options stands for optional arguments. If no option is
provided, the function calculates all the mass matrices of
the model for which the numerical value of the mixing ma-
trix is unknown. It is possible to focus on a specific mix-
ing relation whose label is denoted by "l1" by issuing, in
MATHEMATICA,

ComputeMassMatrix[ Lag, Mix->"l1" ]

For the computation of multiple matrices, the label "l1"
has to be replaced by a list of labels. During the compu-
tation of the mass matrices, a lot of information is by de-
fault printed to the screen. This can be avoided by including
the optional argument ScreenOutput -> False in the
two command lines above.

The input information and the result of the Compute-
MassMatrix function can be retrieved through the in-
tuitive printing functions, MassMatrix, GaugeBasis,
MassBasis, MixMatrix, BlockName and Matrix-
Symbol which all take as argument the label of a mixing
relation. A wrapper is also available,

MixingSummary [ "l1" ]

which sequentially calls all the printing functions for a mix-
ing relation represented by the label "l1" and organizes the
output in a readable form.

The FEYNRULES method to extract analytically a mass
matrix is fully generic and can be employed to compute any
matrix M defined by the Lagrangian

Lmass = B†
2MB1, (6)

where B1 and B2 stand for two field bases possibly different.
The calculation of the matrix M is achieved by issuing

ComputeMassMatrix[ Lag,
Basis1 -> b1, Basis2 -> b2 ]

where the symbols b1 and b2 are associated with the bases
B1 and B2 and refer to lists of fields. In this case, the printing
functions introduced above are not available.

4 Automated spectrum generation

4.1 The ASPERGE package

The computation of the unknown mixing matrices neces-
sary for diagonalizing all the model mass matrices can in
general only be achieved numerically. To this end, we have
developed the C++ program ASPERGE. It includes a set of
C++ source files (stored in the subdirectory src), coming
together with the related header files (stored in the subdi-
rectory inc), that can be split into model-independent and
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model-dependent files. For an efficient use of the ASPERGE

program, it has been entirely embedded within the FEYN-
RULES package. Therefore, only a brief discussion of the
structure of the code is presented in this paper. More infor-
mation, such as a DOXYGEN documentation, can be found
on the ASPERGE webpage [32].

The set of model-independent files contains, on the one
hand, several tools dedicated to matrices and their diagonal-
ization (MassMatrix.cpp, MassMatrix.hpp as well
as Matrix.hpp). On the other hand, the ASPERGE code
is based on an internal format for parameters, defined in
the source files Par.cpp, CPar.cpp, RPar.cpp and in
the associated header files. This format is inspired from a
SLHA structure and the corresponding mapping is encoded
into the files ParSLHA.cpp, SLHABlock.cpp, and in
the associated header files. Finally, printing and string ma-
nipulation routines are included in the files tools.cpp
and tools.hpp and the program comes with a makefile.

All the model dependency is included in the two files
Parameters.cpp and Parameters.hpp as well as in
the core program implemented in the main.cpp file.

The information encompassed in the two parameter files
is threefold. First, the SLHA structure ordering the external
parameters is encoded in terms of blocks and counters. Next,
the definitions of the internal parameters as functions of the
other model parameters are implemented, where a proper
running of the ASPERGE program is only guaranteed if the
parameters do not depend on the masses and mixing matri-
ces to be computed. Finally, the analytical formulas of the
mass matrices to diagonalize are included.

The main program (main.cpp) starts with the declara-
tion of the different mass matrices of the model. Links to the
relevant elements of the mass basis are then implemented by
means of the associated PDG codes, which allow to assign
the mass eigenvalues to each of the physical particles, the
ordering of the PDG codes following the mass ordering.

4.2 Interfacing the ASPERGE package to FEYNRULES

The ASPERGE package can be entirely generated, for a
given particle physics model, from the FEYNRULES model
information by means of a dedicated interface which works
as for the other FEYNRULES interfaces. It is then called by
typing, in a MATHEMATICA session,

WriteASperGe[ Lag, Output -> dirname ]

where the symbol Lag stands for the model Lagrangian and
Output->dirname for an optional argument indicating
the name of the directory where to store all the created files.
If unspecified, the directory ModelName_MD is employed,
ModelName being the name of the FEYNRULES model.

The interface first extracts all the relevant mass matri-
ces from the Lagrangian Lag by means of the function

ComputeMassMatrix introduced in Sect. 3.4. It then
writes, in addition to model-independent files described
in Sect. 4.1, the three model-dependent files main.cpp,
Parameters.cpp and Parameters.hpp, together
with one data file Externals.dat (stored in the subdi-
rectory input). This last file contains the numerical values
of the external parameters of the model, necessary for the
numerical evaluation of the mass matrices. When running
the code (see Sect. 4.3), the user can update this file or even
employ a different file according to his needs.

The numerical matrix diagonalization performed by AS-
PERGE is based on GSL functions relying on the hermitic-
ity of the mass matrices which employs symmetric bi-
diagonalization followed by QR reduction. This contrasts
with existing diagonalization packages developed in the
framework of FEYNARTS [33] and CALCHEP [34] that
are based on Jacobi-type iterative algorithms. A hermiticity
check is therefore performed by the interface before writ-
ing down the output. Since the mass matrix M related to
charged fermions is by construction non-hermitian, the ma-
trices M†M and MM† are employed instead, which allows
to obtain left-handed and right-handed fermion mixing ma-
trices separately.

It is also possible to focus on one or several specific mix-
ing relations. In this case, the Mix option, already intro-
duced in the context of the ComputeMassMatrix func-
tion, has to be used,

WriteASperGe[ Lag, Mix -> {"l1", "l2"} ]

We refer to Sect. 3.4 for more information.

4.3 Running ASPERGE

Since the ASPERGE package is based on GSL functions, it is
mandatory to have the GSL libraries installed on the system.
Then, if the g++ compiler is available, the makefile gener-
ated by FEYNRULES can be employed directly. Otherwise,
it must be first edited accordingly to include proper compiler
information.

Once compiled, ASPERGE can be executed by typing in
a shell

./ASperGe <infile> <outfile>

where the arguments indicate in which file the numerical
value of the external parameters must be read (<infile>)
and where to store the output file (<outfile>). This file
contains, in addition to the input parameters, the computed
numerical values of the mixing matrices, split in terms of
their real and imaginary parts according to the SLHA con-
ventions, as well as all the masses of the physical states
(stored in the SLHA block MASS). In order to execute AS-
PERGE with all the default settings as generated by the
FEYNRULES interface, it is sufficient to type in a shell



Eur. Phys. J. C (2013) 73:2325 Page 7 of 11

./ASperGe input/externals.dat output/out.dat

Both the compilation and the execution of the program
can be performed from the MATHEMATICA session, by is-
suing

RunASperGe[ ]

This also loads the SLHA parameter file out.dat back
into the FEYNRULES session, so that it can be further
employed, e.g., to generate a UFO model. Information
about the run of ASPERGE can be found in the file
ASperGe.log stored in the same folder as the executable.

It is also possible to diagonalize specific mass matrices
of the model by executing

./ASperGe <infile> <outfile> m1 m2 ...

where m1, m2, etc., are the names of the mixing matrices to
be computed.

5 Illustrative examples

In this section, we illustrate the features of the ASPERGE

program and its interface to FEYNRULES by choosing three
extensions of the Standard Model with non-trivial mixing
relations, i.e., the Two-Higgs-Doublet Model (2HDM), the
Minimal Left-Right Symmetric Standard Model (LRSM)
and the Minimal Supersymmetric Standard Model (MSSM).
We modify their original FEYNRULES implementations5

[2, 4] to accommodate for the mixings as described in
Sect. 3. We then employ the ASPERGE program (see
Sect. 4) to numerically calculate some of the mass and mix-
ing matrices of these models.

5.1 The general two-Higgs-doublet model

The 2HDM is one of the simplest extensions of the Stan-
dard Model, with respect to which it only contains a second
weak doublet of scalar fields. Following the conventions of
the original FEYNRULES implementation [2], both Higgs
fields φ1 and φ2 carry the same hypercharge so that they
can always be redefined by means of U(2) transformations
[35–38]. Adopting the so-called Higgs-basis, the two dou-
blets read

φ1 =
(

G+
v+H 0+iG0√

2

)
and φ2 =

(
H+

R0+iI 0√
2

)
, (7)

where only the neutral component of the φ1 field acquires
a vacuum expectation value v. Moreover, the Goldstone
bosons G± and G0 as well as the charged Higgs field H±

5Since no previous implementation of the LRSM exists, we take the
opportunity to provide the relevant details in Sect. 5.2.

are not required to be further rotated, so that only the mass
matrix of the neutral fields H 0, R0 and I 0 must still be di-
agonalized.

We extend the 2HDM FEYNRULES implementation de-
scribed in Ref. [2] by first indicating that the second com-
ponent of the φ1 field, represented by the symbol phi1, ac-
quires a non-vanishing vacuum expectation value v labeled
by the symbol vev,

M$vevs = { {phi1[2], vev} }

as shown in Sect. 3.3. Then, we choose to implement the
mixing of the H 0, R0 and I 0 fields to the physical h1, h2

and h3 fields in a two-step manner. In a first stage, the gauge
eigenstates are split into their scalar and pseudoscalar com-
ponents,

Mix["1p"] == {
MassBasis -> { {H0}, {G0} },
GaugeBasis -> { phi1[2] },
Value -> { {{1}}, {{1}} }

}

Mix["2p"] == {
MassBasis -> { {R0}, {I0} },
GaugeBasis -> { phi2[2] },
Value -> { {{1}}, {{1}} }

}

following the syntax introduced in Sects. 3.1 and 3.2 and
making use of the self-explained symbols H0 and R0 (G0
and I0) for representing the (pseudo)scalar degrees of free-
dom. Similarly, we can employ the mixing infrastructure to
map the charged components of φ1 and φ2 to the physical
fields G+ and H+ by means of a 1 × 1 identity matrix.
Since this procedure is trivial, we omit any further details
from the present manuscript and refer to the model imple-
mentation [32]. In a second stage, the rotation to the phys-
ical fields, represented by the symbols h1, h2 and h3, is
declared as

Mix["1s"] == {
MassBasis -> { h1, h2, h3 },
GaugeBasis -> { H0, R0, I0 },
MixingMatrix -> NH,
BlockName -> NHMIX

}

where we associate the symbol NH to the correspond-
ing mixing matrix and assign the Les Houches block
(IM)NHMIX to the numerical value of its elements. The neu-
tral squared mass matrix M2 can then be derived from the
model Lagrangian (represented by the symbol L2HDM) by
typing, in the MATHEMATICA session,

ComputeMassMatrix[L2HDM, Mix->"1s"]
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As a result, one recovers the well-known expression depend-
ing on the most general scalar potential parameters λi and μi

(see Ref. [2] for further information),

M2 =

⎛
⎜⎜⎝

2λ1v
2 �[λ6]v2 −�[λ6]v2

�[λ6]v2 m2± + [λ4
2 + λ5]v2 0

−�[λ6]v2 0 m2± + [λ4
2 − λ5]v2

⎞
⎟⎟⎠ ,

(8)

after having introduced the squared mass of the charged
Higgs boson m2± = 1/2λ3v

2 + μ2 and removed two of the
μ-parameters by means of the potential minimization con-
ditions, μ1 = −λ1v

2 and μ3 = −1/2λ6v
2.

The numerical value of the unitary matrix U diagonaliz-
ing M2 is obtained by generating and making use of the
ASPERGE package, as shown in Sect. 4. We fix, adopt-
ing a representative benchmark scenario, the Higgs poten-
tial parameters to λ1 = λ2 = λ3 = 1.0, λ4 = 0.5, λ5 = 0.4,
λ6 = 0.3, λ7 = 0.2 and μ2 = 6 · 104 GeV. This leads to the
three mass eigenvalues

(mh1,mh2,mh3) = (285,327,379) GeV, (9)

whereas the mixing matrix reads

U =
⎛
⎝ 0 0 −i

0.784 −0.621 0
−0.621 −0.784 0

⎞
⎠ . (10)

These results are in good agreement with those obtained by
means of the TWOHIGGSCALC calculator [16].

5.2 The minimal left-right symmetric standard model

The LRSM [39–45] is an extension of the Standard Model
with an enlarged SU(3)c × SU(2)L × SU(2)R × U(1)B−L

gauge symmetry. In this model, the fermionic degrees of
freedom of the Standard Model lying in the trivial repre-
sentation of SU(2)L are collected into SU(2)R doublets, as
shown in the first part of Table 1 where the model matter
field content is presented together with the associated quan-
tum numbers. In addition, the symmetry-breaking mecha-
nism down to electromagnetism is also more involved, rely-
ing on an enriched Higgs sector (see the second part of the
table).

The LRSM Lagrangian consists of standard kinetic and
gauge interaction terms for all fields as well as of the
Yukawa interactions

LY
LR = Q̄c

Ly(1)
Q Φ̂QR + L̄c

Ly(1)
� Φ̂LR

+ Q̄c
Ry(2)

Q Φ†QL + L̄c
Ry(2)

� Φ†LL

+ ˆ̄Lc
Ly(3)

� �LLL + ˆ̄LRy(4)
� �RLc

R + h.c. (11)

Table 1 Field content of the LRSM, given together with their rep-
resentation under the SU(3)c × SU(2)L × SU(2)R × U(1)B−L gauge
group. The SU(2)L (i, j = 1,2) and SU(2)R (i′, j ′ = 1,2) fundamen-
tal index structure is explicitly indicated

Field Components Representation

Qi
L

(
uL

dL

)
(3˜,2˜,1˜, 1

3 )

QRi′
(
uc

R dc
R

)
(3̄˜,1˜,2˜∗,− 1

3 )

Li
L

(
νL

�L

)
(1˜,2˜,1˜,−1)

LRi′
(
νc
R �c

R

)
(1˜,1˜,2˜∗,1)

Φi
i′

(
Φ0 Φ+

Φ
′ ′− Φ ′0

)
(1˜,2˜,2˜∗,0)

�L
i
j

⎛
⎝ 1√

2
�+

L �++
L

�0
L − 1√

2
�+

L

⎞
⎠ (1˜,3˜,1˜,2)

�R
i′

j ′

⎛
⎝ 1√

2
�+

R �++
R

�0
R − 1√

2
�+

R

⎞
⎠ (1˜,1˜,3˜,2)

In this equation, all indices are understood, the matrices y(i)
Q

and y(i)
� are 3×3 matrices in flavor space and the superscript

c indicates charge conjugation.6 Moreover, gauge invariance
is ensured by the introduction of the hatted fields

Φ̂i
i′ = εij ε

i′j ′
Φj

j ′ , L̂Li = εijL
j
L, L̂i′

R = εi′j ′
LRj ′ ,

(12)

where the rank-two antisymmetric tensors with lower and
upper indices are defined by ε12 = −ε12 = 1. Introducing
Higgs mass parameters μi and quartic interaction strengths
λi , ρi and αi , the scalar potential reads

LH = μ2
1Tr

[
Φ†Φ

] − λ1
(
Tr

[
Φ†Φ

])2 − λ2Tr
[
Φ†ΦΦ†Φ

]

− 1

2
λ3

(
Tr

[
Φ̂Φt

] + Tr
[
Φ†Φ̂†t

])2

− λ4Tr
[
Φ†ΦΦ̂t Φ̂†t

]

− 1

2
λ5

(
Tr

[
Φ̂Φt

] − Tr
[
Φ†Φ̂†t

])2

− 1

2
λ6

(
Tr

[
Φ†Φ̂†tΦ†Φ̂†t

] + Tr
[
Φ̂tΦΦ̂tΦ

])

+ μ2
2

(
Tr

[
�

†
L�L

] + Tr
[
�

†
R�R

])
− ρ1

(
Tr

[
�

†
L�L

]2 + Tr
[
�

†
R�R

]2)

6We recall that the components of the field QR are charge conjugate
(see Table 1).
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− ρ2
(
Tr

[
�

†
L�L�

†
L�L

] + Tr
[
�

†
R�R�

†
R�R

])
− ρ3Tr

[
�

†
L�L

]
Tr

[
�

†
R�R

]
− α1Tr

[
Φ†Φ

](
Tr

[
�

†
L�L

] + Tr
[
�

†
R�R

])
− α2

(
Tr

[
�

†
RΦ†Φ�R

] + Tr
[
�

†
LΦΦ†�L

])
− α3

(
Tr

[
�

†
RΦ̂t Φ̂†t�R

] + Tr
[
�

†
LΦ̂†t Φ̂t�L

])
. (13)

Since the corresponding FEYNRULES model description is
standard, we refer to the FEYNRULES manual [1] and leave
all implementation details out of this work.

In the LRSM, the symmetry-breaking mechanism is per-
formed in two steps. At high energy, the SU(2)L×SU(2)R ×
U(1)B−L gauge symmetry is spontaneously broken to the
electroweak symmetry, the latter being subsequently bro-
ken to electromagnetism at a lower scale. Consequently, the
neutral components of the scalar fields get vacuum expecta-
tion values at the minimum of the potential, 〈Φ0〉 = v/

√
2,

〈Φ ′0〉 = v′/
√

2 and 〈�0
L,R〉 = vL,R/

√
2, by which they are

shifted. In the rest of this section, we focus on the mixing of
the neutral Higgs fields and illustrate the way to implement
a two-stage field rotation. For all the other mixing relations
of the LRSM, we refer to the implementation [32].

We first assume, motivated by neutrino mass and kaon
system data [45, 46], that vL = v′ ≈ 0. Next, we implement
the rotation associated with the diagonalization of the third
generator of SU(2) in the adjoint representation as

Mix["2a"] == {
MassBasis -> { DLpp, DL0 },
GaugeBasis -> { DL[1], DL[2] },
Value -> { {1/Sqrt[2], -I/Sqrt[2]},

{1/Sqrt[2], I/Sqrt[2]}}
}

depicting the example of the SU(2)L Higgs triplet. These
replacement rules translate the rotation of the �1

L and �2
L

fields, represented by the DL[1] and DL[2] symbols, to
the �0 and �++ states labeled by DL0 and DLpp. Then, the
neutral fields �0

L, �0
R , Φ0 and Φ ′0, represented by the sym-

bols DL0, DR0, phi[1,1] and phi[2,2], mix to four
scalar degrees of freedom h0

1, h0
2, h0

3 and h0
4, two physical

pseudoscalar Higgs bosons a0
1 and a0

2 and two Goldstone
bosons G0

1 and G0
2 to be eaten by the Z and Z′ vector fields

when getting massive. Introducing the corresponding sym-
bols h01, h02, h03, h04, a01, a02, G01 and G02, these
rotations are implemented as

Mix["2e"] == {
MassBasis -> { {h01,h02,h03,h04},

{G01,G02,a01,a02} },
GaugeBasis ->
{ DL0,DR0,phi[1,1],phi[2,2] },

MixingMatrix -> { UHN,UAN },
BlockName -> { HMIX,AMIX}

}

The two symbols UHN and UAN respectively denote the
scalar and pseudoscalar mixing matrices, the numerical
value of their elements being included in the two Les
Houches blocks (IM)HMIX and (IM)AMIX.

Typing, in MATHEMATICA, the commands

ComputeMassMatrix[Lag, Mix->"2e"]
MassMatrix["2e", "S"]

allows to calculate both the scalar and pseudoscalar mass
matrices and display the scalar squared mass matrix M̃2 to
the screen. It reads,

M̃2 =

⎛
⎜⎜⎝

A 0 0 0
0 B (α1 + α3)vvR 0
0 (α1 + α3)vvR C 0
0 0 0 D

⎞
⎟⎟⎠ , (14)

where we have introduced the quantities

A =1

2
(α1 + α3)v

2 − μ2
2 + 1

2
ρ3v

2
R,

B =1

2
(α1 + α3)v

2 − μ2
2 + 3(ρ1 − ρ2)v

2
R,

C =3(λ1 + λ2)v
2 + 1

2
(α1 + α3)v

2
R − μ2

1,

D =(λ1 + 4λ3 + λ4 + λ6)v
2 + 1

2
(α1 + α2)v

2
R − μ2

1.

(15)

In order to numerically compute the unitary matrix U di-
agonalizing M̃2, we use the ASPERGE program, generated
from FEYNRULES by issuing

WriteAsperge[Lag]

after fixing the external Lagrangian parameters of the model
to λ1 = λ2 = λ3 = λ4 = λ6 = 0.1, α1 = 0.1, α2 = 0.3,
α3 = 0.1, ρ1 = 0.1, ρ2 = 0 and ρ3 = 0.5. In addition, the μ-
terms are deduced from the minimization conditions of the
scalar potential and the vacuum expectation values are taken
as v = 248 GeV and vR = 6000 GeV. It should be noted that
the relevance of such numerical values is going beyond the
scope of this paper, and could be addressed by means of ex-
ternal packages such as the one presented in Ref. [47]. Once
ASPERGE is executed, one obtains

U =

⎛
⎜⎜⎝

0 −0.041 0.99 0
0 0 0 1
1 0 0 0
0 0.99 0.041 0

⎞
⎟⎟⎠ , (16)

the mass eigenvalues being

(m1,m2,m3,m4) = (111,1905,2324,2686) GeV. (17)
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5.3 The minimal supersymmetric standard model

In supersymmetric extensions of the Standard Model, each
of the model’s degrees of freedom comes accompanied by a
superpartner with opposite statistics. The minimal version
of such theories, the so-called MSSM [48, 49], has been
originally implemented in FEYNRULES by making use of
its superspace module [4]. We hence refer, on the one hand,
to Ref. [4] for notations and conventions and, on the other
hand, to the new model implementation [32] for more in-
formation on the way in which particle mixings have been
implemented. In the rest of this subsection, we employ the
MSSM implementation to illustrate fermion mixing decla-
ration.

After electroweak symmetry breaking, the left-handed,
two-component Weyl fermionic, gaugino and higgsino fields
W̃± and H̃−

d /H̃+
u mix to the chargino eigenstates χ±. In-

troducing the two rotation matrices U and V (labeled by the
symbols UU and VV), this mixing is declared through an in-
stance of the mixing class,

Mix["3d"]=={
MassBasis -> { {chmw[1],chmw[2]},

{chpw[1],chpw[2]} },
GaugeBasis -> { {wowm,hdw[2]},

{wowp,huw[1]} },
BlockName -> {UMIX,VMIX},
MixingMatrix -> {UU,VV}

}

In this list of replacement rules, wowm (hdw) and wowp
(huw) are the labels of the negatively and positively charged
wino (higgsino) states, the related mass eigenstates being
represented by the symbols chmw and chpw. In addition,
we link the mixing matrices U and V to the Les Houches
blocks UMIX and VMIX.

Like in the previous subsections, we employ FEYN-
RULES to extract the corresponding tree-level mass matrix

M′ from the Lagrangian,

M′ =
(

M2
√

2mW sinβ√
2mW cosβ μ

)
, (18)

where mW denotes the W -boson mass, μ the superpotential
Higgs mixing parameter, M2 the supersymmetry-breaking
wino mass and tanβ is defined as the ratio of the two neutral
Higgs field vacuum expectation values tanβ = 〈H 0

u /H 0
d 〉.

As in the original implementation, we choose the typi-
cal minimal supergravity point SPS 1a [50] as a benchmark
scenario. Then, we generate the MSSM ASPERGE program
and use it to compute numerically the mixing matrices U

and V ,

U =
(

0.918 −0.397
−0.397 −0.918

)
, V =

(
0.974 −0.226

−0.226 −0.974

)
,

(19)

as well as the corresponding mass eigenvalues

(mχ±
1
,mχ±

2
) = (176,382) GeV. (20)

Those values are in good agreement with those returned by
commonly used MSSM spectrum generators.

6 Summary

In this paper, we have presented an extension of the FEYN-
RULES package dedicated to the automated generation of
the particle mass spectrum and mixing structure associated
to any Lagrangian-based quantum field theory. The new
module is based on the introduction of a new structure for
particle mixing declaration allowing, on the one hand, for
the analytical computation of all the model mass matri-
ces, and, on the other hand, for the generation of a C++
program dubbed ASPERGE, yielding the numerical evalu-
ation of the associated rotation matrices. We illustrate the
strength of this new module in the context of the Two-Higgs-
Doublet Model, the Minimal Left-Right Symmetric Stan-
dard Model and the Minimal Supersymmetric Standard Mo-
del.

Acknowledgements The authors are grateful to N.D. Christensen,
C. Degrande and C. Duhr for useful discussions on the project. This
work has been partially supported by a Ph.D. fellowship of the French
ministry for education and research, by the Theory-LHC France-
initiative of the CNRS/IN2P3, by the French ANR 12 JS05 002
01 BATS@LHC, by the Concerted Research action ‘Supersymmet-
ric Models and their Signatures at the Large Hadron Collider’ and the
Strategic Research Program ‘High Energy Physics’ of the Vrije Uni-
versiteit Brussel (VUB), by the Belgian Federal Science Policy Office
through the Interuniversity Attraction Pole IAP VI/11 and P7/37 and
by a ‘FWO-Vlaanderen’ aspirant fellowship.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.

References

1. N.D. Christensen, C. Duhr, Comput. Phys. Commun. 180, 1614
(2009)

2. N.D. Christensen, P. de Aquino, C. Degrande, C. Duhr, B. Fuks,
M. Herquet, F. Maltoni, S. Schumann, Eur. Phys. J. C 71, 1541
(2011)

3. N.D. Christensen, C. Duhr, B. Fuks, J. Reuter, C. Speckner, Eur.
Phys. J. C 72, 1990 (2012)

4. C. Duhr, B. Fuks, Comput. Phys. Commun. 182, 2404 (2011)
5. B. Fuks, Int. J. Mod. Phys. A 27, 1230007 (2012)



Eur. Phys. J. C (2013) 73:2325 Page 11 of 11

6. A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Ko-
valenko, A. Kryukov, V. Savrin et al., hep-ph/9908288

7. E. Boos et al., Nucl. Instrum. Methods A 534, 250 (2004)
8. A. Pukhov, hep-ph/0412191
9. A. Belyaev, N.D. Christensen, A. Pukhov, arXiv:1207.6082 [hep-

ph]
10. T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153

(1999)
11. T. Hahn, Comput. Phys. Commun. 140, 418 (2001)
12. T. Hahn, PoS ACAT 08, 121 (2008)
13. S. Agrawal, T. Hahn, E. Mirabella, J. Phys. Conf. Ser. 368, 012054

(2012)
14. T. Stelzer, W.F. Long, Comput. Phys. Commun. 81, 357 (1994)
15. F. Maltoni, T. Stelzer, J. High Energy Phys. 0302, 027 (2003)
16. J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F.

Maltoni, T. Plehn, D.L. Rainwater et al., J. High Energy Phys.
0709, 028 (2007)

17. J. Alwall, P. Artoisenet, S. de Visscher, C. Duhr, R. Frederix, M.
Herquet, O. Mattelaer, AIP Conf. Proc. 1078, 84 (2009)

18. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, J. High
Energy Phys. 1106, 128 (2011)

19. T. Gleisberg, S. Hoeche, F. Krauss, A. Schalicke, S. Schumann,
J.-C. Winter, J. High Energy Phys. 0402, 056 (2004)

20. T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann,
F. Siegert, J. Winter, J. High Energy Phys. 0902, 007 (2009)

21. M. Moretti, T. Ohl, J. Reuter, hep-ph/0102195
22. W. Kilian, T. Ohl, J. Reuter, Eur. Phys. J. C 71, 1742 (2011)
23. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, T.

Reiter, Comput. Phys. Commun. 183, 1201 (2012)
24. P. de Aquino, W. Link, F. Maltoni, O. Mattelaer, T. Stelzer, Com-

put. Phys. Commun. 183, 2254 (2012)
25. E. Conte, B. Fuks, G. Serret, Comput. Phys. Commun. 184, 222

(2013)
26. G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, G.

Ossola, T. Reiter, F. Tramontano, Eur. Phys. J. C 72, 1889 (2012)
27. G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, G.

Ossola, T. Reiter, F. Tramontano, J. Phys. Conf. Ser. 368, 012056
(2012)

28. M. Bahr, S. Gieseke, M.A. Gigg, D. Grellscheid, K. Hamilton, O.
Latunde-Dada, S. Platzer, P. Richardson et al., Eur. Phys. J. C 58,
639 (2008)

29. J. Beringer et al. (Particle Data Group Collaboration), Phys. Rev.
D 86, 010001 (2012)

30. P.Z. Skands, B.C. Allanach, H. Baer, C. Balazs, G. Belanger, F.
Boudjema, A. Djouadi, R. Godbole et al., J. High Energy Phys.
0407, 036 (2004)

31. B.C. Allanach, C. Balazs, G. Belanger, M. Bernhardt, F. Boud-
jema, D. Choudhury, K. Desch, U. Ellwanger et al., Comput. Phys.
Commun. 180, 8 (2009)

32. http://feynrules.irmp.ucl.ac.be/wiki/ASperGe
33. T. Hahn, physics/0607103
34. G. Belanger, N.D. Christensen, A. Pukhov, A. Semenov, Comput.

Phys. Commun. 182, 763 (2011)
35. G.C. Branco, L. Lavoura, J.P. Silva, Int. Ser. Monogr. Phys. 103,

1 (1999)
36. I.F. Ginzburg, M. Krawczyk, Phys. Rev. D 72, 115013 (2005)
37. S. Davidson, H.E. Haber, Phys. Rev. D 72, 035004 (2005).

Erratum-ibid. D 72, 099902 (2005)
38. H.E. Haber, D. O’Neil, Phys. Rev. D 74, 015018 (2006)
39. J.C. Pati, A. Salam, Phys. Rev. D 10, 275 (1974). Erratum-ibid. D

11, 703 (1975)
40. R.N. Mohapatra, J.C. Pati, Phys. Rev. D 11, 566 (1975)
41. R.N. Mohapatra, J.C. Pati, Phys. Rev. D 11, 2558 (1975)
42. G. Senjanovic, R.N. Mohapatra, Phys. Rev. D 12, 1502 (1975)
43. R.N. Mohapatra, F.E. Paige, D.P. Sidhu, Phys. Rev. D 17, 2462

(1978)
44. G. Senjanovic, Nucl. Phys. B 153, 334 (1979)
45. C.S. Lim, T. Inami, Prog. Theor. Phys. 67, 1569 (1982)
46. R.N. Mohapatra, G. Senjanovic, Phys. Rev. D 23, 165 (1981)
47. R. Coimbra, M.O.P. Sampaio, R. Santos, arXiv:1301.2599 [hep-

ph]
48. H.P. Nilles, Phys. Rep. 110, 1 (1984)
49. H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985)
50. B.C. Allanach, M. Battaglia, G.A. Blair, M.S. Carena, A. De

Roeck, A. Dedes, A. Djouadi, D. Gerdes et al., Eur. Phys. J. C
25, 113 (2002)

http://arxiv.org/abs/hep-ph/9908288
http://arxiv.org/abs/hep-ph/0412191
http://arxiv.org/abs/arXiv:1207.6082
http://arxiv.org/abs/hep-ph/0102195
http://feynrules.irmp.ucl.ac.be/wiki/ASperGe
http://arxiv.org/abs/physics/0607103
http://arxiv.org/abs/arXiv:1301.2599

	Automated mass spectrum generation for new physics
	Introduction
	The FeynRules package
	Implementing mixings in FeynRules
	Mixing declarations
	More advanced cases
	Scalar/pseudoscalar splittings
	Dirac and Weyl fermion mixings

	Vacuum expectation value declarations
	User functions

	Automated spectrum generation
	The ASperGe package
	Interfacing the ASperGe package to FeynRules
	Running ASperGe

	Illustrative examples
	The general two-Higgs-doublet model
	The minimal left-right symmetric standard model
	The minimal supersymmetric standard model

	Summary
	Acknowledgements
	References


