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2.

ABGTRACT
We study .the consequenc_es. of the applications of the 'Bootstrap’
hnothés:ls to the Unitary Symmetries. The groups BU(3), 8u(6),
v(6,6) and their applications to the strong Interactions of the
Hadrons a.ro discussed in the first chapter. In the second
Chapter, we discuss some of the methods 'that have been used in the
" past in dynamical (bootstrap) calculations, S | :

" In the ‘third Capter, we consider the P-iave quark-pseudoscalar
meson ' Octet scattering and investigate whether the existeémce of the .
three quarks, Q, which belong to the spimor representation of SU(3)
and are auppos&d to have fractiomal 'ch.ai-gea » can be explained in a
d81f-aonsistent scheme. The caleculation shows that: theye exists a
reciproeal bootstrap relationship between quarks, Q and squq other
particles, Q* which have the baryon rumber 1/3, spin 3/Z &hd belong to |
the 15-dimenaional represemtion of 8Y(3),  Using the determinantal
method the self-cmiatent values we have obtained are: nQ-n 229 Mev.,
Mgyed 5251 Mev,, 51 ™ 22 and 3: ™ 32, where l(Q, My 804 gE, g: are
respectively the masses and cauplingn of Q and Q*

In the. fourth chapter, we congider the meson-baryon noattoring
in the comtext of U(6,6) symmetry and. study the msa-nyl:ltt:lngn of the
baryon Octet. and Decouplet by N/D method. It is assumed that the 8U(3)
symmetry is approximtély exact 80 that the masses of the baryon Octet
" and Decouplet obtained by using the U(6,6) vertices i the ealculo,tion
ghould correspond roughly to their respeative SU(3) degeneratd masses.
Although the’ results ard very much eut orf-dependent, the dalculation
shows that by varying the cut off, 8, and U(6,6) coupling, ¢ pavemsters
it 1is possible to obthin the uss-splitﬂngs in the right direation,
considering the very nmeh involved mature of the galoulations; one may
eonclude that the results agree reaaenably well with the kaswh éxpsrimental
facts.
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The S-matrix theery first proposed by Heisenberg ) has played
a very :lnporta.nt role in explaining the dymamies of the strong
interaction of hadrons. A comsiderable number of strongly
interacting particles is now known. In the early attempts to
deal with these particles theoretically, one usually followed the
line of attack that proved so successful in guantum electrodynamics.
In such a- treatment, one usually chooses a simple Lagrangien with
rencrmalised eouplings and given masses and other physical
observables are calculated by a perturbation expamsion. This
power series method has been successful in electrodymamies where the
eoupling is small but with the stronger interaction the theory runs
into difficulties which arise due to the divergence of the power
series expansion. In fact, when some of the particles are
resonances or bound states by analogy with the muclear physics, the
perturbation expansion does mot converge at —all. In view of these
difficulties 'l;hat one encounters while dealing with strong
interaction, the need for a modified approach was stromgly felt,
Buch an approach which works even where the perturbation expansions
fail, was provided by the S-matrix theory. The main reason for the
success of the S-matrix approach lies in the fact that it provides a
meeting ground betv_een theory and experiment. As a matter of fact,

all the experimental information is related to the seattering

matrix, 8.
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Ignoring some possible parameters which one ean imtroduce
into S-matrix but whieh cannot pe determined by S-matrix theory,
all strongly interacting particles are assumed to be dymamical
composites of each other in S-matrix theory. One may, then, try
to determine the properties of these particles by studying directly
the properties of the S8-matrix. It is assmne(l that the scattering
amplitudes are analytic functiens of the energy amd the momentum
transfers except for the singularities that are aseociated with the
unitarity conditions in the three chammels. (The other approach
of considering the scattering matrix as analytic functioms oi.‘ the
angular momentum hés led to the proposition of the theory of Regge
poles o.xid from the view-point of this theory all stromgly interacting
particles are assumed to lie on Regge tra.;!eeztar:lesa) .) The
singulerities in the physical region of any of the three chammels
are connected with the unitarity of the S-matrix in the physical
region of the channel concerned. The forces which are supposed
to be responsible for causing the scattering arise due to the
exchanges of particles in the two other erossed channels and
consequently the singularities in the unphysical regions of a
scattering channel are commected with the unitarity conditiems in the
ph&sieal regions of the relevant crossed chamnels. The ?nearby’
singularities arise from the lighter systems that can be exche.nged
in the related crossed channels and the *faraway' singularities °

correspenfgl to the exchanges of the heavier or the multiparticle
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configurations. The range of the forces is roughly inversely
proportional to the masses of the systeme that are exchanged and

the strength of the forces corresponds to the discontinmuities of

the amplitude aéross these branch euts or to the residues of the

amplitude evaluated at the positions of the poles if the

singularities arise due to the occurrence of the poles. Thus, by
studying the amalytical preperties of the scattering amplitude, |
one can determine, at least in principle, all the _p:jopert:les of
the strong interaction and indeed of the strongly interacting

particles.

Following the above procedure, one may try to determine the
couplings and the masses of all the particles that may exi-st in
nature but as the above programme is very complicated, one has to
make some approximatiom in the calculations. These approximations
usually consist in the cons:iderations of the two-particle states
in the unitarity relation and of the exchanges of single particle
or the lightest possible systems in the crossed channels. Bootstrap
mechanism is one of such approximate methods in which one imposes
the self consisteney requirement in order to evaluate the couﬁlings
and the masses of the particles. In other words, one assumes in
such calculations that all the strongly interacting particles are
dynamical composites of each other with the binding forces coming

from the exchange in the relevant crossed channels of the partiecle
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themzelves and in consequence one deals with a self-supporting
mechanism which makes the calculation mmch Qimpler. This idea of
bootstrap mechanism arose in the early work of Chew and __Mo.ndeltam5 )
on nn-seattering. -‘rhe most tri_king. feature of the nn-scattering
is the p-meson, the I m 1, J = 1 resonance at about 760 Mev

with a width of about 110 Mev. If we comsider wn-scattering, the
lightest system thet can be exchanged in the crossed channel is

B that of two pions. As the low energy nn-scattering is dominated
by I=1°, §J =1 rescnance, one may assume that the two-pion
system in the crossed chamnel also prefers to be in the above
resonant state. Forgetting that p-meson is unstable, one may
consider the contribution of the p-meson exchange and thereby use
the mass and coupling of this particle as the respective input
values in the wl@htim. Assuming that there is mo other particle
in the -.sta.te Iml,J =1, one further imposes the condition that
the values of the inpuf mass and coupling of the particle under

consideration be equal to those of the output mess and the “coupling.

This is what is deman:led by the self consistency requirement.
Following the above procedure, the self-comnsistent values obtained
by Zaehariasenh) for the mass and width of p-meson were roughly

350 Mev and 110 Mev respectively. The above calculation was. carried
out a bit further by Zachariasen and Zemach’) vho alse considered the

effeets of the mm~chanmel and the results they obtained for the mass
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and the eouplings of the p-meson were in reasonably good agreement
with the experimental omes.

The be_otstrap hypothesis was further extended to reeiprocal
bootstrap by chews) in conneetion with the N-F* problem. In this
hypothesis, the nuclecn N is assumed to be a pion-nucleon compoaite
with the dominant force coming from the N¥* exchange and vice versa.
This problem has been investigated, in some detail, by Abers and
Zenmacl 7) vho have calculated the mass and eoupling of Nag resonance.
In spite of the limitation of the caleculational method used, the
results they have obZtained are in reasonsbly good agreement with
the experi-menta_.l ones.

The reciprocal bootstrap hypothesis of Chew has also been
applied to SU(3) aymetrye). In the SU(3) symmetry scheme, the
eight spin % baryons and the ten spin 3/2 baryon resonances belong
respectively to the eight and ten dimemsional irreducible representations
of 8U(3). In the pseudoscalar octet and baryon octet scattering
both the initial and the final states of both the direct (s) channel
and the crossed (u) channel consist of the irreducible repres‘enta.tions
which are obtained from the reduction of the direct product of two
octets and these are as follows: 88 w 1+8s+8A+10+10%+27 ,
It is, therefore, evident: from the above reduction that:z‘eciprocul
bootstrap relationship between the baryon octet and the decouplet

may exist. This aspect of SY(3) symmetry has been investigated by
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a number of authors9) who have shown that such a reciprocal
bootstrap relaticnship between the baryom octet and the decouplet
does indeed exist.

Being encouraged by the success of the above and otherlo)
SU(3) bootstrap calculations, we have carried out an investigation
in order to examine whether the existence of the qua.-r-ksll) » which
in the simplest scheme belong to the three dimensional
representation of SU(3) and have fractional charges, can be
explained in a self-consistent scheme. This problem has been
discussed in chapter III. We consider the quark and the pseudo-
sealar meson octet scattering and adopt the 'bootstrap' hypothesis
in vhich sll the strongly interacting particles are supposed to

be camposites of each other. Im particular, we have used the
analogy with the N-N* bootstrap of Chew and its SU(3) extension
discussed above.

In chapter IV we eonsider the meson-baryon seattering in the

context of U(6,6) symmetry':

)_and investigate the massa-splitting
between the baryon octet and the decouplet by using thé well _ known
N/D method of Chew and Mendelstan'). It _is assumed that the
8U(3) symmetry is exact so that the mass of the baryen octet
corresponds to the average mass of the eight spin 3* baryoms and

that of the baryon decouplet to the average mass of the ten spin
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3/2* baryon resomances. As these s_m(3) mltiplets belemg to the
same 36h-dimensicnal irreducible representation of U(6,6) symmetry,
they are supposed to have the same mass from the view-point of |
U(6,6) theory. Now, if the ¥(6,6) vertices are used in the
calculatioms, then it is expected that by using the N/D method, as
has been used by a number of authorsm’lh) in order to obtain the
mass-splittings of SU(3) multiplets, we shall, to a reasonable
extent, get the SU(3) degenerate masses of the baryon octet and
decouplet. In our calculations, we have followed the hypothesis
of N-N* bootstrap of Chew and consequently considered that the
forces responsible for .the binding of the baryon octet and decouplet
come predominantly from the exchanges in the crossed (u) channels
of these 8U(3) multiplets thecmselves. This problem, is in fact,
a mlti-channel one. The method of constructing the: exchange
Born terms and other complicated aspects of the problem have been

discussed in the above mentioned chapter.

In Chapter I, we have discussed the 8U(3), 86(6) and ©(6,6)
symmetry theories. Speeial emphasis has been given on the
discussion of hqw-' the baryons and mesons are assigned to the
irredueible representations of these groups. In particular, we
have-discussed in deteil how the U(6,6) baryon-meson vestices, which
we use in our calculation, are constructed. Chapter II has been

devoted to the discussion of some of the methods that have been used
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in dynamicel and, in partieular, in the beotstrap calculations.

We have discussed the advantages and disadvantages of the different
methods and specially -mentioned the detalls of the method we have
used in our caloulatioms.

In any calculation involving higher symmetry, particularly,
the SU(3) symmetry, one needs to fix the phases of the eigenstates
of the multiplets of the symmetry concerned. This is required
for writing down the SU(3) vertices which can be used in
calculating the SU(3) coupling coefficients. The Appendices A
and B have been devoted to that end. In the Appendices C and P
we have mentioned the details of the helieity formalisms and given
some useful relations which facilitate the calculations of the
exchange Born terms which have been used in the investigation of

baryon oetet and decouplet mass-splitting.
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CHAFTER 1

Unita ptries

1. The Group SU(3) and its Applieations to the Particle Physics.

&. The Spinor Representations and the Generators of SU(3):

The basic representation of the group 8U(3) iz formed by

1)

a=1,2, 3. Inapalogy with Sakata Model), ve take q, and q

three quarks™ , q,, @5, 4 Wwhose wave function we denote by va_,

as isospinor with zero strangeness and: q4 isosinglet with minus
one strangeness. The assigmment of minus one strangeness quantum
number to the isosinglet mecessarly follows from the fact that we
are to eomstruct the states of the strange particles from the fields
of the basic ones. We then assume the invariance of the strong

interaction under & tmsformtion

¥ = uy (1.1)

where the transformation matrieces u are taken to be unitary as well
as unimodular. The set of such matrices u form a unitary
unimodular gz;onp, denoted by 89(3) amd, in particular, these matrices
form the 3~dimensional represenfa.ﬁ;lon of SU(3). The unitary and the
unimodularity properties of ﬁhese transformation matrices are

respectively gliven by,
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wu = uu’ = 1 "~ (1.28)

In SU(3) there is an inequivalent three dimentiomal representatiom,
ca.lled the contragradient representation and is denoted by 3. The
three antiquarks, El, Ee, Es, are taken to form the basis of this

contragradient representation. Deneting the wave-function of the
antiquarks by ¥ (« =.1, 2, 3), the transformation ﬁmpertie of the

antiquarks are,
¥ - (1.3)

where u™! is the inverse of the transformation matrix u. The
relation (1.3) follows from the transformation properties of the
contragradient vectors which we, here, essociate with the anti-

particles.

The group 8U(3) is a Lie Group, and,as it is evident from
(1.28) and (1.2b), involve .8 real parameters which vary in a
continuous fa.shion thus giving rise to the elements of the group
vhich lie infinitesimally close to any given one. Moreover, the
group S6(3) is also compact Lie Group. From the last property of
Su(3) it followce that any finite dimensional representation of
8u(3) is, by Weyl'slé) famous theorem, equivalent to a unitary
representation. . Therefore, the transformation matrix u can be

expressed in the form,
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u = exp(ié !'u) (1.4)

where the summation over the repeated index is implied. The ol
are real and the F, are the generators of 8u(3). In 8U(3) there
are 8 such hermitian and traceless opera,tors-; and in this particular
mprésenta-tion these are, 3 X 3 hermitian traceless matrices, the
traceless property being followe;i from the unimodularity condition
of the transformation matrices u. Gell—!la.nna) has given such &

set of 8 hermitian traceless matrices which are the followings

Fl--§-010 F, = 4% o -1 0 rs-%leo
100 1 0 0 0 -1 0
© 00 0o 0 0 0 0 O

Fo =% o021 F,m 4 |00 -3l F = 3]l0o00O
© 0 0 00 001
100 10 0 010

)

P, = % |00 0] Fg = — |1 0 0
60 2¥3 191 o
061 0 0 0 -2 (1.5)

where we have chosen the normalisation such that Tr.-l‘i w 1/2.

The set of above matrices satisfy the commtation relation,

(®,, FJ] = if (1.6)

13k Tx

where f

13k is completely antisymmetric in its indices and vanishes

i

|

il
I

i
| 1
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1k,

whenever two indices are equal. The values of the fi 4k ‘have been
given by Gell-mnna) « Corresponding to an a.rb:ltra.ryl N-dimensional
representation of 8U(3), the ebove generators F,, (i =1, ..., 8)
are N x N matrices and also satisfy the same commutation relation

(1.6) with the same structure constants f Sometimes it is

13k°
convenient to work with a set of nine real hermitian and traceless
operators which in SU(3) space has the following representations,
p . - ] -
(Ab) 13 ™ By By + 8o 513 (1.7)

vhere (A'k)* = AT and A} + A2 + AS = 0 50 that only 8 of them
are independent. The commutation relations which the above
operators (1.7) satisfy are very simple and given by,

M A D N N | Y 8
[Au, Ap] - 8 Ap 5p A (1.8)

Wherﬁ’ Hy Oy Ay p = 1’ 2, Se

We now use the familiar technique of considering the
infinitesimal gemerators of SY(3) to be operators whieh have
physical significamce. Firstly, we note that the group SU(3)
is of ramk 2, Thus, we can construct only two independent and
mutually commting operators from the infinitesimal generators
of 8U(3). These cperators can, therefore, be similtanecusly
dia,goﬁa.lised in any representation. Again, we know two operators,

namely the hypercharge and a eomponent of the isotopie splin |
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operator whiech coomute with each other. Thus » we can cheose two
of the diagenal elements to be the hypercharge Y and the third.
compenent of the isotepiec spir; Ige The .eho:l-ée of I, is purely
cbnventienal and just fixes the direction of quantisatiom of the
isotep_ic spine The other components of the isotopic spin do, in
fact, commte with Y but not with Iao Thus, they cannot _be

simultanecusly d;la;goﬁali_sed with I,

Let us now consider the eigenvalues of I, and Y in the
triplet representation. We have already seen (1.5) that there are
two eperators ¥, and F, vhich are diagonal and commite with each
other. F, is already in the férm which aceount for the isetopic
spin content of the triplet. For the hypereharge Y we redefine
I;a in anslogy with the Octet mdela) ag ¥ w ;5 F, « Following
these prescriptions we write down the eigenvalues of the basis
vectors of the triplet representation in teble l.1 in which we also
mention the baryon number and charges which we caleulate by using
the Gell-Marn Nishijima fomn). Eigenvalues of these
operators corresponding to the contragradient representation are
also mentioned in the same Teble l.1.

. et
4,
i
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Table 1.1

Particles | c2ec (1, [ 8 | ® | ¥ | q
q,- \ A Y2 | o | /51 1/3°| 2/3
q ¥ 2/2 | o | 1/3 | 1/3 |3
ag Vs o |-1 |13 |-2/3 |-1/3
q, v /2 | o |-1/3 |1/3 |-e/3
T, \a /2 | o |-<1/3 (/3 | 1/3
q, ¥° o | 1 |-1/3 ] 2/3| 1>

From the six non-diagonal operators in (1.5) we can obtain a set
of six isotople spin and hypercharge ehé.-ngmg operators. As a
result, we can establish the reiationé between the operators in

(1.7) with those in (1.5) as follows:

I, = A;' - P, +iF, ; I. = A’: - F, -iF, ;

3 1 2 2 .
I, = %(Al—Ag); Up = A, = F +iF ; U- = F, -1iF,

we

U, = %("Is"'g'f); Vo = A: w F +iF; V- = F -~iF 3
Vo = H1,+271); Y = -4 . (1.9)

. . . - £,
- S T Ly N T T LN WP SRS T At ¥ WL PR A S S 1, 1 P
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From (1.8) and (1.9) we obtain the following commutation

relations: :

[I-sa I_+_] - 1 I: 5 [Is: E’:] = F i'“: ; [Ia, V:]- t%v:.._

[YI:] = O3 [YU:] - iﬂz; [y, Vt] - tv:,,__ (1.1.00)

(e I-] = 2T,5 [W0-] = -Ig+3 % [, V-] = I+ 37

[I-; V4] = Up ;5 [VaI+] = U~ [U-I-] =V-;
[I+,9+] = Vo ;5 [V4,0-] = I+ ; [Us,V-]1 = I- (1.10b) -

The relations (1.9) and (1J0) are extremely useful in determining
the relative pﬁases (which we discuss in the Appendix A) among the
eigenstates as well as in calculating the eigenvalues for the
Casimir ‘opemter of 8U(3) . correspending to an irreducible

representation of 80(3);

We also note that there is a difficulty in the classification
of the eigenstates in a representation with only Y a_.nd Iy a8
diagonal, the reason being that in some representatic;ns more tha:n
one state may have th_e same Y and Ig. This incomplete
classification is the result of the fact thet the group 8U(3) is

of tank 2 and has 8 generators. Therefore, we need 3(8 —'5x-2)
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i.e. one more operator which conmutes with Y and Ia and does not
commte with all other generators of the group; But as the group
8u(3) is of rank 2 we cannot have any other linear operator
commting with Y and Ij. Therefore, we have to consider the non-
linear operator |I|® which commites with Y and I_ and not with

the other gemerators of sU (3). Thus s & complete identification
of the eigenvectors in an irreducible representation of 8u(3) can

be obtained by specifying for each eigenvector the corresponding

-I, Iy, Y eigenvalues.

L S - e . v Aeet T el dmmats ks a me
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b. The Irreducible Representations for Mesons and Baryons:

In the last section we have discussed the two inequivelent
spinor representations of 8U (3). The bases of those two
representations are respectively the three quarks and their anti-
particles. The philosophy now is _to congstruet all the states from
the fields of the three quarks and their antiparticles. The
states so constructed from the triplets, in general, férm the
bases of some irreducible representations of SU(3). The job is
then to identify the states of a particular irreducible
representation with a set of physical states, i.e. particles,
resonances, e:te. For that matter, we have to look for the .sub-
quantum numbers that a particular representation contains and
find a set of knowm po'.;,i:elea which possess those quantum numbers.
As the transformations of BU(3) commte with the space-time
transformation, the particles which we assign te a partieular
representation must have the same spatial properties, i.e. spin,
parity, baryon mumber etce In particular, the particles belonging
toa SUa superinltiplef must have the same mass. In other words,
the particles forming & supermmltiplet are indistinguishable from
the point of view of exact symmetry. However, the group has a
set of opefators vhich allow us to allocate different symmetry

- quantum numbers to the various members of a supermultiplet. As we

have discussed before, these guantum numbers are I, Ig Y which are
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sufficient for the complete identification of the various states
in an irreducible representation of 89(3).

Let us now go back to the qua-rk—ngodel and conatruct the
va-r:leu states which we shall identify with the set of known
particles. First, we construct the states for the pgeudosea]:a.r
and vector mesons. As these particles have zero baryon number
thelr corresponding states can be comstructed from the guarks and
antiquarks combination. Thus, we expect a represemtation for
elther of the mesons in the direet product 3 X 3 representation.
The technique of reducing this direct product representation is

well knmv-nla) so that we have,
3I®3 = 18 (1.11a)

In terms of the wave functions of the quarks and antiquarks we

have,

LS {'i“va-iag?tl}
- *}6; v v+ 0; (1.11p)

In (1.11b) the first term is the trace of the mixed temsor of rank 2
and has only one component which transforms like a scalar under
SU(3). The second term is a traceless mixed tensor and has only
eight independent comp_onenta. The additive quantum numbers I, and
Y of the tensor 0“ can be caleculated from the corresponding

B
quantum numbers of the eomponents of the constituent quarks. We

thqn find tha‘t_:_ --the eight damens:l.onal irreducible repreaentation L



B
doublets (Y = 1, ~1), one isotepic triplet (Y = 0) and one

formed by the traceless mixed temsor ¢, consists of two isotepie
isotopic éinglet (Y = 0) and all these states have zero baryon
pumber. We can, therefore, associate them with the pseudoscalar
a8 well as the vector mesons. ] For the pseudoscalar mesons we

make the following identifications:

3 b §
1 T .
P=-¢2ou

h § b §

1 1 Ke

Ps - ¢s H (14-2)
Pgs "~ ,0§ : K°

fa-(P:' P:) - J—;(¢i-’:) - 7°
6 . 6
AR

where the identifications of the last two in (1.12) can be obtained

by us:hfg the traceless property of the mixed ﬁ_en-ser and orthogonality
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condition of the states x° and e

can then be written in the follewing form:

‘llo 1
—_— — x*
2 46
1 o 1
- ol
" ol 6"
'x" K°®

k°

2

T

The pseudoscalar meson octet

(1.12*)

Similar associations can be made with the eight vector mesons and

written in the same form as (1.12%).

tensor for the eight vector mesons as V‘z s wWe have

A

P @ .
I - 0
J2 V6
1 1
P - —pgt —
2 ? J6 °

K Kn°

x*o

2
- = ®
J6 °

Thus, writing the mixed

(1.13)

where ®, is a mixed state of the two pliysical isosinglets ¢ and @.
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This admixture of the two states appears when the pure 8U(3)
symmetry is brOkenB). We might as well speculate that the
isosinglet member of the pseudoscalar oetet could be an admixture
of the isosinglet 1|(550) and the recently discovered isosinglet
x°(960). However, from the large difference in X°, 4 masses,

the amount of the mixing is assumed to be negligible.

We now construet the states for the baryon and baryon
resonances. As the quarks have the baryon mumber 1/3, we need
three or the multiple of _three quarks to form the baryon states.

Considering the product of three quarks' wave functions we have,

Ve %% " Vel * V(e T Vimale * ? )

‘where V is completely antisymmetriec in its imdices, *IEB]

[ag2]
are antisymmetric between the interchange of the indices a« B and
b {aB } is completely symmetric. The tensor *[ﬂﬁh hae eight

independent components, and B{ ) has 10 independent components.

Now, using the Levi-Civita tensor €¢p 8 ve can write,
n® Eﬂﬂa
B, = M -9

8
A

8 bvaryons nemely, N, A, £, H with the various components of the

where it can be shown that B, is traceless. We can associate the

traceless tensor Bg o Consequently, the baryon octet can also be

A, PP
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written in the matrix form,

£° A N
—_— o — z P
J2  J6
° s (1.14)
‘B = ) - — 04+ — n 1.1
i Je J6
(o] 2 (=]
H- = - =
- J6

The completely symmetric tensor ncﬂy can be expressed in terms of the

wave-functions of the constituent quarks as follows: -

1l
.nuﬂl - :/"Z[*a°ﬂxk+*ﬂ.lx¢+*1°¢xa+vloﬂx¢

$¥ 0 X+ ¥y 0, X ] (1.15)

From (1.15) the normalisation econstants for each of the ‘ten
independent states c¢an be calculated. Thus, we obtain the
following ldentifications:

P = b B e V3D 1 e 3

111 Dopy 5

¥ = D ; Y = 3D

22 118 } ™ = V6 Dm-s?
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3

s

&>
o
m

- J-}B =" - ‘\I-BD

#0 .
3 m’

0 = Dygq e (1.16)

¢. The Baryon-meson Yukawa type stromg Imteraction Lagrangians
and F/D Ratio :

Gne of the eonsequences of the assigmments of various
particles to different SU (3) mltiplets is that we ecan couple them
together and thereby est&ﬁlish some relatiomshipz between their
coupling constants. In order to see how these relationships are
ébtained we consider the strong interaetion between the baryon
oetef B: and the pseudoseé.lar octet P: and write dmm the 89(3)
invariant Yukawa type strong interaction Lagrangian between them.
The vertex we are going to consider is of the form BBP , wher§ B
i8 to be obtained from (1.1k4).by taking §ranspose of the matrix
B-"u with bar; this is necessapy for the conservation of the
electric change. Further, the interaction Lagrangian we eonstiuct
has to be invariant under Lorentz transformation as well. However,

we assume that these factors ‘are always taken care of and eonfine

our attemtion to only symmetry dependent part of the interaction.
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Before we proceed to write down the baryon-meson vertex let
us eonsider the general Yukawe type coupling of the form M, M, Mg
vhere these three M's beléng possibly to different representations
of 8U(3). The method of constructing such an invariant
Lagrengian is well _known in relation to the isotopic spin symmetry
where we consider the Yukawa type eoupling of the form RNx » where
N is the nucleon doublet and n the meson triplet. As the pion is
an isovector in the isotopic spin space, we must construct a
veetor from ¥ and N.  Such a vector is of the form N YN where ©
is the familliar Paull matrices in the isotopic spin space. Then

the SU(2) invariant interaction will be of the form,

iNtN.x (1.17)

vhere 1 has been added to make the interactiom hermitian. Here,
we note that there is only one method of comstructing a scalar in
the same way as there is only one way of construeting a vector
from two spinors. The same prdcedure can be applied to the case
of 8U(3). For the interaction of the form M, M, M, we have to
construct the representation contragradient to M, from the direct
product of M and M. This_is cbvieus from the fact that only the
contragradient repfesen‘bations have a scalar representation in the
decomposition of their direct product. As in (1.17), there must

exist an operator (called isometry) which will allew us to construct,
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out of the product of Ml and % » & representation that transforms
contragradiently to M, under 8U(3). Im fact, there exist as many
such operators as the represenﬁtion contragradient to Ms ocours
in the reduction of thdlireet product representation of lll and Mz.
This is exactly how G;ll-lhnna) obtained, in connection with
Baryon-meson interaction, two tjpes of vertices _namely, the D and
F respectively. The D and F types are respectively symmetric
and anti-symmetric under the interchange of the two baryons. As
the SU (3) symmetry cammot distinguish between D and P type one has
to take an arbitrary linear combination of the two. We shall,
hmver, ‘write our inte-ractieﬁ Legrangian between the Baryon and
the pseudoscalar mesons in & slightly different way which is
convenient if bases of the representations care known in terms of

the irredueible tensors.

In our ease, both the baryons and the pseudoscalar mesons are
given in terms of the mixed temsors (1.14) ard (1.12'). As the
trace of a temsor is invariant under‘SU(B) we comstruet traces of
the product BBP. But there are two ways in which we can obtein

this trace as a consequence of which we obtain the following

invariants:
=0 .
I'-l - Bll B‘B P'-l
(1.18)
=0 )
Le = Bﬂ P\) B";
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Instead of (1.18) it is customary to consider the following
combinations:

Lﬁt = L *IL, | (1.19)

which are symmetric and antisymmetric respectively under the

interchange, B & B. The genersl interaction Lagrangian is,
{*

therefore, an arbitrary linear combination of L(": which we

in
write as:

L - (lm)i J2 g{ p.a) + r) } (1.20)

int

i
where we have multiplied with a factor V2 (4x)Z in order that we

obtain (D + F)g = Gy * Where experimentally 5§m: ~ 15 is known .

Without the loss of generality, we may choose g = (15)% in which
case the experiment restricts the coefficient D + F m 1. Thus,

(1.20) can be rewritten in the form,

L. ® (u;:)é J'a.g{ (1 -F) tr (BBP + BPB)

+ P tr (BBP -EPB)} (1.20)

We can caleulate the traces in (1.20) and express them in terms of
the fields operators (1.12') and (1.14) with appropriate phases

(Appendix A). We, then, arrange the different parts in such a way



that on comparison with the most general baryon-meson interaction
Lagrangia.nlg) we obtain the following relations between 12 baryon-

meson coupling constants,
be * "8 gk " E

&rpe = 2FE

Ggex ™ " & x ™ (l‘-EF)g

2 | (1.21)
ean = Sxzg ™ " Sy " J—.;(l-!')s

1
GNH'q - g AK " - E-l-.‘ﬂ')g

1l

G " € o " -J—.-3(1+2F)s

Unfortunately, of all these coupling econstants, only one, namely ,
g:lu ® 15 is accurately known. However, it _is possible to

make an indirect estimate of F. Such an investigation has been
carried out by Martin and Walilg) who eonsidered the process

B+P - B +' P taking into account only ome baryon exchange,

They varied the value of F to get the N* resonance at the appropriate

energies. The values of F which gave the best fit was = {* » the

correspending F/P ratio, being 1/3.




We can similarly couple the vector mesoms to the baryons and

obtain relations between the various coupling constants in the same

manner as above, involving again the F/D ratio which has to be
determined by an indirect method. Therefore, the question arises '
whether we can write these eouplings in terms of Just one.
Theoretically we would _Jjust like to eliminate one on the basis
of some other consideration or another postulated invariance.
Neeman thus obtained the F-type interaction only for the vector
mesons _by imposing the gauge invariance principle. Gell-Manmn,
on the other hand, tried to introduce R-invariance. As D and F
couplings are respectively symmetric and antisymmetric under R
operator this invariance would demand the existence'of D alone.
Ho;rever, in the case of 3 boson couplings, one of the two types
is automatically excluded on account of charge conjugation
invariance and the fact that the particles amd the antiparticles
appear simultaneously in the boson octets. " Thus » the three
vector mesens ér one vector a.nd 2 pseudoacalar mesons vertices
must be F type while 3 pseudoscalar mesons or omne pseudoscalar

meson and two vector mesons vertices must necessarily be D typeao

R L I



de. The Symmetry Breaking Interactions and Mass-Formlae:

Exact SU(3) symmetry demands that the particles said to form
a supermaltiplet must have the same degenerate mass. But this
does not happen to be the case in nature and, therefore, one has
to consider the breaking of the symmetry. The bresaking of the
symmetry then allows the mass degeneracy to be removed and we are
expected to obtain the correct mass-spectrum from the symmetry
breaking. .In 6rder to find what is the source which causes this
symmetry-breaking, let us go back to the history of the charge
‘independence theory. In the charge-independence theory it was
supposed that the particles with very nearly the same mass form the
isotopic multiplet and that the correct mass -spectrum would be
obtained if we did include the effects of the electromagnetic
interactions which do not observe charge~independence. In BU(B)
sympetry, we likewise assume that so far as the strong interactions
are concerned the particles having very nearfl:y 'the same mASS Ay
be grouped into 8SU(3) supemltiplef;é and that when we consider the
symmetry breaking we shall again be able to remove the mass-
degeneracy. In this case, however, the situation is slightly-
different. Here, neglecting the weak interactions altogether,
our hierachy of interactions consist of the very strong, the medium

strong and the electromagnetic interactions. The very strong
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interactions, as we have alr;ad,v assumed, are invariemt under

| the transformations of tﬁe full group BU(3). On the other hand,
the medium strong iqtera.ctions are assgméd to be iwrariant under
the subgroup 8U(2); ® U(i)y of the full group SU(3). The above
subgroup is then as-smed'to contain a further subgroup which
leaves the electromagnetic interaction invariant. Thus, the
complete removal of the mass degeneracy can be supposed to take
effect in two stages. 1In the first stage, the medium strong
interactions are turned on. As the medium strong interactions

do not have the symmetry of the very strong ones, the super-
maltiplets will decompose into various isotopic multiplets. The
mass-splitting in this stage is such that although SU(3) is
broken, ‘the isotopic spin I and _hypercharge Y are still conserved.
In the second stage then we switch on the electromegnetic
interaction which campletely removes the mass-degeneracy .reulf;ing
in mass~gplitting between all the members of the SU(3) super-
maltiplets. However, the third component of the isotopic spin
and the hypercharge are .still conserved in this interacti on.

The most troublesome interactions are the weak interactions which

I
destroy the strangeness s conservation as well, Fimlﬁ, only
charge and baryon mumbers are conserved. Thus, the total

interaction Lagrangian of the Hadrons can be w:g-itten in the form,

it ® Ivs ¥ Ins * ]:(_!m + I, (1.22)
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I_ are respectively the very strong, the

where Ivs’ Ims’ Iem’ v

medium strong, the electremagnetic and the weak interactioms.

-We shall, however, discubs the effects only of the medium and

electromagnetic interactions.

Let us consider the. medium strong interactions which are
responsible for the breaking of the SH(3) supermultiplets into
the isotopic multiplets. As is well known, this interaction
is considered as an operator, TN’ that must commte with thg
isotopic spin, strangeness and the nucleon number operators I, 8, N.
This restrietion is highly reasonable as we are still in the realm
of étrong interaetions where the strangeness and the baryon
number are @semd and any non-commtation with I will result
in the mass-splitting between different members of the same
isotopic multiplets. Now, the mass splitting due to this

interaction can be writtemn in the form,
AN = <D,¥|T,[|D,¥> - (1.23)

where D is an arbitrary irreducible representation and ¢ any
vector in its basgis, Let us now discuss what more restrictions
we can impose on the eperator T!(' The conservation of the
isotopic spin I requires the operator TN to be an 1sospin scalar
such that under SU (E)I it transferms as an isospin singlet.

Further, the conservation of hypercharge Y and the condition that

P . e e et e el ke . el e e o e e mnon e it u mg waew
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it is an additive quantum nunber demands that the hypercharge
carried by the operator must be zero. Thus, summing up we
find that the operator !M must transform as an isesinglet with
Y = 0. There are quite a few, namely, the irreducible
representations 1, 8, 27, 6% ... etc. which contain a state
having the above guantum numbers. To the first order
approximation, only the 1 and 8 contribute. Therefore, we
can express '.l'M as & linear combination of the operators
corresponding to the 1 and 8 dimensional representa.%ions ’

T

. (1) (I =Y =0) +T_(8) (I =Y=0) (1.24)

‘1'(1) Just gives a comstant term in (1.23) and the traceless

octet operator is givem by,

i aM Boad _ 1B 4@ )
T - aA°+h[.A%AD iﬁnAlAa] (1.25)

where At are generators of SU(3). From (1.2L4) it _is obvious

that wa need only the '1': component of the temsor T'; . .considering
only.!-:ﬁ.we can express th_g quantities in the right hand side of
(1.25) in terms of I, Y etc We then obtain fom (1.23) using

(1.24) and (1.25) the well known Okubu mass rormula.a) ,

u-m°+m11r+m2[1(1+1)-h=] (1.26)
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whcre.m o My M, are arbitrary constants. Let us now cemsider
the application of the formmla to the various sets of partiecles,
We first oconsider the baryon octet N, A, L, H for which we

obtain the well known Gell-hhnn-Okubua) relation,

my +ng) = 40m, +mp) (1.27)

Iaki'ngmm ® 938.9, m, & 1192.9, m, ~ 1115.4, n_ 8 1317.6
" and the average octet mass & % 1152 we find,

= My +m) < b0oay +m) | < 29
m[., . ]

The Gell-Mann-Okubu mass formula is, therefore well satisfied
for the baryons. For the Deéouplet, however, we have I = 1 + g
and the formila (1.26) reduces to,

M = m +mnY (1.28)

" where m, = (m + 2m!);. m, = (ml + g“‘a)‘ The formla .(1.28)
then predicts equal spacing between the isomultiplets of the
DPecouplet. From experiments we have Dew 1238; Doy % 1385;
ng* = 1530; me. = 1675 and the spacing from (1.28) are the

following,
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Mpy = Dy = ..]_l|.7;- m,!'-mi w - 1h5,

m_y = Mo~ = - 1h5

At the time when SU(3) was hypothised, the 0~ particle had not
been cbserved. The above formuls predicts its mass to be

m, ® m_ + 146 s 1676 which is in remarkable agreement w:ltﬁ
the value eventually determined. We now consider the applications
of the mass-formuls to the psendoscalar and vécto? mesons. As

the mass of the bosen occurs in the Lagrangian in the form p.2 ’

p being the mass of the bosen, the mass M in (1.26) should be
replaced by M. Also in order that mxg = m!_: we require the
coefficient m, of Y in the mass fornula to be zero. - For the

pseudoscalar meson we then obtain,
m; - -&(}m: + mft)- (1.29)

which is reasonably satisfied. We now comsider the nine vector
mesons p, K*, k¥, @, ¢. The masses of these particles are
respectively: mp N T63; Moy ~ 891; m, = 1020; and

m ™ 783. The corresponding mass formla is,

fo = HE +2) (1.50)

where m“‘o is taken as the mass of the isosinglet member of the
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vector octet. From the above we have m‘”o ~ 930 Mev. This
value corresponds to neither the ¢ nor the @« Now considering
¢, 88 the pure I= Y = 0 8U(3) singlet we can write the physical

8)

¢ and o as mixtures of the m;, and LR states:

¢ = ¢ 8in 6 -m ecos 6
o ()

(1.31)

® = vocos 9+m°s:l.n9

The mixing angle 6 in (1.31l) can be estimated from the ¢, o decay
width or else by diagonalising the mess matrix. - An approximete
value of the mixing angle is 6 & * 40° 8).

Mass formulae corresponding to the second order 1’: T: (in
fact o' orde_ral) ) have also been worked out. However, we then
obtain too many coefficients and we camnot, in fact, derive any

relationship between the masses in a reﬁresentation. We shall,

rather, not go into that matter amy further.

The mass-splitting among the members of the same isotopie
multiplets of the SW(3) multiplets have been discussed in the past
.s5722)

by a number of author We just quote the famous Glashow-

Coleman relationm,

ME") -a(E% = n(=) - n(z*) + m(p) - m(n) (1.32)
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Experimental results give m(p) - m(n) =~ 1.29 Mev.
n(=") -m(Z*) = 8.25 t .5 Mev. These yleld the mass
difference for m(z=x~) ~ m(=®) =~ 6,96 t .5 Mev which seems

to agree rather well wlth_the experimental values obtalned so far.

2. The SU(6) Symmetry for the Hadrons

a. The SU(6) Supernmltiplets and the Baryon-meson Yukawa Couplings

The group SU(6) as the symmetry group for the hadrons was
2

~ first proposed by Glrsey and Radicetti and Sakita 3) independently.

This is a group of all the unitary unimodular transformations in
some six dimensional complex space and has a subgroup 89(3)(O8U(2)
which can be identified with the direct product of the SU (3)
symmetry group and the ordinary spim group. From this point of
view, this theory can be regarded as an extension of the
supermultiplet theory of the mucleus of w1gner2u) who classified
the Nuclear levels according to the irreducible representations
of the. group 8U(k) which has a subgroup 8&!(2)1 ®SB(2)J which is
the direet product of the isospin and ordinary spin groups
respectively. - Neglecting the Coloumb and the Non-central
forces, Wigner first of all assumed that the forces bétween two

nucleons were invariant under the transformations of the product
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group BE(2)I® 8[!;(2)‘.;. He then made the further assumption that
the foreces responsible for the binding of the Nucleus were spin iso-
spin independent so that it will be imvariant under the full group
Su(4) whieh conmtains the product group 86(2)I®3I%I(2_)J and
transforms the four objeetsf pt, nf, py —ahd n)y among themselves.
Now, with the help of the quark model of the hadrons, the extension
of 8U(4) to SU(6) is obvious. Here, we consider the

transformatione on the following six-compomnent objects,

%1
%t

.7 _
¥ = al (1.33)
R
9a

where the arrows indicate the ordinary spin states of the gquarks.
We then assume that the strong interactions (usually called the
forces binding the quarks to form an elementary pe.rticle). are
863-spin-spin independent so that they are invariant under the
group SU(6) which transforms the components of the fundamental
sextet among themselves. ‘The particle states are then classified
according to the irreducible representations of SU (6). The

irredueible representations of SU(6) are, in general, reducible

J s T O . e A m e e B L
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under the subgroup BU(3) x SU(2) and consequently the SU(3) and
spin ‘contents of &n ix;redncibie representation of the full group
are obtained by redueing it with respect to the product group.
For that purpose we specify the irreducible representations of
SU(3) X 8U(2) by a set of two mmbers (« a), denoting the
dimension of SU(3) and-8U(2) respeetiveiy. .Now any irreducible

representatioxi A of SU (6)”. can be written as,
A= (aa)+ (BD)+ ... (1.34)

where A is the dimension of any irreducible representation of
8U(6). Thus, (1.34) provides the SU(3) and 8Y(2) multiplet
content of the supermultiplet A. Obviously, the aritimetie

equality A = ea +BDb+ .., must be satisfied.

As is well known, the sextet (1.33) forms the basis _of the
i fundamental representation of 8U(6). ‘The generators of SU(6) for
this representation can be taken to consist of the following:

B | 1
EIA,,IL_] = 8,83 o 8 (1-3&')

where p, v, i, J = 1 ... 6. The eigenvalues of the sextet

' H
correspending to. the operators I, Y and J (third component of the
ordinary spin) cen be éxpressed in terms of the generators A: a8

follows:
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. LA Ao
Y = - (a3 + A%)
Iy = %(A:_'+A:+!.\:-A:.-A:-A:)

The basis of the six~dimensional contragradient

is formed by the following six objects:

anﬂl
—

la,

(1.;5)

representation

(1.36)

We now construct the states of the mesons from the basic

fields of the fundamental sextets, The mesons which are regarded

as bound states of quarks and antiquarks in the S-state are

assigned to tlgne Z5-dimensional representation of 80(6) in the

decomposition,

E@E = 1+3

(1.36)

The 35-dimensional representation can be further reduced with
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respect to 5U (3) @su(2) to obtain the 89, and 8U, content of the
35-plet. The éenemi method for the reduction of an irreducible
representation of the group SlJm witﬁ respect to the subgroup
SUmQSUn has been discussed by a number of a.uthorszs) « 'The

above case is very simple and the result_is,

'32 - (1-) 3) + (8, 3) + (8) l) (10'37)

From (1.37) it is clear that the 35-plet of SU(6) contains

an octet of peeudoscalar mesons (0”), and & nonet (singlet + Octet)

of vector meson (17). We now construct the basZis tensor of the
35-plet in. terms of the corresponding ones of SU(2) and SU(3). As

we know already, the basis of the 35-plet is a traceless tensor

A
Y

SU(2) and SU(3) can be expressed as follows:

(A,B = 1,6) which in terms of the corresponding ones of

'A'_ i _ 1 ke e iy i@ 3 1 ke o e iy
0 a0 +§5Boj7+ L &adokp '}850;]7}

B " % 1 %k

(1.38)

where i, ] = 1, 2; @, Bm1l, 2, 3; and (1.38) represents the

: - Y- J
decomposition (1.37).. Let us use P%, V. (1) and V a(8) for the

p?
octet 07, singlet 1™ and octet 1™ meson wave function respectively.

Then (1.38) can be rewritten as,
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& - :IB J'a{a P"+o;?;($)}  (1.%9a)
L 1 a= ' )
V5 (9) = Al + g (8) | (1.390)
where the wave-function his been so normalised that
<oo> = g ¢AB = <pp> +-v.(1).—v'(1) + <-v’(8) -v'(s)-> (1.40)
) 1.4%

Let us now construct the states of the baryons which are to

be cobtained %from the corresponding states of the three quarks as

follows:
6 ® 6 = 20+56+ 70+ 70 (1.41)

where 20 and LG are respectively completely antisymmetriec and
symmetric in the interchange of any two gquarks states. The TO-plet
has the symmetry of the type [2,1]). Again the SU(3) and 8U(2)

contents of the above irreducible representations are:

20 = (1,4) + (8,2)
- (811) + (ﬁ:q’) (1.k2)
= (1,2) + (8,2) + (8,4) + (10,2)

B &

B o - - S S - S
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It is clear from (1.42) that 56-plet contains an octet of
apin 1/2 and a deeoupief of spin 3/2. Therefore we can assign the
8 baryons and 10 baryon resomances to the 56-plet of 8u(6). But
this assignment goes against the requirement of the Paull prineciple
if we assume fhe ba.ryoﬁs as bound states of three quarks in the
8-state and if the quarks obey Fermi~-statistics, However, the
ratio of the magnetic moments of the proton and neutron and the’
mass-asplitting obtained from the 56-plet are in much better agree-
ment with the experimemtal result than those obtained from the
20-plet which would have been in consistence with the Pauli
requirement. It is because of these reasons that the baryons are
assigned to the 56—p1et. Now the wave-function of the Ss-dimnsioml
representation can be constructed from the SU(2) and SU(3) wave

funetions as follows:

: ’ 1
e = Vie,pky " Pwy,ix T {ewas TR
8
* €ays € “3,1 T € ap Gx1 lt03,:1]’ (2.43)
where D is completely symmetric with respect to Latin and

oy, 1iJk
@Greek indices separately so that it represents a decouplet of spin

3/2 wave~-function.

Let us now caleculate the -effective current which transforms
, ]
like 35-dimensiomal representation of SU(6). This current J‘: can
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be obtained from '56' baryons and antibaryons as follows:
k) [ 4Ty 1 | -
TR S WO 3 & Vo e - (L.bk)

Substituting the expression of ¥EC and Ypo imto (L.bA), the

. effective current is glven by,

A" e’ —a'y,ivk 1000
o= G = Py kg% 8 <BD>

ﬂridkb B ~i'j 27,k
{wid 1! e“eii"

X ncﬂr,iak} * %{f’f gy *§ (o)}

x [3(&'?% ¥+ o(Fom, )S -oF <FE> ]}

(1.45)
where
= —apy,ijk
<PDP> m D DGBy,iJk
(Fmp) = oL T w
(1.146)
(NNB)“ - B_'N2+ﬁang' '
<EN> = B n;
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Now the interaction lLagrangian (Yukawe type) between all the

baryons and mesons is,

L, S (1.47)

It is well known from the field theory that t-hepseudoscalar
meson-baryon coupling is of the form ¥ 75 ¥ ¢ which in the static
(as in the case with SU(6)) limit reduces to ( ¥ :#) . ;0 ;
while the vector mesonsbaryon eoupliné is of the form ;;1# Ou'
which reduces to ¥¥¢,. Hence fram (1.45) we find that in SU(6)
the vector mesons couple to the ba.ryoﬁ in an F type eoupling;
whereas the pseudoscalar mesons have both D and F types occurring

in the ratio F/D = 2/3.

b. The Symmetry Breaking Interactions in SU(6)

The mass-splitting in SU(6) can be considered im the same
way as it was done in SU(3). ° Neglecting the weak interactions
altogether as before, we can consider ,' therefore, the effects of the
medium strong and the electromagnetic interactions in the removal
of the mass-~degeneracy of the 8U(6) supermultiplets. We first
discuss the effects of the mediu:ﬁ strong interactions and shall

consider the electromagnetic interactions later in this sectionm.
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As we have discussed in relation to 8Y(3), the medium
strong interaction said to be respensible for the symmetry breaking
can be considered as an operator TM' We can now assume, as some

26)

authors bave done, that this mass operator T, transforms under

M
SU(6) as an I = Y m J = O eigenstate. Then the above operator can
be expi'es_sed as a sum of the operators corresponding to various
irreducible representations which contain the eigemstate I = Y = J = O,

A few low-dimensional representations which contain the above eigen-

-gtate are 1, 35, 189, 405 etc. Therefore, we can write T in the

N
form,
Ty ™ Tl(IwYmd =0)+ T(I -r-.r-o_)
+ T2 u Y= I m0) +T*%°(I = Y uJ =0)
+ + (1.48)

Then the mass-splittings are given by the matrix elements of the
operator T, in (1.48) between the same state of any irreducible
representation of sU(6). Kuo and Yaoés) , however, assumed that
to the first order, the mass-operator '.I.-‘m transforms as the
ImY=J =0 state of the regular representation of SU(6). The
tensor operator they have used, is the SU(6) version of Okubu's

operator and is given by,
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a 0 B " M
-.r: = 88 +a A +a, (A.A)n + as(A.A.A)o +a, (AAAA)0

+ a, (AQAOAOAQA)'; (1"*9)

where the A: are the generators of SU(6) and the ai's depend only
on the Casimir operators of the group. The components of the -
above operator contributing to the mass-splitting is aeccording to

the above assumption _T: + T: .

Let us now discuss the mass-splitting in 35-plet by using
the above operator (1.#9). 8ince 35 occurs twice in the

decempositien,

35 %35 = 1+ 35+ 35+ 189 + 280 + 280% + 405 (1.50)

only the first three terms in (1.49) contribute to the mass-splitting.

Thus,

aM = < 3B|H[35 > = 8y + a8, <35[A5]35 >+ 8, <35|@.A)]5 >

(1.51)

From (1.51) we can calculate the contribution of T3 + T: to the

mass~-splitting. The mass-formula obtained by Kuo et al is,

¥ = n°+m1Y+m2[2J_(1)(J()‘)+1)+§-!2-Ce_(h)]‘ (1.52)
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where C, (h) is the gquadratic Casimir operater of the 8U(lL)
subgroup of SU(6). ?(1) is the spin of the strangeness bearing

quark. The other components of this veector are,

g u Al

(1.53)
JSl) = A;

s o 12 - 4%

Using (1.53) we can calculate the eigenvalues of the operator

-

J (}‘) for the various members of the 35-plet. Using those values
we can get the mass-relations which was obtained by Kuo et al.

The meson-mass relations are:

m: - mp’-’ | (1.54a)

me +m? w omg (1.5%)
m? - %(h: +mF) (1.5ke)
ani -m2 - .mxa -m2 (1.5ua)

The relation (L.5kc) is the well known Gell-Mann -Okubu formule we

obtained in relation to SU(3). However, the appearance of the
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relation (1.54a) shows that the mass formla (1.52) requires
improvement. Por this reason Beg and Singhzln considered the
contributions from the operators corresponding to the répresentations
189 and 405 as well. The final formula they obtained is,

M = a+0bY + c[ﬂ"l)(.]'(-}‘) +1) + i- * - cz(h) ]+ dc2(3)
v ed(@+1) + 2[d®™ ) 4 qy L g0 GM) 44y
+elI(T+1) -y ¥ ] (L.55)

where CZ(B) is the quadratie casimir operator of the subgroup

8u(3). -'(N) is the spin of the non-strange quarks. The other
7

components of J are,

P () _ 1, .2

5.(B) = AL+ A7 (1.56)

= A -k 4 AD -0)

Again the operator 7 in (1.55) is defined by

T =g ®, 0
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such that J, = PRI Ja_(N) .

The consequence of the mass formula (1.55) is that the relation
n 2
)
(1.54) which compare well with experimental results are retained.

" m: .disappears and at the same time the other relations in

Moreover, for the S6—plet, the mass fernﬁla. (1.55-) reduces to.the

very simple form givem by,

M = m°+m1J(J+1)+%Y+ma[I(;E+l)-lYa]
(1.57)

This is just the Okubu formula with a spin J part.Using the above

formula we can obtain the relation,
R L L PE (1.58)

The experimental values of the left and right hand sides of (1.58)
are 270 Mev and 293 Mev respectively.

Let us now discuss seme SU(6) results obtained in the fields

of electromagnetic interactions.- Chan and Sark‘ere28

) have
congidered +the electro-magnetic mass-~corrections of the various
isemaltiplets within the 56~plet. They assumed that the eleetro~
magnetic mass operator transforms like a spin singlet in the spin
space and like the charge oﬁera‘hor Q in the SU(3) space. The

relations they obtained for the Baryon octet are:
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M =M = (1 - M) - (2°-=) . (1.59¢)
M -Mo = 57 -F° (1.59v)

The mass relation (1.59a) is the same as in S9(3). This is the
famous celm.n-ﬁlashow relation which is in very good agreement
with the experimental results. The relation' (1.59b) is a new
prediation of SU(6). The values of the left and right hand sides
of (1.59b) are B.75 Mev and 6.5 Mev respectively. Thus, the new
mass relation is also in éood ag_reement with the experiméntul

results.

Electromagnetic vertex of the baryons have also been discussed
in the past. As shown by éa.kitaeg) the effective electromagnetic

interaction of the baryon (in the statiec limit) is of the form,

-

Hop = 3eJ; ¢ - m}'in (1.60)

- .
vhere ¢ and H are respectively the external electrostatic potential

and the magnetic field, and .12 and 32 are respectively defined by,

e o= A @E-3857) (1.61a)

¢:17

Again J': - Jiﬁ ‘is given by (1.15). 1In (1.60) e is the charge
and y is the magnetiec moment of the proton. Substituting (1.45)
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into (1.60) we cen obtain the relationships among the total
magnetic mements of the baryoms. In particular, we can obtain the
ratio of the magnetic moment of protom and neutrom. The value. of

this ratio obteined by Bakita is,

up/un = - 3/2 (1.61b)

The above result is one of the important achievements of the SU(6)

symmetry.

3, The U(6,6) Symmetry for Hadrons

a. The Supermultiplets of Baryons and Mesons and their Yukawa

Coupling.

As we iahve discussed in the last section, the ordinary spin
in the 8U(6) theory is considered on the same footing as the -
isotopice Spin and hypercharge. This is possibie only in the non-
relativistic theory as in the case of Wigner’s supernmltiplet
theory. Then the question arose as to shether the SU (6) theory
which has had so mich successin' relating the internel and spin
properties of the observed pazrticle-mltiplets, could be extended
to the relativistic domain. As a result, many attempts were
made in the past to find & larger invariance group which would

incorporate the 8U(6) in a relativistically coia‘riant manner.



5.

Notwithstanding many difficulties_in the relativistic gemeralisation
of 8U(6), however, the groups s:.=(6c)3°) and 3(6,6)'12’31) were
proposed in early 1965 as two poé-sible approximate dynamiecal
symnetries for a phenomenoiogical description of the hadrons and
their interactions. Both SL(6C) and W(6,6) are non-compact
groups and, therefore, one ha.s to face the same difficulty in
obtaining the finite dimensional unitary representations of éither
group. The group BI.(GGS is a group of 6 X 6 complex matrices

of determinant unity and contains 8U(6) as one of its subgroups.
Consequently, the little groups of SL(6C), as shown by Rillil are
su(s)p which detemine the multiplet~ structure of SL(6C). The
inhomogeneous ISL(6C) group is a semi-direct product of the hemo-
geneous SL(GG‘) and an invariant Abelian subgroup of translations
Tgs in 36-dimensional (generalised) space. On the other hand,
the group U(6,6) is the group of 12 x 12 complex matrices and as
shown by many a.uthorsaa) the maximal compact subgroup it contains
is of the type U(6) X u(6) (monehirial”) ).  Therefore, it is
the group U(6)® U(6) which determines the mltiplet-struc—ture of
U(6,6). The inhomogeneous IU(6,6) group can, as shown by Charap
et al.Eh ) ,- be obtained by taking a semi-direct product of the
homogeneous U(6,6) and the translation group T,,, in l4i-dimensional

32)

space. It can be shown” ° that SL(6C) is a subgroup of U(6,6).

Further, as the subgroup of tra.nslafibn TM . contalins Tss as a
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subgroup, the inhomogeneous ISL(6C) is also a subgroup of the
inhomogeneous IU(6,6). From these points of view, we can conclude
as claimed by REn132) that every prediction of BL(6C) model will
also be implied by U(6,6) model. We shall, Wr, consider only
v(6,6) and discuss some of 1ts eonséduences.

The group U(6,6) appesred in many different names proposed
by various author;m”n). We shall, however, confine ourselves
in our discussion to the theory formulated by Delbourgo, Salam and
Strathdeela). We start with the basic representation which
corresponds to three quarks each baving four components as Dirac
particles. Let ¥, be the 12-component wave-function denoting
the fields of the three guarks. Then under a transfe:ﬁation of

U(6,6) we have,
Won o Sk (1.62)

where, A = 1,2 ... 12, 8 is a 12 x 12 matrix and, as is well
known, forms the spinor representation of U(6,6). Expressing in
terms of the 144 generators of U(6,6) we have,

B: = ech:l[€K FK]: (1.63)

where K -'1, eee ik, The §K's are real and Fx's are the

generators and in this spinor representation these are 12 Xx 12
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matrices. 8ince U(6,6) contains the direct product of U(22)
U(3) as the subgraul;, the generators Fg can be expressed as the
direect product of the generators of these subgroups. Thus, we

can write,

B o= I-‘R@'l‘i | (1.64)

where Rm 1l .., 16, im0 ... 8, The Iy are the generaters of
¥(22) and can be taken to consist of the following 16 Dirac

matrices,

I'l.‘ - 1, 7“', o (1.65a)

i . -
o = b7l 17,7 4

n's 5

where, 7, are antihermitian in our representation and y, hermitian
with the representation y, = (1,1,-1,-1) diag. The metric
tensor in the Lorentz space is %u = (1,-1,~1,-1) diag. The

above 4 x 4 Birac matrices satisfy the relationm,

b 70 Tp 70 = Ty (1.65b)
From (1.658) we find that of the sixteen matrices 8 : 1, o, 7.,

1_2. 7, ore hermitian and the other 8 : Vg0 =1 955 174 7. z

! are antihermitian, where g = (ogg, 0gs 0,5) » g, - (001 Yaes- Gos)-

Hence the group U(22) generated by the 16 Dirac matrices is nom- '

compact, the defiﬁing property being given by (1.65b).
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The 9 generators T, of U(3) have been given by Gell-] .

i

The normalisation here is so chosen that the relation between T 1

and Gell-Menn's N is,

T =1/46, 153111'3-1/2-515, T, w/2, im1,..8

We now consider the transformation property of the field of
the antiquarks. As before, we‘ denote the field of the antigquarks

by the weve~function ¥* which transforms as,
Vo vt - P (1.66)
=A
where § is defined by,
V- v (o3 (1.67s)

where

Goly = (o) &5 (1.67b)

where ¢, B = 1, ... 4 are the Dirac indices and i, j = 1, 2, 3
are the U(3) indices. From (1.62) and (1.66) it is_obvious that
the quantity ;A \\ (sometimesreferred to as the mass term) is
" invariant under v(6,6) and (1.67) shows that the above quantity
has six positive aﬁd six negative terms. This is .one of. the ways
to define the Aon--eompa.ct group U(6,6). In terms of the matrices

8, the other defining property of Y(6,6) is,

P

&
&,
Yer ot ite e sondoa
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*(7°®1) = 7°®1 | (1.68)

whe;'e 1is a 3 x 3 unit matrix of U(3) so that [7°®1] is a
12 x 12 matrix. S* is the hermitian .conjugate of 8. Now, as
before, we construct the‘ states of mesons and baryons froh the
basic fields of the quarks and the antiquarks. The meson states
are constructed from quark - anti\quark states and those of baryons
from three quarks. These states decompose under U(6,6) in the

following way,

1212% = 1+ 143

_ (1.69)
1212312 = 220 + 364 + 572 + 572

where 220 and 364 correspond respectively to the completely anti-
symmetric and symmetric tensor of rank 3 and 572 to the mixed
symmetry of the type [21]. Finally, 143 corresponds to the Young
tableau [2,11°]. Under the subgroup SU(22) x SU(3) these
irreducible representations are further reduced and their 8U(2,2)

and 8U(3) contents are given by,

&

(15,8) + (15,1) + (1,8)

lhD
n
o
|

(20*,8) + (20,1) + (k+,10) | (1.70)

8

(20,10) + (20%,8) + (b*,1)

R

(20*,10) + (20*,8) +(20,8) + (20%,1)
: | + (""*:8) ‘
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where 15 and &* of SU (2,2) correspond respectively to the Yong
tableaux [212] and [1%] and 20 and 20' of S8(2,2) to the tableaux

[3] and [2 1] respectively.

N;nr the meson fields can be denoted by the mixed tensor 0;.
For each 8U(3) index the meson field ¢ is a 4 X 4 matrix in the
Dirac spaee; Consequently, it can be expanded in terms of the
sixteen independent Dirac matrices. Thus, lhil-éémponent meson-

field ¢ can be expressed as,

a
- i i . i + e o ” P
% [, ORI TR CRE AR K °“°]5(T £
(1.71)

where u,B - 1,' Xy h‘, P = 1, 2, S

The baryons, as it is in 8U(6), are assigned to 36k which is
completely symmetric with respect to its U(6,6) tensor indices.
Let Vape be m;ch a tensor field which is completely symmetric
with respect to the interchange of any of the two indices. The.
tensor of such a symmetry type can be constructed from the -
corresponding SU(2,2) and SU(3) tensors in three different ways as

is_obvious from (1.70). Thus, we can express *ABC in the form,
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V3
Yagc * op,Bq,rr - 2o B“W:qu ¥ ePﬂr v[“ﬂ?]

1
- 8 8
P [ “pas "realr,r * Sors Vioylesp

i 8
* €ps Vyale,g ] (1.72)

where € oqr 1 80(3) invariant Levi-Civita tensor. is

D
afy ,pqr
completely symmetric with respeet to Dirac and SU (3) indices

separately. V[ apy] is completely antisymaétrie with respect to

the Dirae indiees. N[ hag the mixed symmetry and satisfy

aBly
the followlng relations:

oy = "VIealy

I : (1.73)

Yagly * Yioyle * Fipalp = °

The normelisation faetors in (1.72) have been chosen in the
same way as it was done in connection with SU(6) except the
coeffiei'ent of D which, here is so chosen that it represents

afy ,pqr
the spin 3/2 particle with the correct charge for Nt




We now eonstruct the meson-baryon Yukawa type strong
interaction Lagrangian. The number of ways this Lagrangian can be
constructed depend on how many times the representation y_&j
occurs in the reduction of the product representation 364 Q) 364*,

Using the well known method we have,

364 @ 36h* = 1+ 143 + 5940 + 126412 (1.74)

From (1w74) it is obvious that the meson-baryon vertex is
unique as it was in SU(6). Thus the meson-baryon interaction

Lagrangian can be writﬁen as,
- PR v (1.75)

Now substituting the expressions for ?A'Bc vA'Bc from

(1.72) and that for OA from (1.71) into (1.75) and then using

A
(1.73) we have on simplification,

5987 ;par iyp?
I‘int - g ’ (¢R R) (r )p. Bc'py ,plar

1 [ geBy,par (i e -
+h[n PTE (e 7) (T)I, pqt o' ph,r

+ §loBhoT 2as (1, et ()2 ”a'ﬂr p'ar ]
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_ Ejii [E-[B“b (°li! 7R): Nwpl ] 3D + SF + 128

. 2 i
+ _]JE, [ ﬁ[ﬁ“]? "(Oi 7R?: N[a'7]ﬂ ] 3D + oF + 38

‘ (2.76)
where,
- R - R ]
(o), = B @)+ o ()] (2.77)
LR AL

In the sbove expression (1. 76) for the meson-baryom interaction

we have neglected the terms involving V wvhich, as we shall

[aBy]
discuss in the following section, is identically zero. The above
interaction Lagrangian is invariant under U(6,6). We shall
simplify it further in the next section to make it much simpler -

for the application in the S-matrix calculation.

b. Bargmann-Wigner equat—i‘cms‘ and the Final form of the Baryon-

Meson Interaction Lagrangian. -

We have discussed in the last section the mltispinors

corresponding to the finite dimemsional irreducible representations

R A S Ra o mema . rederae e T K. e o [ T V- S . B PR
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of 3(6,‘6)-. But as the group ¥(6,6) is non-compact, these
reprééentations are not unita.ry—and, therefore cannot be associated
with physical particles, the reason being that the spaces of the
representations have indefinite metric. We oa.ﬁ, however, obtain
unitary representations by decomposing, as Delbourgo et al. have
s‘hmmaa) » the indefinite spaces of ‘the original representations
into a eolleection of subspaces which are invariant under the
subgroup U(6) @Y (6) each of the subspaces being definite. Now,
if we a;suﬁe that_particles at~rest correspond to the
representations of W(6) R U(6), the Bargmann-Wigner equations
when applied to the multispiners corresponding to the U(6,6)
representations generate the relativistie structure of such
U(6) ® U(6) mltiplets. Thus, the Bargmann-Wigner equations can
be looked upen as the relativisifiie boosts which generate for a
single particle state what we may call the little group strueture
(06®H6) e Let 03132.“ be & multispinor correspending to an
P AAseoo .
jrreducible representation of U(6,6). Then the Bargmann-Wigner

equations corresponding to the lower and upper indices are

respectively given by,

A ® B.3,..
G p) Aa(p) = m (») (1.78)
B'
(7 p)B- A:E (®) == Alza (p) (1.780)



vhere p, m are respectively the momentum and the rest-mass of the
particle such that p2 - n, _ Corresponding to eaeh of the indices
of the irreducible tensor-field there is a Bargmann-Wigner
equation of either of the types give;z gbove., For identifications
with the physical states we are to keep.only those vectors whose
canﬁonents vanish outside the space specified by the Bargmann~

Wigner equations.

'We now consider the reduction of the multispinors of U(2,2)
with respect to one of its subgroups., For this prupose, we.c.:hoose
the well known subgroup Io~ » the homogeneous Lorentz group, the
generators of which in the spinor representation are the six
Dirac matrices cn.o e Now, as is well known, for this case we
can define an antisymmetric matrix (G'l)ap within the Dirac
aléebra such that €~ tT (vT being the transpose of the basic
spinor ta) transforms as ¥ . In particular, the quantity
¢ vT ¥ will be invariant just as ¥ ¢ under an infinitesimal
transformation. Thus, the antisymmetric matrix C will play the
role for L, of the metric tensor such that we may regard ((!":")uB
as the contrava.ﬂa.nt quantity and its inverse ca‘3 the covariant.

It can be shown35) that the matrix C can be realised if the

following relation is satisfied,

(€)™ ()} Cyp = - (7,05 | (1.79)
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The other properties of the matrix C are,
@)% - -gc-_l)ﬂ;‘ (1.79)
cup_(c‘l)ﬂ’ . a: (1.79¢)

F;'om these relations we can show that the quantities (7'; (2)(lp s
and (o‘;n c)' B are symmetric. On the other. hand, the quantities
(2, ©) @ 20 (17‘1'7, C)yg 8Te antisymetric. It 1s these
quantities which can be used in comstructing a multispinor in Lh
having a certain symmetry with respect to the interchange of the
Dirac indices. Thus, a completely symmetric temsor of rank 3

can be expressed as,
. a (v* ) ’ ' .
D«By G c)a'ﬂ Bru * %_("u'o c) ap nnm _(1 &)

Considering the symmetry property of Da&’ , we obtain the following

™MD =0
7}
oM Dﬁu* 1D = 0 (1.81)

The equations (1.81) show that Bap; has only 20 independent

components. Now the Bargmamn-Wigner equations corresponding to

oA SN,
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each of the three indices of __Pmy give,
PD = -imb (1.82a)
B Bo °
- m)Dn' - 0 (1.820)
pp D, -, nn - nn'm (1.82¢)

where p and m are respectively the momentum and the rest-mass of
the particle. From (1.82b,c) we can derive the following

equation,

# D =0 (1.824)

The equations (182b,c,d) are the well known Rarita-Schwinger
equations of motion for a spim 3/2 particle. Now using (1.82 )
the expression (1.80) can be rewritten in the following simple

form,

D@?-

B+

7

[ 6 +ar*clyo, (1.809

S8imilarly, the third-rank tensor N[aﬂ]'y of the mixed symmetry

can be expressed as,

N[dﬂl? = Cog” y * (75°)¢p N? * ﬂ’ﬁ”ﬁ"’«ﬂ lrs.; (1.8)
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where the use of the equation (1.73) gives,

75 N + 1M 75 Np'-x -0 (1.84a)

For this tensor-field N[ Bl we can also obtain three Bargmann-

Wigner equations corresponding to the three spinor indices. From
thesde, the equations we obtain are as follows:

(-u)f, = G-m)N = (f-n)k = 0

K = 0 p N, -pH =0 p N = -in¥ (1.8)

N imN.
Py ¥ " i

The above equafions taken tbg‘ether describe a sp‘in 1/2 particle

'Using the above relations the expression (1.83) can be rewritten
in the form:

Figp = L[ Grmwgo L X .85

Corres;bonding to the upper and lower indices of the meson-fields

(1.71) we shall cbtain two Bargmann-Wigner equations. For any

arbitrary S8U(3) index we get the following equations,

¢J m 0 (10853)
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a0 woiued i P el = gy el
9, %5 = ludss ¢ ¢ ip & (1.85b)

* o o) o el J o
q"¢'m - -iped s q“ou- ¢ = ip o'm (1.85¢)

where q and p are respectively momentum and the rest-mass of

mesons. From (1.85c) we can obtai.n,
te =0 (1.854)

which shows that the field described by 0“' corresponds to & spin
‘one particle. It is also evident that the equations (1.85b)

- describe & spin 0™ particle and the equations '(1.85c) describe

& spin 1~ particle. Thus, the pseudoscalar mesons (nonet) are
described by five-~component entities and the vector (nonet) mesons
by ten-component objects. Now, using the equations 1. 85) s the

4
mixed tensor Oﬁ- for the meson-fields can be expressed as,

¢l
& n e woget et | e (1.86)

Tl

We now simplify the expression (1.76) for the Baryon-meson
interaction Lagrangian by using the free-field egquations we have

discussed above. The relevant tensor fields in the expression

(1.76) we obtain from (1.80') (1.83') and (1.86). Using the

L N [ e . L A - RPN SO
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free-fie)ld equations of motion (1.82) and (1.84b) for the spin
3/2 and 1/2 particles respectively we simplify the expression and

write the interaction Lagrangian in the follewing form:

Lo, N) = —( 2 ) (®r,o N)M,_F (1.87)

(ir on) n+3r (1.88)
L.(i;,n)' - i<1+;?_>[ﬁbl q + Bl_n] Y .(1.89)
Lo D) = il 1+—>é‘°n qx[ﬁnl+nln]o(1.9o)

L(®e,D) = (1+?>[—5f§°753 +-£2—g?';nlysnoq,o].os
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LB = =D [<1+ u>7 " ]B°°”+an=qln’~
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In the above expressions we have P m p + p'; q = p - p?,
where p and p' are respectively the momenta .of the ingoing .a.nd the
outgoing ba.ry;ms ru - é‘“’n Pb Qe 7 75 2 where (‘."“"'K1 is the
fourth-rank Levi-Civita tensor with _e°12° = 1. N,D, ¢, and ou'
_denote baryon, baryon-resonance, pseudoscalar meson and the vecfor
meson respectively. The expressions (N N)F’ (® N)D and (W N)s

have the usual meaning defined by (1.77).

One of the interesting features of the U(6,6) theory is that
. the pseudosealar SU (3) singlet 6:0) coupling is no lenger independent
of the pseundoscalar octet coupling. These are related through
U(6,6) coupling as it is evident from (1.89). PFurther, the F/D
_ratio of the meson~baryon coupling is uniquely defined in U(6,6)
a8 it is in 8U(6). Salam, Delbourgo and Strathdee have obtained
for the proton-neutron magnetic moment ratio, the value which is the
seme a8 SU(6) result. The U(6,6) theory not only gives the value

of this ratio, but also an expression in terms of Baryon and meson

masses for calculating the velue of the proton magnetic moment.
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Despite many other predictions (discussed by Salam et 3,152 ) )

E_ the U(6,6) theory, hewever, have some shortcomings. As discussed
by several authorsz'é) the requirement of the unitarity of the
S-matrix (scattering magrix) is not compatible with the U(6,6)
theory. We shall, however, like to elaborate this point when
we eonsider the Baryon-meson scattering in the context of U(6,6)
in the later chapter. The incompatibiltiy of the causality
relation for baryons with the index. invariance theory (as U(6,6)
and 8L(6 C) ) have been discussed by Peldman and Ma.tthewsﬂ) .
We shall, rather, not discuss this aspect of the relativistic

(higher) symmetry theories any further.

E
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CHAPTER 1II

The Methods for the Bymamical Calculations

1l. The Partial Wave Pispersion Relations and N/D Method

lla.mlels‘=l;mn38 ) has given a representation for the invariant
amplitude A(s tu) in the form of & double dispersion relation.
Here the vafia.bles are respectively the c.m. energy sguared in
each of the three channels that are associated with any two-
particle seattering diagram. ‘ Mandelstam®s representation expresses
the seattering‘amplitude A(stu) as a ﬁm'cti-on ;of these variables
thus implying that the function A(s tu) is enalytically comtimuable
in the different regions of the above variables. Since no
convenient method for using the double spectral fumctions in the
Mandelstam's representation is yet availsble, this representation
is used in' the form of either the fixed energy dispersion relations
in which one of the three variables is kept fixed or the partial
wave dispersion relations. It is the latter that we shall be
coneerned with in this chapter. We shall assume in this chapter
that 'the partial wave amplitudes and the structures of the related
singularities corresponding to an arbitrary seattering process
are known and them discuss how the dispersion relation techniques

are used to solve such a problem. In particular, we shall discuss
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how the partial wave dispersion relations are used in the self-

consistent ealeulations.

Let a l(s) be a partial wave amplitude corresponding to the

orbitel angular momentum £ with the following properties:

(a) a l(s) is amalytically continuable into the entire complex

s8~plane, where s is the c.m. energy squared.

() a ‘(s) is regular (analytic and single valued) everywhere in
the entire complex s-plane except for the two branch cuts, namely,
the right-hand cut (physical cut) starting from the physical
threshold and the left-hand cut that arises due to the singularities

in the crossed proeesses.

(c) a ‘(s) vanishes at infinity everywhere in the complex s-plane.
In otherwords, the partial wave amplitude a ‘(s) behaves as 8

where n > 1.

(d) the funetion a ‘(s) is a real analytic function of the variable
under consideration. Mathematically, the reality property of the

analytic function is given by,

a':(s) = a(s*) (2.1)

We can, then, use the Cauchy theorem in order to obtain the dis-

persion relation for the partial wave amplitude a ‘(s). We choose
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the contour as shown below (Fig. 2.1) in the complex s-plane.

s-plane

Figure 2.1

Now in view of the property (c) of a“(s) we can neglect the econ-
tributions from the infinite ecircle and further, we assume that
a, (s) is free from all the kinematic singularities. Then,

using (2.1) we obtain the following dispersion relation,

1 . Im a.-l(s') 1 . Ima‘(')
‘.(s) u[ds_ gt -8 ¥ ﬁ[ds, g =5 (2.2)

L . R
where L, R denote the integrals on the left and right cuts
respectively, The above dispersion relation is valid provided
the condition (c) is satisfied. if a‘(s) does not vanish as
8] » = we have to imtroduce subtractions. Supposé
la,(s)] 4 O as |s] + = but Ial(s)l/lsltl - Oeas |8 » »
| where n > 1. Then ve apply the Cauchy theorem to the function
a ‘(s)/sn to obtain the dispersion relation. This new funetien,

however, has poles due to the factor s® in the denominator. The

— v e, SRe e M
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contributions of these poles are always taken into account while

deriving the dispersion relation.

Having known the form (2.2) of the dispersiom relation for
the partial wave amplitude a"(s), the job then is to solve it in
order to obtain the informations about a specific soattering
process. In order to obtain a solution for the scattering amplitude
a‘(s) we need to know the imaginery parts Im a‘(a)- of "l(s) over
both the right end left cuts. The imaginary part Im a(s) over
the right-hand cut is known from the unitarity relation above
the physical threshold. ‘Then, using the unitarity relation, we can

obtain for Im a ‘(é) over the right-hand ocut,
In a,(s) = n'(s)lm,(lfﬂl2 R,(s) (2-3)

where p (s) is the kinematic factor which is_usually of the form,
R22+1

o ‘(a) - —:,-.E— , Wwhere k 1s the absolute value of the momentum.

The quantity R‘(s) in (2.3) is the ratio of the total eross section

of all the processes (elastic as well as inelastic, corresponding

th wave) to that of the elastic processes. The factor

to the 2
p(s) is related with the partial wave amplitude through the

relation,

el gin 8,
a!(s) - —-;-(-;-)-——— (2.4)

- e . N - N . . e a ta . ot e e e




Z e

] ey

6.

where § P

wave of the scattering process. In the above we have considered

is the phage-shift corresponding to the lth partial’

only the elastic scattering for whieh 8 2 is real and we ecan put
Rl(a) m 1., This approximation is exmet only up to the inelastic
threshold. For thé scattering above the inelastic threshold, the
relation (2.4) will have to be modified by introducing the factor

R ‘(s) in order to take into account the inelastic effects. hhxw
co.iculations bave, in fact, been made with the elastic approximation.
This approximation, however, would mot be bad if the second integral

in (2.2) is rapidly convergent enough.

As we have discussed above, the unitarity relation (2.3)
gives us some information about the right-hand cut but a &ifﬁculty
arises as to calculating Im a ‘(_s) over the left-hand cut because
the unitarity condition of a l(é) cannot be applied over the left
cut which lies in the u-nphysic-zal region of s-channel, This
difficulty is, however, overcome by using the crossing symmetry
property of a‘(s). It is well known that the left-hand eut is.
associated witﬁ the forces that are responsible for the scattering
and these forces arise due to the exchanges of the-particlé in
the crossed channels. The nearby part of the left-hand cut
arises from the lightest particles that can be exchanged and so
corresponds to the long range forces of the problem. The far-off

part of the left~hand cut is associated with the exchange of more
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massive systems, i.e. mltiparticle states and thus corresponds

to the short-range forces. If we_ know the particle that can be
ekchanged in the crossed chamnel of the scattering under consideration
we can use the crossing symmetry which relates the Im a ‘() on the
left~cut with absorptive parts of the crossed processes. ' These
absorptive parts are known from the relevant croessed diagrams and

consequently Im a 1(8) on the left-cut ecan be caleculated.

Having known the values of Im &, (s) over both the left and
the right cuts we may try to solve (2.é) but in that case we have
to deal with & non-linear equation ;rhich will arise due to the non-

linear condition (2.3). Chew and Mandelstam]'})

, however, have
given a method known as N/D method by which we can convert this
mwn-linear :: equation into a pair of coupled linear integral

equations. Thus, we can write,

N,(s)

D,(s)

a,(s) = (2.5)
vhere N P (s) contains all the diseontinuities om the left~hand
eut and is real on the right-hand ecut. Thus, it corresponds to

the forces.

The function Bl(s) on the other hand, is assumed to aconf.a.in
all the discontimuities on the right-hand cut and be real on the.

left-hand eut. That al(s) can be expressed in the form (2.5) is

fed . N . N .. o oL N — . N P
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esgentlially due to the fact that the left-hand and right-hand

cuts are separated by a gap, i.e. al(s) is real analytiec.

We are now in a position to write dispersion relations for
both Nt(-) and B'(s) + We can again assume that both 'N‘(s_) and
D z(s) are real amalytic functions such that they will satisfy

the following relations,

N’?s) = Nl.(s"f.) ' (2-63)

n*;(s) = D ‘(sf) (a.sb)

Now the imaginary or the abserptive parts of N‘(s) and D‘(s) are

respectively given by,

Im Nl(s) = D‘.(s)Im a.‘(s) for 8 < 8
o - - (2.72)
= 0 for s > BI.
IniD‘(s) = N‘Im(l/a.‘)
- -N‘(s) p-(g)R‘(s') for s> 8p (2.7v)
= 0 for 8 <=8

where 8 is the beginning of the left-cut and Sp is that of the

right-cut. In deriving the relation (2.7b) we have used (2.4) and
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also taken into account the effect of the inelastiec scattering.
Assuming further that N‘(s) - 0 as |s| -»» the dispersion

relation for N,(s) is given by,

N () = 3_./. B,(s")Im a-,(_’)

® (s* -8)

8y

ds? (2.8)

In order to obtain the dispersion relation for D 2 (s) we make
further sssumption thet the partial wave amplitude a (s) has no
CDD59) poles. Moreover, since both N‘(s) and Dl'(s) can be
multiplied by a constant (matrix in the ‘case of multichannel
problem) mumber without affecting the solution of a ’ (s) we have
the freedon to normalise P ‘(s) to 1 at & suitable point near the
physical region. Thus, noﬁalising D‘(s) at a point 5 = 8,5, and

using (2.7b) we obtain the following dispersion relation,

(s - 85) o N ,(s*)
B‘(s) - 1- n [Rds"p(..v)nz(s") (o - :)(Q' o)

(2.9)
Equation (2.8) for N l(s) involves an integral over the left-~hamd
cut. It is often comvenient if the integral (2.8) is converted
into one over the right-hand cut. In order to achieve that we

assume that we know a function B ‘(s) which has the same left-
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hand cut as a!(s) but no right-hand so that we can write,

B,(s) = % [ ds® (2.10)

Now considering the above assumption about the property of B g ve

have over the left-hand cut, Im[N‘ - B, Dl] =D Ima,~-D, ImB

2
where we have used (2.71). Thus, the function N

2 2 2

‘-Bgl)lhasonly

a right-hand cut. Then, writing dispersion relation for

N,-B,D wehélve,

4 12
N(s) = B(s) +3 /’ as* [Bz(s') - — 2 5,(s) ]
e S
B(s*) ¥, (s*)
. : (2.11)
X (s* - s)

where s is the same point as it is in (2.9). The equetion (2.11)

.can be used together with (2.9). The advantage of the above

method i3 that the calculation involves integrals only over the
physical reglon so that if we know B 1(3) (vhich we can calculate
from the processes in the crossed chamnels) without havimg first to
evaluate i;he left~hand cut discontimiity or if we wish to use an
approximation for B, (s) wnich is reasonably good in the physical
region, then it is convenient to_use (2.11) and (2.9) instead of

(2.8) and (2.9) for the miution of the scattering problem. Further

= 0,
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the -use of (2.11) together with (2.9) gives for the scattering
amplitude a ‘(s) & solution which is independent of the subtraction
point 8, 3 and in the case of the multi-chanmel problem, this
solution retains the time reversal property. The above method

(2.11) was in fact first used by Uretskyuo)

7,41)

and in the past has
been used in many calculations . | The above method can alse
be used in the milti-channel problem in which both N, 3 (8) and

B, 3 (s) become n X n matrices depending on the number of channels.
The integrals of these functions will econtain a function 6(s! - s J)
showing thal.t the integrals start at tﬁe appropriate threé-heid of

the channel concerned (see next section for details).

2. The Approximaté N/D Methods
a. The Determinantal Method:

In order to solve the integral equations for the partisl wave
amplitudes a ‘(s) , we have, a;s menticned in the last section, to have
some information about Im a‘(s_) on the left-hand cut or about B‘(s)
on the fight—ha-nd cute As we also mentioned earlier, the va.luae;s
of thése functions ecan be calculated from & set of exchange
diagrams in the crossed channels. A diffieculty that usually arises
in such & procedure is that when we congider exchanges of particles

of spin greater than or equal to one, the integrals (2.8) or (2.11)

e D s e
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and (2.9) become divergent. These divergences arise from the
fact that the contributions from such exchange diagrams involving

particles with spin greater than or equal to one, contain terms
proportional to P‘(cost)'or P l(cosu) with £ > 1 and then since

coé et and cos eu are proportional tc; 8, these are proportional

to s%. If this gives rise to, as it ususlly does, the divergent
integrals we are forced to introduce a cut-off. There have beén i
some ca.lculations'?’hl) where theseiin'l';efgral equations have béen
solved numerically, but the calculations became rather comﬁliéated,
and _sinee the results even then involve the cut—off as an

arbitrary parameter it has been natural to look for some simplify;lng

approximations.

An approximate N/D method which has been widely used in the
past because of its simplicity is the so-called -deteminagtal
methodha). The usual procedure to solve the coupled intégra.l
equations (which is the case in N/D method) is to use 'the iterative
method. In the first-a.pproximation, we put 'Dl"(s)- = 1 on the left-
hand cut to evaluate n‘(s) from (2.8) then we use this Nl(s) to
evaluate D‘(s) from (2.9) and-so on. In the determinantal method,
we go only up to the first approximation then obtain, using (2.7e)
Im x‘() = Im a‘_(s) = Im Bz")' _Consequently, we ean put
Hl(s) - B‘(s). The function B‘(s) is usually calculated frum a set

of single-particle exchange diagrams in the crossed channels and
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that is why this method is, sometimes, referred to as the
unitarised Born approximation or the B/D method. _ In this

approximete method, the solution of the partial wave amplitude

becomes very simple and it is given by,

E__S_OZ f @s.- p'(sf)

Rl(s') Bz(s') ] -1

(s - &)(s* - 5.)

al(s) - Bl(s) X [ 1 -
(2.12)

The self-congsistent calculations become very straight-forward
if we use the determinantal appro:dm_af_aion. Suppose a bound
state occurs at s = By and a¢ this corresponds to the zero of the
denominator function D"(s) » We have Dl(sn) = 0. Then the output
coupling constant corresponding to this bound state is given by,
g - - 21  (2.13)

D" (a5)

where B P (s-B) is the value 61‘ the Born terms at the pole-position
and D! (gB) is the first-derivative of P ‘(s) (2.9) with respect to

8 evaluated at s = BB'

When we are dealing with a multichannel problem, the use of
this approximate method makes the ealculations very straightforward
and mach simpler. Suppose we are econsidering a m~chamel

scattering then the unitarity relation of the problem can be
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written in the fomrm,

[aid’(s) - a':d(s) ]_/21 = Za.;'k 9-(8 - sK)nk_’ aﬁ(s).
. (2.14)

vhere 8¢ is the threshold;energy for the state k and 9(s - sx) is
the sfep-function ~which is one or zero, according to whether s is
larger or smaller than 8ge The kinematic factor °k7(s) is now a

diagonal matrix and is usually of the fomm,

2li_+1
k,
.):L:i - 813 J-g (2.15)
From the unitarity relation (2.1l4) we can obtain,
Im[a'l()]id - - Q(s - sJ) pi;]() | (2.16)

Now, the scattering amplitude a, 3 (8) can be written in the form,
a,4(s) = W (s) D(s) (2.17)

Then, using (2.16) and (2.17) and the determinantal approximation

we have for {:he denominator function

8) = - * % g? * . s? | BH(S')
Bk;]( ) akj - a/; d- 8(8- BK)Pn( ) (s - s)(s' - Bo)
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The advantage of the d-etemimn'pal method lies in the fact that the
integral (2.18) does nét require any iteration and further the

scattering amplitude can be given in a very simpie form,__

B, (s) B, JL("s)
't.iet D

a'id (S) - (2‘1§)
where det D is the determinant of the denomimtor funetion. If we
are looking for the position of the bound state » then it can be

obtained from the condition,

det D = O (2.20)

If, on the other hand, we are looking for the location of a

rescnance we have to equate the real part of det P to zero.

The determinantal method diseribed above, however, has same
shortcomings. Although this method ensures unitarity, it does
not give the gorrect left-hand cut corresponding to.the set of

diagrams chosen, except at the immediate neighbéurhood of the

" point 5 = 8, at which the denominator function D is normalised.

For this reason, it is expected that the results will, to some —
extént, be depen;ient on the ch;ai?e of the subtraction point. ' We
therefore have to cho‘;se the subtr;etion point scmewhere in the
nearb&- part of the left-hand cut from vhere the maximum contribution

to the force is expected. Furt}:jler, if we use this methed inza
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multi-channel problem described above, it does not _give a
symmetric secattering matrj.x as required by -the time; reversal
invariance. Despite these shortcomings, however, this method
has been very popular because of its simpliéity. Moreover, the
problem éf divergences mentioned earlier in this section, can be

avoided by using this method.

b. The Pole Approximation:

In order to avoid the numerical integrations involved in the
N/D method, the pole approximation method has been used in the
past in many calculations.. 1In this method, it is assumed that the
effects of the left~hand in the physical region can be approximated
by means of a set of poles located on the left-hand cut. Then, we
can write,

n

R .
B,(s) = Z -1 (2.21)
. =1 si - 8 .

where 8; < By and s > Spr 8 being the beginning of the left-
hand cut and 8p that of the right~hand cut. Now, from the
principal value theorem in complex variables we have,
R, P

. - = t 135(51 - 3) (2'22)
- s;ie 8, - 8 ) .

€0, 8y
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Using (2.21) and (2.22), we have from (2.8),

N'.(B)' --Z 8, -8

jml 1

D,(s;) (2.23)

If we now substitute (2.23) into (2.9) the integral of the

~denominator function ca.n be easily evaluated. Then, the

denominator function D 2 (3) can be expressed in the following

gimple form:
D‘(s) - 1+ Z Fi(_s,- 8, i)R'i I_)‘(a_i) (2.24)
| =)

where Fi's are some funetions of the variables appearing in the
ar'gument.. We can now evaluate D‘(s) at, say n points from (2.24)
and solve n algebraic equations so obtained for D L(s). The
equations (2.23) and (2.21;) then give the amplitude in the physical
region. This method can also be used in the self-consistent
calculations where we can adjust the parameters R; (residue of the

g tB pole) and s 1 (position of the 18

pole on the left~cut) in
order to obtain the self-consistent solution. These input
parameters can also be determined iﬂ different ways. Following the
method used by Frautschi and Wa.lecka” we can approximate the left-

a
hand cut discontinuities corresponding to/ certain set of d,iagra!ns by
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poles in such a way that the Cauchy integral around the poles
approximates the Cauchy integral around those discontinuities,
vhen it is evaluated in the physical region. In using this
method, howevez:; a difficulty arises when exchanges in the crossed
channels of particles with spin greeter than or equal to one are
considered. 1In that case the left-hand cut integrals became
divergent and consequently we are forced to negleet the far—off

part of the -cut or introduee a cut-off in the integrals concerngd.

c. Pagels Method.

Pagelshh) has giveti a.n' approximation scheme for solving the-
N/D equations and this method has, undoubtedly, much advantage
compared to the other approximate methods we have discussed so far.
In this schéme the spectral integral over the kinematic factor
p ‘() on the left is approximated by a set of poles on the right
without making any change in the force term B 2 (s). Following this
procedure, we can, getting rid of the integrals, obta.ix; an algebraic
expression for a‘(s) in terms of Bl(s) in such a way that the
solution gives the correect discontinuities across both the right-
and left~hand -cuts. Further, the'solution is independént of the
subtraction point and has a symmetric a l(s) for a symmetrie input
Bt(s). We shall discuss this method in same detail and show how

it-ca.n be used in bootstrap calcilations. We shall consider oniy



the single-channel problem with only one-pole approximation.
Generelisation to the many=-channel problems with more than one-~

pole approximation is, ag it will be clear, very straight-forward.

Pagels assumes that the force term B ‘(z) admits of the

Hilbert representation of the form,

B,(z) = % [ dz? -IP?—‘(-Z-—)- (2.25)

where the. integral extends over the left-hand cut and z is the
c.m. energy squared. All through this section we shall take

X, ¥, z a3 the -energy variables for the sake of convenience.
Dropping the index & we write the partial wave amplitude in the

form (2.5)

a(z) = N(z) p7*(z) (2.26)

Now making the same assumptions as before about the analytic
properties of N(z) and D(z) and using the unitarity relations

(2.7) and normalising the denominator function at z = z, we have,

z -z p(x) 1_‘(! T-o)
B(z, zo) - 1= . /; ax (i-zo)(x-z) (2.27)
N{z, zo) = %[ dxi-nM (2.28)

X =2
L
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vhere, .
In N(x z,) = InB(x) B(x z_) (2.29)
Now substituting (2.28) into (2.27) and interchanging the orders
‘ of integratien we’can éaaily ébts,in-,
2~z
PD(zz) = 1+ f dy K(z y z_)) Im N(y 2 ) (2. 30)
. ® L )
where, the kernel K(z y ze) depends only on the kinematic factor
o(z) and is given by, -
. dx p(x)
K(z y z,)) = ;1; f — - (2.3)
tq (x-2)(x-z2)(x-y)
o . ) -
Now using the identity,
1 - 1 { z _ !q }
(x - z)(x - zo_) z -z, x(x - z) x(x 2 zo)
we can express the-kernel K(x y zo) in the following form,
| z F(z) y F(y) z, F(z )
" K(z y zo) m — + . + —
| (z-y0e-2) (v-Z)(y-zo) (zo-z)(zo-y)
_ (2.32)
where the function F(z) (which is a diagonal matrix in a multi-
, channel problem) is,
;
' &x p(x)
F(z) = 2 f - (2.33)
g oo x2(x - z)
Y R
‘G*“'nﬁ:.'é“ﬁ\r‘ T P . . v me e e e oUE o mem tBum e a8 Sets demr B e me o e m e e e e vt s o o, R,
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We now-substitate (2:32) imto (2.30) and on simplification get,

D(z zo) = 1- zF(z) N(z zo)_+-‘z°F(z°) N(zo zo)

+% [@F‘(Y);mn(y'.zo){ —- z°}

L Y~z ¥~z

(2.34)

Now, the funetion K‘(z) = Fl(z)/z-is & spectral integral over the
positive definite kiﬁematical factor p z(z) > 0 and hence on the
left will have all its derivatives positive. Therefore, this

function can, quite accurately, be approximated on the left by a

pole on the right. Thus, for the f-th partial wave we can write,
F,(z)/z = H/(z) = ¢,/(z-a,) (2.35)

where, G, and a are constants which are chosen to-reproduce H z(z) ,
which is known exactly once ¢’(z)-'is given. . The constants C, and

&, are campletely determiﬁéd once the partial wave is specified.

. i
Here, in (2.35) we aze making only one-pole approximation. If

greater accuracy is desired we can add more pole terms in (2.35),

thus more elosely approximating the exact H ‘(z).

Now, with one-pole approximation, we obtain from (2.34),
using (2.25), (2.28) and (2.29) the following expression for the

denominator functlonm,
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D(z z) = gz )~ zF(z) N(z =) + a
(v} “0 ) (2] (Z-&)

$< [zN(z zo) - aN(a zo) ] (2.36)

where,

g(zo) = 14 zoF_(zo) N'(zo zo) - ¢ %

zo-a)

X [ zo!l(zo zo) - aN(a zO) ] (2.3Ta)

It is evident from (2.37a) that,

g(0) = 1 (2.37)

Using, now, (2.35) we obtain from (2.36) an accurate expression

(within the 1imit of the approximation) for D(z) along the left-
hand cut,

Caz
D(zz) = g(z) - N(a z ) (2.38)
. Z -8 .

Now substituting (2.29) and using (2.38), we obtain from (2.28),
Ca.N(a zo)
N(z zo) - B?z) g‘zo) - [zB:fz) - aB‘a.) ] . —(—z—._-a—)-—

(2.%)

o s it ad o b b R e
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vwhere we have used (2.25) and the following identity

X z a
= -

(x - a)(x - 2) (z - a)(x - z) (z - a)(x - a)

As we mentioned earlier in this seetion, the solution of the
problem is independent of the subtraction point. Therefore,
without the loss of anmy accuracy we can set z_ = O. From (2.39)
we can further obtain,

N(a) = {1 + Ca [B(a.) + a.B.' (a) ]}-13(:1.).5(20)  (2.40)

vhere B'(a) = dB(a)/de.

We now see that the equations (2.36), (2.38), (2.39) and (2.40)
together give the complete solution of the problem. The
expressions for the denominator function D(z) on the right and

left cut are given by the equations (2.36) and (2.38) respectively.

Let _us now discuss how this method is applied in a bootstrap

calculation. Setting z_ = 0, we have from (2.38) using (2.40),

D(z) = 1 —M{l + Cel [B-(a.) + aB-'(a) ]}-1

(z - a)

(2.41)

If there is a pole at z = 5 _, we have D(so) = 0. Now taking

out the coupling constant from the Born term B(z) - £2B(z) we

ki

" ‘Wm At
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obtain for -the zero of the denominator function B(so) =0,

e = 2 [ 50) - (o, - )o@ | (2.12)

8, ~ &
Now the expression for the output coupling constant is given by,

D* ( so)

ﬁ(so)

1/g"® w -

(2.43)

Using (2.39) and (2.41) we get from (2.43) the expression for the

output coupling constant which is given by,

1 1
B(e) (s, - a) g®B(a)(s, - &)

/g2 = -

(2.43')

where in (2.-1&3') we take out the input coupling constant from the
Born term B(a). For the self-consistency requirement we have
@@ = g', Therefore, the condition for the self-consistent

result is given by,

B(a)(s, -8) = -1  (2.44)

From (2.42) and (2.44) the expression for the self-conmsistent

coupling constant is,

Ve = Y = -af [F@epE | ()

ST TRPUU. & - e Ui, S

D T S S S
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The values of the parameters C and a® can be determined by
fitting the pole C/(z - a) with the function H,(z) (2.35) on the
léft hand out. The Born term B(a) can be obtained from the
exchange, in the crossed channel, of the particle for which the
self-consistent solution is sought. Thus, using (2.&5) we can
calculate the self-consistent value of the coupling constant.

The divergency problem, unfortunately, also arises in this method.
When the Born terms are divergent, the dispersion relation (2.25)
is not valid. This difficulty, however, can be overcome by
introducing subtraction in (2.25). But this introduces some
additional parameters which have to be determined in order to obtain

the solution of the problem under consideration.

d. The static Model and Bootstraps in 8U(2)

In this section we shall consider the pion-nucleon scattering
in the context of the statie model in which it is assumed that the
nucleon being much heavier than the pion is at rest both during and
after the collision. In particular, we shaell discuss how the
reciproecal bootstrap relationship between mucleon N and nucleon
resonance ¥* (3/2, 3/2) can be explained by static model approach.
The idea of such a reciproeal bootstrap was first suggested by
ChevS) who shawed that the static model could, to a ressomable

extent, explain the existence of such a relationship. We shall,
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however, discuss only that aspect of the theory which is relevant
to the Quark-bootstrap calculation which will be considered in

the next chapter.

A mesen-baryon state can be specified by its spin J,
isospin I, orbital angular momentum £ and the total energy W.
PFor a given orbital angular momentum the scattering amplitude
gIJ_(w) is related with the phase~shift through the relation

given by,
Bry
! 1
grz(w) = 21;! o (2.46)
q

where 61.]' is the phase-shift corresponding to the amplitude
specified by the angular momentum J and isospin I. Here, ¢© m w* =1
and w m W - M, where w denotes the energy of pion, m the mass of the

nucleon and pion-mass is taken as unity for the sake of convenience.

The centribution-of the cross-channel can be obtained from

the crossing relation
8IJ(w) - Z"II' aJJ' gI'J"'(-w) (2',"‘7)
ItJl . . . '
where a and B are the crossing matrices for the isospin and total

angular momentum respectively, In the statie limit, the g's on

the right-haznd side of the equation (2.47) have the same £ as the

. B
I Cw o em e rmg olagr e . ogme e fo B e e Bty L. i B, L
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g's on the left, so that the angular mementum cressing matrix is

just like the isospin crossing matrix.

If there oceurs a bound state or a rescnance in the (I J)
state, the corresponding amplitude will have a pole 7IJ/ (wiJ. - w),
715 being the residue of the pole. Then the force or the Born
term in the f~th partial wave can be obtained from (2.47) and

given in the form,

Tyr gt
B (w) = 2 Brgy ——— (2.18)
1J IZr "II I 'J.’ ) _

where J, J* w £ * 1/2, Usually, the summation in (2.48) is taken
over all possible (I'J') states and we put Tprgr ™ O whenever
there is no particle in any particular state. We can now use

B, J(w) as the input in an N/D calculation.

Let us write, as befbre,
gry(w) = N (w)/B,;(w) (2.49)

Then, using (2.23), (2.46) and (2.48) the numerator and the
denominator functions in (2.49) can be written,as is well known,
in the following form,

T1age DIJ( = Wrrge )

( I'J' )

Np(w) = 2 % P gy
13" |

(2.50)
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LR A /:'c 2t (w2 - l)”%’ NIJ(W’) (2.51)

D..(w) = 1- . - .
1 ' o V' - W)
LI | - (w wo) (w. w)
where LA is the point at whiech D is normalised to wnity and v, is
the cut-off parameter which parametrises our ignorance of the

short range and the high energy effects.

We naw'su];pose that there occurs a bound state or a resonance
in the amplitude specified by the quantum numbers I and J. It
is well known that the denominator function D(w) behaves, more
or less linearly near the position of the pole or the resonance.
Therefore, the denominator function, mear the pole, can be

approximately expressed in the form,

Wpy = W
Rg..DIJ(w)_ - AL (2.52)

wIJ - wo

Now, the coupling constant corresponding to a pole occurring in
the state (I J) is given by

N, .(w..)
7IJ = y—- (2'53)
D;[J(w]:;j')
Phen, using (2.50) and (2.52) we obtain from (2.53),
7IJ- = Z “II' BJJ' 7IlJl (2'5,'")

1l
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where the y's on the left~hand side of (2.54) are the !output?

and those on the right-hand side, the "input' coupling constants
.respeetivel—‘y. ~ The self-consistency condition requires the input
and the output values of the relevant couplings to be equal.

Now, (2.54) can be written in the matrix form,

' = CT (2.54¢)

where I' i3 a column matrix and € is the crossing matrix which is
the direct product of the isospin and angular momentum crossing

matrices respectively. We now introduce the following quantity,

FIJ--(W) - Z Qe BJJ-n 100 (2.55)
v S

'rhe above gquantity FIJ may be regarded as a reasonable measure

of force contributed to the state (I J) by the states oeccuring in
the crossed chammel. If FIJ is négative for any state then the
corresponding output 77y W11l be negative too as a consequence of
which such a state cannot exist. On the other hand, if FIJ is
positive and large we can expect that a state (I J) may exist.

The above conditions we have put forward folléws from the very
nature of the denominator function (2.51) which requires positive

couplings (or forces) for the occurrence of a pole in the amplitude.

I I T T Vo - N i are e - o
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Let us now apply the above formalisms to the pion-mucleon
problem. As it is known from experimént that the nucleon
resonance occurs in p-state, it is natural to consider the p-wave
scattering. COrresponci‘ing to the p~wave there are two total
angular momentum states, namely, the states with J = £ % 3.
Again from the isotopic spin analysis we get the channel isotopiec
spin I = 3/2, 1/2. When the isospin and the ordinary spin
states are combined we get, in all, four states. For the p-wave
scattering the isospin and spin erossing matrices are the same ’

i.e. @ = B, where any of the two crossing matrices is given by,

| 32
32 | -1/3 3

@y = (2.56)
' /2 | 2/3 1/3

Assuming further that only the states (1/2,1/2) and (3/2,3/2),

i.e. N and N¥ exist, we get from (2.54*)

71/2 1/2 Y9  16/9 71/2 1/e
- (2.57)

73/2 3/2 k/9 1/9 73/2 3/2
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: The above relation (2.57) gives two equations from which we

. obtain 7, /2 1/2 - 2y, o 3fs This result is in good agreement
with the 'ékperimental one, thus shawip_é 1.'._ha.t & reciprocal bootstrap
relationship may exist between N and N*. This is, however, just

a preliminary test for the existence of & bootstrap relationship
between two particles. In order to see whether such a relatiomship
really exists we have to evaluate the denominator funection of the

partial wave amplitude.

T p—
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CHAPTER III

‘A Reciproeal Bootstrap Mechanism for Quarks

1. Quark-Meson Scattering and the General Kinematics.

It is well known,as we have also discussed in Chapter I
(section 1) that the spinor (3-dimensional) representation of
SU(3) does mot correspond to any known particles. Speculations
about the possible existence of these three particles, called
*Quarks® were first made by Gell-Mann and independently by
iweingll) . According to the scheme of 883 (or its relativistie
genera.lisation) symmetry these particles ha.ve the baryon number
1/ 3 and non-integral charges (Other models which give integral
charges for the particles belonging to the basic representations
of groups cengerned, have been considered by a number of warl:hortsh5 ).
Unlike Gell-Mann and Zweing model, these models, however, require
the existence of some more quantum numbers, called the super-
charge quantum numbers for which there has not yet been found any
expefimental evidence. We shall, therefore, eomsider the SU(3)
scheme which is the simplest and consistent with the known
physieal guantum numbers). A considerable search has been made
in the past in order to detect the possible existence of the quarks

but the experimenté.l results have, so far, been negativeha « We,
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therefore, infer that_ these particles must be very massive and
consider a model which is expecte& to give, at least, a rough
estimate about the masses and the coupling constants of these

particles.

We consider quark-pseudoscalar meson seattering and adopt
the "boot-si:rap" hypothesis in which all the strongly interacting
particles are supposed to be composites of each other, and we ask
whether quarks can exist in a self-consistent scheme. In
particular, we use the analogy with the well known N-N* bootstrap
of Ghews) and its analogous SU(B) extension considered by a number
of a.uthors-9 ). In our calculations, we use the determinantal
method (discussed in the previous chapter) and assume that the
forces that arise due to the fermion exchanges in-the crossed
channel play a dominant role in this mechanism. Quantitatively,
these are uplikely 'to be good approximations but they a.ppea.r_to. be
reasonable qualitatively and we, therefore, adobt them for our
ca.iculation also. Before, we get deeper into the problem, let us
disecuss some of the kinematics that we will have to deal with ia.ter

on.
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The above two-particle scattering diagram (fig. 3.1)
represents the quark-meson scattering and all thé erossed processes.
We follow the eonventional rotation of taking the ingoing momenta
a8 positive and define the scalar product. of two four-vector as
follows: A.BwA B - A.B. In other words, we have chosen
the metric such that o ™ (1, -1, -1, -1) diagonal. Out of the
four-momenta p,, Dy, Pg» p,» Wwe can construct the following

scalar invariants:

s = (p, +p) = (o +02)* (3.1a)
u = (p, +p,) = (pg+p,)° (3.1b)
t = (p, +pg)* = (p, +p,)° (3.1¢)

If we consider pl', Py ingoing and Py P, outgoing then we have
quark-meson scattering. The interchange of p2 and p“ will mean
the interchange of the two pions, so the process described by

Pys p‘. ingoing and pg,p, outgoing will again be quark-meson
scattering. If, on the otherhand, we consider P> Pg ingoing and
Pys P, outgoing, we obtain the annihilation process =z — Qq.
Referring to the above processes as channels I, II and III

respectively we have,

s I U P I o . . s



Q_(P1)'-+ x( p) - Qfpg) + =(-p,) I
Qlp,) + x(+p) - a(py) + u(-pg) II
alp,) +3(py) —» =(-p,) + x(-p ) III

Figure 3.1 will also describe three anti-particle reactions
corresponding to the above three channels. 8, u and t will be
positive time-like for I, II and III respectively and they are

c.m. energies squared in the channel concerned. ' The other two
variables in each channel, are the negative squares of the momentum
transfer in that channel. Now, using the four-momenta conservation
la.ir P, + D, + pg t P, = O and the mass-energy relations,

2 2 2 2
p, ®Pg = ; p, mp, =p® we have,

s+t+u -2m2+2u.2 (3.2)

Thus, out of the three variables s, t, u only two are independent.
In each channel, we can, therefore, consider the c.m. energy
squared and the cosine of $he angle of scattering as the two
independent variables. We treét each channel separately and

obtain the various kinematiec variables in terms of ‘s, t and u.

/ ‘ T
Channel 1I: Py
Figure 3.2

s-channel c.m. system

4
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Figure 3.2 shows the process described by chamnel I in the c.m.

system. We have,

Bro" B’ Bs " RGP, "B =B =E =¥ (o)

Then we have, -
s w (D, + D) (338)

where ,
2

Do = W o= KB4+ E (3. 3b)

and |k| is the absolute value of the 3~component momentum given by,

lk[® = {s- mrufH{e--uF}/ /0 Go)

Now the negative momentum transfer squared between the two mesons

or the two quarks is,

t = ~2k2(1 ~ cos 6) (3.34)

where cos 0 = 32.3‘./ |poeps|®, 6 being the scattering angle in
channel I. The momentum transfer between a pion and & quark can
be obtdined fram (3.2) by using (3.38)and (3.3d). The physical
region in this channel is defined by, (m + p)® < s < o and

-l £t < 0.
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P, \ O p,

- 3 ) £
A

u-channel c.m. system

3 Figure 3.3
Channel II:

In this ehannel everything is similar to the chamnel I and is

obtained from them by interchanging s and u. Then we have,

2 2 2 2 -
21 - -35 s Ps ™ =P 3 P ® P ™ Py ™ P“ s k (saY)
The c.m. energy squared is then
2 .
u o= (g * PN (3.ka)

2 = > u. ?--!-n(g;p:a-pﬁo-iz-i-u.a

and " -{u—(m+p-)2}{u-(m-u)2}/hu (3.4b)

Ag_ain the negative momentum transfer squared is

t = -2k2(1 - cos 0) (3.4e)

where cogs 6 = .Pz‘.?a/ |pz.p'.|2 , 6 being the scattering angle in

channel II. The physical region in this chamnel is defined by
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[ Mm+p)® € u € w, =B <t < 0. The kinematic
variables in channel ITI can be similarly obtained. We shall

not, however, need them in our calculation.

2. The Crossing Matrices

In order to solve a scattering problem, we require, as we
have discussed in the previous chapter, the information about the
imaginary part of the partial wave amplitude a ‘() over the left~
hand cut which is associated with the forces that arise due to
the exchanges of the various particles in the crossed channels
II and III. This ihfomtion is conveniently obtalned by using
the crossing relations which are provided by the erossing matrices.

Since we shall mostly be dealing with SU(3) crossing matrices s in

this and the next chapter, it will be convenient if we derive the
general expressions for the crossing matrices. With that end
in view, we consider a general two-particle ’sca.tterﬂmg process with

the following channels:

a.1+a,2 - as+a.~ I
+a + &

tsn.1 a, - as _gg 1X

a + &8 - a +a8 IIT
h § 3 2 &

The SY(3)-invariant scattering amplitude in channel I can be

given byw) ’

XIP NN « . e aa et
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NN N K F_R N
< T 2> - Z ( 3 p) < NnB|F|Nay >
ng n " .

s Il.l‘n2 N,np’ nsnn
N NN
("'2 7) (3.5)
nlnan

where N, i = 1, 2, 3, i denote the dimensions of the irreducible
representations to which the above four particles belong.

n= (I, Is’ Y) » the guantum numbers assigned to the particles- that
form the basis of the representation concerned. In (3.5) N
denotes the dimension of the irreducible representation that is
obtained from the direct product of two representations and y, B
denote how meny times a particular representation occurs im the

initial and final states of the scattering process. The quantities

Nl Na N
( y ) are the 8U(3) Clebsch-Gordon coefficients.
n, n, n

The expressions for the SU (3)—imrariant scattering amplitudes
in channels II and II can be similarly obtained é.nd these are as

follows:

<n-:2-, > Z (N_:E:5><_unslrn|n7>

Nn,By

, N NN
( nl—l: n 7 ) (3.6)

1
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Now, the relation between a particle-state and the corresponding
antiparticle state is,

*
|'n*; I, I,Y> = (-1)“{ In; 1, -I g, =Y >} (3.8)

where N denotes the contragradient representation and
nw Ig+ g « Using (3.8) we can derive the following relations.

(3.92)
<ns N, o ™ N2> . (-l)ns-nz N, N, - N, N >
R B, n o -n, N, n, g
(3.9v)

Now, the orthogonality relations the Clebsch-~Gordon coefficients
satisfy are as follows:
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n, n, n.' ®uwt Sant Byt (5.10a)

2 G CLen)

Z <mNgN )( 1N2N ) -3 anzn; (3.10v)

n,nn 1%
Nny 1% .

Using (3.9a) and (3.10a) we can obtain from (3.5) and (3.6) the

relation between the amplitudes in the channel I with those in II
and this is as follows: . !

<--Nnﬂ,|FI]Nn7 > = Z «aylAI(n'lnanen“)maa,,- >
gty

% <N BlFE|Nt at ot > (3.11)

vhere the elements of the crossing matrix < NBy|A |N'B'y' > are

glven by,
' | ot ( ) N Nz N N N N
caineny > - PR (RRT )
An Co n n,n n_m, n
: n, nyngn, _
n' _
.. § <nln‘n=.' 7'>(Na N;Nf p'>
: n, -n, n' . ng -n, n' .
‘ (3.12)
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The relation between the amplitudes in chennel I and those in ITI,

can similarly be obtained. We obt_a.i"n the followling:
<H¥n p-IFIIN ny > = Z < NﬂyllLIII(Nl N, N, Nb)lmat-, >
N"B'T' C
x <Na'p [Fil|ntntyt > (3.13)

where the elements of the crossing matrix < N BylAIIIEIm'B’y' > are
given by,

<N p"'AIIIIN_'a.'f' S = Z (_1)?3‘52 (Nl N, ¥ , )

n,n,n
nnpngn,
. n'
NK N \ N NoWN ,\  NEN R ,
(o) ) ®)
n,n, n n, -ng n' 4, 0, n'

(3.14)

We now calculate the relevant crossing matrices for the quark-
meson scattering. First, we consider the chammels I and IT. 1In
both the initial and the final states of these channels, we have a
quark-pion system which, being a product of an octet and a triplet,
representétions of su(3)_,-,._can be resolved into the following

irreducible representations:

I®8 = 3001 (3.15)

s BT
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If space spin is neglec.t_ed,.there are in each of the above channels
three 8U(3) inveriant amplitudes corresponding respectively to the
transitions 3 2 3, 6% 6% and 15z 15.. The amplitudes in the
channel;.I and II are related to each other tthugh (3.11). Using
the- Clebsch~Gordon coefficients obtained from the isoscalar

factors calculated by Edmondsha) we have obtained the following

crossing matrix:

N’
3 6% 15
N
i _3 13
3 -3 E B

(3.16)

-
.
?
o
o
o e

5 | g

1

Let us now find the scattering amplitudes in the channel III. The
initial state consists of a quark and an antiquark system which

on decomposition gives the following

3®@3 = 1@8 (3.17)

In the final state we have a two-meson system which being the

direct product of two octets decomposeé into the following:



E®8 = 108 @8, PDLD10*D 27 (3.18)

As there cannot be any tramsition between two differe_nt
representations, there are altogether three SU(3) invariant
amplitudes in the e¢lamel IYI, corresponding respectively to the
transitions, 1 & 1; 8 == 8, and 8 T8, . These amplitudes

are related with those in channel I, thbough the following crossing

m;trixhg):
¥,p
NG 1 8, 8
6 ~J3 346
2 16 16
] Jé J30 J6 (5.18)
- * — —— — 5.1
Ao ~ 2 8 8
5J6 J30 546
15 —_ . = -—
y 16 16

Let us now assume that the forces that arise due to fermiom
exchanges in the crossed chammel II play a very 1qlportant role in
quark-meson scattering and consider only the contribution from
p-wave in analogy with «N-scattering. Then, each of the amplitudes

in the chammels I and IT will have two components corresponding

P S
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respectively to the transitions, (N, J w 1/2) = (N, J = 1/2) and

(N, J = 3/2) = (N, J = 3/2). The spin crossing matrix B can be

easily calculated and is,

Julf2z Jam3f2

JIml/2 -

Wi

J=3f2

Wi

I

Wi

(3.19)

Now, the total crossing metrix relating the chamnel II amplitudes

with those of the chamel I is the direct preduct of A, (3.16)

and B (3.19). Calling this total crossing matrix C we have from

(3.16) and (3.19)

Nt 3 6% 15
LI B ﬂLJL/a 32 | /3 32 | 12 32
1 1 1 1
s | & -z | v -+ |-% 3
3
1 1 1 1
2 |- -® |3 % | 2 3
C=
1 1 1
3 3 -3 |- 1| -% %
6%
1 1 1 1
2 1.y -5 |35 |3 =%
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N' 3 6% 15
N J
N ENG 1/2  3/2 1/2 " 3f2 /2 3/2
A
1 1 1 Y 1 1 i
2 -8 2 - 12 3 -8 2
C = 15
3 11 A | 1 2
2 ) 8 6 12 I 8
(3.20)

It is evident from (3.20) that the exchange of 15 withd = 3/2

gives rise to the most dominant force for 3 with J = 1/2; it also
gives attractive force for itself in the direct channel. Likewise
the exchange of 3 with J = 1/2 gives mn attractive force for both
15 with J = 3/2 and 3 with J = 1/2. Phis/afialogous to the relation
between N and K¥* in the 802 bootstrap of Chew. Let us also
calculate the ratio of the couplings of these two states by using
static model. Denoting the 2 with J = 1/2 and 1> withJd = 3/2
couplings by l‘3’1 /2 and 1‘15,3 /o respectively we find using (2.54)
that from , 1/2) strep T, /2/r15,3 /o % 2.6 and that from

(J;,?; 3/2) strap P3,1/2/I‘15’3/2 & 35. Thus, it seems,

within the static approximations, that there may be a self-consistent
reciprocal bootstrap relationship between quarks, Q and some other
particle Q* having baryonic number B w 1/3, spin 3/2 and belonging

to 15 dimensiomal representation of SU(3).
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3, The N/DP Method and the Self-Consistent Bolution for Quarks

We have shown in the last section that there exists a reciprocal
bootstrap relationship between quarks Q and some other particles
Q* having baryonic mumber B = 1/3, spin 3/2-and belonging to the
:LS dimensional representation of SU (3) symmetry. We now use the
well known lI/D me'l;l:md:l'3 ) to calculate the consistent masses ;nd the
coupling constants of these particles. In particular, we use the
go called determinantal methed’ha) which is expected to provide us
at least with & rough estimate about the masses and couplings of

these particles.

We denote, as usual, by s, u the c.m. eziergieé squared in the .

channels I and II respectively, and assume that the Q and Q¥* poles

: _ a s
in s-varisble occur only in the amplitudes !'1/2 and 3/2

respectively with the residugs given by,

hng,

f1/2 - . _ls (5.21)
&

f5/2 ] !F_s_%[‘ (3-22)

where we define gﬁ - lhd'; a8 the QQx coupling, m, the average
mass of the quark-triplet and M, that of Q¥. The residue g: is

related to the width by unitarity at s m M as I' = 2g* g: The

-t R REET T b X D . cdeae e e et e Mekrmes e . we .
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poles (3.21) and (3.22) however are to be miltiplied by the
respective factors glven in the appendix B (B.4) in order to take

into aacount the effeets of the W(B) couplings.

The above pole terms in the various asmplitudes in the '
u~variable can be caleulated by using the crossing matrix C (5.20)

so that we have,
Fc(u 8) w CF(su) (3.23)

. . 3 S
where F(s u) is a column matrix with the elements B /o7 F} /o2

6% * )
1/2? 3/2, F}_;a, F‘;;z o Then, the desired partial wave

amplitudes are obtained from the fdlowing relations :

+1 '
f‘:(s) - %[ dz [ £, (u,s) P‘(z) + £, (u,8) Pltl(z) ]
-1
(3.24)
where
£, (u,8) ..‘Zo £y 0) Py () -‘Zb £, Py () (3.250)
: £, (u,8) = ) £, (u) PU(x) -) £, (u) PY(x) (3.25b)
T 2 ‘Z [} [ ‘Zl o [

x = cos @ (3.25¢)
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e

Pylx) = o P(x) (3.254)

£,y = exp(i 8] 8in 8, /a (3.25¢)

Here f " has orbital angular momentum £ and the total angular
momentum J = £ + 1/2. & g+ 18 the phase-shift corresponding to
the f-th partial wave and 0 is the angle of scattering in the c.m.

system of the crossed channel (section 1).

In order to obtain the force term for the _J = 1/2 state
we consider the contribution frem only the Q* excha.ngé (since Q
exchange gives a very small effect) in the crossed channel.
Using (3.22) and (3.23) we obtain from (3.2k) and (3.25) the

following for the-p-wave with J = 1/2 state,

fl_(s)~- §[3x<2-alog:ii> -1og:t::]

(3.26a)

For the J = 3/2 state we consider the contribution from both Q and
Q* exéha.nges (since both have almost equally significant crossing
metrix elements) in the crossed channel. Using (3.21), (3.22)
and (3.23) we obtain from (5.24) and (3.25) for the p-wave with

J = 3/2 state the following, -
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where in both (3.26a) and (3.26b) we have,

s + 28 M® - 2(m® + ﬁe)

a = -1

2q®

s b - °

P = -1
2% .

2R [2(af + ) - I - 6]
D - 2P(R + 1) + (o - )R]

.qz . {s_.(m+p-,)2}{s-(m-u)2}/hs

where p is taken as the average mass of the meson octet.

x = 1+

The Born terms (3.26a) and (3.26b) behave as ¢ at the

120,

(3.27a)
(3.27v)
(3.27¢)

(3.274)

threshold and so we can divide them by the factor g2 without intro-

dueing any additional singularities. Further, we have to multiply

these Born terms by 8 in order to remove the kinematie singularities

associated with thems Thus, we define the following kinematie

singuia.rity free Born terms:
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B_(s) = %.fl:(s) _ (3.28)

For the same reason described sbove we work with the following

kinesiatiec singularity free partial wave amplitudes:

hl..(s) = ; it (s) (3-29)

Here the multiplieation of the partial wave amplitudes flI( 5) by
the factor s/q® ensures that hl;(s) is free from all the kinematic
singuiarit:les and -further that the final results will maintain the

correct threshold behavicur as ¢ —» 0. We now write,

my(e) = L (5.)

where, as is well known, Nl;(s) are analytic on the force cut
(left cut) and real on the physical cut and D]_:(s) are analytic
on the physical cut and real on the foree ecut. Now, the one-

subtraction dispersion relations of nl:(s) can be written in the

form,
B.(s) = 14— t-n) = Dl'v(s;) as®  (3.3la)
n (m+ ) (s* - 8)(s* -5,) . .
(s - ® s?)
B1-*(:5) - 1+ —— ") [ o ml;](‘"'f- % ds'  (3.31b)
x ' - 35)(s* -8 :

(m+1)?



where we have normalised B].-‘.-(B) at s = 5, and Bl+(s) at & = 8,

and set the meson mass y = 1. Now, over the left-hand cut we

get from (3.30) the folldwing:

Im le(s) = nl;() Im hl;(s) 8 < 8
(3.32)
w 0 for 8 > 8
where 8y is the beginning of the 1eft-hand cu'é. Now, the
determinantel approximation allows us to write,
N_(s) = B (s) (3.33)

Again, the unitarity relations over the physical cut give us the

following informa_.tion:

In By _(s) = Ny (s) In(1/b)_(s))

(3.34)
-- - BlfF(s) p(s)
‘where p(s) is the kinematic factor given by,
p(s) = g; ' (3.35)

where q is given by (3.274).
Using the egquations (3.32) - (3.35), we obtain from (3.3la)

and' (3.31b) the following dispersion relations for Dl;(s) :
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(s - 5) B

— a
(s* - &)(s* - 5,) .

[ o

D, (s) = 1-
‘ @)

(3.36)

D, (s) = 1 -‘s - %) [ o(s*) BH(S. ) as’
T (@) (s_' - s)(s_' - 5,)

(3.37)

If nl_(m"’) = O with n° below the physical threshold there is a

Pl /2 bound state near which we can write hl_(s) in the form:

N,_(u)/D}_(u)
h_(s) = o -) (3.38)

Comparing (3.38) with (3.21) the output eoupling constant for the
quarks is given by,

52 = - ni_(mﬂ) (3.39)

Similarly if there is a resonance at s m M° we have Re D, (M) = 0

and near the resonance ﬁosition we have

o ¥, 0€)/Re D' OF) -
141 " - 1) - 10 0F) K 0F)/Re 3 OF)

(3.40)
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Comparing (3.40) with (3.22) weha.ve,

(3.41)

We can define a coupling constant for Q* as proportional to the
width I' « Thus, we can have,

' N2
a o . I" = __N];'.".S__)_ (3.42)
o(M?) Re D' (1)

where p(M2) is given by (3.35).

For & given input value of m and M the values of glz , g;.e
and &5, 5;2 can be calculated from the equations (3,36), (3.37),
(3.39) end (3.42). Taking s, = (m - 1)® and s, =, ‘the
relevant 1nfegr-ationa have been solved numeriocally, the imvestigation
being carried out for the quark-mass upto 20u , where pu is the
average mass of the meson octet. If there exists a complete
reciprocal bootstrap relationship between @ and Q¥*, then gi ’ gia
and g:, 5': have to be consistent simultaneously. For the
computations, we have used the "Optimisation Method" which
minimises the sums of the squares of the differences of the above
two sets of the eoupling constants fof the two glven ranges of
the masses m and M. The self-consistent selutions we l;mve obtained

correspond tom ~ 2429 Mev, M =~ 5251 liev, with the corresponding
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values of the eouplings 22 and 32 respectively. In the above
calculation we have taken 360 Mev as the average mass of the
pseudoscalai' meson octet. The above value of the QQ¥%x coupling
corresponds to the full-width I' ~ 360 Mev, where I is the

average full-width of Q¥,

An investigation very similar to ours has been carried out by
I‘I:I.e'lzca5 1) who have considered the contributions of the vector meson
exchange as well. The reason for their obtaining the negative
result may be attributed to the fact that the vector meson exchange
forces, as is evident from the crossing matrix (3.18), are
repulsive, being strdngly repulsive in the Q¥ chamnel. It is,
therefore, very likely that the vector meson .exchange has & very
insignificant or rather opposite effect in the quark-bootstraps.
The method we have used in cur calculatioens, however, suffers from
some shortcomings. ‘The determinantal method employed in the
calculations is valid very approximately. In addition, the inelastic
effects whieh we have neglected in the calculations may have some
significant influence on the guark-meson scattering if the- quarks
are supposed to be very massive. Considering the above limitations
of the calculational method employéd, our results are, therefore,

to be taken with that "spi_rit.
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An N/P Caleulstion for the Mass-Splitting of

" Baryons in Broken U(6,6) Symmetry

1. Baryon-Meson Scattering and Related Processes:

Scatterings between two U(6,6) supermultiplets have been
considered by a number of a.uthorss 2) who, by studying only the
elastic collinear processes, have tried to obtain results which,
within the limitations of the approximations _used, would be
comparable to the experimental ones. Consideration only of the
elastic forward scatterings, no doubt, allows one to use the
optical theorem for the comparison of the total cross-sections,
but a question naturally arises as to the validity of these results
because of the approximations that have been used in these
calculations. In these investigations, only the homogeneous
U(6,6) invariant part of the amplitudes has been considered. This,
hdwever, is not sufficient for the sea;btering' ampli'i‘.udeg__to be
compatible with the unitarity%) conditi-ons. in the physieal regions.
In order to be consistent with the unitarity, the scattering
amplitudes, in addition to the homegeneous W(6,6) invariant terms,

must have two_more terms corresponding respectively to the
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irregular (involving the derivative couplings) and the higher
order apru.rill.on5 3) terms. It is these spurion terms that are
supposed to cause the mass—-splittings within a 5(6,6) super-

multiplet.

Some ealculations using the irreguler coupling terms have
been carried out by a number of authorss k) who also introduce
ad hoe mass-splittings between the SU (3) multiplets within the
¥(6,6) supernultiplets of the external particles involved in a
scattering process. Besides these mass-splittings Riverss 5) s On
the other hand, also introduces the similar mass-splittings within
the U(6,6) supernmltiplet oceuring in the intermediate state of a
econé order Feymman diagram correspomding to a two-particle
scattering process. This is done by expressing the propagator
of the U(6,6) multiﬁl-et with ¥(6,6) degenerate mass as a sum of
the propagators of the constituent 86(3) multiplets with 8Y(3)
degenerate masses., . It has been shéwn by Rivers that suel; a
procedure introduces in the scé.tte_ring amplitudes the same higher
order spurion terms as we have discussed above. Since this
procedure has no group~theoretical basis, one may look at the
problem from the opposite point of view. Igstead of introducing
the mass~splittings right at the very outset of the calculation,
one may start the calculation with the ¥(6,6) degenerate masses

and expect the mass-splittings result from the spurion terms.
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associated with the scattering amplitudes. As it is extremely‘
difficult to deal with the irregula-r_c‘oupl:h_ag and the. higher
order spurion terms“ in the scattering amplitudes, ome -'would
naturally look for a simpler method. A convenient method is the
sb—called N/B method by which one can get round the difficulties
that usually arise when one is dealing with the full U(6,6)
invariant amplitudes. 8uch a method has been used by Gatto and
Venzia-nos 6) in connection with the calculatien of the mass of Nsé
resonance by using the SU'(G)WS 7 invariant vertices im the
calculations. They consider the pion-nucleon scattering amd the
exchanges of a nucleon, a mucleon resonance and a rho-mecson in
the respeetive crossed channels. The result they have obtained
for the mass of Ng, resonance is so encouraging that one would
feel very much tempted to_use the above proceduere in.order to
calculate the mass of the mucleon as well. That is what, in short,
we propose te do, our purpose and the problem we shall be dealing

with, however, being different from theirs.

We consider the meson-baryon scattering from the point of
view of U(6,6) theory and investigate the mass-splitting between
the baryon oetet and decouplet by using the N/D method. We assume
that the SU(3) symmetry is exact so that the masses of the octet and
decouplet will correspond respectively to the average mass of the

eight baryons and that of the ten baryon resonances. As these
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SU(3) multiplets belong to the same irreducible 36h-.d1mension£1
representation of U(6,6) symmetry, they are supposed to have the
seme mass from the ﬁew-point of—ir(6,6) theory. Now, if we use
the U(6,6) vertices in our ealeulations, then it is expécted that
by using the K/D method we shall, to a reasonable extent, get the
-80(3) degenerate masses of these SU(3) multiplets. In our
calculations we shall, however, follow the hypothesis of N-N*
bootstrap of Chew and comsequently consider that the forees
responsible for the binding of the baryon octet and decouplet
come predominantly from the exchanges of these SU(3) multiplets
themselves-in the crossed channels, The problem.we are going
to solve is, in fact, a multi-channel problem and therefore the

matter will be clear if we discuss how these processes arise,

It is well known that all the mesons belong to the 143~
dimensional irreducible representation of U(6 ,6). But not all
of the states of LIQ correspond: to the physical particles. The
states which correspond to the physical ﬁarticles are, as we have
discussed in Chapter I (section 3):_ obtained by applying on the
irreducible tensor corrésponding to E} representation, the
Bergmann-Wigner equations under which the trivial components
vanish identieally. We have shown (1.70) the U(22) & SU(3)
contents of ;_lg} representation. 'I.'hé physical states which are

obtained by applying the Bergmann-Wigner equations correspohd to'
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the contents of the subgroup IL, (0 8Y(3), where IL, is the
inhomogeneous Lorentz group.- Thus, the physical states of

143 representation can be expressed as follows:
3 = POVOP DV, (4.1)

where P, V, P o? VO denote respectively the pseudoscalar meson,
octet, the vector meson octet, the pseudoscalar meson singlet

and the vector meson singlet.

Following a similar analysis discussed asbove, the 364
dimensional irreducible representation of W(6,6) can be expressed

in terms of the 'physica.i baryons as follows,
34 = B+D (&.2)

where, B, D are the baryon octet and decouplet respectively.

If we now consider the meson (Li3) and baryon (36l) scattering,
all the 8U(3) multiplets in (t.1) and (4.2) will teke part
independently of each other in the scaftering phenomena and thereby
give rige to the multichannel processes. From the point of view
of 8U(3) symmetry along, this is, in fect, an eight~channel
problem; each of the _processes s however, being elastic in view of
the ¥(6,6) s&metry. Let us denote an arbitrary SU(3) multiplet
in (k.1) by M_ , end that in (4.2) by N,. Then the above eight~-

i
channel scattering phenomena can bé expressed as,
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My + Ny > My + N (4.3)

where C, B.l, 2, 5, l‘", i’k-l, 2.

If we are interested in the baryon octet poles in the direct
channels, two pairs of thé above SU(3) multiplets will not
contribute to such poles. These tﬁa pairs correspond reépectively
to the occurrence of a pseudoscaiar (vector) ginglet and &
decouplet at either the initial or tﬁe final states of the
scattering phenomena. Thus, for the baryon octet pole calculation,
the problem reduces to a six~-chamnel one. It can, similarly, be
shown that the two pairs consisting of a pseudoscalar (vector)
singlet and a baryon octet occurring at elther the initial or the
final states will not contribute to the decouplet poles. Thus,
in both the octet and decouplet pole calculations, the problem
reduces to two six-channel ones. These have been explained in
detail by the second order Feymman diagrams, Fig. B.l - Fig. B.15

in the appendix B.

We assume, as we have mentioned earlier in this section, that
the foreces responsible for the binding of the baryon octet with J =
1/2"' and baryon decouplet with J = 3/2"' arise predominantly from
the exchanges of these particles in the respective crossed channels.
The left-hand cuts (sometimes referred to as force-cuts) are

associated with these forces. As it is well known that the long~-
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ra.née part of the forces play a very dominant role in any
scattering phenomena, we shall confine ourselves to the consideration
of single-particle exchanges only. For each of the processes
discussed above, there will occl-nr two crossed diagrams corresponding
respectively to the exchanges of the baryon octet with J = 1/2 and
baryon decouplet with J = 3/2. The space~time parts of these
processes are ass.ocia.ted with the so-called exchange Born terms
wvhich we discuss in section 3 of this chapter and the 8u(3)

symmetry coefficients comnected with these exchange Born terms are
to be obtained by using the direct pole-coefficients given in

tables B.l and B.2 (appendix B) and the related SU(3) crossing

matrices which we discuss below.

For all the processes we shall be degling with, there are
only three independent SU (3) crossing matrices. We shall discuss
these crossing matrices one by one. First, we consider the
process of a baryon octet and a meson (pseudoscalar vector) octet
going to a baryon and & meson octet. The two related channels

(chapter III) we are interested in are as follows:

2,(8) + 8,(8) — ag(8) + ay(8) I
‘ ‘ ' (1)

8,(8) +8,(8) - ag(8) +&,(8)" I

where the number 8 denmotes the dimension of the SU(3) irreducible
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representation to which the.respective particle belongs. The
system at either the initial or fimal state of the above processes
being a direct product of two octets can be decomposed _into the

following irreducible representations:
8®8 = 1+8 +8 +10+10%+27 (k.5)

where 81 and 82 are respectively the well known symmetric and anti-~

symmetric combinations.

In each channel (4.4) there are seven 8U(3) invariant
amplitudes (we are not considering spins of the particles in this
section) corresponding respectively to the transitions, 1 —» 1,

8 -8, 8 -8

A - 814—7 82, 10 - 10, 10% —» 10% and

2] -» 2. The amplitudes in the chamnel II are related with those
in channel I through the equation (3.11), the expression for the
elements of the corresponding crossing-matrix being given by (3.12).

The related crossing matrix is the following:

|
(oo ] o
ol
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|
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[
o
o
i
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&
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o
o
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- B 2 ar 20 8, 8, 8 8,
sB57 _

R

8,5 o o -{2 ‘4;2 o -3 2 0

8,y ©o o '{hi ‘[hi o 3 -1 0

8o ’% % 0 0 '% 0 0 %‘

@.6)

Let us now consider the process of a_ baryon decouplet and a megon
(pseudoscalar or vector)_ octet going to a baryon octet and a meson

octet. The related two channels, as before, are given by,

al(le) + 8’2(8) - a,(8) +o,(8) I
(t.7)
31(10) + a‘(a) - a.(8) + 52(8) II

The initial system being a direct product of a decouplet and an

octet can be decomposed as follows:

LES = 80NEOA®S (4.8)
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In each of the above channels (4.7) there are four SU(3) invariant
amplitudes corresponding respectively to the transitions 8 — 8,,
8 -»82 , 10 - 10, and 27 - 27. The related crossing matrix

can be calculated as before and is given by,

re 8 8

: 27 10 _

|u,8 : 2
o P 2

' 10 342 5 3J5

10 —2— 1 a_ . 2

10 J2 T2 “5J2 J1o0

02 - '
21 I 2 .
8, 20 2J? 5 J5
: 2
| 8 E?Ts 2:?'10 N °

(+.9)

We now consider the process in.which a ba.yron_ decouplet and a meson
. (vgc'bor or pseudosca.la.r)-octet occur at both the initial and final
states and in both the éha_.-nnels discussed in this connection above.
The irreducible SU(3) representations at both the initial and final
states in either channels are those given by (4.8). There are in
either channels four SU(3) invariant amplitudes corresponding
respectively to the transitions, 8 -» 8,-10 - 10, 27 —» 27 and

and 35 - 35. The following is the related 8U(3) crossing matrix:
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Nl
. . 35 27 10 8
|
1 9 1 2
% B "0 i 5

C, =™ (+.10)
10

ool
]
ho

Y
]

A [)M]

o=

T .2 .
8’4

-

As mentioned before, these erossing matrices are to be used in
conjunction with the octet and decouplet pole _coefficients given
in tables B.l and B.2 (appendix B) in order to obtain the related

SU(}) coeffieients connected with the. exchange Borm terms.

Let us now consider the processes involving the pseudo-~
scalar (vector) singlets. There are in these chamnels six SU(3)
crossing matrices which are reguired in order to calculate the

SU(3) exchange coefficients. W; consider them one by one.
I. Process ro(vo)-n <« P(V)B

In the sbove process there are in s—channel two SU(})-
invariant amplitudes corresponding to the transitions g - §1 and

8 - §2 respectively. In the crossed (u) chammel, there are also
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two amplitudes eorresponding to the transitions _8'1 - 8 amd

8, — 8 respectively. Consequently, the 8¢ (3) crossing matrix,

is as follows:

Nt 7!
\ 8 -8 8-~-8
N,8 1 2
81 -8 1 0
C, = (4.10a)
82 -8 0 1

II. Process Po(vo)n &> P(V)D

In this process there is one SU (3) invariant ampltitude in
the dire'cf. (s~channel) corresponding to the transitien Q - Q .
In the crosséd _(u) channel there alse occurs one amplitude
corresponding to.the trﬁnsition 10 &~ 10. Hence the one-~

dimensional crossing matrix is,

10 - 10

¢, = |8-8| -2 (+.100)

ITI. Process ro(vo)n &> P(V)B

In the above process, there is one amplitude in the s-channel
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corresponding to the transition 10 €% 10. There also oceurs one
amplitude in the u-channel corresponding to the transition g —> Q .

Hence the one~dimensional crossing matrix is given by,

c. =/| 10 10 - (+.10¢)

IV. Process PO(V(;)BG—) P(V)D

There is in the above process one amplitude corresponding to
the transition 10 é— 10 in both 8- and u=channel. Consequently

the crossing matrix which is one~dimensional is as follows:

N'
10 - 10

¢ w=|l0-10 1 (+.104)

V. Process P o(vo) — Po(vo)n

There occurs in the above process one amplitude corresponding
to the transitions 8 «> 8 in both the s- and u~channel and the

relevent crossing matrix is,
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c. =| 8-8 1l (4.10e).

VI. Process po(vo)e-» ro(vo)n

In the above proecess there is in both the s~ and u~channel
one SU(3) invariant amplitude corresponding to the transition

1‘.9 - :I;O end the crossing matrix is given by,

10 - 10

c. = | 10-10 1 (+.10¢)

As mentioned before, these SU(3) crossing matrices corresponding
to the processes involving the pseu&osca.la.r (vector) singlets are
.to be used in conjunction with the relevant éctet and decouplet
SU(3)-pole coefficients given in the .table B.l and table B.2
(appendix B) in order to_obtain the related SU(3) coefficients

asgoclated with the relevant exchange Born terms.

2. Helicity formalisms and partial wave amplitudes:

In the previous section, we have discussed how, when the

U(6,6) symmetry is broken by Bergmamn-Wigner equations, the meson-

T T

By
I
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baryon scattering decomposes into a number of independent processes
involving two SU(3) multiplets at both the initial .and the fimal
states. If we ﬁow take into a.cceunt the spins of the c.a.-ttering
particles » then the seattering ampli@:ude corresponding to each of
the above processes w:lll be.a n X n matrix, the dimension ‘of the
matrix, of course, being__ dependent on the spins of the particles
involved in the processes concerned. We shall discuss, in this
section, this particular aspect of the scattering amplitudes from
the view-pdint of the helicity formelism discussed by Jacob and
w1ek58). As we shall be solving the N/D equations -only for the
-octet and decouplet poles, we need to construct the parity ampli-
tudes which contribute to J = 1/2 and J = 3/2. states. Finally,
we shall diseuss how these pa._rity amplitudes are expressed in terms
of the partial wave amplitudes. 1In faét, one deals with the
partial wave amplitudes when one is using the N/D method in order
to solve a scattering problem., It is these partial wave
amplitudes or the parity amplitudes discussed above that give rise
to a number of me_lependent channels in any of the reactions we have

discussed in the previous section. 8Since the space~time properties

of the pseudoscalar (the vector) singlet are the same as those of the
pseudoscalar (the vector) octet, it will be sufficient if we
consider the processes invelving only the pseudoscalar (the vector)

meson oetets.
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Let us consider a general c_attering process (Fig. k.1)
involving a baryon (octet or decouplet) and a meson (pseudoscalar

or vector) at both the initial and final states.

P,
8 ‘5 el
K
Figure l.la Figure 4.1b

s-channel C.M. system
The s-matrix corresponding to the above process (Fig. 3.1) of the

te. ryon-meson scattering can be written in the form:

<fls]i> = Bpy = i(2n)* 8, (p; -‘p-i)' < ;|n.|1 > (4.11)

where

1l

<flRli > = =

— <flFl1>  (b12)
e I® |

UE B EE,
where, F is the well known Feymman amplitudes. In (%.12), m is
the mass of the baryon and, as we have already mentioned in the
previous section, is to be ‘taken as the U(6,6) degenerate mass.
EJ_ » B, are the energies of the baryon and meson respectively in
the initial state and Eg, E4 the corresponding energies in the

final states. The three invariant quantities that can be formed
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out of the four mementa, pJi p2 Ps p‘ ere a3 follows:

8 = (p, +0p)° = (pg+ D) = W
t = (p ~pg)f = -26E(L - cos 6) (4.13)

u = (p, ~pJ)° = 20 +24® -5 +26%(1-cos 6)

where,gi-&n‘ezsngi-ka

2 -{;-(m”.)Z}{s-(m-u)e}/ua (b.14a)

El - Es = JF +m2; EZ - E‘ = J]e-l-pé (lhlll-b)

where p is the U(6,6) degenerate mass of the mesons and 6 is the

angle of scattering in the c.m., system and is given by,

cos 0 = 22'434/,1) p.|2 (4 o1k4c)
2°Fe

Now, using equation (C.23) we have,

W 1l
fpl Pg VE, E, E, E,

<Py P ds M |RIDy Bo 3y X > =

< 8,0, 205 2 [Rl6; 0,0 2 > (4.15)
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The, using (4.15) the helicity representation of the Feymman
amplitude, F, obtained from (4.11) and (¥.12) is as follows:

| (e)?

<Pa Py Mg M JF|Ry B 2 2 > m - N
3 Mg - _
JJt MMt

<Bp tpdg N, | I Ag A S <IM Mg 2, e -1|IM A 2, >

W

<M N | B 0Ny N > '2';— — (4.16)
’ l s

Now the helicity amplitude between the same total angular momentum

states is defined as,

1
J .
h KM g fs-1laM A ) >0 ———
: s 4 e
Asdgid 2y 21NPp, Py
- 218 :
w o -1 W e 91
t _§ L BPY = - . (h.l?)
k 2i k 21

where bJ is the phase-shift corresponding to the J-th partial

wave,

Then substituting (4#.17) into (4.16) we have,

7 ' T
<SP Py dg MJFIPy Dp X 2o > = - Z
4 ) mlmsm

- 5 . . -
PP T8 N LR o eearTe ‘
T A LU Oy O L . P O
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, J
<8, 6 Ag MM Ay g > <IN A6, 0 2 A > N

Aghai M

(4.18)

Let A = Ay ~2g3

H®l =) e Now taking the three-component

momenta of the initial particles along the z~axis and in the xz-~plane

such that 6, = ¢, = 0, we have from (c.29)

<JM1112|91011;12>-NJ5“"' (:.19)

Now substituting (4.19) and (C.29) into (4.18) we have,

7| (r'__h"z y
< Pq Pa Aa M|F|P A > m - = Z h
s Pa s 1 P2 2y X N Adhai Il
iMe -iA¢
f J f .2
, .e l’;'11-(9) e N BMII

We also take the two momenta of the final-state particles in the
J

xz~plane. ‘Then multiplying the above equation by dm(e) sin @

and integrating over 0 and using (C.26) we get,

+1

. m
<ag |t n g > = - — f <ag MIFIA, 3, > a7 (8) a(coso)
8n 1 B :

(+.20).

D ot Hs rns i, o e el SR AN S
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For each total angular momentum J there are (281 +1)( 2s, +1)

(2sg + 1)(2s4 + 1) helicity amplitudes, where 8 's are the spins

i
of the sca..ttering particless In fact, one has to evé.lua.te the
independent hellcity amplitudes by invoking the law of invariance
of the scattering matrix s under parity and time reversal. To see
how it is done let us define the helieity of a free particle as

follows:
J.P
A = /-IPI' (+.21)

where J 1is the total angular momentum, P is the three-component

momenbum.

a) Invariance under parity:

Under space-inversion J does not change sign but P does
change sign. Consequently, a state with helicity ) is transformed
into a state with helicity -\ under parity operation. It can be

shown7) ’

“RT M N > m oy g (-1)TTRE o > (ha22)

where n, and n, are the intrinsic parities of the two particles of
spin sl and s, and P stands_ for the périty operator. Now, the

invariance of the s-matrix under parity implies,

PSPL u 8 (+.23)

Using (4.22) and (4.23) we obtain from (k.17) the following
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relation between matrix elements with states of eéite parities:

Mg e Bgt8,-8,~8p
<- sx‘hthl"M» A > = (1) ° R }‘s’)\thhl’le >
L™

(k.2L)

b) Time reversal invariance:

Under time reversal both J and P change sign, so the helicity
A (4.21) does not change. By applying time reversal, T, to a
state we obtain a néw state with the same angular momentum and
fxelicities but with an opposite eigenvalue for J z° Thus, we
obtain

)J' -M

TITM A > = (<) | I, 0 > (k.25)

Now, the invariance of the s-matrix under time reversal implies,

7TS8ST: - gt (+.26)

Use of (4.25) and (4.26) in (4.17) then gives the following

relation of the helicity amplitudes:

<x81|h|x > = <)y )>|h|}. A > ~ (4.27)

In this connection, we mention that when we consider a process
like B + P (-—>B + V, with a pseudoscalar meson at one state and a
vector meson at the other, the helicity ampl:ltudes corresponding

to the time reversed process, are to be maltiplied by (-1).  This

SR SRS S S SRR FESN LY, - N T U 3 A



ﬁ‘i‘:u"go{tﬂlm oo

147,
factor arises due to the spin of the vector meaén59).

Let us now construct the pa.r:l'&x states which contribute to
J = 1/2 and J = 3/2 states. These are obtained by taking &
linear combination of the helicity states.,  The parity of such

a coombination can be given by,

. J-8,-8
r{ |7 M5 2, 20 > F |3, -0, >} - (1) OEE)

{ |78 2, 2, > %[5, =0 ,-) >}
(4.28)

Considering the spins of the scattering particles concerned, it
can be shmm 7) that the above combination with one sign contributes
to 3° = 1/2* and the other to the state & = 3/2*. We shall,
however, express these parity states in terms of the states having
a definite orbital angular momentum and total channel spins. For

T
that purpese we make use of the _:follawing relation ) s

oL + 1 %
< JIM; LSIJM;AI A, > ( > c(L8J; 0A)C(s,5,85 2y, -))
20 +1
(+.29)
. where )\ = ), - ), and C's are the related Clebsch~Gordon
coefficients. From (h.é9) we can obtain,
oL + 1 ’ 8152 |
JM; > = Z ( ) A|dMs LS >
' ’ 1 * 29 +1 )‘1 =
(4. 30)
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In (4.30) we can drop the symbol M because the conservation of M
is automatically taken care of. | In what follows we express the
above mentioned parity states in terms of the states with a
definite orbital angular momentum and channel spins for the
relevant vertices from which all the processes we consider can be
obtained. The related orbital angular momenta are obtainad by
considering the JT = 1/2* or T - 3/2* states in the intermediate
states in the direct channels (Fig. B.t - B.15). We shall
write & = 1/2* state as B's and Fu 3/2% as D's. Using (4.28)

and (4.30) we obtain the following®®)’

I. For the external particles PB the states are:

B = %2[ |1/23 1/2 >'- | 1/2; -1/2 >] = - | 1/2; Pl/a >

1
D = JTa[ |3/2; 1/2 > + | 3/2; -1/2 >] = | 3/2; P1/2 >

(b.31)

II. For the external particles PD the states are:

B, = J—;—[ | 1/2; 1/2 > + | 1/2; -1/2>] - - | 1/2; P3/2>
2 -
1 1
D, = .7'; [ | 3/2; 1/2 > - | 3/2; -1/2 >] ---J—_lg |3/2;23/2 >

3
+ —| 3/2; ¥/, >
~/'1o| 3/2




1hg,

1 . >
D, = JTa[ | 3/2;5 3/2 >-7] 3/2; "5/2>] ~ "o |5/2; ® F3/2 >

N/-O I 3/23 3/2 > (h.32)

III. For the external particles VB the states are:

) 1 2
B, = J_-a- [ | 1/2; 1/2,1 > + | 1/2; -1/2, -1 >] - .E [1/2; P. /2
1
-Jle 1/2; 1’3/2 >

B, = }2[ | /25 1/2,0 > + | 1/2; -1/2, o> ]--..—'J-%—3 .| 1/2; rl/2 >

V2

-J_'; | 1/2; 93/2 >

J2

1
D = J';[ | 3/2;5 1/2,1 > - | 3/2; -1/2,-1 > ] = J—_}- | 3/2; Pl/2 >

1l

3
+J§; | 3/2; 1>3/2 > -J_;—O | 3/2; r3/2 >
1 1
D -J-Ta[ | 3/2; 1/2,0 > - | 3(2; -_1/2,0 >] = .J—'; | 3/2; 1>1/2 >

6
" Too P/ Baje > 7 | 32 By >
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1 2
D, = JTz [ | 3/2;5 1/2,-1 > - | 3/2; -1/2,1 >] J'e |5/2; ® 3fe >

1l

-— | 3/2; F

J10- 32

(4.33)

IV. For the external particles VD the states are:

1 , 1
B, = JTa [ | 1/2; 1/2,1 > - | 1/2; -1/2,-1 z] .‘JTs | 1/2; Pyp >

b 3
-J—B—o | 1/2; Ps/o >+J?o, | 1/2; Fs/p >

: 1 , 1
B, = J—Z[ | 1/2; 1/2,0 > - | 1/2; -1/2;0 >] -TB | 1/2; P1_/2 >

2

_ 6
T | 1/2; P s/2 > | 1/2; F 5/2 >

B, - };[ | 1/2; 3/2,1 > - | i/a; -3/2,-1>] -— | 1/2; P 1/2 >

1
-—| 1/2; F

2
-— | 1/2; P 5/2

Y10 527 " Jio

1 1
D -JTre [ | 3/2; 1/2,1 > + | 3/2; -1/2,-1 >]- JT6' | 3/2; 91/2 >

Y
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243 J3 .
___;_ | 3/2; r5/2 >+-.; | 3/2; F-S/a >

D - - }2[ | '3/2; 1/2,0 > + | 3/2; -1/2,0 >] " "}3 | 5725 212>

f

1 3 5
5J' | 3/2; ?3/2 "5 | 3/2; 1:5./2>+5—J—_é| 3/2; Byypp >

5\’- '3/2’ 5/2

L 3
S - fa[ | 3/2; 1/2,-1 >+ | 3/2; -1/2,1 >] =5 13/ Ey>

6
T | 3/2; 5,.‘,>+ | 3/2; r3/2>-- | 3/2; ¥y )y >

1

1
D, = J’; [ | 3/2; 3/2,1 >+ | 3/2; -3/2,-1 >] -fa | 8/2; P1/2 >

1 | 3
-; ' 3/2; P§/2>"5_ | 3/2 P5/2>+ | 3/2’ 5/2

1
‘ += | 3/2; F ., >
5 5/2

- [ | 3/2; 3/2,0 >+ | 3/2; -3/2,0 >_] --—| 32 P

s ij'; s-f Fsfe >
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2 3
" | 3/25 B4 > - o | 3/2; ¥y pp >

-6

5*’- | 3/2; F 5/2 | (4.34)

In the above, Pa ) F s denote the orbital angular momentum in
accordance with the convention of the atomic theory and the
assoclated suffices denote the corresponding channel spins.

Inverting the above relations we obtain the following:
i. For the external particles FB we have,

| 1/2; Byjp> = =B

(k.317)
| 3/2; P1/2 > = D,
ii. TFor the externmal particles FD we have,
1l
. 3. N — ]
| 3/25 By pp > = (v, + 3D,) (h.32")

| 5/25 Fypp > = ﬂ(an D)

iii. FPor the external particles VB we have,
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‘ 1/2; B, ;. > —l-kJ'zn B )
1 | 1/2; 1/2” * 5 175
il N
| 1/2;5 P3/2 > = ._.J—_;_‘(B1 + N2 32)
1 .
| 5/2 Byp > = (J2p +D) (b.35")
1
| 3/2; 2,7, > = e (o, - ¥y2 1, - 3¥3 p,)
| > (V30 -
| 3/2; ¥y, > -- .\Fl:)( 3D, - Y6 D, + D)
iv. Por the external particles VD we have,

1
| 1/2; Pjp> = 7 (s, + J2 B, - J38,)
: 1
| /25 Bypp > = g (eV23 +3 + J63B)
1
| 1/2; Fojp> = 'J-:]; (V33 - J6 B, - 3B,)

1
| 5/2 B> = = (o, + v2p, + ¥3)

B AR Fad leten T s o L aan et ot mrs eh e ¥ SR Dr o Sl b e « She e o ks same Anihrreis g D5 mmie 1 e e rmhmate RS o OB A i .
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1
| 3/2; Pop> = -l—O—J_; (4p, - J2 D, + 6430, - 243 D,

- g2 D,)

1
| 3/2; By > = “Th (3, + 3¥2p, + 23, + V3D,

+ 242 p,)

1
| 3/2; ¥ypp > = -1—0(h~l'31)1- J6p,-2p, -6D_ + J'6n5)

1 —
| 3/2; P> = ;_-(J:3131+ Jép, -3+, - V6 B,)

(bo34t)
From these relations one can express the partial wave amplitudes in
terms of the desired parity amplitudes. From the four-types of |
vertices considered above, we can obtain all the partial wave
amplitudes corresponding to sixteen processes by taking appropriate
combinations of these vertices. There are, however, only _ ten
independent processes; others being related through time reversal

invariance property of the scattering matrix s.
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3, Caleulations of the Born Terms

8. The Direet Pole Terms:

We have shown in the last section that both P and F waves
occur in some of the scattering processes we consider. It is
clear from the relations (4.31') -~ (4.34) that F-waves occur in
those processes which involve £he ba.'ryon. decouplets and veetor
mesons as the scattering particles, But it is known from the
experiments 'l;k_xp.t N:a resonance occurs as =N resonance in P-wave.
Therefore, we make .an investigation to see how much contribution
these P-waves have to the I - 1/8% end 3t - 3/2* poles with which
we are concerned. With this end in view, we ealculate the direct
J w 1/2 and J = 3/2 Born terms using the U(6,6) vertices (1.87) -
(1.92). We evaluate the Feymnman amplitudes < Ag M\g|F|A; A, > which
we use in order to obtain the helicity amplitudes from the equation
(4.20). The processes which we have to consider have been shown
(appendix B) by the Fig. B.lt - Fig. B.15. We shall, however, ignore
the SY(3) symmetry properties of the multiplets and consequently
the processes we consider are shown in Fig. 4.2

D B(D) B(D) e

2 P - Ps 7
, 2 T, A
1 2
B X kA D
‘/*‘ .

_ B, s PR, B(o)p, TN, P(V),

~ ~
~ 8 N

t +
gigure h.2a | Figure 4.2b Figure lk.2¢
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In order to obtain the pole contributions we evaluate the related
vertex functions by putting all the particles on the respective
mass shells. As the three-component momentum of the intermediate
particle is zero in the c.m. system, the helicity states of the
intermediate particles can be taken as being normalised in the
positive z-direction. Further, we take the momenta of all the
particles associated with the diagra.ﬁs fig. 4.Dand Pig. 4.2¢ in
the xz-plane. 1In particular, we take the momenta of the particles
in the initial state along the z-axis and those of the particles in
the fimal state along a direction making an angle 6 with the
z~axis, 6 being the angle of scattering. Now, since the
propagator of the intermediate particles (spin 1/2 or spin 3/2
particles in this case) can be expressed as a sum over the helicity
states of the particles concerned, the Feymman amplitude corresponding
to any of the processes shown in the above can be expressed in the

61)

form

<1g MeiBs RelFlpy B2 2y % > = r;'o(e) r;n'(o)-

8 =
(4.35)

where F’;\,(a), 1";‘(0) are the vertex funetions obtained by putting
the pa.rtiéles at the vertices 2 and 1 respectively on the respective

mass shells. These can be expressed in the following forms:

’fm_“’) = Yon <pg £y 3g Al7 10 > (4. 368)

PR . T P S S S DD
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1 .
rq{(o) = Jom< kol-'.-fn_lpl p, A A, > (4.36b)
where A = Ag ~ ).‘; p= ).J_ -\ and v is the helicity of the inter-
mediate particle with ¥(6,6) degenerate mass m. Thus, the four-
component momentum k of the intermediate pari:icles ean be given

in the e¢.m. system by,

k = (m, 0) (k. 36¢c)

In (h.36.) J, is the U(6,6) form factors. Taking various terms
from (1.87) - (1.92) we can obtain all the pole terms corresponding
to the sixteen- processes discussed in the last section. We shall,
however, discuss two examples and write down the results for the
rest. For that we need the helicity states of the external
particles as well as those of the intermediate J m 1/2 or J = 3/2
perticles. The heliecity states of the external par-ticlés have
been given in appendix C so we have to obtain the helicity states

of the intermediate J = 1/2 and J = 3/2 particles.

Corresponding to the spin 1/2 particle in the intermediate

state the helicity states, using (t.36c), are as follows:

1l B+m 1l
w o e [P Oy e

JaulE+m) |o.

For the spin 3/2 particle in the intermediate, the helicity
states are teken (given by C.15) as the vector sums of (4.37) and
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the following:

O {2l O {0} e

I I IO N Y I S
where, = § = JTQ -(:)l J = : J - JTz -oi

In order to show how these pole terms are obtained we consider
the process P+ B - P+ BwithJ = 1/2 and J = 3/2 in the

intermediate state.

I. For the J = 1/2 particle particle in the intermediate state;

In this case we consider the U(6,6) vertices given by equation
(1.87). The two vertex functions corresponding to all the

ﬁarticles on the respective mass-shells are obtalned as follows:

L
@ = 5 (107) g b) nam )

P2 2m .
A ( - ) Von T, () x, u(e,)

Using (4.37), (C.2) and (C.5) we evealuate (4.39) by putting all the
pa.rt:lcies on the mass-shells then substiﬁuﬁe them into (4.35)

which gives the following pole terms:
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Rr
1/2 - 1/2
A
-1 .
5 cos /2 -~ sin 6/2
<A|Flu> = € x (+.140)
1
- ; sin 6/2 cos 6/2

me (f - @R 1
where, C = - {1 + — . .
( n> 32 n°> (s - »?)

II The J = 3/2 particle in the intermediate state:

In this case, the U(6,6) vertices we have to consider are
given by equation (1.89). Then the two related vertex functions

are as follows:

1, o
P;,(e) - - ( 1+ :) Jom B, (p,) u(k) ®€, - q"

(4.41)

1 2m . .
r:"(o) - - ( 1+ —;) Jon qk E:@ii(k) . u(pl)

The above functions are evaluated by using (C.1), (C.5) and (C.15)
together with (4.37) and (4.38). After having evaluated these

- functions by putting all the particles on the appropriate mass shells
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we substitute them into (4.35) which gives the following pole terms

for J = 3/2 in the intermediate state:

< ).-,P'p. > 0m

m )

N 1/2 - 1/2

1 L ‘ L

5 3 (L - 3 cos @) cos 8/2; -~ 3 (1 + 3 cos @) sin /2

C x

(L + 3 cos 6) sin 6/2; % (L - 3 cos 8) cos 8/2

I
=
Wi #&

(k.h2)

Following the above procedures and -using the various U(6,6)
vertices given by equations (1.87) - (1.92) we can evaluate all the
pole terms corresponding to J = 1/2 and J = 3/2 states for the
sixteen processes discussed earlier in this section. Apart from
some kinematic factors , it should be noted, these pole terms
contain functions of cos 6 or sin @ in such a manner that these
functions are the same as the a.ppropr;a.te elements of dJ(G)
matrices given by equations (C.%4) and (C.16). We can then obtain
the related heliecity amplitudes after ﬁerforming the integral on
the right hand side of (4.20) by using the orthogonality relation
(C.26) of the reduced matiices d°(8). Having obtained the helieity

amplitudes for the total angular momentum J = 1/2 and J = 3/2 we
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obtain the parity amplitudes discussed in the last section, by

evaluating the appropriate combinations, given by the equations

(b.31) - (b.34).

in tables sepai'atelir for J = 1/2 and J = 3/2 poles.

We present these values of the parity amplitudes

We mention

only those processes which involve pseudoscalar (vector) octets

at either the initial or final states.

As the -space-time

properties of the pgeudoscalar (vector) singlet are the same as

those of the cofresponding octet, we need not have to consider

. them separédtely.

Table 4.1 :  Direct pole;-tems for J = 3/2 states,
PB FD vD
D, D, D, D, D, P, D, B D, D,
P2 242 242 | b |
B | D, LD Ve | — -— i) —, J6, 2,2, J6
R 3 V3 143
J2 1 V3
1 3 J 2
D, |—1 = — -1 | -Noi,£1,-—1
' 2 2 J3 SN
NE
-J-Z 1, -21
D 2
343
v, [V61 2 2-1 4 -3 -;J’zi,—gi,-—z—-i,
343
-Ti,-gi
2
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Table 4.1 (contd.)
PB PD )
a2 1 | 2 242
D |[-— 31| = — N -2 — —_—1, J-Bi *f2i
3 NE ’ 3 3 | o ’ ’
21, V31
vB |D, 0 0 0 0 0 6 0 0 0 O
242 2 .
D, 7_3—1 1 3 J_'; -2 |-2d21,-31,-461,
-J61, -31
4 23 _
b, |-— Joi 3d2i|—1 - 242 1| &, 342, 243, 243,
& 3 _
32
| 343 343
b, | - ¥8 21 235 (V314 -31 | 342, 2, TR
3 3 W3 343 343
wip [ -2 —1 ——i|21 - 61| 2V3, =—, 3, 3, —
s J2 J2 N * e
5 343 343 343
D -2 —1 — 1|21 N6i | 243, —, 3, 3, —
¢ J2 J2 T’ 7
' ' 343 343 9
pg | -J6 21 21 |31 -31 | 342, 3, o -:l'.;’
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The elements in both table k.1 and table 4.2 are to be multiplied by

32m4(l"“2'") (“'" ] ‘*uf.

Table k.2 Direct pole terms for J = 1/2 states,

. the factor,

PB PD VB vD
B, B, B, B, B B, B,
242 2
PB |B 1 -—i| 21 -3 — 0 2
. J3 J3
242 8 I a2 | w2 b2
P —i1| -2 -— - 1 0 -—1i
Y1 Vs 3 3. V3 3 J3
I 242
B [J21i — 2 J2 — i o0 2421
1 J3 J3
% VB
22 " 2
B 1 — 2 2 —1i 0 21
z V3 J3
2 b2 22 2 N "
B, | -— —_—y — i —1i -2 0 -—
ol L 54 3 3 3 V3
w|z, 0 0 0 0 0 0 0
L2 - I \
B -2 _— od2i 21 — 0 -
‘ | V3
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Teking the elements from either the table 4.1 or the table L.2,
the contributions of the F-vaves correspending to any of the
related processes discussed earlier in this ect-ion, to either
IF 3/2* or JP - 1/2* ‘state can be evaluated by ﬁsing the equations
(4.31') - (4.34%)., It has been found that the Fowave contributions
correéponding to the above pole terms vanish. It is, therefore,
very likely that -the effects of the F-waves in the mass~-splittings
between baryon octet and decouplet may be negligible. If lthe -
appmximtiéns that have been used are justified, we may. neglect

the P-waves in the N/D calculations.

b« The Baryon Octet Exchange Born Terms:

We have already mentioned in the first section of this chapter
that we shall assume that the forces responsible for the binding of
either octef with & = 1/2*% or decouplet with I m 3/2% arise
predominantly from the exchanges of both baryon octet and decouplet
in the relevant crossed channels. The relevant &1(3) coefficients
of these exchange poles are to be obtained from the corresponding
8y (3) Airect—ch&nneldpole-coefficients given in tables B.1l and B.2
(appendix B) using ‘the related 8U(3) crossing matrices given by
equations (lt..6),.: (+.9) and (4.10). In this and the next section,
the methods for the evaluations of the spaee-time parts of these

exchange Born terms will be discussed. In this conmection, it is
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assumed further that only the long range forces are important in
the mags-splittings getween baryon octet and decouplet. Im other
words, we assume that enly tkat part of the left~hend cut which is
very near to the physieal eut is important and eonsequently confine
outselves to the evaluations only of ﬁhe single-particle exc_:haxige
diagrams. The exchange Born terms reqﬁired to be evaluated

correspond to the exchange diagrams given by Fig. h,3 - Pig. 4.9.

' ___ng b B(D)Pa

s -+ paA B(D)

B0) 2, ® B(V) pe

Fig. 4.3
P (Vo) b B Po(V.) b D
- - P, (V,
L.\ NI
8§ - A B 8 — A D s - AB
B 8 PE B a——P*V_—' B > vy
Fig. h.bk Fig. k.5 (v) ] ‘:6 Po(V,)
P(Vo) b B  P(Vo) b, D  B(Vg) b . D
s —» AB 8 - A D 8 - ~D
— —>— > - > reainkaaniate
D P(V) D P(V) D P, (V,)
Fig. 4.7 Fig. 4.8 Fig. 4.9,

It is well known that the exchange Born terms can be expressed
in terms of the direct Born terms in the crossed channel (u~channel)

using the erossing relatioms. In the pole approximation® the
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direct Born terms in the u-channel are ecalculated with all the
en_ergy-dependenc.:e (u-dependence)» at the iaole'pos-sition u = n® ’

where m is 'the mass of the exchanged baryon and in our particular
case is taken to be the U(6,6) degenerate mass. It turns out
that the threshold conditions for the contributions of the exchange
diagrams calculated at the 'pole approximation® to the parl;ial wave
amplitudes are not sa.-tisf—ie;i, 80 one mus;t, in fa-ct » keep some
explicit dependence on the energy of the crossed channel. In
order to do this in a unigue way it is necessary to make some

distinction between *kinematic factors? - in which the energy

‘dependence should be maintained - and *dynamic factors® in which

the energy dependence should be put on the mass-shell.

In order to make clear the above prescription for how the
energy dependence factors should be put on the mass-shell let us
consider a general scattering process for which the invariant

scatteﬁng m;ﬂ:itudes—' can be written in .the form,

T ) XA T )

where A 1 are.the scalar invariants and Y N are the factors that
arise due to the spins of the external particles and we shall call
them the spin kinematic factors. It is these kinematic factors

whose energy~-dependence should be maintained according to our
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prescriptionsa). On the other hand, the functions associated with
the invariant amplitudes Ai can be put on the mass-shell when one

is interested in the pole approximation. If the above procedure
is followed, then it has been found that the partial wave amplitudes
obtained from these Born terms will have correct threshold behaviours.
To follow the above technique of caleculating the exchange Born terms,
one first has to find out the decomposition of the seattering
amplitude into the scalar invariant amplitudes. Then the direct
pole term obtained by applying Feymman rules has to be analysed

in order to find out its comtribution to each of the scalar
inverient amplitudes A, (s tu). Purther, one has to sort out all
the crossing relations for the scalar invariants Ai (s tu) and the
*spin _kinematics? Y,. This method, however, becames very
éomplicated vhen ;ane has to consider a process like VD - VD, vhere

both the scattering particles hawe spin greater than 1/2. In this

particular case, there are 30 scalar invariant amplitudes A, (stu)

and consequently the decomposition (4.43) is itself a major problem.

The preblem of decompesition into scalar amplitudes may be
avoided by calculating the Born terms between states of definite
helicities. A typlicel Feymman amplitude calculated between states

of total final helicity p and total initial heliecity A would

8
1}

matrix with spin, s mmax ( ||, |u| ). The function F(s u) is

look like g®P(s ,u-)d:"/ (a - n®), where d_ is the relevant rotation

the sum of the terms, each of which has a part from *spin kinematica?
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and a part from the dynamic factors. If we are able to separate
out the spin and the dynamic parts, our mss-éhell prescription can
be applied. Asuminé that this separation is possible one may
proceed in two ‘different ways. Firstly, the helicity amplitudes
may be taken as direct pole terms in the u-channel. Then,

63)

making use of the helicity erossing matrices one can obtain the
exchange Born terms in the s~channel. ‘This, however, involves
some tedious manipulations with the elements of the helicity
crossing matrices. Secondly, one can follow the more direct
procedure. That is, we calculate the exchange Born terms in the
s~channel directly with our mass~shell prescription. That is what,
in short, we propose to do. In this section, we discuss how we
obtain the Born terms for the exchange of octet with F om 1/2%

in the u-channel and the next seection will be devoted to the
evaluations of the Born terms corresponding to the exchange of
decouplet _with F m 3/2*. Since nothing has to be put on the
mass~shell for the baryon octet exchange, the method of vertex
funetions which we have used in evaluating the direct-channel

poles in the last section can also be used in this case. 'The
evaluatioms of the Born terms corresponding to the exchange decouplet
with J'P - 5/2" s on the other hand, require many energy dependence
factors to be put on the mass~shell and consequently we have to

tackle the problem in a slightly different manner.
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The processes for which we require the baryen octet, B,
exchange Born.terms are shown in Fig. 4.3, where the incoming
baryon and meson four-momenta are p, and P, respectively and the
outgoing baryon and meson momenta are Py and pg respectively.
The related three Lorentz invariant quantities s, t and u have
been given by equation (4.13) in the-c.m. system. Let p denote
the four-component momentum of the internal baryon. We assume
that the three-~component momenta of all the external as well as
the internal particles are in the xz~plane so that the azimuthal

angle ¢ is zero. Now, we take three-component momentum of the

incoming baryon in the positive z-direction and that of the incoming

meson along the negative z-direction. Considering 6 as the

scattering angle (shown by Fig. 4.1b) we take the three-component

- momentum of the outgoing baryon in a direction making an angle 6

with therpositive z~direction and that of the outgoing meson in a
direction making an angle n+ 0 with the positive z-direction. As
a consequence of the above convention, the helicii:y states of the
incoming and outgoing baryon octet are respectively given by
equations (C.2) and (C.5) and those of the incoming and outgoing
vector mesons are given by equations (C.13) and (C.1%4). For the
incoming J = 3/2 particle, the corresponding helicity states are
obtained from the equaticn (C.15) by using (C.2) amd (€.10) along
with (C.9) and for J = 3/2 outgoing baryon we use (C.5) and (C.12)

to obfain the corresponding hellicity states.



TRV B,
e

| 170.
From Fig. 4.1lb we then obtain the following:
Pl = (E: 0, 0, k) 3 Py = (w) 0, 0, "k)
D, = (B,x sin 0,0,k cos 8); P = (w,-k gin 6,0,k cos 6)
Ew JETE; v BT (5)
From (h.45) we readily obtain,
p = (B', k' ain &, O, k? cos &)
- ' (4. 16a)

E' w E-w; k' = 2k cos @, with « = 6/2

We also have, u = p° = E' - k'2 g0 that when we put the exchanged

baryon on the mass-shell we have,

k2 = BE'2 - pf (4. 46b)

Now, as in the ealculations of the direct poles, the Feyrman
amplitude in the helicity representation with the baryon octet

as the internal particle can be expressed in the form:

1l

le(e)
O (maT)

b
< 2Agh 5 PaPalF|Dipes Ml > = F‘m(e) —
where the vertex functions F::o(a) end F';l(e) are calculated at
the vertices 'b' and *a’ respectively (Fig. 4.3) and they are

given by,

R . o e WA L P, L o T . P T
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<L u,k'Fblk' v > ‘ ‘J-am < 13 &; 28 &IJ‘lk’ -] .>
(4.48)
<v; k'|Fk; 1> =aon < v; k"J“lB]_ Pas M N>

where, p wm A, =N\ A®w) -1 and v is the helicity of the
internal baryon octet with the U(6,6) degenerate baryon mass m.
The_helicity states of the internal baryon octet can be written

in the form :

1 E' +m
D () m ————— | » 1 b
uu(k.) o) o X (4.19a)
where we hava- using (k.46a),
cos af2 | - sin &/2 (5. kgp)
= % . -m .
"/ sin &/2 ~1/2 cos a/2 (.49

In equation (k.48)% J g 5T the related v(6,6) form factors which
have been given by equations (1.87) - (1.92). It is evident from
these equations that we need to evaluafe only five different
vertex functions of the types given by equation (4.48) in order to
calculate the exchange Born terms corresponding to sixteen
processes shown by Fig. 4.3 with only baryon octet exchange. Using
the various terms given in the equations (1.87) -~ (1.92) we

evaluate the relevant vertex functions and write them down one by

one. Throughout these calculations we shall omit the factor

et e R M Th osie Ahranian e o -
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bxg?/(u - o) which will be taken into account when the total
angular momentum J projections of the Feynman amplitudes are
obtained by using the equation (4.20). The representation of the

Dirac matrices that will come up in the calculations is given by,

os (o) wm (D)

%
0 I
75 - 70 7,72 72 = -1 ( ) (""'SQ
I 0
+ + +
Where, 70 = 70 ; 7k = -7k 5 75- -75 .

Having defined above all the relevant quantities we write

down the different vertex functions as follows:

I. This type of vertex functions correspond to a pseudoscalar
meson and baryon octet at either the vertex b or the v'er't;ex 8.
Taking the relevant factors from the equation (1.87) the two vertex

functions are givenm, by using equation (4.48), in the forms

P m
: b g —— - .
< 13’23&""1'1‘.' V> = o 1+ ;— )‘E)‘a(ps) s Yy (k') Jon

(4.500)

o 2m \ _
<wv kl'l'Fi'lglg‘.x L -l; 1+ m ) u,o(k.') 7s uh(Pl) J-zm_
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Considering the representations of the helicity states of all the
particles involved and, im particular, using the relations (k.h5),
(4.46) and (4.50 ) these vertex functions are evaluated. The
factors whiéh will be common to all the elements of the verte_x

functions are the following ¢

2m 1
- —— —— ‘l-.'
TR > von(g + m) (' + n) -5

&, = (E* + m)k - (B + m)k?; 8, = (B* + m)k + (B + m)k*

Then the two re}evant vertex functions are as follows

a, cos a/2 ; a, sin «/2
b )

<igs [P Jo> = ¢ (4.52a)
a.2 sin ¢/2 5 -al cos ¢/2

-8, cos a/2; s sin af2

<v | A> = ¢ (k.52b)

b

a, sin «/2 s cos a/2

II. This type of vertex functions correspond to a pseudoscalar
meson and & ba ryon decouplet, D, at either the vertex '®* or the
vertex *a! and are obtained by using the ﬁ(6,6) vertice;: éiven by
eq.ue.tioﬁ ‘(1.89). We write down the two vertex functions one by

one.

Ao A L o geresd a4 s
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2m
< 13525“'2'1‘"\9 > = % (1 + - ) t [ uls‘(ps) @e; ] “o(k_') Jon

(4.53a)
Here, thé overall common factors are as fol]-.ow_t_s:
c = ={1+—
) ( ) vau(e + m)(E' + m)
ag = (BE+m)(E* +m) -~ ki’ (k.53b)
a, = (E+mn)(E +m)+ Kk

Then, the elements of the above vertex function are as follows:

a
< 3/2]1/2> = - — sin 0 cos &/2
J2
8e
< 3/2|-1/2> =w - — sin 6 sin «/2
J2
1
<1/2[]1/2> - -—= [2 ag(w + E cos 0) cos @/2 ~ a, m sin@sin a/2
n6
1
<1l/2]-1/2> = - 76 [2 a,(w + E cos 0)sin &/2 + ag m 8in6 cos a2
m .

<-1/21/2> = — [2 a (v + B cog 6)sin a/2 + agm sind cos ¢/2]

n6

B et e A e aaen Erees s . e S P RRPEP - P PPN W L e I D
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. 1
< -1/2|-1/2> = - — [2 ag(w + E cos 0) cos @/2 - agm 8in@ sin ¢/2]

nJ6
84
<-3/2|]1/2> = - — 8in @ sin @/2
J2
- ’ ag
<-3/2|-1/2> = J_— sin @ cos &/2 (4.53c)
2 .

The vertex function at the vertex 'a’ is given by,

omy .
<v; k:'lF:l;pl N> = :—;(1 + :—)uu (k') [uxl(p1)®€l] . ¢*von
(4.532)

Here, the overall _common factors are the same as given by (k.53b).

Now, the elements of this vertex function are as follows:

a
<1/2|3/2> = =~ -2 5in 6 cos a/2
J2

a
< -1/2|3/2> = — sin 6 sin a/2

J2

l -
< 1/2'1/2 > = -——6- [2 ag(w + B cos @)cos af2 - aam sin € sin ¢/2]
. m

<-~1/2]1/2> = - ;%_é '[2 _a.‘-(w + E cos 8)sin a/2 + agm sin 6 cos ¢/2]
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<l/2|-1/2> = ;%,_—6- [2 a‘(w_ + B cos 6) sin a/2 + agn ;ihe-ces- 3/2]

< - 1/2|-1/2 > - m—-f,_-g [2 asﬁr + E cos 0) cos @/2 ~ am sin 6 sin ¢/2]

1/2|-3/2 2 /2

< 2|~ - — n 8

|-3 T sin 6 sin @«

<-1/2|-3/2> = Zs 8in 0 cos a/2 (h.5.3e)
J2 :

III. This type of vertex functions correspond to the occurrence
of & vector meson and a baryon octet at either the vertex *b' or
the vertex 'g'. - On account of the two types of couplings

corresponding respectively to the charge and magnetic couplings of

the vector meson, we shall split them into two parts for the sake of
convenience. First, we evaluate the two vertex functions which
correspond to the charge couplings. of the vector meson. Taking
the first term from the equation (1.88) we have for the vertex

function at the vertex *b*,

b M 2n -
<o ek BelTali's > = 2 (1 ¢ — )2, ) 5 @), () Vom
(k.54a)

Here, the overall common factor is,

C et e R s aan U -, S0 S35 S - A S VRO S
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o o -
Cg ™ E 1+—) 7 . =
m on(E + m)(E* + m)

(4.54Dp)

For the sake of convenience, we write down the vertex functions
geparately for each of the vector meson helicity states. Then
there results three different vertex functions of the above type.

Considering the factors ay, &, as given by the equation (%.53b)

these vertex functions are as follows:

ag cos a/2, &, sinaf2|

< 2Ags* 15 By 22[1’2]]:’0 >um -2 sine
' -a, sin af2, a  cos a/2

(B.sl;'c)

B  cos e/2, a, sin /2
b 2 g
< 29,03 Pg Po|F lk'o > = -5 (E+w cos @)
' - a, sin e/2, a, cosa /2

(5.544)

a_cos a/2, &, sin a/2

s
< ls,-l;gs gal»l':lk'u >m 42 sin @ .
' -e, sin @/2, &  cos af2

(B.5he)

Now, the vertex function of the above type at the vertex *a' is

given by,
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o 2m +¢ .
<o k.' ll‘:'h BoM Y h._:; 1 + : ) Eﬂ__(k_') uﬁfpl) e'gh) Pl-'l Jom
(4.54¢)

Here, the overall common factors are the same as in the above case.

Then, the three different vertex functions are given, as before,

<v k',F:I_& ResMotl > = - < 2g,*lsp, &'Fg,k'o >
_< v k’ll‘g[gl_ Desdys O > m < 2g, O5p, 22|F2;|k'1: > (b.5kg)

D
<o K Fylpy pyidysl > = = < dgy-lipg Bo Ty [k'0 >

We now evaluate the vertex functions that arise due to the magnetic
couplings of the vector meson. Taking the second term from (1.88)

this type of vertex function at the vertex 'b’ is,

1 2m
. Die — — ( ) = )
<2g MoiPg Ba'ﬂlk. o> = > (1 + - ) F.MX!a uxs_(Ps)rp u,o(R") Nen

(4.55a)
where, ru = eu'okl P'o qk 71 s
Taking out the overall common factor,

x| 1

= (4.55b)
m ] - o
% on " ) Non(E + m)(E' + m) >

B e " et e BaEt A T mwmegencta mimain dem e mem bl A
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the elements of the above function are as follows:
1
<1/2,1|1/2 > = :,_— [(e.zk - 8a4B)sin 6 cos af2 « a (E - w) (L~ cos @)
2 L _
sin a/2 ]

<1/2,1|-1/2 > = J:% [(alk - a._sE)sin 0 sin a/2 + aa(E - W)

(1 - cos 6)cos u/2]

< -1/2,1]1/2 > = —1— [(alk ~ a_E)sin 6 sin a/2 - a (B + w)

J2
(A + cos 6)cos c/2]

< -1/2,1|-1/2 > = -J% [(aak - a,B)sin @ cos a/2 + 8 (E + w)

(1 + cos 0)sin c/2]

<1/2,0|1/2 > m aq p sin 6 sin @/2; <1/2,0{-1/2> = - ag M

sin 6 cos af2

< -1/2,0}1/2 > = ag u sin 6 cos &/2; < -1/2,0}-1/2 > maqp

sin 6 sin a/2
1
<1/2,-1[1/2> = J-Z [azk - 84E)sin 6 cos af2 + a (E + w)

(1 + cos 6)sin a/2 ]

[ P v eige.y SRR . e Sbmas idieae tew . D R



1.
< 1/2 1 -1/2 > ! [ ) ¢/
»=1| & (alk aE) sin @ sin a/2 gs(E w)

(1 + cos 6 )cos ¢/2]

<-1/2,-1]1/2 > = J-% [(alk - asn)sin 8 sin a/2 + a_(E - w)

(L - cos e)cos-c/a]

4 1
< -1/2,-1|-1/2 > = -J-; [(aak - a4B)sin 0 cos @f2 -~ a (B - w)
(1 - cos 8)sin ¢/2]

(4.55¢)

Using (2.88) again, the vertex function of the above type at the

vertex *a' is given by,
: ] . 2m i ? "(14) J
_<1> k |7elp, e Msde > = = (1 + —; > uo(k- )r, uh(p‘) € Jon
(4.56a)

Here, the overall common factor is the same as given by (h.SS-b).

Then the elements of the above vertex function are as follows:

<1/2|1/2,1 > = -}; [(a.zk - 24E)sin @ cos &/2 - a, (B - w)

(1 - cos @)sin 4/2]

< -1/2|1/2,1 > = J—é—l— '[alk - a.sE)sin 0 sin a/2 + a =a(E - w)

(1 ~ cos 8)cos c/2]



1

<1/2|-1/2,1 > = —1- [alk--- aaE)-sin 6 sin a/2 - a(E + w)

Ve
(1L + cos 8)cos ¢/2]
: - [ ~ agE) /2 + ay(E + w)
< -1/2|-1/2,1 > = J_; | (agk = agB)sin 6 cos g w

(1 + cos 8)sin ¢/2]

<1/2]1/2,0 > = aqp sin 0 sin «f/2; < -1/2|1/2,0> = ag 1

sin 6 cos /2

[
<1/2|-1/2,0 > = -ag p sin 8 cos @f2;  <--1/2]-1/2,0> = agn

sin @ sin @/2

<1/2|1/2,=1 > = -;; [(azk - a:.._E)sin 'e cos &f2 + 8 (E + w)

(1 + cos @)sin c/z]

< -1/2|1/2,-1 > = -}- [(a.l_k - a.sE)-sin 6 sin «/2 - a (B + w)

J2

(1 + cos Q)cos a/2

<1/2)-1/2,-1 > = i [(aflk - a B)sin 0 sin /2 + ag(B - w)
- J2

(1 - cos §)cosa /2]
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< -1/2|-1/2,-1 > = j'lz [(aak. ~ a4E)sin 0 cos @/2 - a (E - w)

(1 ~ cos @)sin ¢/2]
(4.56b)

IvV. This type of vertex functions correspond to the occurrence of

& vector meson and a spin 5/2 psf-jﬁticle at either the vertex 'b' or

the vertex 'a'. Using the U(6,6) vertex given by (1.90), the

vertex funetion at the vertex 'b® is given by,

) 1 2m _
<1g Az;gsgalrslk"'b >m ; 1+ -p— ) e;mkl P [u)‘a(ps)®€;] .e“

X uu(k' )von (4+.57a)

The overall common factor is,

i|x| 1
Cg = —

e (h.57b)
+ - .
e m ) Nom(E + m)(B® + m) e

Then the elements of the above vertex function are as follows

<3/2,1|]1/2> = - % a (B - w)(1 - cos 6)cos a/2

<3/2,1]-1/2> = - -Jé'- 84(B ~ w)(1 - cos @)sin a/2

1
<1l/2,1|]1/2> = - —— [2 ag m 8in 6 cos ®/2 - a (B - w)

243
(1 - cos 8)sin a/2]
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1
<1/2,1|-1/2 > = - — [ ae m sin 6 sin c/2.+'a.s(E -w)

243
| (1 - cos@ )cos ¢/2]

1
< -1/2,1|1/2 > = T [2 aq m 8in 6 sin @/2 - a (E + w)
. 2N3

(1 + cos 8)cos ¢/2]

< -1/2,1{-1/2 - - 2173 [2 ag m sin 6 cos /2 + a (E + w)

(1 + cos 6)sin c/a]'
<-3/2,1]1/2 > = 2 8,(E + w)(1 + cos 6)sin /2

< -3/2,1|-1/2 = - % ag(E + w)(1 + cos 6)cos /2

1
< 3/2,0|]1/2 > = f ag u 8in 6 cos &/2; < 3/2,0]-1/2 >
2

1 .

m— a8, p 5in 0 sin «f2
J2

1 .
< 1/2,0]1/2 > = -f ae p 8in 0 sin &/2; < 1/2,0[-1/2 >
6

1
— a_ u &in 6 cos af2

T

1
< -1/2,0|1/2 > = JT ag u sin 6 cos @/2; < -1/2,0[-1/2 >
V6

1
= — a,pn sin 6 sin «f2
Je ¢

fte o meihede e Py T NN, £ - IR ¥ C SR3OSy
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1 -
< -3/2,0]1/2> = -JT aq 4 5in @ sin &/2; < -3/2,0]-1/2 >
2

1l
w — agpsin 6 cos &/2

NP

< 3/2,-1|1/2> = % as(E + w)(1 + cos @)cos @f2

<3/2,-1|-1/2 > = 3 ag(E + w)(1 + cos 6)sin a/2

1
<1/2,-1|1/2 > = - — [2 a_m 8in 0 cos @/2 + ay(E + w)

ad3L °
(1 + cos @)sin c/z]
[ W/2 - ag(E + ¥)
£- Y 1 P, 8 - — 8 in 6 s 2 -a(E +
< 1/2,-1|-1/2 > oD 2 agm 8in 6 sin s w

(1 + cos @)cos ¢/2]

< -l/2,-1|1/2 > = —1— [2 84 m 8in 0 sin &/2 + a (B - w)
23
(1 - cos 6)cos a/a]

, 1l
< -1/2,-1]-1/2 > = - — [2 a m sin 0 cos @&f2 - a (B -~ w)
a3z L 3

(1 - cos 8)sin ¢/2]

< -3/2,-1|1/2 > = - % a4(E - w)(1 ~ cos 6)sin af2

< ~3/2,~1|=1/2 > = 1 .a.a(E - w)(1 ~ cos 8)cos af2
2
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The other vertex function of the above type is,
. -1 om _
L . — —— ) T ’ :
<v k‘ |F:|21 Boily Ma> = s (1 + u )%(k_ ) [u"l(P") x € ] e'mn
pLeW)
X Py € Jon (4.59a)

Here, the overall common factor is the same as in (4.57b). Now,

the elements of the ebove vertex function are as follows:

<1/2|3/2,1 > = - % a(E - w)(1 - cos 6)cos a/2

< -1/2]3/2,1 > = -;- 84(B - w)(1 - cos 6)sin &/2

< .1/2|1/2,1 > = -—L [2 agm sin @ cos a/2 - a4(B - w)(1~cos 6)
243 . .
sin c/a]

1
< -1/2|1/2,1 > = - " [2 84 m 8in 6 sin &/2 + a (B - w)
' 2v>3

(1 - cos escos ¢/2]

1
<1/2|-1/2,1 > = —-JT [2 aq m 8in 6 sin &/2 - a (B + )
2N3 ¢

(1 + cos 6)cos ¢/2]

' 1
< -1/2|-1/2,1 > = —J_- LE aq m sin O cos &/2 + ay(E + w)
243

(L + cos 6)sin ¢/2]
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¢ .
b <1/2|-3/2,1 > = - %‘ ae(B + w)(1 + cos 0)sin af2

< -1/2|-3/2,1> = - % ag(B + w)(1 + cos 6)cos af2

1
<1/2|3/2,0> m --—a_p sin 6 cos &f2; < -1/2|3/2,0 >
Jo °
1
mw — a,p 8in 0 sin «/2

J2

1
< 1/2|1/2,0 > = -J'E ag p sin 6 sin @/2; < -1/2|1/2,0 >

1
m -—a psin 6 cos af2

J6
1 .
< 1/2]<1/2,0 > = -J_'- ag u sin 0 cos af2; < -1/2|-1/2,0 >
6
1

= — agp sin 6 sin af2
J6 °

1l

<1/2|-3/2,0 > = -.JT ae 1 8in 6 sin @/2; < -1/2]|-3/2,0 >
: 2
1
w~—a_p sin @ cos af2
2

<1/2|3/2,-1 > = % 8g(E + w)(L + cos 6)cos &/2

< -1/2|3/2,-1 > = <3 a (B + w)(1 + cos 6)sin /2

1
<1/2|1/2,~1 > w — [2 a_ m sin 6 cos 9:/2 + ag(E + w)

23

(1 + cos 6)sin ¢/2]

. P S T - s e Bh. . 4 . s
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1
<-1/2|1/2,<1 > = - 2—4—_-3 [2 ae m 5in 6 sin /2 ~ a_(E + w)
(1 + cos 0)cos 6/2]
o)1/ —[ o
1/2]-1/2,<1 > m — " af2 + -
< |-1/2,-1 > 2J32a4msinesin 2 a.s(E w)
(1 - cos 6)cos 1/2]
1
< -1/2|-1/2,-1 > = —— [2 agm sin 0 cos /2 - a (B - w)
243

(1 - cos 6)sin ¢/2]
<1/2]|-3/2,-1 > = -;— a4(B - w(l ~ cos 6)sin af2

< -1/2|-3/2,-i > = -;- ag(E - w)(1 - cos 6)cos c_:/a

(+.59b)

In the above, we have given all the relevant vertex functions

which are sufficient for calculating all the required baryon octet
exchange Born terms corresponding to the sixteen processes described
by Fig. 4.3. In the appendix D, we have given some useful
relstions, the use of which makes the calculations much easier.
Knowing these Feyrman amplitudes, the J = 1/2 and J = 3/2
projections of the helicity amplitudes are obtained from the
‘equation (4.20), where the matrices dﬂl(e) expressed in terms of

Legendre folynomialﬂ are given by the equation (C.31) (appendix C).
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In this comnection, it should be_noted that when F is calculated
in definite helicity states it takes the form of a function of
cos @ multiplied by factors which exactly cancel the denominator
of dJ(e) in the integral of the equation (4.20). The projection
then involves simple integrals over the p:i-oduct-s of P " 8¢ These
products arise due to the factor kxg®/(u - »®) which we have
omitted so far. The factor kx cancels with the corresponding
factor in equation (4.20) and the denominator of the above factor

can be expressed, by using equation (4.13), in the form:

1 - 1 1 - 22 41 () ( )
= —_—Q P 6
u-~-n k% 8 - cos @ Z o2k® 2187 71008 _
: (4.60a)
where,
g8 - m® - 2y
a w 1« (4.600)
ox2

In equation (4.60a) Q 1(3‘) is the well known Legendre polynomial
of the second kind. The right hand side of the equation  (4.20)
then involves integrals over some polynomials in cos @ and the
products of P "s. The relevant integrations are then easily
performed by ulsing the following properties of the Legendre

polynomials:

(¢ + 1)?l+1 (cos 6) + 2 P‘_l(cos 9) = (22 + l)cos 6 P, (cos 6)

(4+.61a)
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8,
-&[ P,(cos 6) B (cos 6) d(cos 6) = —in_ (k.61v)
K s 2 +1

Pollowing the procedures discussed above, the contributions of
octet exchanges, corresponding to all the processes we are concerned
with, to the helicity amplitudes with J = 1/2 and J = 5/2 are
obtained. Knowing these helicity amplitudes of the exchange Born
terms, the corresponding contributions to the relevant partial

wave amplitudes are obtained by following the method discussed in
section 2 of this chapter. The partial wave amplitudes so obtained
for J = 1/2 and J = 5/2_ then constitute the octet exchange Born
terms contributing to the states with & = 1/2* and & = 3/2*
respectively. These are what we shall use as the respective force

terms in the N/D calculations.

Y
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c. The Baryon Decouplet Ekcha.nge Born. Terms

In the subsection 'b? of this section we have discussed how
the Born terms correspon;li;lg to the ex_changé of baryon octet with
_ F = 1/2* in the crossed (u) channel are evalugted by using the
vertex function method diécu‘sed in the above mentioned subsection.
Following the same procedure as before, we shall discuss here in
this subsection how the Born terms corresponding to the exchange of
the decouplet with J‘P = 5/ 2% are calculated. ~ For all the relevant
processes (as shown by Fig. k.3) we are required to calculate on}y
four vertex functions corresponding to each of the two vertices of
th'e second order Feynman diagrams. We discuss them one by one for

both the final and initial vertices.

Now, as in the case of the baryon octet exchange Born terms,
the Feyymman amplitude in the heiicity representa.tioh with the
- baryon decouplet as the internal particle cean be exprés_sed in the

form:

1
— r:l(a) (.62)

W =

b
<Ag 23 PP JFN A5 P B, > = Fw(e)

where the vertex functions Fb(e) and F*(6) are evaluated at the

vertices *b' and 'a' respectively (f':lg. h,3) and are given by,

| < ,.-;, EI'Fb'IE'u > Jen < Ag A5 B Bel'T,ll,E,"° >
’ | (4.63)

< v; 5,'?3'5 2> = vom < v E,'IIJ'IIB’- P M A >

B S

b
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where p = ~23 A=l -2andv= 3/2, 1/2, -1/2, =3/2, is
the helicity of the internal baryon decouplet. The helicity states
of the spin 3/2 particle expressed as a vector sum of the helicity
states of the spin 1/2 and spin 1 particles have been given in the
appendix C by equation (C.15). The spinor part of the spin 3/2
internal particle helicity states has been given by equation (4.49)

and the vector part of corresponding states is given by,

(D w0, i) @ i @) (s

where
. § cos & sin «
g(-) - % -1 5(0) = 0 (4.64p)
2 i sin & cos @

In the equation (4.64a) E' and k' are respectively the energy and
three-component momentum 6f the ;I.nternal baryon and have been given
by equation (4.46). Let € and € be the polarization vectors
associated with the incoming and the outgoing decouplet respectively
and g€ and g*the polarization vectors of the incoming and outgoing
vector mesons respectively. The representations of the helicity
states _ of the incoming and outgoing vector mesons have been given.
by equations (C.13) and (C.14) respectively. For the incoming spin
3/2 particle fhe corresponding helicity states are obtained frem the
equation (C:15) by using (C:2) and (C.10) along with (C.9) and for

the spin 3/2 outgoing baryon we use (C.5) and (C.12) in order to

B ¥ N
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obtain the corresponding helicity states. We now write down the

required vertex functions one by one.

I. This type of vertex functions correspond to the occurrence
of a pseudoscalar meson and a baryon octet at either the vertex b
or the vertex a. = Taking the relevant factors from the equation
(1.89) the two vertex functions are given, by using the equation
(4.63), in the form:

< g} Pq leFflkfv > = %,(1 + 28 ) BVCRRNCOL: Iy
' (+.65)

o 1 2m TR .
P ] n .= —_— ? 3
< \:,k. | 1'1’1 P M2 = o (1 ¥ m )q cu ®uu(k_ ) ukl(pl)

IX. This type of vertex functions result from the occurrence of
a pseudoscalar megpon and baryon decouplet at either the-vertex b

or the vertex a as externa‘.l pé.rticles. Teking the relevant factors

from the equation (’1.91) these are given as follows:
2m
< Ag3 pspalF |k'o> = <1+—>{—€+ 4 +——€ q ;"qu}

x 4, (o) 75 u\,(k").

(4.66)

<o, HFa[plp‘, N> = (l+g>{_§ €+£2-th €. Q}

X ﬁu(k') 7s ull_(Pl)

e e
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IIT. This type of the vertex functions arise from the presence
of a vector meson and a baryon octet at either the vertex b or the
vertex a as external particles. ‘Taking the relevant factors

from the equation (1.90) these are given by,

s Mo} pspzlrblk 50> = —('1'"'21“)6““k 1 Py e &
X ﬁ}‘s(ps)ub(k.')

(4.67)

2m ok
<ok [Fglp, by 2y 20> = — (1 e )é‘l EI ) % !‘;

X @T,0) u, (5,)

Iv. This type of vertex functions arise from the occurrence of

8 vector meson and a baryon decouplet at elther the vertex b or the

vertex a as external particles. Taking the relevant factors from

the equation (1.92) these are given by,

5 Fo|k'so > ?—Ee* +-3—e'f Mg +4 (p)
< A dos Py Py|Telk"s0 -{hmz 2 -qc-qu}ulap,

Q)T e
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< u;k'_|Fflp,_ P [y A, > = {— the+— g" a G.q} (k'

< {GR)e- e u, (@)

(4.68)

Let us now write,

a, = (E' +m)k-(B+m)k'; a, = (n' + m)k + (B + m)k*

h §

(‘*69)
ag = (B* + m)(E +m) - kk*; (B' +m)(B +m) +kk* = a,
X, = J2{<1+%-9>32 -'q-.._-ai—‘.cos ¢_.as}sin¢cos ¢/2H

x = 2 {-(1 + %—5 ) a, + %41 + cos\ u)as} cos @ sin af2

Xy = {2{<1+%>a1+%—( —(1-cos a)a,‘}cosecosc/a

'y
]

Ty

{2{(1+%—’3>a1+-2ﬁ-‘ua‘}sinusin a/2

x, = &{-(1 + ?) [ka.‘ - w—(l - 2 cos a)a, ] + % (E+ w cos o)as}

X cos /2




- """"‘n""""’“ﬂ"?"“ﬁ}
.

=R

S E{-(l +%‘>[kas-w_(1 + 2 cos a)a, ] +
x (B + wcos O)a.‘} sin a/2
(4.70)

1

Von(E + m)(B' + m)

Then for the calculation of the vertex functions discussed above

we require to evaluate them at the vertex b the following results:

ag cos af2 a, sin a/2

(+.T1a)
-a, &in «/2 a4 cos §/2

a cos «/2 a, sin e/2
P o oE (.71b)

a sin o2 - a cos a/2

s:- a{(laf%‘lf) 7.5-%P.£}u

where,
-Xx X -x, X
;(+) Pt gtk ®
Ss mCc X H Sa = cX
x, X x‘ x
X5 Xg
Sio)b = c X
“ X ZXg
(4.TLe)

il S S o s S ATHE L o g atoal Woer L on i w N B gttt e SO S e L 2
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S8imilarly, in order to evaluate the vertex functions at the vertex

a we require the following results:

N ag cos ¢/2 &, sin of2
S:' = Tu = c X (4. 72a)

-a, sin ¢/2 a, cos &/2

-a  cos «/2 s, sin a/2
5y = Ty u m codx. (4.72b)

a, sin af2 &, cos a/2

82 = E{(1+%“)7.g"'-%r.fl'}u

x b X4
1 8 2
Sg+)°' = ¢ X : Sg-)a = e X H
X =X s
Xs Xg
s£0)a = cX (4. 72¢)
- Xg Xs

Having known the vertex functions given by the equations (4.65) -
(4.68) the Peynman amplitudes corresponding to the sixteen processes
shown by Fig. 4.3 with the spin 3/2 particle in the crossed channel
can be evaluated by taking the appropriate combinations of the
above mentioned vertex functions. The contributions of these spin

3/2 exchange Born terms to the helicity smplitudes with J = 1/2 and

Il
g
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J = 3/2 are then obtained by using the equations (h;20) , (4.60) and
(4.61). The contributions of these helicity states ‘to the partial
wave amplitudes are obtained by taking the appropria;f.e combinations
of these helicity amplitudes which have definite total angular

momentum. The total Born terms for the states !‘iit'h. 3w 1/2* and

JP

= 3/2 are then the sum of the contributions of the spin 1/2
exchange Born terms discussed in the last subsection and the spin
3/2 exchange Born terms discussed above. These Born terms
corresponding to the relevant processes we are concerned with have

been used as input forces in the calculations which we discuss in the

following section.

4, The N/D Methods and the Results

As has been mentioned in the section 1 of this chapter, our
objective is to investigate the mass splitting between the baryon

Octet and Decouplet by using the N/D method. In U(6,6) theory the

ba.:pyon Octet and Decouplet being the member of the same irreducible
representation of U(6,6) symmetry are supposed to have the same
degenerate mass. if‘ we use the same degenerate mass by ﬁéing the
U(6,6) vertices in the calculations, then it is expected that the
N/D method will give masses for the baryon Octet and Decouplet which
will be different from the input degenerate mass and thereby will
provide us with an idea as to the mass-splitting of these two SU (3)

multiplets. In the calculation, it is assumed that the SU(S)

T S e ey pmam see awi. . PV .

b
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symmetry is approximately exact so that the masses which we will
obtain by K/D method for the baryon Octet and Decouplet should, to

a reasonable extent, correspond to the SU (3) degenerate masses of
these miltiplets. In the ealculation we have invoked the bootstrap
hypothesis that the forces responsible for the bimding of the baryon
octet and deco{tplet come predominantly from the exchanges of the
multiplets themselves in the crossed (u) channel for each of the
processes that arise from the consideiation of meson~baryon

scattering in the context of U(6,6) symmetry.

The states which contribute to the state J°* = 1/2* are as

follows:

PB

85(2y /5)s §A_(P1/2); FB ¢ —82_(1’1/2)5 D : 8(Pyp)

VB

8By /0r P2y5); §A_(Pl/2’ Psip)s VB : §_(P1/2-’ P2/p)

VD §‘(P1/2, P3/2, F'S/a) 0‘"073)

whér‘e 1'-‘1 /27 P3 /o and F5 /2 denote respectively the P and F partial
wave amplitudes with the channel spin as mentionéd by the respective
subscript. It is thus evident from (4.73) that the calculation for
time 7F a 1/2% state involves a thirteen—channel problem. Since the
contribution of the F-wa.v'e, as discussed in the subsection *a' of
the previous section, is negligible, the F-wave is dicarde;i in the

calculation so that the nmumber of channels reduces to twelve.

Let us consider the states which contribute to JP - 3/2"' state,.

These are as follows:
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PB : 10( /2), PD : 1o(r3/2, 5/2), D : EQ(P;/Q’ Fy/n)s

VB'=1°( 1/2? 3/2, /), VD.lO( 1/2 3/2: 5/2: 3/2, 5/2),

Y £ 100y 50 Po/on Foges Fyger Ty (h.7)

It is thus evident from (h."{h) that the mmber of channels involved
in this calculation is eighteen. The neglect of the F-waves

reduces the number of channels to eleven.

Now, using the determinantal approximation discussed in
Chapter II, the dispersion relation for the denominator funetion
of both J* = 1/2* and T - 3/2* states is given, by using the

equation (2.18), in the form:

(=)
o s o1 o () Dk 27 )
() = B m[u - P (8*) o (5.75)
where,
. k2!+l
pij(s) = 81373_ (+.76)

In deriving (4.75) we have normalised the function DJ(s) at

Em -0 a.nd Bkj(s) in the same equa.tlon denote the.Born terms
that are obtained; as has been discussed in detail in the previous
section, from the exchanges of the baryon Octet with J = 1/2 and

baryon decouplet with I = 3/2 in the crossed (u) chammel of the

L o . : .
v BB o Ll — . e N B e b - eXts, ke

P R VRN SO Gty
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relevant processes concerned. Using, now, the determinantal
approximation the partisl wave amplitude corresponding to the 1j®

channel is given by,

B (s) B (s)
a.J s [} _.i_.k___l‘ﬂ___- l}-'
P G.11)

where D(s) is the cofactor of the determinant of the dencminator

function D(s). If there occurs a bound state at s = s, we have

B
det DJ(SB) = 0 (4.78a.)
On the other hand, if there occurs a resonance at s = 8, Wwe have,
Re det 3(s ) = O (+.78b)

Using the equation (4.75) together with the equations (4.78a) and
(4.78b) we evaluate the masses of the J° = 1/2% and Fu 3/2* states.
Bince the Born terms in tﬁe'integral (4.75) are very divergent we
had to use cut-off in performing the :-lnte_gfations which have been
carried oﬁt by numerical computation. The relevant determinants
have also been evaluated by numerical computation, the zeros of the
determinant having been obtained by graphical method. In what
follows we discuse the results in detail.

The experimental values of the masses of the baryon Octet and

Pecouplet are as follows:

My = 1146.3 Mev. M, = 1384,6 Mev. (4.79)

F U G DU S
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The theoretical results for the masses of the baryon Octet and

Decouplet are presented in the following table:

Table 4,1
Se Mg ¥
Channels |Cut off | U(6,6) |Mass of the Mass of the |AM =M - My
‘Considered |in Bev | Coupling | Baryon Octet | Baryon Decouplet in Me
' £ in Mev. in Mev in Tev
3 15 3091.2 1932.0 - 1159.2
20 - 2183.2 1725.9 - h57.3
30 2118.8 1217.2 - 901.6
L 2 317ll-.9 -
3 2769.2 3149,2 380,0
¥B
5 2196.1 2640,k Lk, 3
Te5 817.9 1835.% 1017.5
10 -1468.3 1410,k
5 1.5 111k.1 3187.8 2073. T
2 - 2691.9
3 50 - 360k,6
FB,FD
b 7.5 1011.0 2614 .6 1603.6
5 20%5,0 2627.5 592.5
PB,VB 3 7.5 1822,5 2260, 4 k37,9
2099.4 598.9

R PR * . [

[ N 51
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Table 4,1
8 | M3 My
Channels |[Cut off | U(6,6) | Mass of the Mass of the AM = My - My
Considered {in Bev | Coupling | Baryon Octet | Baryon Decouplet in Me
2 in Mev in Mev n Tev
2.0 2015.7 2923.8 908.1
¥ | 3.0 13524 2408.6 1056.2
PB,VB 5.0 1912.7 1912.7 0
1.0 1288.0 3091.2 1803.2
5
2.0 - 2324,.8
7.5 182205 b
p)
P 3, PB,PD, 10 1526.3 -
FD,V B, VB ) 7.5 _ 13202
5 3.0 111h,1 1764.6 650.5
2 - 19%2,0
Channels ’

e s o .
.

The _masses of the baryon Octet and Decouplet obtained from the N/D

method by using the determinantal approximation have been presented

in the table 4.1. As the Born terms, in particular, the ba_ryon

Decouplet exchange Born terms are very dvergent, we had to introduce

cut off in performing the integrations associated with the denominator
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function D(s) (4.75) and consequently the results presented in the

above men-tione& table are extremely dependent on the cut off. 1In
;- order to obtain an idea as to the trend. of the mass~-splitting of
the baryons we hm're carried out investigetions taking into account
the various channels, the results having been obtained by the
grephical methods. For each of the calculations involving the
various channels considered we have varied the cut off parameter
8, as vell as the U(6,6) coupling g@*. Corresponding to each of the
combinations of the parameters 8, and & the values of the determinant
of the denominator function D'Tzfs) have been plotted against the c.m.
energy squax;ed. The results :—?or all combinations of the channels
that have been consid-.ered, :ha.ve been depicted by the graphs I ~ V.
The positions of the zeros _c_>f the determinant of the dencitinator
funetions DJ(s) then give the values of the masses squared of the
corresporiding states and in our case the states concerned are
respectively the baryon Octet with P - 1/2* and baryon Decouplet

with 3 = 3/2*.

It is fairly evident from the table 4.1 that when only the PB
chanmnel is considered the mass-splittings for the smaller values of
the cut off 8c and higher values of the parameters 32 occur in the
wrong direction. Higher values of the cut off and smaller values
of & s on the other hand, however cause mass-splittings in the right
direction but the values of the masses of the baryon Octet and

Decouplet are much _higher than the corresponding experimental results.




i~y

20k,

Inclusion of the VB channel with 4 bev as the value of the cut off
parameter and the smaller values of the coupling parameter 32 does
indeed give reasonably good value for the mass of the baryon Octet
but the value of that of the Decouplet is much higher than the

corresponding experimental results.

It is also evident from the table 4.l that reasonably good
results can be obtained _if one considers the channels PoB’ FB, POD,
PD, VOB and VB with cut off around 5 bev and the value of coupling
ga around 3. This combination of the cut off parameter and the
coupling f gives reasonably good value for the mass of the baryon
Octet -although the value of that of the Decouplet is little _higher
than the experimental value. The most striking feature of this
result is that the corresponding value of the U(6,6) coupling g gives

for the pion-nucleon coupling gz the value ginm ~ 20,

NN
Considering the approximation we have used and the very much involved
nature of the calculation we may conclude that the above result is

fairly good.

We have also carried out the calculation taking into account
all the channels that arise from the consideration of the meson-
baryon scattering in the context of U(6,6) symmetry. The results
have been presented at the bottom of the table 4.1. It is clear from
the above results that the forces resulting from the inclusion of the
VD channel ﬁay be 80 repulsive for the J = .'_L/2_ state that the

determinant of the denominator function corresponding to the J = 1/2
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state does not give any zero at all. As the inclusion of the VD

channel gives only one F-wave channel to the J_= 1/2 state, one

ca.nnpt conclude that the above non-decreasing nature of the relevant y
determinant is due to the exclusion of the contribution of the P-wav;es

in the ecalculation.

Considering the very mach involved nature of the calculation
described in this chapter, the results we have obtained for the
masses of the bé.ryon Octet and Decouplet are reasonably comparable
to the experimental ones. 1In conclusion, we may add that the
bootstrap hypothesis, in particular, the N-N* bootstrap of Chew not
only works in 8U(2) symmetry but it also appears to be reasonably
true in higher sMetﬂes as well. Further, we are led to believe
that the U(6,6) theory combining the internal symmetry with the
spa.ce—time‘ symmetries of the strong Interactions of the Hadrons has
provided us with a reasonsbly good basis for carrying out the s-matrix

calculations like the one that has been described in this chapter.
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. APPENDIX A

Phnse—eonvenﬁons and SH(}_) vertices

In writing SU(3) invariant Yukaws type strong interaction
Lagreangians one has to fix the relative phases of the eigenstates
of the multiplets. Determinatiom of the relative phases has
been dlscussed by de Mrék) who has used (hndon—ﬂhortleyej) phase
convention in 8U(3). Following de Swart, we discuss in this
appendix how we have fixed the relative phases of the states of

some SU(3)-maltiplets which we have considered in our caleulations.
The procedures we have followed are as follows:

(1) We first fix the phase (real) of an eigenstate (usually the
state having the highest weight) then determine the relative phases
of the other members of that isemmltiplet By the actions of the

isospin raising or the isospin lowering I t , operators.

Following Condon-8hortley phasze econvention we have,

I+ O(I,Ig,Y) = [ (I_jF IN(Tt I, + 1)]%0(1, I, *1, Y)
(a.1)
(2) The actions of the operators Ut and Vi (1.9) take us to
different isospin maltiplets. Thus, using these operators, we can
determine the phases of the other iso-multiplets relative to that
of the one we started with. As it is in (A.l), the action of V+

on an eigenstate ¢(I,I_ Y) is given by,



II

v+ o(I,I, Y) = a+ ¢(1+%,Is+§;!+1) +a - o(I-%,I_+3,Y+1)

(A.2)
where

ot = { (1+1,+1)[H(p-q) + T+ 3+ 11[3p+29) + I + 5 + 2]

[$(2p+q) - I --!é- ]/2(1 +1)(2I+}.)}% (a.3)
o = {(1-1)0a-0) + T - F Ibprea) -1+ F v 2]
Y 4
[3(2q +p) + T - 35 + 1]/21(21 +1) } (A.4)

where p, q are respectively the numbers of lower and upper indices
of the irreducible tensors symmetric in elther indiees. The
effects of the other operaters V-, Ut ean be obtained by using

the commutation relatioms (1.10).

Y 1Y
- A\j
/ AN
2 _____1 i_ 1 / \
Y 1-———-7 / \
\ / / \
\ / \
pe Is L \ IS
\ /% ,/ \
\ / / \5
\\ ,’ ) 11—~~~ " ~"—7" 2
\ |/
N
Fig. A.la 3 Fig. A.1b

Weight diagram for D3(10) Welght diagram for Ds*(01)
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The operators AE (1.7) can be written in the form:

]
) d
k k
2 F § axk £ n axn

Now, for the three quarks we have the basis veectors X, X5 Xge

Phases are so chosen that we make the following idemtificationms.
Q = x; Q = x; Qy = x, (A.6)

The action of Alz on x is given by,

k k k .
Ayx = 8 x,- 4 B, X, (A.7)

For the three antiquarks we have the basis vectors x', x2, x° .
Phages are to be so chosen that these form the basis of the
3-dimensional contragradient representation. Consequently, we

have to choose the following phases:

61 = -x; 62 = x%; Q = x® (A.8)

Vith the sbove phases, the action of Aj on x™ is given by,

AI: B ow - (6’;l x5 - 61': x*) - (A.9)

Fig. A.2




The irredueible__ pensor for the octet is,

1 1 1,0 |

oy = x ¥, -'}BJ (x y‘) (A.10)
Using (A.7) and (A.9) we have, from (A.10),

A

~ W

ki k i 1 .k
°3 = _aj o, - 8, ’ (A.11)

For the pseudoscalar octet we write,

P, =K P, =Ky Pygowom; P ow ug

v
:
A
L
v
]
s
J
'
e

o’ e - (A.12)

Caleculating the eigenvalues, the identifications of the components

of the mixed temsor 01 with the physical particles with arbitrary

J
phases can be given by,

¢, = "1PJ.; 02 - '1|2P2; ¢f ] qus;

0 = mPy; 0 = nP o: = 7P (A.13)

For convenience we set g = -1, i.e. l’a - -¢f « The other
phases can then be fixed by making use of the actions of I, , Us,
V+ on the various states. In order to obtain the phases of P, and

P‘ we make use of,

e O F



1 2
I-P, = V2P ; A 6 = o -6
1 J6 _
K-P mw —P + —P. 35 A ¢ m 00 -0
1 Jo o s 1 s 1

and the traceless condition 0; + ¢: + 0: = 0. Then solving

forP..andPG
2
°i'¢a J3 s
P m ——; P = -—d,.

s J2 6 J2

Now, determining all the relative phases, the pseudoscalar meson

octet can be written in the matrix form:

?, P,
=4 = - B, - P,
J2  J6
P, P
A P, -.JT‘ + J‘i -2, (A.14)
>
J2
P -P -——7P
° 7 g5 ¢

where the lower and upper indices denote rows and columns
respectively. The vector octet can also be written in the above

form:

et o - A



| vI
W, % _y v
J2 V6 8 1
| v v

- v -=r = -y (A.15)

1 ® J2 46 2 |
2
v -V - |-v
8 7 3_8

where, the physical vector meson-fields have been replaced by V's

in (A.15). These relations are as follows:

V=K; V,=K; V,mp 5 V, =wopy; V, = p

For the baryon octet we make the following assigmments

B, = p; Benn;B-E*;B‘.-Ee; 35-2_

B = Ay; B, w =myg; B = = (A.26)

Calculating the eigenvaluesof the components of the mixed temsor

Olj; (A.10) we can nake similar association as in (A.13) with the
physical particles (4.16). As in the case of meson octets we set
and then calculate the relative phases of the other states.

2
Bs--tl

Finally, we also write the Baryon octet in the matrix form,




vII

B, B

— — - B, -B

J2 6 :

B, B
B w B, -.JT; + J_'; -8, (A.17)
2
BB - B.., - ;B‘

For the assigmments of the antiparticle states we make use of the
following relation:

Y
Ia+-2'
I 11,Y> = (1) {I;m; 1, I, Y > }*

(A.18)
where N denotes the dimension of the irreducible representation

and N* that of the contragradient representation. Making use of

(A.18) we obtain from (A.16) and (A.17) for the anti-baryon octet
the following assignments:

s 6 - -
- ) - ’ - B
J2 ' J6 ° e
B B
=k - » -
Bi - | Bs -JTQ + J—_-é - B.., . (5019)
2
3 A
1 3 [ ]

Qw-_r'mn:;«-.m&wv S

I T U v T P - S
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Fig. A.3 Weight diagram for D'°(3,0)

The fully symmetrised tensor (1.15) of rank 3 and with all the
lower indices is,

D z 4+ z + + + + %
Py 3 [xpvg%y * %75 e s T 5 e 9!
(a.20)
Now, the actions of the operator Al: on the quantities x , vy , z7
are given by (A.5), so that we have,
Akxyz -Skx z ax Sxyz
1 *pe%y p "Pq"y o 1%y p'q"2
k :
-8, x ¥q%y (a.21)

For the states in the decouplet we first make the following
assigmments:

* * » i
D, = N,,; D, = N ; D, = N ; D = K ; D =Y



v
.

JLT NS

RSl

D, = Yg; B, = Y:; D, = e*; D = e*; D, = a0

(A.22)

Choosing arbitrary phases, the physieal particles (A.22) can be

identified with the independent components of the tensor D

) o B 4
(A.20) as follows:

Diay = WD, 5 Dyyp = MDp 3 Dy WP 5

Doge ™ WD, 5 Dy = P, 5 Diog = D, 3

Doos ™ MP75 Dggy = WPy i Dggp = Mgl 5 (a.23)

Dasa - ‘imnm

We choose 7, = 1l, i.e« D = D , for the sake of econvenience.

111
k

The other phases are fixed by the actions of A‘ on qu7 and

using the phase conventions (1) and (2). Thus, we obtain the

following assigmments:

1 113 Dp = “r5nna; D, = “,-3”1225

D w D__.; D w 3D, _; D = 6D

118 . 128

B, = J3D,,; Dy mJ3D,4; Dy = V3D, 5

Dyjp w Dggs (a.2k)



For the anti~decimet states we use (A.18) and obtain the following

assignments:

B, w ' B, = -V35%; B =35,

2
.5, = -F=; 5, . -J'}E-ll‘s; B, = J6 50,

D, = -J3P%%; D = J30%; B = -J3P°;

= - D938 (a.25)

Bl@

Fig. A.ba *  Fig. AJb
Weight diagram for D*3(21) Weight diagram for D*%*(1,2)

A traceless tensor of rank 3 with one upper and two lower indiees

(symmetric in the lower indices) form the basis of 15-plet of

e




sus ¢« Such a tensor is given by66) ’

. .
IDiJ - &(xiyd + xdyi)zk - % [Bl;(xlyJ + X7, )z‘

k 1 .
+ 5J(xiy, +xy)z ] (A.26)
Now, the actions of the operators A1; on the quantities
Yy Jzk are given by,

i m i m i m m i i m
Ay xyyz” = 8 xyz +8, xy,% -8, Xy "%5;1 XY ,%

(a.21)
As explained in the weight diagram (Figure A.la) we can readily
meke the following identifications:

s s
Diy = WD, 5 Dy, =D,

n:a - ﬂ_,.D,,; Dig = MoPio $ Dps = MaDyp

1
Bga = D, 5 Dgg = M,D, (a.28)
We have chosen 7, = 1, i.e. D, = Dfl for the sake of

convenience. The other phases in (A.28) are determined by’ the

same procedure as we have used before. The phases of the other

six states are .obtaine_d by considering the following three trace



ST v
=

XII
conditions:
1 2 s 1 2 8
D11+D21+n81 - 0;_ Dm"'nea'*naz s 0
2 2 s ‘
DigtDpgtBgg = 0 (Ar.29)

Then all the states of the 15-plet are expressed in terms of the

independent components of the tensor D]; 5 (A.26) as follows:

B = BJs--'ls; D, = ",_2”:2; By = n:z; D, = 15,
b, = -0l- ef) s B = 2O - 2n),)

b, = -D;g; Dy = 'J% (DL”’:;) 3

D, = -—6(13:8+n:2), Do = N2 D ;

b
D, = D,; D, = =D (AJO)

Since the states belonging to 15-plet are assoeiatyd with fractional



charge, we cannot make use of (A.Z!.B) to determine the phases of
the states of the eontra.gradieﬁt representa.tien_, Therefore, we
have to follow the same procedure as we have used for the 15-plet

and the results are as followss

= =11 - 2. = o= =11
B, = B ; b, = -J2 37 ns-Ta";’, b, = D,
1 1
B, = — n:"- 2B ; B, = — - 25)")
J3 3
) Te; D — @ +3BY; B hd 2+ D)
7'1’3'J-6-_1 2’8"".]-62 1
- ) w18 | 28 =18 = =28
B, = -J2B°; D, =D -5 ; D, = J2 B,
= 18 8 . = =88 = =88
,nm--J'e(El_+§:)., b, =D, ; D, = B
Y Yt (A-Bl)
b 5. 6 .
2
\
// \\ 3
/
/ \ -4
-2 _k
3 1 3
Figo A.5a Fig. A.5b
Weight diagram for D®*(02) Weight diagrem for D%(2,0)
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A traceless tensor of rank 5 with one upper and two lower indices
(antisymmetrie in the lower indices) form the basis of 6%-plet of

Sﬁs. Such a tensor is given by66)-,_

S:J 'R ; _(xiy.j - in?xk -% [8: .(x‘yd - _J_Y,),_z‘

+ a’; (=¥, - x,yi)z' 1 (a.32)

Let Bk(k » 1, «o. 6) denote the six states (Figure A.5a) of the
6*-5pleﬁ. .Then following the same proceduré as we ha.ve_ used in
the case of 15-plet, we obtain the following identifications:

8, = V283, ; 8 =280, ; 8, = -28) ;

B = -V28,; B, =28,; 5 = J25 (a.33)
By ™ -8,; Bip w -8g; B85, = =8

sfl-sk--sk-o

Por the states belonging to the 6-plet we follow the same
procedure as we used in the case of Gi-plze_-t above. The results are

as follows:

: ., L. N =
K T T o Y LR | S NP
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8 = -JeE®; B, = -28 . ; B, = -2B"
8, = J2 E:S; 8, = 25:'_8 3 B, w -J2 g°

(a.34)
8:2 - -§:2; 8 = -8, 3 S:s - --§:s

ol o

Having determined in the above the fields of the particles
belonging to the irreducible repres;entations of 89 g» We can now
easily write down the SU s~ invaria.gt Yukawa type strong
interaction Legrangians. In what follows, we write down those

8U(3) vertices which we need in our calculations.

For meson-quark scattering with a Qua.rk in the intermediate
th.te the folbwing interaction Lagrangian which we cbtain by using

(r.6), (A.8) and (A.14), occurs at both the vertices
. -« -} - - R
LRQee) = ¥ vy 0, = {PIQ,-PQQ, +PRQ,

1 1
-J_'e- P, _(a‘a.QJ. + QnQa) +P, Q9 + J—g Pe(- Q,9,

+§Q, -2QRy) - P, QQ, + P, R Q, | | 9;55)
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The vertices involving one Qua.rk, one meson a.nd a ls-plet can be
obtained by using (A.6), (A.B), (A 1h), (A.}O) and (A.31) and

“these are as followsz -

_ _ 3 _
L (-¢Q) = 7 B w { Pl_(-nlql + J% BQp + ;E By Qs)
1 _ J3 _
+ B, ( o D.Q, - DQ, - :,-;D"Qa) + ps(-.- D, Q
1 o 1

5 TS °°=*J;” %)

(»fa_ 1 Je _
+ P — Db Q. +——DQ - —DQ
sy P E a3 8t 3

1 D > n .) ( 2 PQ - : D
+—.—_ — - * o - an— _
WL °Q2 ¢ Je * a8 VEY o 2J6 o%

1 : - -
+ B, Q2+ D 2 Q) * P,(Engql'fnsqz.

J3 1 -
- -;— Do Qs) + Pv('j—; Do Q':L -4 P, %

1 _ _
+ ;JTE.’. D]_a Qg le QS) + PB( -i. BJ-J. QJ.

I O, S T I e . B P FT A
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. - 1 _
I'zﬁz ¢D) = ¥ D:B ‘s - {Pl('%'al D), - m ? Dis

4.29219 Qg 19)+P2(J- 1 Pio '&6‘2911

1 . _
2\’-2 Qz n:I.s s 1h) * P‘a(- j'; Q’l De
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The vertices involving one quark, one meson and a 6%-plet can be
obteined by using (A.6), (A.8), (A.14), (A.33) and (A.34) and

these are as follows:
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The vertices involving two nucleons and one meson are obtained by
using (A.14), (A.17) and (A.19). In our calculations we require

the following:
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The vertex involving one meson and tweo decouplets can b_e obtp.ined

from (A.14), (A.24) and (A.25) and is as follows:

v
L@en) = {P(-f}n D, + —;n D, a-’; n7+§5 D,



i | XXTIT

V2 _ 1_ ) (L3 J2

- —B b, - —B. D )+P (55 b - —B_»

‘"‘ 3 6 "9 J-E 8 "10 2' % "2 3 3
Jo

s 2= 1 Ja _
+P(-Enxna+snans’ﬁpsn+?B,B‘
J2 1

-Eﬁsp3- —;Bsns*;TaieBa*' J_'laﬁhnh

s 1 5 1o L es
! —;D7 B7+3J2 % Da)fP’(- ‘J—'; Be D:.+3'D3 Da
1 _ Jo _ Vo _ 1.
-J';D~D3+-;Dens--;B'rns_snena)

e v



3
xxv
11 Ja _
'J—ZBaBe""J-gDSBﬂ"'f;pmnm)
1= Ja _ o o 1
+P,,.(3_Bsnz- -;n,Bs- -;nsns+ f}n,,n“
2 = 1
+50 D, t ~1731:1‘,139)+1v(»—1) D
o _ 1 o N2 _
* ;3332-3D7Da+-5'nsns' "5' o D¢
1—
- J—_;nm ns)} (a.39)

The vertices invelving one meson, one baryon and one decouplet
are obtained by using (A.14), (A.17), (A.19), (A.24) and (A.25)

and these are as follows:
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Again the vertex involving a meson-singlet and two baryon octets

is given by,

L(Ee°B)s = B0 BG o5 = %ro(-ﬁl B,+B B, -3y B,+5 B
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Similarly the vertex involving a meson singlet and two decouplets .

is,

-b, B, +D D, ~D, B, +Dy Dy =Dy D, ~D D )

(a.42)

In the derivations.of the above Lagrangians we have, for convenience,
cmitted the space~time factors which are required to mske these»
vertices Lorentz inveriant. These factors are to be taken into

account wheﬁ we use these vertices in the related calculations,
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Calculations of 8Y ‘ }) Coupling Coefficients

In almost all the dynamieal calculations involving su-(3)
symmetry, we require W(B)-ceupl:i_.ng coefficients. Here, in
this .a.-ppe-ndi‘x, we discuss a method which makes use of the 86(3)
- invarisnt vertices (appendix A) for calculating the pole coefficients
corresponding to a direct chammel scattering diagram. This method
can also be used for the exchange diagram; but it is always
convenient to use the crossing matrix when direet chanmel pole

coeffiecients are known.

Let us consider the case of quark-meson scattering. - There
can oceur, in this case, three poles in the direet-chammel as

shown in the follow—ing diagrams:

Fig. B.1l Fig. B.2
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The method we have used can be described as follows: we

construet a state IN; I Ia Y > 1in terms of the product states

w5 I, I, Y, > [Ny I, I, Y, > of the two particles involved
iﬁ the scattering process. As I, I, and Y are conserved in the
strong interactlons, the state IH; I, Ia’ Y > must occur in the
intermediate state of the above diagrams (Fig. B.1,2,3). We are
then to pick out those coefficients from the two vertices associated
with the above diagrams such that we get, by contraction, the
relevant state |N I IS-Y > as the intermediate state as well as
the related external particles at the initial and theffimal states.
We shall follow this methed to calculate all the SU(3)-coefficients

we require in our ealculations.

For the 3 15 and 6% pole coeffieients we comstrmet the

following states:

1 .
|3;oo-2/3> = |2; Qg > - 2—J_2-[-~/'2|P‘Qs>

- V3|2, q, >+ V3lp, Q) ] (8.1)

, 17 :
J]i55 0 0 -3’5>- = |J:§;_ Dg> = a_JTa [J‘slr‘ Q> - |p7g2>

+ |P, Q > ] (8.2)
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|_6.*, 00 /5> = 6% 8 > = 5 [lqlrz >- e B, >] (.3)

Considering the diagram (Fig. B.l.) and using the interaction
Lagrangian (A.35) we obtain for 35-pole ecoefficient,

<3|3> = %[£+ 3+ J's][%+ J3 4 «/’3]
1 8 8 8
" 5HE "

For the 15-pole coefficient we consider the diagram (Fig. B.2)
and use (A.36a) and (A.3 ) for vertices 1 and 2 respectively.

Thus, we obtain,

by 1 1 3 1 1 ] L
Jo 8¥z eve L 2 adz adzd

<pls> - §[-

For 6* we use Fig. B.3 and consider for the vertices 1 and 2 the

Lagrengians (A.37a) and (A.37b) end obtain the following:

<§*|§f> - %[J%.FJ%][J%*‘ J%] - 1

Thus, colleeting all the above pole-coefficients we have
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<3|3> = %; <15|]15> = 1; <6H6*> = 1
(B.4)

In the Baryon mass-splitting caleulations, we consider the scattering
of Baryons (Octet as well as Decouplet) and Mesons (Pseudoscalar
Nomet as well as vector Nomet). The SU.(B) coupling coefficiencts
which are required correspond to the Baryong Octet and Decouplet
poles in the direct chanmel. Following the. methed discussed
earlier in this appendix we calculate all the 8U(3) eoupling
coefficients that are required in the above mentioned caleulations.

For this purpose, we have to consider the following unerossed

Feynman diagrams:

- “B(Y)
_P(V) B “2(V) “R(V), = »
~ F\ 2 k\ 2 ~
B
B
. _ _ P D P (v - 1 B
- D=2 PO, Tmg B, 3
Fig. B.b - Pig. B.5 Fig. B.6 Fig. B.7

Fig. B.11
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Where, P, V denote the pseudoscalar and vecter octet respectively
and B, D the baryon octet and decouplet respectively. Po, V_o
are respectively the pseudoscalar and vector singlet.

To calculate the Octet and Decouplet pole coefficients for

the pmces-sei invdving pseudosealar mesons (Octet or Singlet) we

can follow the same procedure as we used in the case of quark-

. meson scattering process. As an example, let us ealculate the

baryon Octet pole eoefficient in the process PB — PB (Fig.B.k).

6
For that purpose, we construct the following states 7 s

1
|8; 000 > = £[§|P138>-§|P237>- |pg B, >+ |P, B >

- |p?na>- |"53.>":4‘|P732>+%|P331>]

(8.5)



|8 000> = 5[[P138>-|1>237>+|'r7na>-|p8-31>]

(8.6)

wvhere 8, 8 denote the symmetric and antisymmetric octet

representation respectively.

Using (B.5) and (B.6) we obtain from (A.38b) the following
Baryon Octet pole coefficients: |

a

cole> - 2o, Vo o e 2 b5
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For the Decouplet pole coefficient comsppnding to the same

process (Fig. B.10) we construct the following state:

.1
|10;002> = — [|P,B,>~ |P, B, >] (8.7)

J2
Then, using (B.7) we have from (A.40b) and (A.40a)

<10{10> = R[1+1][1+1] = 2

The above results have been checked against those calculated by

a mumber of author519’68) » Following the above procedure we can
calculate all tﬁe relevant 8U (3) coefficients eorresponding to the
processes involving only the pseudoscalar mesons at both the
vertices. For the processes involving vector meson (Octet or
Singlet) at both the vertices or vector meson at ome vertex and
pseudoscalar meson at the other the situation is, however, slightly
different owing to the occurrence _of two types of couplings
(Chapter I section 3). For this specifie purpose, we write the

relevant vertices im the following form:

For the vector (Octet) at the final vertex we write:

LE o 3) = L@ o By + PL(B oY B¢ ir (8.82)



8imilarly for the vector octet at the initial vertex we have,
- — . - _ 2 '
L (B ’ B) = ¢£(n¢un)j.+ﬂt(nonn)n+31 (B.8b)
Again, for the vector singlet at the final and initial vertices
we write zespectively,

Lp (5«;%) - u"i (B ¢:°B)38 + B_’..f(i ¢;° B)s (B.9a)

Z, (B¢’B) = a. L(Be03) + pf.'f (B 478) (3,9b)

In the above, @, p are the kinematie factors of the vertices
concerned. For the Becouplet, on the other hand, the vertices

are of the same form as with the pseudoscalar mesons. 8o, we need
to ecalculate the coefficients corresponding to only ome type of
meson. Having discussed the relevant procedures and the

notations, we present the results in the following tables:

Table B 1l: B-pole coefficients in the direct channel:

PROCESS POLES POLE COEFFICIENTS
8 ¢ 8 10/3

PP PB| 8« 8 © +ks5/s
8t 8 8/3
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Table B 1: B-pole coefficients im the direct channels:
PROCESS POLES POLE COEFFICIENTS
B s 7o 8 ¢« 8 -5/ 43

L 4
8 & 8 -24J5/43
8 «» 8| 2Js5/3J6
B P 3B
° 18 « 8 +4/376

PP ¢«» PD | 8 > 8 5/2

PB ¢» P B|88 > 8 1/9

PBe> P |8 &> 8 ~J5/342

8 ¢« 8 1081/3
FBe> VB | 8 &> 8 vod5ar + ba5p /3
8.' ~ 8 ||',¢a + _85' /3
8 « 8 2d5ar /6 + 24581 /346
FB ¢>V B . .
® 18 e« & +hat /46 + bpr /346
8 «r 8 -5/3
PB ¢+ VD
|8 8 -245/43
8 <= 8 2451 /346

P Be> VB .

o 8'¢er 8 +J6ar /3 4 242pt /343

PBer VB| 8¢ 8 a*/3 + p*/9

BB &> VD |8 8| - J5/342
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PROCESS POLES POLE COEFFICIENTS
o '8 e 8 -5p'/ 43
> VB .
| 8" ¢ 8 -J15a1§ 2J58Y/ W3
> VB8 s 8 ~Jsa/d2 - J5p1 /32
PP >V | 8 8  s5/2
8 « 8 10p88Y/3
VBe> VB | 8'¢— 8 +2V5a'B + b J5p'p/3
8"« 8 6a'a + lm"p + hop? + 8p'g/3
8 «— 8 2J5a'8/ V6 + 2\5p18/346
VBe— VB : o
°18 e 8| +J6a'a + batp/ N6 + 2p'a/;f6 + hﬂ'ﬂ/5~_f6
8 « 8 -5/ V3
VB «» VD
8 > 8 -J150 § 245p/43
VB VB 8¢ 8| a'a + a'p/3 + p'a/3 + B'B/9
VB WD | 8¢ 8 - V52 -J58/342
VD E>VD 5/2

g
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.:‘ Table B 2: B-pole Coeffieients in the direct chamnel:
PROCESS | POLES S
FB & FB | 10 «—>10 ,
PB&—5 PD |10 & 10 y J_6
PP ¢e—» FD |10 & 10 s
PDcePB |10 10 s
PDe— PD [10¢— 10 ol
PD 20|10 ¢ 10 ”




_ When dealing with the scattering of particles having
spins it is always convenient to work with the helicity
representation_s. of the scattering amplitudes. In order to obtain
that one has to construct the helicity states of free partieles
and thia; appendix will be devoted to that purpose. In our
calclﬂ.ations_ » we are concerned with the two-particle scatterings
_a.nd consequently we require the helicity states of thg two-particle
systems. First, we shall discuss the helicity.-state' of those
single free-particles which we encounter in our calculations and
then constru_ct the helicity states of the two-partiecle systems in
the form which can be conveniently used in obtaining the helieity
representationai of the scattering amplitudes. While discussing
the helicity states of the free particles we agsume that the three-
c@oaent momenta of the particlOes are in the x z -plane so that
we can set the azimuthal angle ¢ = O in our cla.lculationé. The
inclusion of ¢ in the representation, in fact, does not make any
difference in the final results of the caleulation when cne is

working in the cemtre of mass systems. As regards the phases
and the normalisations of the helicity atates we shall mostly follow

the conventions used by Jacob and Wicksa) .



1. Helieity states of spin é- particles :

The four-component positive-energy spinor u with mementum p

is,
1 E+m| : )
ul(p)_ - m X)‘ (c..l)

g-2
where E m VI + 2#; (o. p))(x = 2|p|a. X, » where: ) is called the
helieity of the particle. For spin & particle we have A= *}.
The normalisation constant is so chosen that W w u*ygu = 1.

-In (¢.1) m is the mass of the spin % particle and ¢'s are the
familiar Pauli matrices. For the momentum p in thé z-direction,

the helicity states )& are well known and given by,

on () e () e

The helicity states correspondihg to the momentum p in a direction
making an angle 6 with the positive z-direetion can be obtained by
applying rotation around the y-axis. This is given by the following

relation,
% Z 3 oy
A -. di,l(e) K (0'3)'
p Y ] '

where dé.k(e) is the matrix representation of a rotation by an

angle @ around the Y-exis. This is given b:?o) ,

i

g
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_ d_f._l(e) ‘- cos 6/2 -sin 6/2 (c.k)

WN i }
4

sin 6/2  cos 6/2

Using (C.2) and (C.4), the representation of the heliecity states
of a spin % particle with mcmentum in a direction making an angle 8

with the z-axis are cbtained from (C.3).

cos 6/2 -sin 6/2

2 sin 6/2 4 - cos 6/2 (c.5)

While working in the c.m. syaten; oﬁe requires the representations
of the helicity states corresponding to the momentum p in a

direction making an angle et wit-h the positive z-direction, where
o' m mor x + 6. In such & case the corresponding helicity states

are obtained from the following relatiom
' 8~ .8
X = Z (-1) a5 (0)%, (c.6)
)s' . :

-where s is the spin-of the particle. Here, the phase factor
(-1)® "} 1s introduced for convenience in such & way that for
the particle at rest Ipl = 0, the helicity states corresponding
to the momentum im the megative z(x+ 6) direction reduce to those

corresponding to the momentum in the positive =(6) direction.
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Thus, using (C.2) and (C.%) the helicity states correspomding to

the momentum P in the'.negative g-direction are obtained from
(c.6) given by

- (D) ue () e

The helicity states corresponding to the momentum P ing+ o
direction can be, similarly, obtained and are, |

-ain /2 cos 6/2

xé ) cos 6/2 X__} ) (c.5)

, - sin 6/2

2. Helieity states of spin 1 particles:

Let us _now discuss the representations of the hellcity states

of a spin 1 particle corresponding to the differemt situations

discussed just above. Here, there are three helicity states

vhich are given by,

) { O’Aa(t)}; e(o) - ﬁ { Ikl‘,w:l.,(o)} (0.9.)

where p is the mé.s-s of the particle and @ is the energy such that
ow ¥ K7 + o5,

For tlie momentum k in the positive z-direction,

the representations of the three-component polarization vectors

e a2
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‘l(+): 3(0) are given by,
=] - 0 1
+ . X . (0) () . LI
] u — |-1}3 L) - 0} 3 m = |=i
J2 o | 1 Vo |
(c.10)

The helicity states corresponding to other three situations
discussed in comnection with épin 3 particles can be obtained by
using (C.9) and (C.10) from the relations similar to (C.3) and

(c.6), the rotation metrix di').(e) in this case being,

g R

X 1 ) -1
1 +cos-6 s8in 6 (1-cos 6) .
! 2 e 2
1 sin 6 g8in [
dh.l(e) - |0 T cos 0 - T
(1-eoé ) sin 6 l+cos 6
B 2 J2 2

Al

(e.11)

Thus, for the mementum k in a direction making an angle @ with the

positive z-direction, the representations of the polarigzation

vectors 5‘*) 2(9) are,

S VU T
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(+) " g |-eos o (0) 8in 0
L Nl 3= 0
V2 | e cos 6
: cos 6
=) 1 08
13 - — ~1 (c.12)
Jo |-8in @

Teking into account the phase~factor discussed above, the
' +
representations of n(’) ’ -3_‘0) corresponding to the mementum k in

the negative z-direction are,

W x| o I R
1 = — |-11; ;f - |0 3- w = |-
V2 |, 2 J2 0

(c.13)

vhere, e(@) " :.%{ x|, ~» 3(‘3)}

Following the similar procedure corresponding to the momemtum k

in the direction @ + n with the z-axis we have,

cos O sin 6
AR A 3 - o
-sin 6 cos O
-cos 6
S R
' £ sin @ (c.1k)
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3, Helicity states of spin 3/2 particles:

The four helicity states eorresponding to the spin 3/2
particles are obtained by taking the vector addition of the
helieity states ozf the spin # and spin 1 particles. Corresponding
to the four situations described above, $here will be four sets of
such states. If § denotes a helicity state of spin 3/2 |
particles, then corresponding to any of the four-combinations
that we can obtaln we have,

+)
& = u.€
%

(c.15)

Ly - ;;{ué_e(')-i- J'au_%e(o)}

5_3/2 - u.% G(-)

pﬁ,.‘,.-”‘,\ T
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We shall also require the matrix dl,a(e) , the elsments of which are
obtained frem (C.k) and (C.11) with the help of the related Clebsch-

, - 60 _ :
Gordon coefficients ) o Thus, we obtain the following:

dlta(a) -
3/2 ' 1/2 -1/ =32
-(1+cos 0)cos g, J- (1+eos s)sin ﬁ(l—cos e)eos - -;-'(1-cos e)silng
{2(1+coa e)sin - l(1-3::03 8)cos L -l(1+3cofs e)s'in L4 {z(l-cos 8)cos 2
2’ 2% 2 2 2? 2 2

‘é?(l—cos 0)cos -g, 1(1+3czos o)sin --(l-3col e)ces %(l-l-eos e)si-n-g

2(1—ces 0)ain & %(1—::03 0)cos g, {3(14-(:03 6)sin -g, %(l+cos 0)cos g

2’

(c.16)

k, Two-particle states and helicity representation of the scattering

amplitudes:

Let us construet the heliezl-ty states of twe free particles 1 and 2

with masses m and my, and spins s, and s,. These states may, of

2
(1)

course, be cemstructed as direet product R ¥
$15615~¢; P1)y
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(2) | . '
R¢2’ 02’ _‘2 '*Pglg of the individual states of the above particles,
where R'(i) ' are the rotation operators corresponding to the

®12659-%; '

rotations by the Euler's angles 01, Oi, -01, operating on the i-th
pa.rbiele-. When one i.s dealing with a scattering problem one works
in the C.M. system of the two particles. In (.M. system, we have
P, ® P, =P with zero total linear momentum., If the linear
momentunm R is directed along a direction defined by the angles

6, ¢, then 6, = 9, ¢, m ¢ and 6, = x -6, ¢, = ¢t x and the two
rctations R(l) and R(a) can be replaced by a single rotation R
invelving the total angular momentum J = J, + J, of the two particles.
In order to obtain that one usually tekes the relative momentum p of
the two-particles in the C. M. system along the z-axis. Taking
into account for ene of the two particles the phase-factors discussed
earlier in this appendix we can define a product state for the two

particles,

' X c.1
;o T ¥, ()% (2) (0.17)
vhere the relative momentum p is directed along the positive
z-direction. States with the direction of p defined by the angles

6 ¢ are obtained by applying a rotatioen,
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(c.18)

vhere, A = W is the resultant angular momentum of the two-
particle system, the particle mumbered 2 having been taken iniﬁially
with momentum in the negative z-direction.

Now, the method of eonstructing a state of two particles

having defimite helicities, relative momentum p ; total angular

momentum J with Jz s M 12 well known. Such a state 18 comstructed

as follows:
¥ %
lps T, > = = [92 By, (287) Ryg, Y,

(c.19)

where R 2 By is a rotation operator corresponding to a rotation
through arbitrary Euler's angles a, B, 7 amd Em(aﬂy) is the

corresponding representation and:is givenm by,

Boles7) = HE & () 7Y (c-20)

The integral in (C.19) extends to thoe region 0 <a<2x , 0 <B<m,

0 <y <2x and 2\3 - 'sin Bdedpdy .

Now, substituting (€.18) into (C.19) and performing the

integration over one ¢'s we have,

e o e o B [P < ¥ P P SR b e R e e el e B S o VL S
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s TMLL, > = -uf P (¢,6,~¢)[poo; 22, >dn
(c.21)

wvhere 4fl = sin 9dede .

Now for the product state |plp211)2 > with the independent

momenta for the two particles we assume the following normalisation,
< pLPLMM| P, PaMde > = 8(p, ~ p%)s(p, - pL) 8, .4 B
R1P2 ;‘?|~1~2 1de LS ORI e ¥ Ly W U

(c.22)
Then introducing the new varisbles P = (P ,F) with P = E, + &,

end P = 2, + p, end the two polar a.ngies- 6, ¢ to specify the

direction of the relative momentum p = p. - pp, the scattering

matrix s corresponding to the two~particle scattering can be
written in the form:

< pippbill Rz > = 8,0, -2t g g

x <@ [s[eer, > (c.23)

where, v p and v*, p' are the magnitudes of relative velocity and

the momentum in the C.M. system of the initial and the final states

. respectively.

Equation (c.aa) together with (C.23) then fixes the following
normalisation: .



< e'o'x'xglonlxa > = a(cos @ - cos o') 8(é - o ) )

n¥
(c.24)

The orthogonality relation of the rotation D(azB7) is,

r g -
[dan (¢97) B”‘zmz .&p") 23 +1 b"‘J.“a B 83132

(c.25)
From (C.25) we obtain,
® ] 2

3 (a)a’ -
[ al, (e) () sin Bap 1 S (eee)
. o )

Also, we have,

éz (23 + 1)@(5)&1;(3') = 8(cos B ~ cos B') (c.27)
Now, using (C.24) - (C.26) we cbtain frem (C.21) the following

noma.lisa.tic—m:

<J'M’1'12|JH).12> - aJJ' auw &,

)‘2}'2
(c.28)
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wherewehavechosen Ny {(2J+1)/|H:}% .

Agaim, using (C.24) the transformation matrix ebtaimed from (C.21)

is,

< ou'pél-.r ML, > = 1 x' 51212 Dm (¢,0,~9) (c.29)

where A = ), - 1, and N; is given as in (c.28).

The above (0.29) transformation metrix satisfies the following

unitarity conditions:

f A8 < 000 [TMM I, > <002 [IHA D, >* = B, B,

(0.30a)

Z <082 |TMAD, > < %M [TMA ), > ¥a B(cos 6 - cos 67)

IM
x 8(¢ - o) (c.30p)

5. Representations of 4 (e) matrices in terms of the Legendre
polypomia.ls:
In order to obtain the partial weve amplitude one needs to

eitpress the matriges d (e) in terms of the Legendre polynomials

P, (cos 6). ‘The following matrices are required for our purpose:

e



et

f

Fﬁ:"ﬂ‘-’-’“m~-a—u.. AT,

Rl FEE TP S

T N G T BT T g, e i g BT e
4 k =

LIIX

J 1 |
dﬁ(e) - 2 cos /2 [ PJ'% * P‘T'% ]
S (6) J@-3)(3+ 3/2)1% [ 1 0 W1p
32 8% % \l1rcos 0)ain gf2 L g+ 9*H2 T I+ }
1 1
el S ST ] (c.31)
R (6) 1 [ J-% » . 3(3 -3) °
3/2 32770 T y(1+cos 0)cos /2 Lg+1 32 T 5 I
. 3(7 + 3/2) (7 +3/2)

Te1 9% T ’J-s/a]

The other elements of dJ(e ) are obtained from (A.3l) using the
following symmetry relations:

J , . J - A . J A ' J :
Gu00) =y 06) = (AL () = ()T, L (0)
d':u(e) - (-1)7 ai,_ﬂ (n-6) (c.32)

The above representations of the matrices dJ(e) will be very often

‘used in the calculations of exchanged Born terms.
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APPENDIX D

Some Useful Relations for the Caloulations of Exchange ‘Born Terms
We bo;ve »

E'* = E-w; k' w2k cos 68/2; E'2 = k'@ +1n® (p.1)

a, = (B +m)k - (E+m)k’; a, = (B' +m)k+ (B+mk

(p.2)

ag = (E+m)(B' +m) -kk*; aq = (B+m)(E' +m) + ki’
(D.3)
Ew VIE+nl; v ou i@+ F (D.k)

Let, c = (B +.m)(E' + m) (p.5)

Then using the above relations we cbtain the following:

a.i-l-a.z = Ue(EE' - n®); & - a° = de kk'
- 1 2 .

.2
(p.6)
a, .8, = 2nec (B -E.')
aas + a: w ho(EE' + nf); aas - a.z‘ = -Ukk'c
| | (5.7)

ag 84 = 2mc(E + E')

_‘:_‘HM...«.__:"‘}--_*-"
:

Ceatemd £ oseafe. = o e s

.
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a.a8e = 2me(k - k?)
- | | | (p.8)
a, 84 = 2mc (k +x*); o e, = 2¢(B% + Ek')

(alk - a.aE)a + (a k - a‘E)a - hmae(EF' + m®)
_ ) , : (5.9)

(s,lk - aalg)2 - (ak - & EF = ke kk'

~bme (EB' + n?)
(p.10)
a.s(a.ak - a k) - a..,(alk -af) = b mekk'

a.ll(aal.:_ - a‘]!) + a.z(a.lk ~ a.sE) - -hmckE'

a.‘(aak ~ agE) + a4(e,k - aaE) = -lpPc(E + B')
(p.11)
a‘(azk - a B) -~ as(a.lk - asE) - 0
(a,k - asE) (azk -aE) = 2n%(E + E')

(p.12)

a (a.k-asE) - hmck'E

8, 8y = 2¢(B'k - Ek'); X
2
as(a.ak - aE) + a.‘(a,lk - asE) -
a (s k - a.E) -
r
rumtor, . — - v S T

PR S Y S

I T P S LV MU S Sy PR
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al(alk - asE) + ae(a.gk - a‘E) - -.-hmzck

al(alk - a.sE) - a,(ak - a,‘E)_ - lLmzck.'

+
&, ag a.a a,

= ke BE'k

= b Ek?

= dmeck

= bmck?

et o PRIk T Fe e e ke nd o

R m e e

V1

(D.13)

(D.1h)

_(n-ls)
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