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AB8JHAOT 

We study the consequences of the applications of the 'Bootstrap1 

hypothesis to the Unitary Symmetries. The groups SU(3), 80(6), 
U(6,6) and their applications to the strong Interactions of the 
Hadrons are discussed in the f i r s t Chapter. In the second 
Chapter, we discuss some of the methods that have been used i n the 
past in dynamical (bootstrap) calculations. 

In the third Chapter* we consider the P-wave quark-pseudosealar 
meson Octet scattering and investigate whether the existence of the 
three quarks, Q, which belong to the splnor representation of 00(3) 
and are supposed to have fractional charges, can be explained in a 
rolf-oonsistent scheme. The calculation shows that there exists a 
reciprocal bootstrap relationship between quarks, Q and some other 
particles, Q* which have the baryon number l/5, spin 5/? and belong to 
the 15-dlmeneioiiftl representation of 8U(3), Using the determinantal 
method the selfr-conslstent values we have obtained aret R̂ *<* 2k99 Nev., 
n̂ «fti 5251 Mev*, g* * 22 and gj '» 38, where M̂ , and gjj, gjj are 
respectively the masses and couplings of Q and Q*. 

In the fourth Chapter, we consider the meson-baryon scattering 
in the context of U(6>6) symmetry and study the mass-splittings of the , 
baryon Octet, and Decouplet by K/D method. I t i s assumed that the SU(3) 
symmetry i s approximately exact so that the masses of the baryon Octet 
and Deoouplet obtained by using, the U(6,6) vertices iff the calculation 
should correspond roughly to their respective SU(3) degenerate masses* 
Although the results are very much cut off-dependent, the calculation 
shows that by varying the cut off, &0 and V(6,6) oouplittg* parameters 
i t i s possible to obtain the mass-splittings In the right direction. 
Considering the very much involved nature of the coagulations* one may 
conclude that the results agree reasonably well with the known experimental 
facts. 



The S-matrix theory f i r s t proposed by Heisenberg 1 has played 

a very important role in explaining the dynamics of the strong 

interaction of hadrons. A considerable number of strongly 

interacting particles i s new known. In the early attempts to 

deal with these particles theoretically, one usually followed the 

line of attack that proved so successful i n quantum electrodynamics. 

In such a treatment, one usually chooses a simple Lagrangian with 

renormalised couplings and given masses and other physical 

observables are calculated by a perturbation expansion. This 

power series method has been successful in electrodynamics where the 

coupling i s small but with the stronger interaction the theory runs 

into d i f f i c u l t i e s which arise due to the divergence of the power 

series expansion. I n fact, when some of the particles are 

resonances or bound states by analogy with the nuclear physics, the 

perturbation expansion does not converge at a l l . I n view of these 

di f f i c u l t i e s that one encounters while dealing with strong 

interaction, the need for a modified approach was strongly f e l t . 

Such an approach which works even where the perturbation expansions 

f a i l , was provided by the S-matrix theory. The main reason for the 

success of the 8-matrix approach l i e s i n the fact that i t provides a 

meetbg ground between theory and experiment. As a matter of fact, 

a l l the experimental information i s related to the scattering 

matrix, S. 



Ignoring same possible parameters which one can introduce 

into S-matrix but which cannot be determined by S-matrix theory, 

a l l strongly interacting particles are assumed to be dynamical 

composites of each other in S-matrix theory. One may, then, try 

to determine the properties of these particles by studying directly 

the properties of the S-matrix. I t i s assumed that the scattering 

amplitudes are analytic functions of the energy and the momentum 

transfers except for the singularities that are associated with the 

unitarity conditions i n the three channels. (The other approach 

of considering the scattering matrix as analytic functions of the 

angular momentum has led to the proposition of the theory of Regge 

poles and from the view-point of this theory a l l strongly interacting 
2) 

particles are assumed to l i e on Regge trajectories '.) The 

singularities i n the physical region of any of the three channels 

are connected with the unitarity of the S-matrix i n the physical 

region of the channel concerned. The forces waeh are supposed 

to be responsible for causing the scattering arise due to the 

exchanges of particles i n the two other crossed channels and 

consequently the singularities in the unphysical regions of a 

scattering channel are connected with the unitarity conditions in the 

physical regions of the relevant crossed channels. The 'nearby* 

singularities arise from the lighter systems that can be exchanged 

in the related crossed channels and the 'faraway* singularities 

correspond to the exchanges of the heavier or the multipartiele 



configurations. The range of the forces i s roughly inversely 

proportional to the masses of the systems that are exchanged and 

the strength of the forces corresponds to the discontinuities of 

the amplitude across these branch; cuts or to the residues of the 

amplitude evaluated at the positions of the poles i f the 

singularities arise due to the occurrence of the poles. Thus, by 

studying the analytical properties of the scattering amplitude, 

one can determine, at least in principle, a l l the properties of 

the strong interaction and indeed of the strongly interacting 

particles. 

Following the above procedure, one may try to determine the 

couplings and the masses of a l l the particles that may exist in 

nature but as the above programme i s very complicated, one has to 

make some approximation in the calculations. These approximations 

usually consist in the considerations of the two-particle states 

i n the unitarity relation and of the exchanges of single particle 

or the lightest possible systems in the crossed channels. Bootstrap 

mechanism i s one of such approximate methods i n which one imposes 

the self consistency requirement in order to evaluate the couplings 

and the masses of the particles. In other words, one assumes i n 

such calculations that a l l the strongly interacting particles are 

dynamical composites of each other with the binding forces coming 

from the exchange in the relevant crossed channels of the particle 
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themselves and In consequence one deals with a self-supporting 

mechanism which makes the calculation much simpler. This idea of 

bootstrap mechanism arose in the early work of Chew and Mandelstam^ 

on rot-scattering. The most striking feature of the rot-scattering 

i s the p-meson, the I • 1, J • 1~ resonance at about f60 Mev 

with a width of about 110 Nev. I f we consider mi-scattering, the 

lightest system that can be exchanged i n the crossed channel i s 

that of two pions. As the low energy mt-seattering i s dominated 

by I • 1", J ml" resonance, one may assume that the two-pion 

system i n the crossed channel also prefers to be in the above 

resonant state. Forgetting that p-meson i s unstable, one may 

consider the contribution of the p-meson exchange and thereby use 

the mass and coupling of this particle as the respective input 

values i n the calculation. Assuming that there i s no other particle 

in the state I • 1, J • 1", one further imposes the condition that 

the values of the input mass and coupling of the particle under 

consideration be equal to those of the output mass and the coupling. 

This i s what i s demanded by the self consistency requirement. 

Following the above procedure, the self-consistent values obtained 

by Zaehariasen for the mass and width of p-meson were roughly 

350 Mev and 110 Mev respectively. The above calculation was carried 
5) 

out a b i t further by Zaehariasen and Zemaelr ' who also considered the 

effects of the 7u>-channel and the results they obtained for the mass 



and the couplings of the p-meson were i n reasonably good agreement 
with the experimental ones. 

The bootstrap hypothesis was further extended to reciprocal 

bootstrap by Chew^ i n connection with the H-H* problem. In th i s 

hypothesis, the nueleea N I s assumed to be a pion-nueleon composite 

with the dominant force coming from the N* exchange and vice versa. 

This problem has been investigated, i n some detail, by Abers and 
7) 

Zemach ' who have calculated the mass and coupling of N33 resonance. 

In spite of the limitation of the caleulational method used, the 

results they have obctained are i n reasonably good agreement with 

the experimental ones. 

The reciprocal bootstrap hypothesis of Chew has also been 

applied to SU(3) symmetry '. In the SU(3) symmetry scheme, the 

eight spin £ baryons and the ten spin 3/2 baryon resonances belong 

respectively to the eight and ten dimensional irreducible representations 

of S9(3). In the pseudoscalar octet and baryon octet scattering 

both the i n i t i a l and the f i n a l states of both the direct (s) channel 

and the crossed (u) channel consist of the irreducible representations 

which are obtained from the reduction of the direct product of two 
octets and these are as follows: 8 ® 8 « 1+ 8s + 8A +10 +10* + . 

a 

I t i s , therefore, evident^ from the above reduction that^reciprocal 

bootstrap relationship between the baryon octet and the decouplet 

may exist. This aspect of SU(3) symmetry has been investigated by 
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9) a number of authors ' who have shown that such a reciprocal 
bootstrap relationship between the baryon octet and the decouplet 
does indeed exist. 

10) 

Being encouraged by the success of the above and other ' 

30(3) bootstrap calculations, we have carried out an investigation 

in order to examine whether the existence of the quarks'*"^, which 

i n the simplest scheme belong to the three dimensional 

representation of SU(3) and have fractional charges, can be 

explained i n a self-consistent scheme. This problem has been 

discussed in chapter I I I . We consider the quark and the pseudo-

scalar meson octet scattering and adopt the *bootstrap' hypothesis 

in which a l l the strongly interacting, particles are supposed to 

be composites of each other. In~ particular, we have used the 

analogy.with the IMS* bootstrap of Chew and i t s SU(3) extension 

discussed above. 

In chapter IV we consider the meson-baryon scattering i n the 

context of U(6,6) symmetry"^ and investigate the mass-splitting 

between the baryon octet and the decouplet by using the well_known 
19) 

N/D method of Chew and Mandelstam . I t _ i s assumed that the 

SU(3) symmetry i s exact so that the mass of the baryon octet 

corresponds to the average mass of the eight spin baryons and 

that of the baryon decouplet to the average mass of the ten spin 
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3/2* baryon resonances* As these SU(3) multiplets belong to the 

same ^-dimensional irreducible representation of 3(6,6) symmetry, 

they are supposed to have the same mass from the view-point of 

U(6,6) theory. How, JLf the U(6,6) vertices are used in the 

calculations, then i t i s expected that by using the N/D method, as 
10,1^) 

has been used by a number of authors ' ' i n order to obtain the 

mass-splittings of SU(3) multiplets. we shall, to a reasonable 

extent, get the SU(3) degenerate masses of the baryon octet and 

decouplet. I n our calculations, we have followed the hypothesis 

of H-M* bootstrap of Chaw and consequently considered that the 

forces responsible for the binding of the baryon octet and decouplet 

come predominantly from the exchanges in the crossed (u) channels 

of these Sff(3) multiplets thesmselves. This problem, i s i n fact, 

a multi-channel one. The method of constructing the exchange 

Born terms and other complicated aspects of the problem have been 

discussed i n the above mentioned chapter. 

In Chapter I , we have discussed the 8U(3)> 80(6) and U(6,6) 

symmetry theories. Special emphasis has been given on the 

discussion of how the baryons and mesons are assigned to the 

irreducible representations of these groups. I n particular, we 

have discussed i n detail how the U(6,6) baryon-meson vertices, which 

we use i n our calculation, are constructed. Chapter I I has been 

devoted to the discussion of some of the methods that have been used 



10, 

in dynamical and, In particular, i n the bootstrap calculations. 

We have discussed the advantages and disadvantages of the different 

methods and specially-mentioned the details of the method we have 

used i n our calculations* 

I n any calculation involving higher symmetry, particularly, 

the 80(3) symmetry, one needs to f i x the phases of the eigenstates 

of the multiplets of the symmetry concerned. This i s required 

for writing down the SET (3) vertices which can be used i n 

calculating the 3U(3) coupling coefficients. The Appendices A 

and B have been devoted to that end. I n the Appendices C and D 

we have mentioned the details of the helieity formalisms and given 

some useful relations which f a c i l i t a t e the calculations of the 

exchange Born terms which have been used i n the investigation of 

baryon octet and decouplet mass-splitting. 



11. 

CHAPTER I 
Unitary Symmetries 

1, The Group SU(3) and I t s Applications to the Particle Physics. 

a. The Spinor Representations and the Generators of SU(3): 

The basic representation of the group SU(3) i s formed by 

three quarks 1 1^, Qa* %> whose wave function we denote by • , 
15) 

a m 1, 2, 3. In analogy with Sakata Model , we take q.x and q^ 

as isospinor with zero strangeness and* q,3 isosinglet with minus 

one strangeness. The assignment of minus one strangeness quantum 

number to the isosinglet necessarily follows from the fact that we 

are to construct the states of the strange particles from the fields 

of the basic ones. We then assume the invariance of the strong 

interaction under a transformation 
• -» u f (1.1) 

where the transformation matrices u are taken to be unitary as well 

as usimodular. The set of such matrices u form a unitary 

unimodular group, denoted by 89(3) and, in particular, these matrices 

form the 3-dimensional representation of SU(3). The unitary and the 

unimodularity properties of ̂ hese transformation matrices are 

respectively given by, 
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u*u • uu* « 1 (1.2a) 

det u • 1 (l.2b) 

In SU(3) there i s an inequivalent three dimentional representation, 

called the contragradlent representation and i s denoted by 3* The 

three antiquarks, q x, q^t q 3, are taken to form the basis of this 

contragradient representation. Denoting the wave-function of the 

antiquarks by V(« • 1> 2, 3); the transformation properties of the 

antiquarks are, 

* -» t u " 1 (1.3) 

where vT1 i s the inverse of the transformation matrix u. The 

relation (1.3) follows from the transformation properties of the 

contragradient vectors which we, here, associate with the anti-

particles. 

The group 80(3) i s a Lie Group, and, as i t i s evident from 

(l.2a) and (l.2b), involve .8 real parameters which vary In a 

continuous fashion thus giving rise to the elements of the group 

which l i e infinitesimally close to any given one. Moreover, the 

group SB(3) i s also compact Lie Group. From the l a s t property of 

Stt(3) i t followcs that any f i n i t e dimensional representation of 

SU(3) i s , by Weyl's 1^ famous theorem, equivalent to a unitary 

representation. Therefore, the transformation matrix u can be 

expressed i n the form, 
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u m exp(i ^ F ) I* 

where the summation over the repeated index i s Implied. The 

are real and the P^ are the generators of £RJ(3). In SO (3) there 

are 8 such hermitian and traeeless operators, and i n this particular 

representation these are, 3 x 5 hermitian traeeless matrices, the 

traeeless property being followed from the unimodularity condition 
8) 

of the transformation matrices u. Gell-Mann ' has given such a 

set of 8 hermitian traceless matrices which are the following/ 
p 
1 

- * 0 1 0 F 2 - * 0 - i 0 F 3 1 0 0 
1 0 0 i 0 0 0 -1 0 
0 0 0 0 0 0 0 0 0 

- \ 0 0 1 - } 0 0 - i f. 0 0 0 
0 0 0 0 0 0 0 0 1 
1 0 0 i 0 0 0 1 0 

p. 0 0 0 
0 0 - 1 
0 i 0 

P, 8 
1 

2 V3 
1 0 0 
0 1 0 
0 0 - 2 (1.5) 

where we have chosen the normalisation such that Tr • 1/2. 

The set of above matrices satisfy the commutation relation, 

(1.6) 

where f . i s completely antisymmetric i n i t s indices and vanishes 
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whenever two indices are equal* The values of the f . h a v e been 
ijJt-

given by Sell-Maim . Corresponding to an arbitrary N-dimensional 

representation of SU(3), the above generators F^, (i«l, 8) 

are N x D matrices and also satisfy the same commutation relation 

(1.6) with the same structure constants f ^ ^ * Sometimes i t i s 

convenient to work with a set of nine real hermitian and traceless 

operators which i n SO(3) space has the following representations. 

Kh3 - v 8 ^ - * v B i d
 ( 1 - 7 ) 

where (ASt)* • A* and AJ + k% + AJ - 0 so that only 8 of them 

are independent. The commutation relations which the above 

operators (1.7) satisfy are very simple and given by, 

[A* ih - (1.8) 

where, u, x>, X, p • 1, 2, 3. 

We now use the familiar technique of considering the 

infinitesimal generators of S&(3) to be operators which have 

physical significance. F i r s t l y , we note that the group 8U(3) 

i s of rank 2. Thus, we can construct only two independent and 

mutually, commuting operators from the infinitesimal generators 

of SB(3). These operators can, therefore, be simultaneously 

diagonalised i n any representation. Again, we know two operators, 

namely the hypereharge and a component of the isotopie spcln 
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operator which commute with each other. Thus, we can cheese two 

of the diagonal elements to be the hypereharge T and the third. 

component of the isotopie spin I3» The choice of I 3 i s purely 

conventional and just fixes the direction of quantisation of the 

isotopie spin. The other components of the isotopic s$in do, in 

fact, commute with T hut not with I . Thus, they cannot he 

simultaneously diagonalised with I 3 . 

Let us now consider the eigenvalues of I g and Y i n the 

t r i p l e t representation. We have already seen (1*5) that there are 

two operators B"3 and F Q which are diagonal and commute with each 

other. P 8 i s already in the fSrm which account for the isotopie 

spin content of the t r i p l e t . For the hypereharge T we redefine 
R) 2 

F 8 i n analogy with the Octet model ' as Y • F 8 • Following 

these prescriptions we write down the eigenvalues of the oasis 

vectors of the t r i p l e t representation in table 1.1 in which we also 

mention the baryon number and charges which we calculate by using 
17) 

the Gell-Mann Nishijima formula '. Eigenvalues of these 

operators corresponding to the eontragradient representation are 

also mentioned i n the same Table 1.1. 
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Table 1.1 

Particles Basic 
Vectors S N T Q 

V • i 1/2 o 1/3 1/3' 2/3 

*• *b -1/2 0 1/3 1/3 -1/3 

•a 0 -1 1/3 -2/3 -1/3 

/ 
• 3 

-1/2 

1/2 

0 

0 

0 

1 

-1/3 

-1/3 

-1/3 

-1/3 

-1/3 

2/3 

-2/3 

1/3 

1/3 

From the six non-diagonal operators i n (1*3) we can obtain a set 

of six isotopie spin and hypercharge changing operators. As a 

result, we can establish the relations between the operators in 

(1.7) with those i n (1.5) as follows: 

1+ - A* - F x + i F 2 ; I - - A* - F x - i F £ ; 

I 3 - £(Aj - A^) ; U+ - A* - F e + i F 7 ; U- - F 6 - i F 7 

1 

V a - £(i a
 + i * ) ; T - -A® (1.9) 
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From (1*8) and (1.9) we obtain the following commutation 

relations: 

[ I a , 1+] - ± 1+ ; [ I a , W+] « f £*J+ . [ I 8 , V+]- ±$Vt 

[Y 1+] « 0; [Y U+] - ± U±; [Y, 7±] - ± V ± (1.10a) 

[ I + I - ] - 2 I a ; [ Vf U-] - - I 3 + I Y; [V*, V-] - I g + | Y 

V+] m U + ; fr-1+] - V- 5 - V- ; 

- V+ ; [v+,U-] m 1+ ; [U+,V-] - I - (1.10b) 

The relations (1*9) and (lJD) are extremely useful i n determining 

the relative phases (which we discuss in the Appendix A) among the 

elgenstates as well as in calculating the eigenvalues for the 

Casimir operators of SO (3) corresponding to an irreducible 

representation of SB(3)• 

We also note that there i s a difficulty in the classification 

of the eigenstates i n a representation with only Y and I 3 as 

diagonal, the reason being that i n some representations more than 

one state may have the same Y and I a . This incomplete 

classification i s the result of the fact that the group SET(3) i s 

of $ank 2 and has 8 generators. Therefore, we need £(8 - 3x2) 
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i.e. one more operator which commutes with T and I g and does not 

commute with a l l other generators of the group. But as the group 

SU(3) i s of rank 2 we cannot have any other linear operator 

commuting with T and I . Therefore, we have to consider the non-

linear operator | l | 2 which commutes with T and I g and not with 

the other generators of SB(3)» Thus, a complete identification 

of the eigenvectors i n an irreducible representation of 80(3) can 

be obtained by specifying for each eigenvector the corresponding 

I , I _ , Y eigenvalues. 
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b. The Irreducible Representations for Mesons and Baryons: 

I n the l a s t section we have discussed the two inequivalent 

spinor representations of 8(7(5). The bases of those two 

representations are respectively the three quarks and their anti-

particles. The philosophy now i s to construct a l l the states from 

the fields of the three quarks and their antipartieles. The 

states so constructed from the t r i p l e t s , i n general, form the 

bases of some irreducible representations of SB(3). The job i s 

then to identify the states of a particular irreducible 

representation with a set of physical states, i.e. particles, 

resonances, etc. For that matter, we have to look for the sub-

quantum numbers that a particular representation contains and 

find a set of known particles which possess those quantum numbers. 

As the transformations of SU(3) commute with the space-time 

transformation, the particles which we assign to a particular 

representation must have the same spatial properties, i . e . spin, 

parity, baryon number etc. In particular, the particles belonging 

to a 80 supermultiplet must have the same mass. In other words, 
3 

the particles forming a supermultiplet are indistinguishable from 

the point of view of exact symmetry. However, the group has a 

set of operators which allow us to allocate different symmetry 

quantum numbers to the various members of a supermultiplet. As we 

have discussed before, these quantum numbers are I , I , Y which are 



20, 

sufficient for the complete identification of the various states 

i n an irreducible representation of S(J(3)« 

Let us now go back to -be quark-model and construct the 

various states which we shall identify with the set of known 

particles. F i r s t , we construct the states for the pseudosealar 

and vector mesons. As these particles have zero baryon number 

thdr corresponding states can be constructed from the quarks and 

antiquarks combination. Thus, we expect a representation for 

either of the mesons in the direct product 3 X 3 representation. 

The technique of reducing this direct product representation i s 
18) 

well known so that we have, 

1 ® ^ - 1(±>8 (1.11a) 

I n terms of the wave functions of the quarks and antiquarks we 

have, 

*"*p - * 6p * X * x
 + { ^ *p ~ * B£ * X * X } 

- i 8^ t X * x + •£ (1.11b) 

In ( l . l l b ) the f i r s t term i s the trace of the mixed tensor of rank 2 

and has only one component which transforms l i k e a scalar under 

StJ(3). The second term i s a traceless mixed tensor and has only 

eight independent components. The additive quantum numbers I a and 

Y of the tenser *^ can be calculated from the corresponding 

quantum numbers of the components of the constituent quarks. We 

then find tjbait $he eight dimensional irreducible representation 
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formed by the traceless mixed tensor <t>p consists of two isotopie 

doublets (Y • 1, - l ) , one isotopie t r i p l e t (Y • 0) and one 

isotopic singlet (Y m 0) and a l l these states have zero baryon 

number. We can, therefore, associate them with the pseudosealar 

as well as the vector mesons. For the pseudosoalar mesons we 

make the following identifications: 

P* - * a : K° (l.jL2) 

A - 4 « 5 0 

^6 8 V6 3 

B 2 

where the identifications of the la s t two i n (1.12) can be obtained 

by using the traceless property of the mixed tenser and orthogonality 
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condition of the states «° and n. The pseudosealar meson octet 

can then be written i n the following form: 

^2 f6 ' 

K° 

(l,12«) 

Similar associations can be made with the eight vector mesons and 

written in the same form as (1.12*)• Thus, writing the mixed 

tensor for the eight vector mesons as , we have 

a 

o 
fL + 3* 
^2 f6 

1 

K*" 

(1.13) 

where OQ i s a mixed state of the two physical isosinglets • and <D. 
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This admixture of the two states appears when the pure SU(3) 

symmetry i s broken We might as well speculate that the 

isosinglet member of the pseudosealar octet could be an admixture 

of the isosinglet n(55°) and the recently discovered isosinglet 

X°(960). However, from the large difference i n X?, TJ masses, 

the amount of the mixing i s assumed to be negligible. 

Ve now construct the states for the baryon and baryon 

resonances. As the quarks have the baryon number l/3, we need 

three or the multiple of _three quarks to form the baryon states. 

Considering the product of three quarks* wave functions we have, 

•« \ " V[«BX] + *[«B]X + *[BX]« + B
{ a p x } 

W h 6 r e V [ « 3 X ] i« completely antisymmetric in i t s indices, <r [ a p ] 

are antisymmetric between the interchange of the indices a B and 

^{«BX} i S e o n 5 , l e t e 1 ^ symmetric. The tensor • [ e t p ] ^ has eight 

independent components, and Efgg^) has 10 independent components. 

Now, using the Levi-Civita tensor €*^ 8 we can write, 

»; - ^ w 
where i t can be shown that i s traceless. We can associate the 

8 baryons namely, N, A, £,H with the various components of the 

traceless tensor • Consequently, the baryon octet can also be 
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written in the matrix form, 

L° A 

^2 + f6 

1 1 
T E ° + T A 

p 

- — A 
^6 

The completely symmetric ten sor D_ can be expressed i n terms of the 

wave-functions of the constituent quarks as follows: 

- [ •« \ + Vx x« + *x *« "B + \ *(. *. 

• •(> •« \ + •« \ *p ] fr-1') 

From (1.15) the normalisation constants for each of the ten 

independent states can be calculated. Thus, we obtain the 

following identifications: 

D m 5 N # + " ^ " 5 B " o ; H»° - ^5 DBS>1 ; 118 "221 

I * " » D Y* 
" 282 ' 
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(1.16) 

e. The Baryon-meson Yukawa type strong Interaction Lagrangians 

and P/D Ratio : 

One of the consequences of the assignments of various 

particles to different SB(3) multiplets i s that we can couple them 

together and thereby establish seme relationships between their 

coupling constants. In order to see how these relationships are 

obtained we consider the strong interaction between the baryon 

octet B and the pseudosealar octet F and write down the Sflf(3) 
B u 

invariant Yukawa type strong interaction Lagrangian between them. 

The vertex we are going to consider i s of the form BBP , where B 

i s to be obtained from (l.lb)-by taking transpose of the matrix 

B̂ t> with bar; thiB i s necessary for the conservation of the 

electric change. Further, the interaction Lagrangian we construct 

has to be invariant under Lorentz transformation as well. However, 

we assume that these factors are always taken care of and confine 

our attention to only symmetry dependent part of the interaction. 
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Before we proceed to write down the baryon-meson vertex l e t 

us consider the general Yukawa type coupling of the form Mx Ms 

where these three M*s belong possibly to different representations 

of SU(3). The method of constructing such an invariant 

Lagrangian i s well _ known i n relation to the isotopic spin symmetry 

where we consider the Yukawa type coupling of the form HNx , where 

N i s the nueleon doublet and % the meson triplet* As the pion i s 

an isovector i n the isotopic spin space, we must construct a 

vector from N and N. Such a vector i s of the form N T N where T 

i s the familiar Fauli matrices i n the isotopic spin space. Then 

the SO(2) invariant interaction w i l l be of the form, 

iNTN.s (1.17) 

where i has been added to make the interaction hermitian. Here, 

we note that there i s only one method of constructing a scalar i n 

the same way as there i s only one way of constructing a vector 

from two spinors. The Bame procedure can be applied to the case 

of SU(3). For the interaction of the form M1 Mg M& we have to 

construct the representation contragradient to M„ from the direct 

product of Mx and M̂ . This JLs obvious from the fact that only the 

contragradient representations have a scalar representation in the 

decomposition of their direct product. As in (1.17), there must 

exist an operator (called isometry) which w i l l allow us to construct, 
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out of the product of M1 and Mg, a representation that .transforms 

eontragradiently to Ma under SHT(3). In fact, there exist as many 
3 

such operators as the representation contragradlent to M„ occurs 
s 

in the reduction of thejdirect product representation of and Mg. 
8) 

This i s exactly how Gell-Mann obtained, i n connection with 

Baryon-meson interaction, two types of vertices namely, the D and 

F respectively. The B and P types are respectively symmetric 

and anti-symmetric under the interchange of the two baryons. As 

the 3^(3) symmetry cannot distinguish between D and F type one has 

to take an arbitrary linear combination of the two. We shall, 

however, write our interaction Lagrangian between the Baryon and 

the pseudoscalar mesons in a slightly different way which i s 

convenient i f bases of the representations care known in terms of 

the irreducible tensors. 

In our ease, both the baryons and the pseudoscalar mesons are 

given in terms of the mixed tensors (1.1*0 and (1*12*). As the 

trace of a tenser i s invariant under SU(3) we construct traces of 

the product BBF. But there are two ways in which we can obtain 

this trace as a consequence of which we obtain the following 

invariants: 
1 u « X 

L - B ° P ^ Blf 
2 U t) X 

(1.18) 
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Instead of (1.18) i t i s customary to consider the following 

combinations: 

L ( 1> - L + 1^ (1.19) 
int 1 * 

which are symmetric and antisymmetric respectively under the 

interchange, B f* B. The general interaction Lagrangian i s , 
(t) 

therefore, an arbitrary linear combination of I i ' which we 
int 

write as: 

L i n t " fr*^ ^ 2 « | + F l / ~ * j - (1.20) 

where we have multiplied with a factor in order that we 

obtain (D + F)g • g ^ ^ , where experimentally g ^ R ~ 15 i s known 

Without the loss of generality, we may choose g « (15)^ i n which 

case the experiment restricts the coefficient D + F • 1. Thus, 

(1*20) can be rewritten i n the form, 

L i n t " ^ 2 . g ^ (1 - F) t r (BBP + BPB) 

+ F t r (BBF - BPB) j - (1.2C?) 

We can calculate the traces i n (1.201) and express them i n terms of 

the fields operators (1.12*) and (1.1b) with appropriate phases 

(Appendix A). We, then, arrange the different parts i n such a way 
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that on comparison with the most general haryon-meson interaction 
19) 

Lagrangian we obtain the following relations between 12 baryon-

meson coupling constants, 

SM% ™ "" g E K ™ g 

8NJ3C " ~ g * • ( l " 2 F ) g 

2 (1-21) 
(1 - ?)g 

1 
%Nt, " g AK " - " * F ) g 

1 
%AK " * t, * - ^ ^ + 

Unfortunately, of a l l these coupling constants, only one, namely , 

g^jj^ » 15 i s accurately known. However, i t _ i s possible to 

make an indirect estimate of P. Such an investigation has been 
19) 

carried out by Martin and Wall who considered the process 

B + P -» B + P taking into account only one baryon exchange, 

They varied the value of F to get the H* resonance at the appropriate 

energies. The values of F which gave the best f i t was « , the 

corresponding F/B ratio, being l / 3 » 
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We can similarly couple the vector mesons to the baryons and 

obtain relations between the various coupling constants in the same 

manner as above, involving again the F/D ratio which has to be 

determined by an indirect method* Therefore, the question arises 

whether we can write these couplings i n terms of just one. 

Theoretically we would _ just like to eliminate one on the basis 

of some other consideration or another postulated invarianee. 

Neeman thus obtained the F-type interaction only for the vector 

mesons _by imposing the gauge invarianee principle. Gell-Maon, 

on the other hand, tried to introduce R-invariance. As D and F 

couplings are respectively symmetric and antisymmetric under S 

operator this invariance would demand the existence of D alone. 

However, in the case of 3 boson couplings, one of the two types 

i s automatically excluded on account of charge conjugation 

invariance and the fact that the particles and the antiparticles 

appear simultaneously i n the boson octets. Thus, the three 

vector, mesons or one vector and 2 pseudoscalar mesons vertices 

must be F type while 3 pseudoscalar mesons or one pseudoscalar 
20) 

meson and two vector mesons vertices must necessarily be D type 
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d. The Symmetry Breaking Interactions and Mass-Formulae: 

Exact SU(3) symmetry demands that the particles said to form 

a supermultiplet must have the same degenerate mass. Bat this 

does not happen to be the case i n nature and, therefore, one has 

to consider the breaking of the symmetry. The breaking of the 

symmetry then allows the mass degeneracy to be removed and we are 

expected to obtain the correct mass-spectrum from the symmetry 

breaking. I n order to find what i s the source which causes this 

symmetry-breaking, l e t us go back to the history of the charge 

independence theory. In the charge-independence theory i t was 

supposed that the particles with very nearly the same mass form the 

isotopic multiplet and that the correct mass, spectrum would be 

obtained i f we did include the effects of the electromagnetic 

interactions which do not observe charge-independence. In SU(3) 

symmetry, we likewise assume that so far as the strong interactions 

are concerned the particles having very nearly the same mass may 

be grouped into SU(3) supermultiplets and that when we consider the 

symmetry breaking we shall again be able to remove the mass-

degeneracy. I n this case, however, the situation i s slightly • 

different. Here, neglecting the weak interactions altogether, 

our hierachy of interactions consist of the very strong, the medium 

strong and the electromagnetic interactions. The very strong 
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interactions, as we have already assumed, are invariant under 

the transformations of the f u l l group SB(5). On the other hand, 

the medium strong interactions are assumed to be inrariant under 

the subgroup 311(2)^.(5) U(k) y of the f u l l group Sff(5). The above 

subgroup i s then assumed to contain a further subgroup which 

leaves the electromagnetic interaction invariant. Thus, the 

complete removal of the mass degeneracy can be supposed to take 

effect i n two stages. In the f i r s t stage, the medium strong 

interactions are turned on. As the medium strong interactions 

do not have the symmetry of the very strong ones, the super-

mult iplets w i l l decompose into various isotopic multiplets. The 

mass-splitting in this stage i s sueh that although SU(3) i s 

broken, the isotopic spin I and_hypereharge T are s t i l l conserved. 

In the second stage then we switch on the electromagnetic 

interaction which completely removes the mass-degeneracy resulting 

in mass-splitting between a l l the members of the SO(3) super-

multiplets. However, the third component of the isotopie spin 

I g , and the hypercharge; are s t i l l conserved in this interaction. 

The most troublesome interactions are the weak interactions whi,ch 

destroy the strangeness s conservation as well. Finally, only 

charge and barypn numbers are conserved. Thus, the total 

interaction Lagrangian of the Hadrons can be written in the form, 

L. , - I + I + I + I (1.22) int vs ms em w 
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where 1^, 1^, 1^, 1^ are respectively the very strong, the 

medium strong, the electromagnetic and the weak interactions. 

We shall, however, discuss the effects only of the medium and 

electromagnetic interactions. 

Let us consider the medium strong interactions which are 

responsible for the breaking of the SU(3) supermultiplets into 

the isotopic multiplets. As i s well known, this interaction 

i s considered as an operator, Xg, that must commute with the 

isotopic spin, strangeness and the nucleon number operators I , S, N. 

This restriction i s highly reasonable as we are s t i l l i n the realm 

of strong interactions where the strangeness and the baryon 

number are conserved and any non-commutation with I w i l l result 

i n the mass-splitting between different members of the same 

isotopic multiplets. Now, the mass splitting due to this 

interaction can be written in the form, 

where D i s an arbitrary irreducible representation and f any 

vector in i t s basis. Let us now discuss what more restrictions 

we can impose on the operator T^. The conservation of the 

isotopic spin I requires the operator Tg to be an isospin scalar 

such that under S0(2)j i t transforms as an isospin singlet. 

Further, the conservation of hypercharge T and the condition that 

AH (1.25) 



i t i s an additive quantum number demands that the hypercharge 

carried by the operator must be zero. Thus, summing up we 

find that the operator T M must transform as an isosinglet with 

Y • 0. There are quite a few, namely, the irreducible 

representations 1, 8, 2J, 6ji ... etc. which contain a state 

having the above quantum numbers. To the f i r s t order 

approximation, only the 1 and 8 contribute. Therefore, we 

can express T M as a linear combination of the operators 

corresponding to the 1 and 8 dimensional representations, 

T M m T ^ (I - Y m 0) + T ^ (I - Y - 0) (1.2U) 

just gives a constant term in (1.23) and the traceless 

octet operator i s given by, 

where A£ are generators of SU(3). From (1.2^) i t i s obvious 

that we need only the Tg component of the tensor T£ . Considering 

only Tg^we can express the quantities in the right hand side of 

(1.25) i n terms of I , Y etc. We then obtain f»m (1.23) using 
8) 

(1.2*0 and (1.25) the well known Okubu mass formula ' , 

M - m + 
o 

i x Y + fflg [ 1(1 + 1) - ̂ Y 2 ] (1.26) 



35. 

where mQ, m^, are arbitrary constants. Let us now consider 

the application of the formula to the various sets of particles. 

We f i r s t oonslder the baryon octet N, A, £, S for which we 
8) 

obtain the well known Gell-Mann-Okubu ' relation, 

iiv^ + m^) m i(3m A + iaE) (1.27) 

Taking ~ 938.9* * 1192.9, * A - 1115.H, m_ »1317.6 

and the average octet mass m Z 1152 we find, 

•i-^Cmjj + ma) * i(3m A + « , . } ] ^ 1* 

The Oell-Mann-Okubu mass formula i s , therefore well satisfied 
Y 

for the baryons. For the Deeeuplet, however, we have + j 

and the formula (1.26) reduces to, 

M • ma + mhY (1.28) 

where mfl • (mo + 21^,); m* • (mx + J ^ ) * The formula (1.28) 

then predicts equal spacing between the isomultiplets of the 

Decouplet. From experiments we have m^ • 1238; m^ SS 1385; 

m^g* m 1530; mfl- « 1675 and the spacing from (1.28) are the 

following, 
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At the time when SB(3) was hypothised, the 0" particle had not 

been observed. The above formula predicts i t s mass to be 

mQ « m_ + 1̂ 6 ts I676 which i s in remarkable agreement with 

the value eventually determined. We now consider the applications 

of the mass-formula to the pseudoscalar and vector mesons. As 

the mass of the boson occurs i n the Lagrangian i n the form u 2, 

|i being the mass of the boson, the mass M in (1.26) should be 

replaced by ft*. Also i n order that m^ • mg we require the 

coefficient of Y in the mass formula to be zero. For the 

pseudoscalar meson we then obtain, 

mK " * ( 5 , B ? + B £ ) ( 1 , 2 9 ) 

which i s reasonably satisfied. We now consider the nine vector 

mesons p, K*, K*, <a, •. The masses of these particles are 

respectively: mp » 763; \* *» 89I; m̂  « 1020; and 
mtt> M ^ e c o r r e s P o n d i n 8 1 0 8 , 8 8 f o r m u l a i s > 

where m i s taken as the mass of the isosinglet member of the 
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vector octet. From the above we have m S 93° Mev. This 

value corresponds to neither the • nor the to. Now considering 

• o as the pure I • Y «• 0 SU(3) singlet we can write the physical 
8) • and to as mixtures of the an and ' states: o ° 

• • sin 0-oo cos 6 o o 
(1.31) 

CD » t cos 9 + m sin 8 o o 

The mixing angle 6 i n (l* 3 l ) can be estimated from the •, to decay 

width or else by diagonalising the mass matrix. An approximate 

value of the mixing angle i s 0 S t h0° . 

Mass formulae corresponding to the second order T 3 T s (in 
+v» PI ̂  

fact n order ) have also been worked out. However, we then 

obtain too many coefficients and we cannot, i n fact, derive any 

relationship between the masses in a representation. We shall, 

rather, not go into that matter any further. 

The mass-splitting among the members of the same isotopie 

multiplets of the SW(3) multiplets have been discussed i n the past 

by a number of authors®'**2^. We just quote the famous Olashow-

Coleman relation, 

M(Er) - m(SL°) • m(E") - m(2*) + m(p) - m(n) (1.32) 
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Experimental results give m(p) - m(n) « 1.29 Mev. 

m(zT) - m(L*) » 8.25 * «5 Mev. These yield the mass 

difference for m(3~) - n ( g 8 ) s 6.96 ± .5 Mev which seems 

to agree rather well with the experimental values obtained so far. 

2. The SU(6) Symmetry for the Hadrons 

a. The 3(7(6) Supermultiplets and the Baryon-meson Yukawa Couplings 

The group 33(6) as the symmetry group for the hadrons was 

f i r s t proposed by Gflraey and Radicatti and S a k i t a 2 ^ independently. 

This i s a group of a l l the unitary unimodular transformations in 

some six dimensional complex space and has a subgroup S&(3) (x)80(2) 

which can be identified with the direct product of the SU(3) 

symmetry group and the ordinary spin group. From this point of 

view, this theory can be regarded as an extension of the 

supermultiplet theory of the nucleus of Wigner ' who classified 

the Nuclear levels according to the irreducible representations 

of the group m(k) which has a subgroup Sff(2).j.(x)Stf(2)j which i s 

the direet product of the isospin and ordinary spin groups 

respectively. Neglecting the Coloumb and the Non-central 

forces, Wigner f i r s t of a l l assumed that the forces between two 

nueleons were invariant under the transformations of the product 
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group SU(2)j ® 3^(2)j. He then made the further assumption that 

the forces responsible for the binding of the Nucleus were spin lso-

spin independent so that i t w i l l be invariant under the f u l l group 

S9(k) whieh contains the product group SOf(2)I(x)S0f(2)J and 

transforms the four objects/ pf, nf, pj and njr among themselves. 

Now, with the help of the quark model of the hadrons, the extension 

of 80(k) to 30(6) i s obvious. Here, we consider the 

transformations on the following six-component objects, 

(1.33) 
«.t 

where the arrows indicate the ordinary spin states of the quarks. 

We then assume that the strong interactions (usually called the 

forces binding the quarks to form an elementary particle) are 

SU -spin-spin independent so that they are invariant under the 
3 

group SU(6) which transforms the components of the fundamental 

sextet among themselves. The particle states are then classified 

according to the irreducible representations of SU(6). The 

irreducible representations of SU(6) are, in general, reducible 



under the subgroup S0(3) x Sll(2) and consequently the SB (3) and 

spin contents of an Irreducible representation of the f u l l group 

are obtained by reducing i t with respect to the product group. 

For that purpose we specify the irreducible representations of 

SB ( 3 ) ® SU(2) by a set of two numbers (a a ) , denoting the 

dimension of SU(3) and SU(2) respectively. Now any irreducible 

representation A of 8U(6) can be written as, 

A - (o a) + (3 b) + ... (1.3^)_ 

where A i s the dimension of any irreducible representation of 

SU(6). Thus, (1.3^) provides the SU(3> and SU(2) multiplet 

content of the supermultiplet A. Obviously, the arithmetic 

equality A « a a + 0 b + . . . must be satisfied. 

As i s well known, the sextet (1.33) forms the b a s i s o f the 

fundamental representation of 33(6), The generators of SU(6) for 

this representation can be taken to consist of the following: 

KK3 - v 8 « J ' « < 8 « E U * , ) 

where u, t>, i , j • 1 . . . 6. The eigenvalues of the sextet 
» 

corresponding to.the operators I _ , Y and J (third component of the 

ordinary spin) can be expressed i n terms of the generators A|* as 
x> 

follows: 
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A . ) (1.35) 

'a - £(A^ • A* + A* - A^ - A* - A^ ) 

The basis of the six-dimensional contragradient representation 

i s formed by the following six objects: 

V 

(1.36) 

V 

We now construct the states of the mesons from the basic 

fields of the fundamental sextets. The mesons which are regarded 

as bound states of quarks and antiquarks in the S-state are 

assigned to the 35-dimensional representation of SU(6) in the 

decomposition, 

6 ® I . l + 25 (1.36) 

The 35-dimensional representation can be further reduced with 
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respect to SB (3) (g)Stf(2) to obtain the SfJ^ a n d ^ c o n t e n t o f t n e 

35-plet. The general method for the reduction of an irreducible 
representation of the group SU with respect to the subgroup 

25) SO (2)SU has been discussed by a number of authors '. The m w n * 
above case i s very simple and the resultJLs, 

35 - (1, 3) + (8, 3) + (8, 1) (1.37) 

From (1.37) i t i s clear that the 35-plet of SU(6) contains 

an octet of pseudoscalar mesons (0~), and a nonet (singlet + Octet) 

of vector meson ( l ~ ) . We now construct the bascis tensor of the 

35-plet in terms of the corresponding ones of 80(2) and SU(3). As 

we know already, the basis of the 35-plat i s a traceless tensor 

4u (A,B a 1,6) which i n terms of the corresponding ones of 

SU(2) and Sff(3) can be expressed as follows: 

(1.38) 

where i , j • 1, 2; e, 0 • 1, 2, 3; and (1.38) represents the 

decomposition (1.37). Let us use P p, V ( l ) and V p(8) for the 
octet 0", singlet 1~ and octet 1~ meson wave function respectively. 

Then (1*38) can be rewritten as, 
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v£ (f) " ^ 8 J V(l) + v£ (8) (1.39b) 

where the wave-function has been so normalised that 

< • • > - »J m < p p > + V(l).V(l) + < V(8) V(8) > 
(i.ko) 

Let us now construct the states of the baryons which are to 

be obtained $from the corresponding states of the three quarks as 

follows: 

6 ® 6 ( g ) 6 m 20 + 5_6 + 70 + jG ( l - t a ) 

where 20 and 5j> are respectively completely antisymmetric and 

symmetric in the interchange of any two quarks states. The 70-plet 

has the symmetry of the type [2,1]. Again the SU(3) &nd SU(2) 

contents of the above irreducible representations are: 

20 m (l,h) + (8,2) 

56 - (8,4) + (fe,4) (1.^2) 

70 m (1,2) + (8,2) + (8,M + (10,2) 



I t i s clear from (1.1*2) that 56-plet contains an octet of 

spin l / 2 and a decouplet of spin 3/2. Therefore we can assign the 

8 baryons and 10 haryon resonances to the 56-plet of SB (6). But 

this assignment goes against the requirement of the Fauli principle 

i f we assume the baryons as bound states of three quarks in the 

8-state and i f the quarks obey Fermi-statistics. However, the 

ratio of the magnetic moments of the proton and neutron and the 

mass-splitting obtained from the 56-plet are in much better agree­

ment with the experimental result than those obtained from the 

20-plet which would have been i n consistence with the Fauli 

requirement. I t i s because of these reasons that the baryons are 

assigned to the 56-plet. How the wave-function of the 56-dimensional 

representation can be constructed from the SU(2) and SB(3) wave 

functions as follows: 

*ABC s *i«,^,kr " V f * , i j k + ^ f e {€«06 € i j ^ ,k 

+ S>6 £ A + €7«5 S i < j } ^ 3 > 

where D _ . ., i s completely symmetric with respect to Latin and apy,13k 
Greek indices separately so that i t represents a decouplet of spin 

3/2 wave-function. 

Let us now calculate the effective current which transforms 
l i k e 35-dimensional representation of 8U(6). This current J * > can 

A-
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be obtained from '56* baryons and antibaryons as follows: 

Substituting the expression of and t^jjQ i n t o ( l * 1 * ^ ) * the 

effective current i s given by, 

4' • C - *",»'i,3k W -1 £4' < 5»> 

[ 3(N7»d ) * ' + 2 ( 5 ? ^ )£' - ojjf < N N > ] j . 

(1.^5) 

where 

< 5 B > - ?to*iSk* 

<HJS> m i f HJ 
a p 

(1.1*6) 
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Now the interaction Lagraagian (Yukawa type) between a l l the 

baryons and mesons i s , 

I t i s well_known from the f i e l d theory that the^seudoscalar 

meson-baryon coupling i s of the form t 7̂  tjr • which in the static 

(as in the case with SU(6)) limit reduces to ( ijf 0 t ) . V • ; 

while the vector meson^baryon coupling i s of the form •^••p 

which reduces to t t * o " Hence from (1.^5) we find that i n 80(6) 

the vector mesons couple to the baryon i n an F type coupling; 

whereas the pseudoscalar mesons have both D and F types occurring 

in the ratio F/D • 2/j. 

b. The Symmetry Breaking Interactions in SU(6) 

The mass-splitting i n SU(6) can be considered i n the same 

way as i t was done i n SU(3). Neglecting the weak interactions 

altogether as before, we can consider, therefore, the effects of the 

medium strong and the electromagnetic interactions in the removal 

of the mass-degeneracy of the SU(6) supermultiplets. We f i r s t 

discuss the effects of the medium strong interactions and shall 

consider the electromagnetic interactions later i n this section. 
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As we have discussed i n relation to SU(j), the medium 

strong interaction said to be responsible for the symmetry breaking 

can be considered as an operator T^. We can now assume, as some 
26) 

authors ' have done, that this mass operator transforms under 

SU(6) a s a n I « Y » » J » 0 eigenstate. Then the above operator can 

be expressed as a sum of the operators corresponding to various 

irreducible representations which contain the eigenstate I • I • J • 0. 

A few low-dimensional representations which contain the above eigen­

state are 1, j g , 189> ^05 etc. Therefore, we can write T R i n the 

form, 
T„ * T X ( I m T m 3 « 0) + T 3 s ( l - Y • J - 0) 
M 

+ T * 8 8 ( l m Y - J • 0) + T*°5(I - Y - J - 0) 

+ + 

Then the mass-splittings are given by the matrix elements of the 

operator T^ i n (1.^8) between the same state of any irreducible 

representation of SU(6). Kuo and Yao2*^, however, assumed that 

to the f i r s t order, the mass-operator T^ transforms as the 

I Y • J • 0 state of the regular representation of SU(6). The 

tensor operator.they have used, i s the SU(6) version of Okubu's 

operator and i s given by, 



T£ - a 0 8^ + a x + a g(A.A)J + a3(A.A.A)J + a4(A.A.A.A)J 

+ a_(A.A.A.A.A)1* 

where the are the generators of SU(6) and the ai's depend only 

on the Casimir operators of the group* The components of the 

above operator contributing to the mass-splitting i s according to 

the above assumption T 3 + • 

Let us now discuss the mass-splitting i n 35-plet by using 

the above operator Since j£i occurs twice i n the 

decomposition, 

S * S " l + 22 + 35_ + l§9_ + 280 + 280* + k0£ (1.50) 

only the f i r s t three terms in (1.^9) contribute to the mass-splitting* 

Thus, 

AM - < 35|T£|35 > - a e + a x < 35^35 > + a g < 35|(A.A)|J|35 

(1*51) 

From (l . 5 l ) we can calculate the contribution of T| + T* to the 

mass-splitting. The mass-formula obtained by Kuo et a l i s , 

M2 - mo + n^Y + mgl" 2 J ^ ( j ( x ) + l ) + fcl* - C B^ ) 1 (1.52) 
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where i s the quadratic Casimir operator of the SU(U) 

subgroup of SU(6). i s the spin of the strangeness bearing 

quark. The other components of this vector are, 

(1.53) 

- A 3 

•» 8 

J < X ) - l / 2 ( A j - A j ) 

Using (1.53) we can calculate the eigenvalues of the operator 

J • for the various members of the 35-plet. Using those values 

we can get the mass-relations which was obtained by Kuo et a l . 

The meson-mass relations are: 

m 2 - m 2 (1.5M 
( B p \ y t 

The relation (l . 5^c) i s the well known Gell-tfann -Okubu formula we 

obtained in relation to SU(3). However, the appearance of the 
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relation (l.5*<a) shows that the mass formula (1.52) requires 

improvement. For this reason Beg and S i n g h ^ considered the 

contributions from the operators corresponding to the representations 

169 and U05_ as well. The f i n a l formula they obtained i s , 

M - a + bY + c [ 2 J < x ) ( j M + l ) + 7 Y 2 - C L W ] + dCL(5> 
h 2 2 

+ e J ( J + 1) + f [ j W ( j M + 1) - + 1) ] 

+ g[ Kl + l) - 7 Y 2 ] (1.55) 

where i s the quadratic Casimir operator of the subgroup 

SO(3). i s the spin of the non-strange quarks. The other 
-»(N) 

components of J % ' are. 

. + A* 

J aw . i(At - A; +4. A; > 

Again the operator J in (1.55) i s defined by 

7 - j «• »w 
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such that J 3 - + J 3 

The consequence of the mass formula (1*55) i s that the relation 

m * « m 8 . disappears and at the same time the other relations in AD p 
(1.5^) which compare well with experimental results are retained. 

Moreover, for the 56-plet, the mass formula (1.55) reduces to the 

very simple form given hy, 

M m mo + mx J ( J + 1) + Y + ma [ 1(1 + 1) - ̂  Y 2 ] 
(1.57) 

This i s Just the Okubu formula with a spin J part.Using the above 

formula we can obtain the relation, 

M s - Sr. - I &L - V " V - V (1'58) 

The experimental values of the l e f t and right hand sides of (1*58) 

are 270 Mev and 293 Mev respectively. 

Let us now discuss some SU(6) results obtained i n the fields 
28) 

of electromagnetic interactions. Chan and Sarkere 7 have 

considered the electro-magnetic mass-corrections of the various 

isomultiplets within the 56-plet. They assumed that the electro­

magnetic mass operator transforms l i k e a spin singlet i n the spin 

space and like the charge operator Q i n the BU(3) space. The 
relations they obtained for the Baryon octet are: 
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K^- - Wgf - (Mn - Mp) - (Q° - a") (l.59a) 

Mj.- - Mj.. - - H.° (L59b) 

The mass relation (l.59a) i s the same as i n SIT(3). This i s the 

famous Coleman-Slashow relation which i s i n very good agreement 

with the experimental results. The relation"(1.59b) i s a new 

prediction of 33(6), The values of the l e f t and right hand sides 

of (l.59b) are fc.75 Mev and 6.5 Mev respectively. Thus, the new 

mass relation i s also in good agreement with the experimental 

results. 

Electromagnetic vertex of the baryons have also been discussed 
29) 

i n the past. As shown by Sakita " the effective electromagnetic 

interaction of the baryon (in the static limit) i s of the form, 
H e f f " 3ej* • - 3u"j *H (l.6o) 

where • and H are respectively the external electrostatic potential 

and the magnetic f i e l d , and ̂  and are respectively defined by, 

Again m i s given by (1.̂ 5 ) • I n (l.6o) e i s the charge 

and u i s the magnetic moment of the proton. Substituting (1.^5) 

- * * » * " - - ' - — * * - - . • , •.. - . . . . ^ . ^ . - M ^ , . 
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into (l.60) we can obtain the relationships among the total 
magnetic moments of the baryons. I n particular, we can obtain the 
ratio of the magnetic moment of proton and neutron. The value of 
this ratio obtained by Sakita i s , 

up/un - - 3/2 (l .6lb) 

The above result i s one of the important achievements of the Stf(6) 

symmetry. 

3. The U(6,6) Symmetry for Hadrons 

a. The Supeia&ultiplets of Baryons and Mesons and their Yukawa 

Coupling. 

As we have discussed i n the l a s t section, the ordinary spin 

in the SU(6) theory i s considered on the same footing as the 

isotopic spin and hypereharge. This i s possible only i n the non-

re l a t i v i s t i c theory as in the case of Wigher's supermultiplet 

theory. Then the question arose as to whether the SU(6) theory 

which has had so much succesqin relating the internal and spin 

properties of the observed particle-multiplets, could be extended 

to the r e l a t i v i s t i c domain. As a result, many attempts were 

made in the past to find a larger invariance group which would 

incorporate the SU(6) i n a r e l a t i v i s t i c a l l y covariant manner. 
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Notwithstanding many di f f i c u l t i e s _ i n the r e l a t i v i s t i c generalisation 

of SU(6), however, the groups SL(6c)^°^ and U(6,6)*2''1^ were 

proposed i n early 19̂ 5 a s two possible approximate dynamical 

symmetries for a phenomenological description of the hadrons and 

their interactions. Both SL(6c) and U(6,6) are non-compact 

groups and. therefore, one has to face the same difficulty in 

obtaining the f i n i t e dimensional unitary representations of either 

group. The group SL(6c) i s a group of 6 x 6 complex matrices 

of determinant unity and contains SU(6) as one of i t s subgroups. 

Consequently, the l i t t l e groups of SL(6c), as shown by Rilhl are 

SU(6)^ which determine the multiplet- structure of 8L(6c). The 

inhomogeneous ISL(6c) group i s a semi-direct product of the homo­

geneous SL(6c) and an invariant Abelian subgroup of translations 

T s 6 i n 36-dimensional (generalised) space. On the other hand. 

the group ll(6,6) i s the group of 12 x 12 complex matrices and as 
32) 

shown by many authors^"' the maximal compact subgroup i t contains 

i s of the type U(6)(g)U(6) (Honehirial 5 5^ ) . Therefore, i t i s 

the group U(6)(g)U(6) which determines the multiplet-structure of 

U(6,6). The inhomogeneous IU(6,6) group can, as shown by Charap 

et a l . , be obtained by taking a semi-direct product of the 

homogeneous U(6,6) and the translation group T 1 J | 4 i n 1^-dimensional 
32) 

space. I t can be shown that SL(6c) i s a subgroup of JJ(6,6). 
1 

Further, as the subgroup of translation T contains T S 6 as a 



55. 

subgroup, the lahomogeaeous ISL(6c) i s also a subgroup of the 

inhomogeneous IU(6,6). From these points of view, we can conclude 

as claimed by Rfihl^ 2' that every prediction of SL(6c) model w i l l 

also be implied by U;(6,6) model. We shall, however, consider only 

5(6,6) and discuss some of i t s consequences. 

The group 8(6,6) appeared i n many different names proposed 

by various authors* 2''* 7. We shall, however, confine ourselves 

i n our discussion to the theory formulated by Delhourgo, Salam and 
12) 

Strathdee • We start with the basic representation which 

corresponds to three quarks each having four components as Dirac 

particles. Let ^ A be the 12-component wave-function denoting 

the fields of the three quarks. Then under a transformation of 

u(6,6) we have, 

where, A • 1,2 . . . 12. S i s a 12 x 12 matrix and, as i s well 

known, forms the spinor representation of U(6,6). Expressing i n 

terms of the Ikk generators of U(6,6) we have, 

sj - exp i [ ^ F K ] J (1.63) 

where K • 1, . . . lUk. The € K | s are real and Fg* s are the 

generators and i n this spinor representation these are 12 x 12 
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matrices. Since U(6,6) contains the direct product of U(22) 
9(3) as the subgroup, the generators F R can be expressed as the 
direct product of the generators_pf these subgroups. Thus, we 
can write, 

where R » 1 . . . 16, i • 0 . . . 8. The I* R are the generators of 

V(22) and can be taken to consist of the following 16 Dirac 

matrices, 

r_ • 1, 7 t a ** ^ b 7 1 * ±77 7 (1.63a) 

where, £ are antihermitian in our representation and 7 Q hermitian 

with the representation 7 Q • (1,1,-1,-1) dlag. The metric 

tensor i n the Lorentz space i s g ^ » (1,-1,-1,-1) diag. The 

above h x k Dirac matrices satisfy the relation, 

7 0 r j r 0 - r H (1.65b) 

From (1.65a) we find that of the sixteen matrices 8 : 1, a, 7 o J 

i £ 7 S are hermitian and the other 8 : yg, - i OQ, i 7 Q 7 g J £ 

are antihermitian, where £ • (0^3, 0^, a M ) , « ( a 0 1 , <*©a)* 

Hence the group U(22) generated by the 16 Dirac matrices i s non-

compact, the defining property being given by (1.65b). 
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/ i 8) The 9 generators T^ of JJ(3J have been given by Gell-Jfann . 

The normalisation here i s so chosen that the relation between T^ 

and Sell-Mann*s \^ i s , 

T Q - 1/^6, T p ^ T^ - 1/2 8^, T ± - 1^2, i - 1, . . . 8 

We now consider the transformation property of the f i e l d of 

the antiquarks. As before, we denote the fi e l d of the antiquarks 
—A 

by the wave-function f which transforms as, 

/ -> VA - * B(s-l)J (1.66) 

-A 
where t 1* defined by, 

where 

^ - * + (7o)i d-67a) 
B B 

.W& - Cr^ e J (i.67b) 

where a, p « 1, . . . h are the Dirae indices and i , j • 1, 2, 3 

are the U(3) indices. From (1.62) and (1.66) i t is_obvious that 

the quantity (sometimesreferred to as the mass term) i s 

invariant under ff(6,6) and (I.67) shews that the above quantity 

has six positive and six negative terms. This i s one of. the ways 

to define the non-compact group 0(6,6). I n terms of the matrices 

S, the other defining property of IF(6,6) i s , 
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s +(7 d0i)s •» 7 Q ® 1 (1.68) 

where 1 i s a 3 x 3 unit matrix of 8(3) so that [ 7 Q ® 1] i s a 

12 x 12 matrix. S + i s the hermitian conjugate of S. Now, as 

before, we construct the states of mesons and baryons from the 

basic fields of the quarks and the antiquarks. The meson states 
v. 

are constructed from quark - antiquark states and those of baryons 

from three quarks* These states decompose under u(6,6) i n the 

following way, 

12® 12* • 1 + 1̂ 3 

(1.69) 
12(g) 1 2 ® 12 m 220 + 36̂  + 572 + 572 

where 220 and 36k correspond respectively to the completely anti­

symmetric and symmetric tensor of rank 3 and 572 to the mixed 

symmetry of the type [21]. Finally, 1̂ 3 corresponds to the Young 

tableau [2,1 1 0 ] . Under the subgroup SU(22) x SU(3) these 

irreducible representations are further reduced and their SU(2,2) 

and SU(3) contents are given by, 

- (15,8) + (15,1) + (1,8) 

220 - (20»,8) + (20,1) + (k*,10) (I.70) 

3& - (20,10) + (20»,8) + (k*,l) 

572 - (20* ,10) + (20',8) +(20,8) + (20*,l) 
+ (k*t6) 
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where 15_ and h* of SU(2,2) correspond respectively to the Yong 

tableaux [212] and [ I s ] and 20 and 20' of S®(2,2) to the tableaux 

[3] and [2 1] respectively. 
A How the meson fields can be denoted by the mixed tensor <t> . o 

For each SU(3) index the meson f i e l d • i s a h x h matrix i n the 

Dirac space. Consequently, i t can be expanded i n terms of the 

sixteen independent Dirac matrices. Thus, lMt-edmponent meson-

f i e l d * can be expressed as, 

& - [ + 7**t + i r 7 C • i
c + y • i + i o •* 1 ( T 1 ) 5 » L 5 5 V 5 tt5 u M s tt» J p * 'q. 

(1.71) 

where a,p • 1, . . . ht p,q • 1, 2, 3. 

The baryons, as i t i s in SU(6), are assigned to 3j5U which id 

completely symmetric with respect to i t s U(6,6) tensor indices. 

Let V^BC toe such a tensor f i e l d which i s completely symmetric 

with respect to the interchange of any of the two indices. The. 

tensor of such a symmetry type can be constructed from the 

corresponding S&(2,2) and SH(3) tensors i n three different ways as 

is_obvious from (l . ? 0 ) . Thus, we can express tAW, in the form, 
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ÂBC " *ap,0q.,7r " g / 2
 B«P7,pa.r + €pqr V [ o ^ ] 

where € i s 8B(3) invariant Levi-Civita tensor. D i s 
pqr apx,pq.r 

completely symmetric with respect to Dirae and Sfj(3) indices 

separately. v[opy] i s c o m P l e * e l y antisymmetric with respect to 

the Mrac indices. *[a$}y b a s m i x e d symmetry and satisfy 

the following relations: 

(1.73) 

The normalisation factors in (1.72) have been chosen i n the 

same way as i t was done in connection with SU(6) except the 

coefficient of D__ which, here i s so chosen that i t represents 
opx,pqr 

the spin 3/2 particle with the correct charge for H*++ . 
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We now construct the meson-baryon Yukawa type strong 
interaction Lagrangian. The number of ways this Lagrangian can be 
constructed depend on how many times the representation 1̂ 3 
occurs in the reduction of the product representation 3^ ® 
Using the v e i l known method we have, 

36U Q 36>» » 1 + I j j j + 59̂ 0 + 126U12 (1.7*0 

From (l*7^) i t is obvious that the meson-baryon vertex is 
unique as i t was in SU(6). Thus the meson-baryon interaction 
Lagrangian can be written as, 

« 

Now substituting the expressions for t ^ 5 0 , ^tjjQ from 
(1.72) and that for 4̂ ' from (l.7l) into (1.75) and then using 
(1*73) we have on simplification, 

• J [ r r f ^ V * " C ^ 

+ 5NHr,r ̂ q . ( i ^ , 1 
• 1 B 'R'a * 'p a'pjrjj'qr J 

\ 
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- £ [ * [ P a l 7 ^ V a V P ] r ] i 5 D + 5 P + 1 2 S 

+ 12 
(1.76) 

where, 

i - (T 1)* H* + IP # (r1)1" (1.77) 
D r v 'p q r P q ' ' 

In the above expression (I.76) for the meson-baryon interaction 
we have neglected the terms involving V f ^ j which, as we shall 
discuss in the following section, is identically zero. The above 
interaction Lagrangian is invariant under U(6,6). We shall 
simplify i t further in the next section to make i t much simpler 
for the application in the S-matrix" calculation. 

b. Bargmann-Wigner equations and the Final form of the Baryon-
Heson Interaction Lagrangian. 

We have discussed in the last section the multispinors 
corresponding to the fi n i t e dimensional irreducible representations 



63. 

of U(6,6). Bat as the group U(6,6) is non~compaet, these 
representations are not unitary and, therefore cannot be associated 
with physical particles, the reason being that the spaces of the 
representations have indefinite metric* We can, however, obtain 
unitary representations by decomposing, as Belbourgo et al. have 
shown , the indefinite spaces of*the original representations 
into a collection of subspaces which are invariant under the 
subgroup U(6) ®U(6) each of the subspaces being definite. Now, 
i f we assume that particles at-rest correspond to the 
representations of U(6)(g)U(6), the Bargmann-Wigner equations 
when applied to the multispinors corresponding to the U(6,6) 
representations generate the relativistie structure of such 
U(6)<2)U(6) multiplets. Thus, the Bargmann-Wigner equations can 
be looked upon as the relativisiJjie boosts which generate for a 
single particle state what we may call the l i t t l e group structure 

BiBs••• (tL;(5oB>) . Let . be a multispinor corresponding to an o op Â Ag... 
irreducible representation of 17(6,6). Then the Bargmann-Wigner 
equations corresponding to the lower and upper indices are 
respectively given by, 

A! BjBg B,BL.. 
b P>A* * A»A ( p ) ""*AA fe> ( l* 7 8 a ) 

12 
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where p, m are respectively the momentum and the rest-mass of the 
particle such that p 2 • m2. Corresponding to each of the indices 
of the irreducible tensor-field there is a Bargmann-Wigner 
equation of either of the types given above. For identifications 
with the physical states we are to keep only those vectors whose 
components vanish outside the space specified by the Bargmann-
Wigner equations. 

We now consider the reduction of the multispinors of U(2,2) 
with respect to one of i t s subgroups. For this prupose, we choose 
the well known subgroup L , the homogeneous Lorentz group, the 
generators of which in the spinor representation are the six 
Dirac matrices or . Now, as is well known, for this case we 
can define an antisymmetric matrix ( C - 1 ) 8 ^ within the Dirac 
algebra such that C A f ( t being the transpose of the basic 
spinor t a ) transforms as $ • In particular, the quantity 
-i T 

C A t f w i l l be invariant just as ^ t under an infinitesimal 
transformation. Thus, the antisymmetric matrix C w i l l play the 
role for of the metric tensor such that we may regard ( C 1 ) 8 ^ 
as the contravariant quantity and it s inverse the covariant. 

35) 
I t can be shown ' that the matrix C can be realised i f the 
following relation is satisfied, 

(1.79a) 
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The other properties of the matrix C are, 

(cri)°* - -(C- 1)** (1.79b) 

^ ( C " 1 ) ^ - (1.79c) 

From these relations we can show that the quantities (7 C)ffft , 
and (a C) _ are symmetric. On the other hand, the quantities lit) ocp 

^3 C ) ^ and (l7^7 s C)^ are antisymmetric. I t is these 
quantities which can be used in constructing a multispinor in 
having a certain symmetry with respect to the interchange of the 
Dirac indices. Thus, a completely symmetric tensor of rank 3 
can be expressed as, 

D „ « (yP C) A D + i(ff C) a D (1.80) 

Considering the symmetry property of D- , we obtain the following 

7* D » 0 

The equations (l.8l) show that has only 20 independent 
components. How the Bargmann-Wigner equations corresponding to 
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each of the three indices of B _ give. 
—007 

P I - -imD (1.82a) U (*15 D 

(4 - m)!^ - 0 (1.82b) 

p D - p B - i > B . (1.82c) 

where p and m are respectively the momentum and the rest-mass of 
the particle. From (l.82b,c) we can derive the following 
equation, 

jf* D • 0 (l.82d) 

The equations (l82b,e,d) are the well known Barita-Schwinger 
equations of motion for a spin 3/2 particle. Now using (1.82 ) 
the expression (1.80) can be rewritten i n the following simple 
form, 

" £ [ w + " J * V 

Similarly, the third-rank tensor '[gpjy o f the mixed symmetry 
can be expressed as, 
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where the use of the equation (1.73) gives, 

7C N + iy* 7- N - K - 0 (l.&%a) 

For this tensor-field N f ^ j ^ we can also obtain three Bargmann-
Wigner equations corresponding to the three spinor indices. From 
these, the equations we obtain are as follows: 

{i - m)^ - ft - m)N « (1 - m)K- - 0 

K - 0; p N - p N - 0; p N « -imN ( l . 84b) U | i t) u u u 

p N « imN 
u |1 

The above equations taken together describe a spin 1/2 particle 
Using the above relations the expression (1.83) can be rewritten 
in the form: 

>W " ; [ « + 0 J * "r { 1 - 6 y ) 

Corresponding to the upper and lower indices of the meson-fields 
(I.71) we shall obtain two Bargmann-Wigner equations. For any 
arbitrary SU(3) index we get the following equations, 

^ m 0 (1.85a) 
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q^** m i|»^5 ; <f ̂ 5 - - i u ^ (1.85b) 

\*io - - ; % «S - % - ^ •So ( i - 8 5 c ) 

where q and u are respectively momentum and the rest-mass of 
mesons. From (l.85c) we can obtain, 

q1* • - 0 (l.85d) 

which shows that the fi e l d described by 4>̂  corresponds to a spin 
one particle. I t is also evident that the equations (1.85b) 
describe a spin 0~ particle and the equations (1.85c) describe 
a spin 1~ particle. Thus, the pseudoscalar mesons (nonet) are 
described by five-component entities and the vector (nonet) mesons 
by ten-component objects. Now, using the equations (I.85), the 

A* 
mixed tensor 4>A for the meson-fields can be expressed as, 

•A " I [ « + ^ V 1 + r% ^ ft1)*' (1.86) 

We now simplify the expression (l»76) for the Baryon-meson 
interaction Lagrangian by using the free-field equations we have 
discussed above. The relevant tensor fields in the expression 
(I.76) we obtain from (l.80») (1.831) and (1.86), Using the 
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free-fiej.d equations of motion (1.82) and (l.8to) for the spin 
3/2 and 1/2 particles respectively we simplify the expression and 
write the interaction Lagrangian in the following form: 

L(H*5N) - + ~ ) G ^ V W A 1 ( L- 8 7 ) 

L (N • 
p1* / qf v 1 • 2m v 
2m > 2m 

P V / W f F (1-88) 

L(S *SI>) - i ( i + 7 ) [ i \ H + *x V" ] • •» ( i - 8 9 ) 

L(5 • B) - f i + — ^ T — + — D i 7. IL q*, 1 .• 

(I.9I) 



70 

5P2 r / 2BV P*1 3 
,(B • D) - — F ( i + — ) 7* 1 K K + — *\ 

* Urn8 I A u / ^ J * * 2m8 X X 

[(1 + 7 ) / - T ] » ^ V (1.92) 

In the above expressions we have P • P + P* j q • P •* P*> 
where p and p* are respectively the momenta of the ingoing and the 
outgoing baryons r^ « ^ 1 1 3 K X P̂  \ 7^75 * where ̂ *t*x is the 
fourth-rank Levi-Civita tensor with e0*128 - 1. H,D, • and • 

s u 
denote baryon, baryon-resonance, pseudoscalar meson and the vector 
meson respectively. The expressions (N N) , (S N)_ and (N N)_ 

'p a o 
have the usual meaning defined by (l.77)« 

One of the interesting features of the U(6,6) theory is that 
the pseudoscalar S0(3) singlet fc°) coupling is no longer independent 
of the pseudoscalar octet coupling. These are related through 
0(6,6) coupling as i t is evident from (I.89). Further, the F/B 
ratio of the meson^baryon coupling is uniquely defined in 9(6,6) 
as i t is in 3U(6). Salam, Belbourgo and Strathdee have obtained 
for the proton-neutron magnetic moment ratio, the value which is the 
same as 8U(6) result. The U(6,6) theory not only gives the value 
of this ratio, but also an expression i n terms of Baryon and meson 
masses for calculating the value of the proton magnetic moment. 
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Despite many other predictions (discussed by Salam et e.\ ' ) 

the TJ(6,6) theory, however, have some shortcomings. As discussed 
36) 

by several authors^ 7 the requirement of the unitarity of the 
S-matrix (scattering matrix) is not compatible with the 9(6,6) 
theory. We shall, however, like to elaborate this point when 
we consider the Baryon-meson scattering in the context of U(6,6) 
in the later chapter. The incompatibiltiy of the causality 
relation for baryons with the index invariance theory (as U(6,6) 
and SL(6 C) ) have been discussed by Feldman and Matthews ' . 
We shall, rather, not discuss this aspect of the relativistic 
(higher) symmetry theories any further. 
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CHAPTER I I 

The Methods for the Byaamieal Calculations 

1. The Partial Wave Bisperslon Relations and N/D Method 
38) 

Mandelstam ' has given a representation for the invariant 
amplitude A(st u) in the form of a double dispersion relation. 
Here the variables are respectively the cm. energy squared in 
each of the three channels that are associated with any two-
particle scattering diagram. Mandelstam's representation expresses 
the scattering amplitude A(stu) as a function of these variables 
thus implying that the function A(stu) is analytically eontinuable 
in the different regions of the above variables. Since no 
convenient method for using the double spectral functions i n the 
Mandelstam's representation is yet available, this representation 
is used in the form of either the fixed energy dispersion relations 
in which one of the three variables is kept fixed or the partial 
wave dispersion relations. I t is the latter that we shall be 
concerned with in this chapter. We shall assume in this chapter 
that the partial wave amplitudes and the structures of the related 
singularities corresponding to an arbitrary scattering process 
are known and then discuss how the dispersion relation techniques 
are used to solve such a problem. In particular, we shall discuss 
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how the partial wave dispersion relations are used in the self-
cons i stent calculations. 

Let &j(s) he a partial wave amplitude corresponding to the 
orbital angular momentum I with the following properties: 

(a) a^(s) is analytically continuable into the entire complex 
s-plane, where s is the cm. energy squared. 

(b) aj(s) is regular (analytic and single valued) everywhere in 
the entire complex s-plane except for the two branch cuts, namely, 
the right-hand cut (physical cut) starting from the physical 
threshold and the left-hand cut that arises due to the singularities 
in the crossed processes. 

(c) a^(s) vanishes at infinity everywhere i n the complex s-plane. 
In otherwords, the partial wave amplitude a^(s) behaves as s~n 

where n > 1. 

(d) the function a f(s) is a real analytic function of the variable 
under consideration. Mathematically, the reality property of the 
analytic function is given by, 

a*(s) - a(s«) (2.1) 

We can, then, use the Cauchy theorem in order to obtain the dis­
persion relation for the partial wave amplitude a^(s). We ehoose 
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the contour as shown below (Fig. 2.1) In the complex s-plane. 

s-plane 

Figure 2.1 

Now i n view of the property (c) of a^(s) we can neglect the con­
tributions from the infinite circle and further, we assume that 
a 4 (s) is free from a l l the kinematic singularities. Then, 
using (2.1) we obtain the following dispersion relation, 

i A Im a,(s l) i r\ Im a,(s f) 
a/s) - I /V + | / ds»

 l— (2.2) 
1 *i s»-s *J s»-s 

L R 

where L, R denote the integrals on the l e f t and right cuts 
respectively. The above dispersion relation is valid provided 
the condition (c) is satisfied. I f a^(s) does not vanish as 
f s| -* oo we have to introduce subtractions. Suppose 
|a^(s)| A 0 as |s| -» oo but |a^(s)|/|s|n -» 0 as |s| -» «> 
where n > 1. Then we apply the Cauchy theorem to the function 
a^(s)/s n to obtain the dispersion relation. This new function, 
however, has poles due to the factor s n i n the denominator. The 
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contributions of these poles are always taken into account while 
deriving the dispersion relation. 

Having known the form (2.2) of the dispersion relation for 
the partial wave amplitude a^(s), the job then is to solve i t i n 
order to obtain the informations about a .specific scattering 
process. In order to obtain a solution for the scattering amplitude 
a^(s) we need to know the imaginary parts Im a^(s) of &|(s) over 
both the right and l e f t cuts. The imaginary part Im &j(s) over 
the right-hand cut is known from the unitarity relation above 
the physical threshold. Then, using the unitarity relation, we can 
obtain for Im a.(s) over the right-hand cut, 

where p (s) is the kinematic factor which isjisually of the form, 

The quantity Rj(s) in (2.3) is the ratio of the total cross section 
of a l l the processes (elastic as well as inelastic, corresponding 
to the i t h wave) to that of the elastic processes. The factor 
pi(s) is related with the partial wave amplitude through the 
relation, 

Im a f(s) m p(s)|a |(s)| 2 ^ ( s ) (2.3) 

99+1 
where k is the absolute value of the momentum. 

a,(s) 
e 1 8* sin bt 

p(») 
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where 5 £ is the phase-shift corresponding to the f partial 
wavejjf the scattering process. In the above we have considered 
only the elastic scattering for which 8̂  is real and we can put 
Rj(s) • 1. This approximation is exact only up to the inelastic 
threshold. For the scattering above the inelastic threshold, the 
relation (2,k) w i l l have to be modified by introducing the factor 
Rj(s) in order to take into account the inelastic effects. Many 
calculations have, in fact, been made with the elastic approximation. 
This approximation, however, would not be bad i f the second integral 
in (2.2) is rapidly convergent enough. 

As we have discussed above, the unitarity relation (2.3) 
gives us some information about the right-hand cut but a difficulty 
arises as to calculating Im a^(s) over the left-hand cut because 
the unitarity condition of a^(s) cannot be applied over the l e f t 
cut which lies in the unphysical region of s-channel. This 
difficulty i s , however, overcome by using the crossing symmetry 
property of a^(s). I t is well known that the left-hand cut is 
associated with the forces that are responsible for the scattering 
and these forces arise due to the exchanges of the particles in 
the crossed channels. The nearby part of the left-hand cut 
arises from the lightest particles that can be exchanged and so 
corresponds to the long range forces of the problem. The far-off 
part of the left-hand cut is associated with the exchange of more 
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massive systems, i.e. multiparticle states and thus corresponds 
to tbe short-range forces. I f we_ know the particle that can be 
exchanged in the crossed channel of the scattering under consideration 
we can use the crossing symmetry which relates the Im a^(s) on the 
left-cut with absorptive parts of the crossed processes. These 
absorptive parts are known from the relevant crossed diagrams and 
consequently Im a^(s) on the left-cut can be calculated. 

Having known the values of Im a^(s) over both the l e f t and 
the right cuts we may try to so}.ve (2.2) but i n that ease we have 
to deal with a non-linear equation which w i l l arise due to the non-

13) 
linear condition (2.3). Chew and nandelstam , however, have 
given a method known as H/D method by which we can convert this 
ron-linear: equation into a pair of coupled linear integral 
equations. Thus, we can write, 

H.(s) 
a.(s) - (2.5) 

• B £(s) 

where (s) contains a l l the discontinuities on the left-hand 
cut and is real on the right-hand cut. Thus, i t corresponds to 
the forces. 

The function Bj(s) on the other hand, is assumed to contain 
a l l the discontinuities on the right-hand cut and be real on the 
left-hand cut. That a^(s) can be expressed in the form (2.5) is 
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essentially due to the fact that the left-hand and right-hand 
cuts are separated by a gap, i.e. a £(s) is real analytic. 

We are now in a position to write dispersion relations for 
both Hg(s) and D^(s) . We can again assume that both ITj(s) and 
Dj(s) are real analytic functions such that they w i l l satisfy 
the following relations, 

H*(s) - Nf(s«) (2.6a) 

D*(s) - B£(s*) (2.6b) 

Now the imaginary or the absorptive parts of N£(s) and Df(s) are 
respectively given by, 

Ira Nj(s) • D£(s)lHi aj(s) for s < s^ 

• 0 for s > s^ 
(2.7a) 

Im D|(s) • ^p&il/iL^ 

- -N^s) p(s)R|(s») for s£> s R (2.7b) 

for s < s B 

where s^ is the beginning of the left-cut and s R is that of the 
right-cut. In deriving the relation (2.7b) we have used (2.1*) and 
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also taken into account the effect of the inelastic scattering. 
Assuming farther that N^(s) -» 0 as |s| -*« the dispersion 
relation for Hj(s) is given by, 

- p D (s»)lm a (s») 
N.(s) m \ f f — ds» (2.8) 

1 %i (s«-s) 

In order to obtain the dispersion relation for Dj(s) tie make 
further assumption that the partial wave amplitude a^(s) has no 

39) 

CDD 7 poles. Moreover, since both N|(s) and Df(s) can be 
multiplied by a constant (matrix in the case of multichannel 
problem) number without affecting the solution of a^(s) we have 
the freedom to normalise Dj(s) to 1 at a suitable point near the 
physical region. Thus, normalising Dj(s) at a point s • s Q, and 
using (2.7b) we obtain the following dispersion relation, 

D ( s ) » i f da»p(-«)B. (>' ) «-7 
1 s I • (s» - s)(s« - s Q) 

(2.9) 

Equation (2.8) for N^(s) involves an integral over the left-hamd 
cut. I t is often convenient i f the integral (2.8) is converted 
into one over the right-hand cut. In order to achieve that we 
assume that we know a function B^(s) which has the same l e f t -
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hand cut as but no right-hand so that we can write, 

Im »'(•») 
>i £ B f(s) - ± / ds« S^- (2.10) 

Nov considering the above assumption about the property of B̂ , we 
have over the left-hand cut, Im[N^ - B| Dj] » Im a^ - Im • < 
where we have used (2.71). Thus, the function Nj - has only 
a right-hand cut* Then, writing dispersion relation for 

- B̂  we have, 

H/s) - B/s) + 1 J* ds» [ Bf (s») - l l i B | ( s ) ] 
h 8 - S Q 

P(s«) N.(s») 
x — • S—̂ - (2.11) 

(s* - s) 

where S q is the same point as i t is in (2.9)* The equation (2.11) 

can be used together with (2.9). The advantage of the above 
method is that the calculation involves integrals only over the 
physical region so that i f we know B^(s) (which we can calculate 
from the processes in the crossed channels) without having f i r s t to 
evaluate the left-hand cut discontinuity or i f we wish to use an 
approximation for Bj(s) which is reasonably good in the physical 
region, then i t is convenient tojise (2.U) and (2.9) instead of 
(2*8) and (2.9) for the station of the scattering problem. Further 
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the -use of (2.11) together with (2*9) gives for the scattering 
amplitude a £(s) a solution which is independent of the subtraction 
point S q ; and in the case of the multi-channel problem, this 
solution retains the time reversal properly. The. above method 
(2.11) was in fact f i r s t used by Uretsky*^ and in the past has 

7 kl) 
been used in many calculations" '. The above method can also 
be used in the multi-channel problem in which both N. .(s) and 
B^j(s) become n x n matrices depending on the number of channels. 
The integrals of these functions w i l l contain a function 0(a* - s^) 
showing that the integrals start at the appropriate threshold of 
the channel concerned (see next section for details). 

2. The Approximate N/P Methods 

a. The Determinantal Method: 

In order to solve the integral equations for the partial wave 
amplitudes a £(s), we have, as mentioned in the last section, to have 
some information about Im a £(s) on the left-hand cut or about B £(s) 
on the right-hand cut. As we also mentioned earlier, the values 
of these functions can be calculated from a set of exchange 
diagrams in the crossed channels. A difficulty that usually arises 
in such a procedure is that when we consider exchanges of particles 
of spin greater than or equal to one, the integrals (2.8) or (2.11) 



82. 

and (2*9) become divergent. These divergences arise from the 
fact that the contributions from such exchange diagrams involving 
particles with spin greater than or equal to one, contain terms 
proportional to P.(cos.) or P. (cos ) with t & 1 and then since 

M "C JC U 
cos 0. and cos $ are proportional to s, these are proportional 

u U 
I 

to s . I f this gives rise to, as i t usually does, the divergent 
integrals we are forced to introduce a cut-off. There have been 

7 hi) 
some calculations" ' where these integral equations have been 
solved numerically, but the calculations became rather complicated, 
and sinee the results even then involve the cut-off as an 
arbitrary parameter i t has been natural to look for some simplifying 
approximations. 

An approximate N/D method which has been widely used in the 
past because of_its simplicity is the so-called determinantal 

U2) 

method . The usual procedure to solve the coupled integral 
equations (which is the case in H/l> method) is to use the iterative 
method. In the f i r s t approximation, we put Dj(s) » 1 on the l e f t -
hand cut to evaluate N^(s) from (2.8) then we use this N^(s) to 
evaluate Df(s) from (2.9) and-so on. In the determinantal method, 
we go only up to the first approximation then obtain, using (2.7a) 

Im Hj(s) m Im a^(s) •» Im Bj(s). Consequently, we oan put 
Nj(s) m Bj(s). The function B^(s) is usually calculated from a set 
of single-particle exchange diagrams in the crossed channels and 
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that is why this method i s , sometimes, referred to as the 
unitarised Born approximation or the B/D method. In this 
approximate method, the solution of the partial wave amplitude 
becomes very simple and i t is given by, 

a.(s) - B.(s) x l °- / ds« p(s') 1 1 . 
1 1 L « (s' - s)(s» - s o) -I 

(2.12) 

The self -consistent calculations become very straight-forward 
i f we use the determinantal approximation. Suppose a bound 
state occurs at s • s^ and as this corresponds to the zero of the 
denominator function Dj(s), we have Dj(&g) " 0. Then the output 
coupling constant corresponding to this bound state is given by, 

where B | ( a
B ) i s t n e value of the Born terms at the pole-position 

and B*(&g) is the first-derivative of Dj(s) (2.9) with respect to 
s evaluated at 3 a s^. 

When we are dealing with a _multichannel problem, the use of 
this approximate method makes the calculations very straightforward 
and much simpler. Suppose we are considering a m-channel 
scattering then the unitarity relation of the problem can be 



written in the form, 

[ a i J < 8 ' * < d ( B ) ] / 2 i " I aJk <** - **K *7*M 

K 
(2.1U) 

wHere ŝ . is the threshold-energy for the state k and 0(s - s^) is 
the step-function ..which is one or zero, according to whether s is 
larger .or smaller than &g. The kinematic factor P^fs) i s now a 
diagonal matrix and is usually of the form, 

21^1 

From the unitarity relation (2.1U) we can obtain, 

I a t a " 1 ' * ) ] ^ m - 0(s - s d) P j L j(s) (2.16) 

Now, the scattering amplitude a^fs) can be written in the form, 

a i d(s) - N^s) D^(s) (2.17) 

Then, using (2.16) and (2.17) and the determinantal approximation 
we have for the denominator function 

V») " \ J - — / ^ e ( 8 , - S K ) ^ K ( s , ) 

"k 
* [ (s f - s)(s* - S Q ) 

(2.18) 
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The advantage of the determinantal method lies in the fact that the 
integral (2.18) does not require any iteration and further the 
scattering amplitude can be given in a very simple form, 

a ± 1(s) « l k ^ (2.1$) 
1 J det D 

where det B is the determinant of the denominator function. I f we 
are looking for the position of the bound state, then i t can be 
obtained from the condition, 

det D - 0 (2.20) 

I f , on the other hand, we are looking for the location of a 
resonance we have to equate the real part of det B to zero. 

The determinantal method diseribed above, however, has some 
shortcomings. Although this method ensures unitarity, i t does 
not give the correct left-hand cut corresponding to the set of 
diagrams chosen, except at the immediate neighbourhood of the 
point s • S q at which the denominator function D is normalised. 
For this reason, i t is expected that the results w i l l , to some 
extent, be dependent on the choice of the subtraction point. We 

t 

therefore have to choose the subtraction point somewhere in the 
nearby part of the left-hand cut from where the maximum contribution 
to the force is expected. Further, i f we use this method in ka 
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multi-channel problem described above, i t does not _ give a 
symmetric scattering matrix as required by the time reversal 

has been very popular because of i t s simplicity* Moreover, the 
problem of divergences mentioned earlier in this section, can be 
avoided by using this method. 

b. The Pole Approximation: 

In order to avoid the numerical integrations involved in the 
N/D method, the pole approximation method has been used in the 
past in many calculations. In this method, i t is assumed that the 
effects of the left-hand in the physical region can be approximated 
by means of a set of poles located on the left-hand cut. Then, we 
can write, 

invariance. Despite these shortcomings, however, this method 

n R B.(s 
s s 

(2.21) 

where ̂  < ŝ , and s > s^, being the beginning of the l e f t -
hand cut and Sg that of the right-hand cut. Now, from the 
principal value theorem in complex variables we have, 
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Using (2.21) and (2.22), we have from (2.8), 

B H 
V*) " Y — V s i > (2«25) 

i*L 1 

I f we now substitute (2.23) Into (2.9) the integral of the 
-denominator function can be easily evaluated. Then, the 
denominator function Dj(s) can be expressed i n the following 
simple form: 

n 
Df(s) - 1 + £ P.(s, s Q 6^,)^ 9 |(s 1) (2.2U) 

i - 1 

where F̂ *s are some functions of the variables appearing i n the 
argument. We can now evaluate B^(s) at, say n points from (2,2k) 
and solve n algebraic equations so obtained for D^(s). The 
equations (2.23) and (2.2*0 then give the amplitude in the physical 
region. This method can also be used in the self -consistent 
calculations where we can adjust the parameters (residue of the 
i pole) and s± (position of the i pole on the left-cut) in 
order to obtain the self-consistent solution. These input 
parameters can also be determined in different ways. Following the 

1*3') 
method used by Frautsehi and Walecka we can approximate the l e f t -

a 
hand cut discontinuities corresponding to/certain set of diagrams by 
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poles in such a way that the Cauchy integral around the poles 
approximates the Cauchy integral around those discontinuities, 
when i t is evaluated in the physical region. In using this 
method, however, a difficulty arises when exchanges in the crossed 
channels of particles with spin greater than or equal to one are 
considered. In that case the left-hand cut integrals become 
divergent and consequently we are forced to neglect the far-off 
part of the cut or introduce a cut-off in the integrals concerned. 

c. Bagels Method. 
kk) 

Pagels ' has given an approximation scheme for solving the 
N/D equations and this method has, undoubtedly, much advantage 
compared to the other approximate methods we have discussed so far. 
In this scheme the spectral integral over the kinematic factor 
pj(s) on the l e f t is approximated by a set of poles on the right 
without making any change in the force term B^(s). Following this 
procedure, we can, getting r i d of the integrals, obtain an algebraic 
expression for a^(s) in terms of Bj(s) in such a way that the 
solution gives the correct discontinuities across both the right-
and left-hand cuts. Further, the solution is independent of the 
subtraction point and has a symmetric a £(a) for a symmetric input 
Bj(s). We shall discuss this method in some detail and show how 
i t can be used in bootstrap calculations. We shall consider only 
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the single-channel problem with only one-pole approximation. 
Generalisation to the many-channel problems with more than one-
pole approximation i s , as i t w i l l be clear, very straight-forward. 

Pagels assumes that the force term B £(z) admits of the 
Hilbert representation of the form, 

where the integral extends over the left-hand cut and z is the 
cm. energy squared. A l l through this section we shall take 

Dropping the index i we write the partial wave amplitude in the 
form (2.5) 

Now making the same assumptions as before about the analytic 
properties of N(z) and D(z) and using the unitarity relations 

B (z«) 
B.(z) dz* (2.25) 

x, y, z as the energy variables for the sake of convenience. 

a(z) m N(z) D"l(z) (2.26) 

(2*7) and normalising the denominator function at z * z . we have 

p(x) N(x z ) 

R 
B(z> z j dx o (x-z )(x-z) 

(2.27) 

Im H(x, z ) 
dx 

z 
(2.28) 

L 
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where, 
Im N(x z J m Im B(x) D(x Z ) (2.29) o o 

Nov substituting (2.28) into (2.27) and interchanging the orders 

of integration ve can easily obtain, 

Z - Z A 

D(z Z Q ) - 1 + 2 / ay K ( z y mJ jn H ( y B ) (2.50) 
* L 

where, the kernel K(z y ZQ) depends only on the kinematic factor 

p(z) and i s given by, 

K(z y O - i / : (2.51) 
°' * { (x - z_)(x - z)(x - y) 

Nov using the identity, 

- : . — { — ^—} 
(x - z)(x - z J z - z I x(x - z) x(x J z J J 

we can express the-kernel E(x y z ) in the following form, o' 

zF( z ) yF(y) z F(z ) 
K ( * y * 0 ) - -—^-T-T + - — - : + 

(z-yJ)z-z o) ( y - z ) ( y - z Q ) ( Z q - z ) ( z Q - y ) 

(2.52) 

where the function F(z) (which is a diagonal matrix in a multi­
channel problem) i s , 

_ P dx p(x) F(z) - 5 f P±L (2.35) 
* £x*(x-z) 
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We now substitute (2.32) into (2.30) and on simplification get, 

D(z z ) m 1 - zF(z) H(z Z ) + z F(z ) N(z z ) 
x o' v ' * o'" . o x o* x o o' 

* f«y F(y) Im H(y z j { — *-2-\ 
J " l y - z y-z J o 

(2.3*0 
Now, the function H^(z) • Fj(z)/z is a spectral integral over the 
positive definite kinematical factor Pj(z) > 0 and hence on the 
l e f t w i l l have a l l i t s derivatives positive. Therefore, this 
function can, quite accurately, be approximated on the l e f t by a 
pole on the right. Thus, for the i-th partial wave we can write, 

Ft(z)/z m Hf(z) ~ Cf/(z - a f) (2.35) 

where, 0̂  and are constants which are chosen ta reproduce H^(z), 
which is known exactly once 0j(z) is given. The constants and 
a^ are completely determined once the partial wave is specified. 

f 

Here, in (2.35) we ace making only one-pole approximation. I f 
greater accuracy is desired we can add more pole terms in (2.35), 

thus more closely approximating the exact H^(z). 
Now, with one-pole approximation, we obtain from (2.3I0, 

using (2.25), (2.28) and (2.29) the following expression for the 
denominator function, 
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Cz 
D(z z ) - g(z ) - zP(z) N(z z ) + ° (* - a) 

x [zN(z z Q) - aN(a Z q ) J (2.36) 

where, 

C z. 
[z ) « 1 + z F (z ) N(z z ) -
k o' o * o' x o o 

o 
(zo - a) 

£ z oH(z o ZQ) - aN(a ZQ) ] (2.37a) 

I t is evident from (2.37a) that, 

g(0) - 1 (2.37b) 

Using, now, (2.35) we obtain from (2*36) an accurate expression 
(within the limit of the approximation) for D(z) along the l e f t -
hand cut, 

C a z 
D(z Z q ) - g(z Q) N(a Z Q ) (2.38) 

z — a 

How substituting (2.29) and using (2.38), we obtain from (2.28), 

H(z Z Q ) • B(z) g(z Q) - £zB(z) - aB(a) J . 
Ca.H(a z Q) 

(z-a) 

(2.39) 
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where we have used (2.25) and the following Identity 

(x - a)(x - z) (z - a)(x - z) (z - a)(x - a) 

As we mentioned earlier i n this section, the solution of the 

prohlem i s independent of the subtraction point. Therefore, 

without the loss of any aceuracy we can set zQ * 0. From (2.59) 

we can further obtain, 

N(a) - 11 + Ga ĵ B(a) + aB»(a) J j- B(a).g(z Q) (2.1*0) 

where B*(a) m dB(a)/da. 

We now see that the equations (2.56), (2.58); (2.59) and (2.1*0) 

together give the complete solution of the problem. The 

expressions for the denominator function B(z) on the right and 

l e f t cut are given by the equations (2.56) and (2.38) respectively. 
L e t _ u s now discuss how this method i s applied in a bootstrap 

calculation. Setting Z Q • 0, we have from (2.58) using (2.1*0), 

C za.B(a) r r "11 _ 1 

D(z) m 1 J 1 + C.a B(a) + aB'(a) \ \ 
(z - a) I L J J 

(2.1*1) 

I f there i s a pole at z • BQ, we have B(8Q) • 0. Now taking 

out the coupling constant from the Born term B(z) -» g^B(z) we 
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obtain for -the zero of the denominator function B(B Q) " 0, 

l/g 8 - I" B(a) - (s - a)B«(a) 1 (2.k2) 
s - a L J 

o 

Now the expression for the output coupling constant i s given by, 

D»(s ) 
l / g , S - — (2.^5) 

N(s Q) 

Bsing (2^59) and (2.^1) we get from (2A3) the expression for the 
output coupling constant which i s given by, 

l / g * 2 • - (2.W 
B(a ) ( s Q - a) g*B(a)(s o - a) 

where i n (2.45*) we take out the input coupling constant from the 

Born term B(a). For the se l f -consistency requirement we have 

g 2 m g , s. Therefore, the condition for the self-consistent 

result i s given by, 

B( a ) ( s Q - a) - -1 (2.V0 

From (2.U2) and (2.kk) the expression for the self-consistent 

coupling constant i s , 

l/g»2 - V i 2 - -Ca s [ ^ ( a ) +B»(a) ] (2.U5) 
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The values of the parameters C and a' can be determined by 

fit t i n g the pole C/(z - a) with the function H |(z) (2.35) on the 

l e f t hand cut. The Born term B(a) can be obtained from the 

exchange, i n the crossed channel, of the particle for which the 

self-consistent solution i s sought. Thus, using (2.^5) we can 

calculate the self-consistent value of the coupling constant. 

The divergency problem, unfortunately, also arises in this method. 

When the Bom terms are divergent, the dispersion relation (2.25) 

i s not valid. This difficulty, however, can be overcome by 

introducing subtraction in (2.25). But this introduces some 

additional parameters which have to be determined in order to obtain 

the solution of the problem under consideration. 

d. The static Model and Bootstraps i n 3U(2) 

I n this section we shall consider the pion-nucleon scattering 

in the context of the static model in which i t i s assumed that the 

nucleon being much heavier than the pion i s at rest both during and 

after the collision. I n particular, we shall discuss how the 

reciprocal bootstrap relationship between nucleon K and nucleon 

resonance H* (5/2, 3/2) can be explained by static model approach. 

The idea of such a reciprocal bootstrap was f i r s t suggested by 

Chew^ who showed that the static model could, to a reasonable 

extent, explain the existence of such a relationship. We shall, 
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however, discuss only that aspect of the theory which i s relevant 

to the Quark-bootstrap calculation which w i l l he considered i n 

the next chapter. 

A meson-baryon state can be specified by i t s spin J , 

isospin I , orbital angular momentum 1 and the total energy V. 

For a given orbital angular _momentum the scattering amplitude 

ggj(w) i s related with the phase-shift through the relation 

given by, 

/ , w sin 8L.T 

•HW - — W F P 1 <2-U6> 

where 6 J J i s the phase-shift corresponding to the amplitude 

specified by the angular momentum J and isospin I . Here, q 2 - w 2-1 

and w * W - M, where w denotes the energy of pion, m the mass of the 

nucleon and pion-mass i s taken as unity for the sake of convenience. 

She contribution of the cross-channel can be obtained from 

the crossing relation 

i«jt 

where a and 0 are the crossing matrices for the isospin and total 

angular momentum respectively* I n the static limit, the g*s on 

the right-hand side of the equation (2.Vf) have the same I as the 



97 

g*s on the l e f t , so that the angular momentum crossing matrix i s 

just l i k e the isospin crossing matrix. 

I f there occurs a bound state or a resonance in the ( I j ) 

state, the corresponding amplitude w i l l have a pole 7 J J / ( V J J ~ W ) > 

being the residue of the pole. Then the force or the Born 

term in the l-th p a r t i a l wave can be obtained from (2.V7) and 

given i n the form, 

I«jt lWI»J» W ' 

where J , J* • 1 ± l / 2 . Usually, the summation i n (2.U8) i s taken 

over a l l possible ( l * J * ) states and we put 7jtjt " 0 whenever 

there i s no particle i n any particular state. We can now use 

B T T(w) as the input i n an M/D calculation. 
XtJ 

Let us write, as bejbre, 

gjjCw) - NJJCWVBJJCW) (2.k$) 

Then, using (2.23), (2.U6) and (2.M3) the numerator and the 
denominator functions i n (2.^9) can be written,as i s well known, 

in the following form, 

y I ' J ' V ' V J 1 ^ 
N I J M ' 1 ^ P > " ( w T , T t + w ) 

I«J» 

(2.50) 
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I J « 1 
C 

f dw* 
(w«g - p ' ^ N ^ f r ' ) 

(w* - w0)(w* - w) ' 
(2.51) 

where Wq i s the point at which D i s normalised to unity and Wq i s 

the cut-off parameter which parametrises our ignorance of the 

short range and the high energy effects. 

We now suppose that there occurs a hound state or a resonance 

in the amplitude specified by the quantum numbers I and J . I t 

i s well known that the denominator function D(w) behaves, more 

or less linearly near the position of the pole or the resonance. 

Therefore, the denominator function, near the pole, can be 

approximately expressed i n the form, 

Now, the coupling constant corresponding to a pole occurring i n 

the state ( I J ) i s given by 

'IJ (2.52) 
I J o 

N T T(w T T) I J * " I J 
B«T(ifTT) U * " I J 

(2.53) 

Then, using (2.50) and (2.52) we obtain from (2.53)* 

^ • P J J » 7 I » J « u (2.5M 

I $ J » 
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where the 7*8 on the left-hand side of (2.5^) are the *output* 

and those on the right-hand side, the 'input' coupling constants 

respectively. ~ The self -consistency condition requires the input 

and the output values of the relevant couplings to he equal. 

How, (2*5*0 can be written i n the matrix form, 

where r i s a column matrix and C i s the crossing matrix which i s 

the direct product of the isospin and angular momentum crossing 

matrices respectively. We now introduce the following quantity, 

The above quantity F T T may be regarded as a reasonable measure 
10 

of force contributed to the state (I J ) by the states occuring in 

the crossed channel. I f F J J i s negative for any state then the 

corresponding output 7 ^ w i l l be negative too as a consequence of 

which such a state cannot exist. On the other hand, i f F ^ j i s 

positive and large we can expect that a state ( i J ) may exist. 

The above conditions we have put forward follows from the very 

nature of the-denominator function (2.51) which requires positive 

couplings (or forces) for the occurrence of a pole in the amplitude. 

r • c r (2.5^) 

' P J J ' (2.55) 
I ' J * 
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Let us now apply the above formalisms to the pion-nucleon 

problem. As i t i s Jtnown from experiment that the nucleon 

resonance occurs in p-state, i t i s natural to consider the p^wave 

scattering. Corresponding to the p-wave there are two total 

angular momentum states, namely, the states with J • 1 1 J . 

Again from the isotopie spin analysis we get the channel isotopic 

spin I •> 3/2, 1/2. When the isospin and the ordinary spin 

states are combined we get, in a l l , four states. For the p-wave 

scattering the isospin and spin crossing matrices are the same, 

i.e. a •« 0, where any of the two crossing matrices i s given by, 

\ l » 
l \ 3/2 1/2 

3/2 - 1/3 V I 

1/2 2/3 1/3 , 

(2.56) 

Assuming further that only the states (l / 2,l / 2 ) and (3/2,3/2), 

i.e. K and N* exist, we get from (2.5M) 

7 l / 2 1/2 
m 

1/9 16/0 7 l / 2 1/2 

73/2 3/2 k/9 1/9 73/2 3/2 

(2.57) 
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The above relation (2*57) gives two equations from which we 

obtain 7^y2 1/2 ™ 2 73/2 3/2 * TM S result i s in good agreement 

with the experimental one, thus showing that a reciprocal bootstrap 

relationship may exist between N and N*. This i s , however, just 

a preliminary test for the existence of a bootstrap relationship 

between two particles. In order to see whether such a relationship 

really exists we have to evaluate the denominator function of the 

partial wave amplitude. 
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CHAPTER I I I 

A Reciprocal Bootstrap Mechanism for Quarks 

1. Quark-Meson Scattering and the General Kinematics. 

I t i s well known, as we have also discussed i n Chapter I 

(section l ) that the spinor (3-dimensional) representation of 

SU(3) does not correspond to any known particles. Speculations 

about the possible existence of these three particles, called 
'Quarks* were f i r s t made by Gell-Mann and independently by 

11) 
Zweing . According to the scheme of SU^ (or i t s r e l a t i v i s t i e 

generalisation) symmetry these particles have the baryon number 

1/3 and non-integral charges (Other models which give integral 

charges for the particles belonging to the basic representations 
Us) 

of groups concerned, have been considered by a number of authors ' 

Unlike Gell-Mann and Zweing model, these models, however, require 

the existence of some more quantum numbers, called the super­

charge quantum numbers for which there has not yet been found any 

experimental evidence. We shall, therefore, consider the SU(3) 

scheme which i s the simplest and consistent with the known 

physical quantum numbers). A considerable search has been made 

in the past i n order to detect the possible existence of the quarks 
k6) 

but the experimental results have, so far, been negative '. We, 
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therefore, infer that_these particles must be very massive and 

consider a model which i s expected to give, at least, a rough 

estimate about the masses and the coupling constants of these 

particles. 

We consider quark-pseudosealar meson scattering and adopt 

the "bootstrap" hypothesis in which a l l the strongly interacting 

partieles are supposed to be composites of each other, and we ask 

whether quarks can exist in a self-consistent scheme. I n 

particular, we use the analogy with the well known N-N* bootstrap 

of Ghew^ and i t s analogous SU(3) extension considered by a number 
9) 

of authors . I n our calculations, we use the determinantal 

method (discussed in the previous chapter) and assume that the 

forces that arise due to the fermion exchanges in the crossed 

channel play a dominant role i n this mechanism. Quantitatively, 

these are unlikely to be good approximations but they appear _ to be 

reasonable qualitatively and we, therefore, adopt them for our 

calculation also. Before, we get deeper into the problem, l e t us 

discuss some of the kinematics that we w i l l have to deal with later 

on. 

r 
Pa 

•A / / n 

Pi 

/ Figure 3*1 



The above two-particle scattering diagram (fig. 3.1) 

represents the quark-meson scattering and a l l the crossed processes. 

We follow the conventional rotation of taking the ingoing momenta 

as positive and define the scalar product.of two four-vector as 

follows: A.B M A B - A.B . In other words, we have chosen 

the metric such that g ^ • ( l , -1, -1, - l ) diagonal. Out of the 

four-momenta p x, p 2, p a, p^, we can construct the following 

scalar invariants: 

s - (p + p j s - (p + P ) 2 (3.1a) 

u - (p x + p j 8 « (p 3 + p 2 ) 8 (3.1b) 

t - ( P l + Var - (Vk + P g ) 2 ( M e ) 

I f we consider p^, p g ingoing and p g, p 4 outgoing then we have 

quark*mesoa scattering. The interchange of p and p w i l l mean 
2 4 

the interchange of the two pions, so the process described by 

p^, p^ ingoing and p3,Pg outgoing w i l l again be quark-meson 

scattering. I f , on the otherhand, we consider p , p ingoing and 

P 2, outgoing, we obtain the annihilation process mi -» QQ. 

Referring to the above processes as channels I , I I and I I I 

respectively we have, 
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<*(Pi) + *( P 8) -• Q(-P 3) + w(-Pfc) I 

Q ( P x ) + WC+PJ -» Q(-P3> + W ( - P f ) 1 1 

Q(p x) + Q( P 3) - *(-P 2) + n ^ ^ ) i n 

Figure 3*1 w i l l also describe three anti-particle reactions 

corresponding to the above three channels. s, u and t w i l l be 

positive time-like for I , H and H I respectively and they are 

cm. energies squared i n the channel concerned. The other two 

variables in each channel, are the negative squares of the momentum 

transfer in that channel. Now, using the four-momenta conservation 

law p A + p s + p 3 + p^ • 0 and the mass-energy relations, 

p 1 - p 3 » ; p 2 • p^ • \T we have, 

s + t + u - 2m®+2n2 (3.2) 

Thus, out of the three variables s, t, u only two are independent. 

In each channel, we can, therefore, consider the cm. energy 

squared and the cosine of the angle of scattering as the two 

independent variables. We treat each channel separately and 

obtain the various kinematic variables in terms of s, t and u. 

Channel I : 

0* 2 

Figure 3.2 
s-channel cm. system 
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Figure 3*2 shows the process described by channel I i n the cm. 

system. We have, 

£x " -i>2 ? P 3 - -£ h '> Pi - Pg - A - P2. * (say) 

Then we have, 

8 • fe10
 + p a o ) 8 (3.3a) 

where , 

p* Q m m2 + k 2 ; p 2
0 - k 2 + u 2 (3.3b) 

and |k| i s the absolute value of the 3-component momentum given by, 

|k|2 - | s - (m + n ) 2 s - (m - n ) 2 | / U s (3.3c) 

Now the negative momentum transfer squared between the two mesons 

or the two quarks i s , 

t • - 2 k 2 ( l - cos 0) (3.3d) 

where cos 0 m JOg.J^/IPg.P*! 2* 0 being the scattering angle in 

channel I . The momentum transfer between a pi on and a quark can 

be obtained from (3*2) by using (3.3a) and (3.3d). The physical 

region in this channel i s defined by, (m + u ) 2 ^ s ^ » and 

- Uk2 s? t ^ 0. 
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P 2 

-* r—^i 
u-channel cm. system 

P a Figure 3-3 
Channel I I : 

I n this channel everything i s similar to the channel I and i s 

obtained from them by interchanging s and u. Then we have, 

The cm. energy squared i s then 

u - (p i Q + p^g)8 ( 3 .M 

where, 

P I G - Pao " ^ + 5 Pgo - P^Q " P + ^ 

and 
P - I u - (m + u ) 2 | | u - (m - n ) a j-/^u (3.*b) 

Again the negative momentum transfer squared i s 

t - - 2k2 (1 - cos i ) (3«^c) 

where cos 0 • . P s^i / I P g ' P j 8 ' ® being the scattering angle i n 

channel I I . The physical region in this channel i s defined by 
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(m + u ) 2 ^ u ^ oo , - I l k 2 < t < 0 . The kinematic 

variables i n channel I I I can be similarly obtained. We shall 

not, however, need them in our calculation. 

2. The Crossing Matrices 

In order to solve a scattering problem, we require, as we 

have discussed in the previous chapter, the information about the 

imaginary part of the partial wave amplitude a^(s) over the l e f t -

hand cut which i s associated with the forces that arise due to 

the exchanges of the various particles i n the crossed channels 

I I and I I I . This information i s conveniently obtained by using 

the crossing relations which are provided by the crossing matrices. 

Since we shall mostly be dealing with SU(3) crossing matrices, in 

this and the next chapter, i t w i l l be convenient i f we derive the 

general expressions for the crossing matrices. With that end 

in view, we consider a general two-particle scattering process with 

the following channels: 

2 -* a„ + a 
3 j, 

I 

+ a„ -» a + a_ 1 * 3 «§ I I 

a + 5 -» a + a 
2 i 

I I I 3 

The SU(3)-invariant scattering amplitude in channel I can be 

given by 



< N_ N N, N v r— / N N N \ _ 

* l p l X > « Y ( 0 <NnP|F I|Hn 7> n_ n n, n»/ \ n_ n n ' N,nfr 

( W r ) (5.5) 

where IL, i • 1, 2, 3, ̂  denote the dimensions of the irreducible 
representations to which the above four particles belong, 
n • ( I , I 3 , Y), the quantum numbers assigned to the particles-that 
form the basis of the representation concerned. In (3*5) N 
denotes the dimension of the irreducible representation that is 
obtained from the direct product of two- representations and y, p 
denote how many times a particular representation occurs in the 
i n i t i a l and fi n a l states of the scattering process. The quantities 

f 7 J are the SU(3) Clebsch-Gordon coefficients. 
\ n x ng n / 

The expressions for the SEf (3)-invariant scattering amplitudes 
in channels I I and I I can be similarly obtained and these are as 
follows: 

< N_ N* N, N*\ r- / H_ H* H \ T T 

1*1 1 * > - Y ( 3 E P U N n P l ^ l H n r 
Hn,Py 

( 0 
^ n -n n / 

(3.6) 
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/ N H* N N f 1 3 (3.7) 
>• a, -n» n / 

Nov, the relation between a particle-state and the corresponding 
antiparticle state i s , 

|N*; I , I 3 T > - (-1)H [ |H; I , - I 3 , -Y > J (j.8) 

where N denotes the contragradient representation and 
V 

n • I g + 2 • Using (3»8) we can derive the following relations. 

< N N H. ML \ IL-H / N N* H N* v 

(5.9a) 

<N H N, Ha \ Ho-a, / I T H N, N. \ 

3 * M 1 > « (-D rt
 / 8 * | F | 1 3 > 

n 3 \ \ / V n
2 •» n i " n3 / (3.9b) 

Now, the orthogonality relations the Clebsch-Gordon coefficients 
satisfy are as follows: 



I l l , 

N n 7 

Using (3.9a) and (3.10a) we can obtain from (3.5) and (3.6) the 
relation between the amplitudes in the channel I with those in I I 
and this is as follows: , ' 

<Hn0|F*|Hn7 > <^7|^fr xV***H I ,PV > 

X < H* n» P l J ^ l r n» 7* > (3.H) 

where the elements of the crossing matrix < VP'7|Ag|Vtp,7* > are 
given by, 

Z n, -EL / N, ML N \ / H N N (-D * * ( x 2 7 ) r 3 * ? ^ n n n / n n n n i s 3 * n ^ n ^ 
n« 

(3.12) 
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The relation between the amplitudes in channel I and those in I I I , 
can similarly be obtained* We obtain the following: 

< NnPlF^BTnr > - £ < NPrlAjjjG^ Ng N 3 Kjl&Py > 

X < tfn'p'lF^llPnV > (3.13) 

where the elements of the crossing matrix < N 3 7 ^ ^ 3 1 * £'7* > are 
given by, 

Z - r t / H. N Iff v 
(-1) ( 7 ) 

> n x ng n / 

nf 

/ H. N Iff \ / N. Ht N» . N , H* N N« . v 
x f 3 * *Y 1 v / Y ' * - O 

\ n g nfc n / V n x -n a n* / ~% n* n" 
(3.1M 

We now calculate the relevant crossing matrices for the quark-
meson scattering. First, we consider the channels I and I I . In 
both the i n i t i a l and the final states of these channels, we have a 
quark-pion system which, being a product of an octet and a t r i p l e t , 
representations of SM(3% can be resolved into the following 
irreducible representations: 

S ® £ - 3_©6*©3£ (3.15) 
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I f space spin is neglected, there are in each of the above channels 
three SU(3) invariant amplitudes corresponding respectively to the 
transitions 3 -3> 6* ̂  6* and 15 ̂  15. The amplitudes in the 

0^0 0^0 ^0 ^0 ^4 0^0 

channels I and I I are related to each other through (3.1l). Using 
the- Glebseh-Gordon coefficients obtained from the isoscalar 

14-8) 
factors calculated by Edmonds ' we have obtained the following 
crossing matrix: 

r 
6* 15 

N 

8 

* n i 6* 

15 1 

(3.16) 

Let us now find the scattering amplitudes i n the channel I I I . The 
i n i t i a l state consists of a quark and an antiquark system which 
on decomposition gives the following 

l(g>2 - i © 8 (3.17) 

In the final state we have a two-meson system which being the 
direct product of two octets decomposes into the following: 



8<g)8 - l © 8 1 © 8 2 © 1 0 © l p » < 3 ) 2 j (3.18) 

As there cannot be any transition between two different 
representations, there are altogether three Stf(3) invariant 
amplitudes in the channel I I I , corresponding respectively to the 
transitions, 1 ^ 1; 8 ^ 8^ and 8 ̂  8 g . These amplitudes 
are related with those in channel I , through the following crossing 
mat r i x ^ : 

^ 1 1 " 

1 
mm 

6x 8 2 

I k 

/ j o 

16 

3^6 

16 

6* 
V30 f6 

6* 
2 8 8 

1? 
k 

V30 

16 16 

Let us now assume that the forces that arise due to fermion 
exchanges in the crossed channel I I play a very important role in 
quark-meson scattering and consider only the contribution from 
p-wave in analogy with nN-scattering. Then, each of the amplitudes 
in the channels I and I I w i l l have two components corresponding 
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respectively to the transitions, (N, J • l / 2 ) ( N , J « l / 2 ) and 
(N, J m 3/2) ;£i (N, J 3/2). The spin crossing matrix B can be 
easily calculated and i s , 

J»l/2 J-3/2 

J ml/2 

J-3/2 

1 k 
" 3 3 

2 1 
3 3 

(3.19) 

Nov, the total crossing matrix relating the channel I I amplitudes 
with those of the channel I is the direct product of (3.16) 

and B (3*19)• Calling this total crossing matrix C we have from 
(3.16) and (3.19) 

N 

3 6* 15 

N " X 1/2 3/2 1/3 3/2 1/2 3/2 

3 

1 
2 

3_ 
2 

1 i 
W 'I 

1 1 
"12 ~ 25 

$ - 1 

1 1 
" 2 " 5 

-I 1 

8 2 

t 8 

6* 

1 
2 

1 2 

1 1 
S " 2 

1 1 
"h - 8 

-i 1 

1 1 
2 5 

I E 6 

12 2U 
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H' 3 6* 15 

N V 1/2 3/2 1/2 " 3/2 1/2 3/2 

15 

1 
2 

1 2 

1 1 
" 3 2 

1 1 
k 5 

1 1 
"12 3 

1 1 
3 12 

1 1 
' B 2 

1 1 
k s 

(3.20) 

I t is evident from (3.20) that the exchange of lj> with J m 3/2 
gives rise to the most dominant force for 2 with J •=> l / 2 ; i t also 
gives attractive force for i t s e l f in the direct channel. Likewise 
the exchange of 3 with J «• l/2 gives an attractive force for both 
1J with J - 5/2 and £ with J • l / 2 . :,fhis/analogous to the relation 
between N and H* in the SUg bootstrap of Chew. Let us also 
calculate the ratio of the couplings of these two states by using 
static model. Denoting the £ with J •» l/2 and 15 with J - 3/2 
couplings by ^2 a n * *15 3/2 r e sP e c t : i- v e^y ̂  ^ i n d using (2.5^) 
that from £, l/2) strap 1/2/^15 3/2 * a n d t h a * frcm 

(15, 3/2) strap r 3 f l / 2 J p ^ » 3.5. Thus, i t seems, 
within the static approximations, that there may be a self-consistent 
reciprocal bootstrap relationship between quarks, Q and some other 
particle Q* having baryonic number B • l / 3 , spin 5/2 and belonging 
to 15_ dimensional representation of SU(3). 



117. 

3. The H/B Method and the Self -Consistent Solution for Quarks 

We have shown in the last section that there exists a reciprocal 
bootstrap relationship between quarks Q and some other particles 
Q* having baryonic number B «* 1/3, spin 3/2 and belonging to the 
15 dimensional representation of SU(3) symmetry. We now use the 
well known N/D method*"^ to calculate the consistent masses and the 
coupling constants of these particles. In particular, we use the 
so called determinantal method ' which is expected to provide us 
at least with a rough estimate about the masses and couplings of 
these particles. 

We denote, as usual, by s, u the cm. energies squared in the 
channels I and I I respectively, and assume that the Q and Q* poles 

3 —XS 

in s-variable occur only i n the amplitudes 'jyg a n d ^3/2 
respectively with the residues given by, 

. 2 
fv 2 • j r ; ^ 

2 

where we define g 2 « kwg8 as the QQn coupling, m, the average r 1 
2 

mass of the quark-triplet and M, that of Q*. The residue gg is 
related to the width by unitarity at s • H2 as r « 2q* g^. The 
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poles (3*21) and (3*22) however are to be multiplied by the 
respective factors given in the appendix B (B.^) i n order to take 
into account the effects of the 83(3) couplings. 

The above pole terms in the various amplitudes in the 
u-variable can be calculated by using the crossing matrix C (3*20) 
so that we have, 

F°(u S) • C P(s u) (3.23) 

where F(s u ) is a column matrix with the elements F^ 2, *j/2' 

» & • *V2- desired partial B „ 
amplitudes are obtained from the following relations : 

f i + ( s ) " i f te [ f i k , s ) V z ) + f 2 ( u , s ) Pl±l ( z ) ] 
-1 

(3.2^) 

where 
GO SB 

f,(u,s) 
tmO 1-2 

f 2(u,s) - £ f j j u ) P»(x) f f + ( u ) P»(x* (3.25b) 

f-i i - i 

x «• cos 0 (3.25c) 
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fi± " expt i B^] sin 0 | ± /q (3»25e) 

Here f ̂+ has orbital angular momentum i and the total angular 
momentum J • f ± l/2. 6̂ + is the phase-shift corresponding to 
the 1-th partial wave and -6 is the angle of scattering in the cm* 
system of the crossed channel (section l ) . 

In order to obtain the force term for the_J • l/2 state 
we consider the contribution from only the Q* exchange (since Q 
exchange gives a very small effect) in the crossed channel. 
Using (3*22) and (3*23) ve obtain from (3.2U) and (3-25) the 
following for the p-wave with J • l/2 state, 

5 ^ T / a + l x a + l - i 
f, (•) • - 3x ( 2 - a log ) - log 

1 _ 8 q 2 L \ a - 1 / a - l - l 
(3.26a) 

For the J • 3/2 state we consider the contribution from both Q and 
Q* exchanges (since both have almost equally significant crossing 
matrix elements) in the crossed channel. Using (3.21), (3>22) 
and (3.23) we obtain from (3.2U) and (3»25) for the p̂ wave with 
J « 3/2 state the following, 
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2 - -v2 + 1-1 2*g r 3b c - 1 b + 1 I 
+ I - 3b + log 

- 1 J 3 «- 2 b - l J 

(3.26b) 

where in both (5.26a) and (3.26b) we have, 

s + 2s - 2 (m2 + u 2) 
a « = 1 (3.27a) 

2q 2 

s m2 - 2u 2 

b - 1 (3.27b) 
2q 8 

2&[2{T& + p,2) - M* - s] 
x » 1 + = (3.27c) 

[ I t 4 - 2lf (m2 + 118) + (m8 - u 8 ) 8 ] 

q 2 - I s - (m + u) 8 II s - (m - u) 2 j. / kB (3.27d) 

where \x is taken as the average mass of the meson octet* 

The Born terms (5.26a) and (3.26b) behave as q 2 at the 
threshold and so we can divide them by the factor q 8 without intro­
ducing any additional singularities* further, we hove to multiply 
these Bom terms by s in order to remove the kinematic singularities 
associated with them* Thus, we define the following kinematic 
singularity free Born terms: 
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Ui+OO - x * i r f r ) . (3- 2 f i) 

For the same reason described above we work with the following 
kinematic singularity free partial wave amplitudes: 

s 
h.-Cs) - — f-x (s) (3.29) 
-L+ q 8 

Here the multiplication of the partial wave amplitudes f^Cs) toy 
the factor s/q2 ensures that b^-C8) is free from a l l the kinematic 
singularities and further that the final results w i l l maintain the 
correct threshold behaviour as q 2 -» 0. We now write, 

N,-(s) 
hv-(s) m (3.30) 

where, as is well known, Nj_(s) are analytic on the force cut 
(le f t out) and real on the physical cut and Dj_(s) are analytic 
on the physical cut and real on the force cut. Now, the one-
subtraction dispersion relations of Bj.(s) can be written in the 
form, 

(s - s ) " ImlLja') 
, (s) - 1 + / ds» 

• U r ( 8' - s ) ( 8 , - B x } 

(3.31a) 

(s - Sg) Im \+(a') 
DL.+(S) - 1 + / . ds« (3.31b) 

- \ 0 (•> - s)(s» - s ) 
(m+l)* * 
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where we have normalised D^(s) at s • s^ and D^ +(s) at s • Sg 
and set the meson mass p m 1. Now, over the left-hand cut we 
get from (3*30) the following: 

Im ̂ - ( s ) • Di;_(B) Im ̂ . ( s ) s < s^ 
(3.52) 

for s > 

where s^ is the beginning of the left-hand cut. Now, the 
determinantal approximation allows us to write, 

^ ( s ) - B^fs) (3.33) 

Again, the unitarity relations over the physical cut give us the 
following information: 

Im ^ . ( s ) » N-^s) Im f l / h ^ s ) ) 

(3.3>0 

where p(s) is the kinematic factor given by, 

p(s) - £ (3.35) 

where q is given by (3«27d). 
Using the equations (3*32) - (3»55)> we obtain from (3.31a) 

and (3.31b) the following dispersion relations for D i _ ( s ) ' 
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( B ) . 1 f p( 8.) - — H = - . d s« 
« (il) 8 <•* " •>(-• " -x) 

(3.36) 

(s - s e) p H. .(••)• 
D 1 +(s) - 1 f p(8«) ds' 

* (mil) 2 ( • • - • ) ( • • - • , ) 
(3.37) 

I f D^fm2) m 0 with m2 below the physical threshold there is a 
P̂ yg hound state near which we can write h x_(s) in the form: 

V ( s ) - -1 -±= (3.38) 
(s - m8) 

Comparing (3-38) with (3.2l) the output coupling constant for the 
quarks is given by, 

N, (m8) 
1 ^.(m 8) 

Similarly i f there is a resonance at s m i f we have Be D^+(lf) « 0 
and near the resonance position we have 

N1+<*f)/ReD«(lf) K ( B ) . ±1 — . . (3A0) 
. (s - i f ) - i p ( i f ) N1+(WP )/Be D»(lf ) 
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Comparing (j.bo) with (5*22) we nave, 

r» - -2p(M*) 1 + (3.U) 
Re D^M8) 

We can define a coupling constant for Q* as proportional to the 
width r • Thus, we can have, 

N..JM2) 
6g »a i i (3.U2) 

pfM8) Re D» (M2) 

where pCM8) is given by (5»55)» 

For a given input value of m and M the values of gx , g x 

and g8,, g^2 can be calculated from the equations (3*56); (3*57)• 

(5.39) and (5-^2). Taking &x » (m - l ) 8 and s g - m8, the 
relevant integrations have been solved numerically, the investigation 
being carried out for the quark-mass upto 20u , where u is the 
average mass of the meson octet. I f there exists a complete 

2 t2 
reciprocal bootstrap relationship between Q and Q*, then g^, g^ 

2 f2 

an* &£> S g have to be consistent simultaneously. For the 
computations, we have used the "Optimisation Method" which 
minimises the sums of the squares of the differences of the above 
two sets of the coupling constants for the two given ranges of 
the masses m and M. The self-consistent solutions we have obtained 
correspond t o o » 21*29 Nev, N ~ 5251 Mev, with the corresponding 



125* 

values of the couplings 22 and 32 respectively. I n the above 
calculation we have taken 3*50 Mev as the average mass of the 
pseudoscalar meson octet. The above value of the Oft** coupling 
corresponds to the full-width r ~ 36© Mev, where r is the 
average full-width of Q*. 

An investigation very similar to ours has been carried out by 
51) 

Hieto ' who have considered the contributions of the vector meson 
exchange as well. The reason for their obtaining the negative 
result may be attributed to the fact that the vector meson exchange 
forces, as i s evident from the crossing matrix (3.18), are 
repulsive, being strongly repulsive i n the Q* channel. I t i s , 
therefore, very l i k e l y that the vector meson exchange has a very 
insignificant or rather opposite effect i n the quark-bootstraps. 
The method we have used i n our calculations, however, suffers from 
some shortcomings. The determinantal method employed i n the 
calculations i s valid very approximately. In addition, the inelastic 
effects which we have neglected i n the calculations may have some 
significant influence on the quark-meson scattering i f the quarks 
are supposed to be very massive. Considering the above limitations 
of the calculational method employed, our results are, therefore, 
to be taken with that s p i r i t . 
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CHAPTER IV 

An H/B Calculation for the Mas s-Splitting of 

Baryons i n Broken W(6,6) Symmetry 

1. Baryon-Meson Scattering and Related Processest 

Scatterings between two U(6,6) supermultiplets have heen 
52) 

considered by a number of authors' ' who, by studying only the 
elastic collinear processes, have t r i e d to obtain results which, 
within the limitations of the approximations _used, would be 
comparable to the experimental ones. Consideration only of the 
elastic forward scatterings, no doubt, allows one to use the 
optical theorem for the comparison of the t o t a l cross-sections, 
but a question naturally arises as to the v a l i d i t y of these results 
because of the approximations that have been used i n these 
calculations* I n these investigations, only the homogeneous 
U(6,6) invariant part of the amplitudes has been considered* This, 
however, i s not sufficient for the scattering amplitudes to be 

36) 
compatible with the uni t a r i t y 7 conditions i n the physical regions. 
I n order to be consistent with the u n i t a r i t y , the scattering 
amplitudes, i n addition to the homogeneous ¥(6,6) invariant terms, 
must have twojnore terms corresponding respectively to the 
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irregular (involving the derivative couplings) and the higher 
53) 

order spurion ' terms* I t i s these spurion terms that are 
supposed to cause the mass-splittings within a U(6,6) super-
mult i p l e t . 

Some calculations using the Irregular coupling terms have 
5k) 

been carried out by a number of authors' ' who also introduce 
ad hoc mass-splittings between the SU(3) multiplets within the 
u(6,6) supermultiplets of the external particles involved i n a 
scattering process. Besides these mass-splittings R i v e r s ^ , on 
the other hand, also introduces the similar mass-splittings within 
the U(6,6) supermultiplet oeeuring i n the intermediate state of a 
second order Feynman diagram corresponding to a two-particle 
scattering process. This is done by expressing the propagator 
of the U(6,6) multiplet with U(6,6) degenerate mass as a sum of 
the propagators of the constituent 30(3) multiplets with BU(3) 
degenerate masses. . I t has been shown by Rivers that such a 
procedure introduces i n the scattering amplitudes the same higher 
order spurion terms as we have discussed above. Since this 
procedure has no group-theoretical basis, one may look at the 
problem from the opposite point of view. Instead of introducing 
the mass-splittings right at the very outset of the calculation, 
one may start the calculation with the _ ¥(6,6) degenerate masses 
and expect the mass-splittings result from the spurion terms 
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associated with the scattering amplitudes. As i t i s extremely 
d i f f i c u l t to deal with the irregular couplings and the. higher 
order spurion terms i n the scattering amplitudes, one would 
naturally-look for a simpler method. A convenient method i s the 
so-called N/D method by which one can get. round the d i f f i c u l t i e s 
that usually arise when one i s dealing with the f u l l U(6,6) 

invariant amplitudes. Such a method has been used by Gatto and 
Venziamr ' i n connection with the calculation of the mass of Iff33 

57) 
resonance by using the SU(6)^r' invariant vertices i n the 
calculations* They consider the pion-nueleon scattering and the 
exchanges ©f a nucleoli, a nueleon resonance and a rho-meoson i n 
the respective crossed channels. The result they have obtained 
for the mass of Kgg resonance i s so encouraging that one would 
feel very much tempted to _ use the above proceduere i n order to 
calculate the mass of the nucleon as well. That i s what, i n short, 
we propose to do, our purpose and the problem we shall be dealing 
with, however, being different from theirs. 

We consider the meson-baryon scattering from the point of 
view of U(6,6) theory and investigate the mass-splitting between 
the baryon octet and decouplet by using the H/D method. We assume 
that the SU(3) symmetry i s exact so that the masses of the octet and 
decouplet w i l l correspond respectively to the average mass of the 
eight baryons and that of the ten baryon resonances. As these 
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SU(3) multiplets belong to the same irreducible 36V-dimensional 
representation of U(6,6) symmetry, they are supposed to have the 
same mass from the view-point of ¥(6,6) theory. Now, i f we use 
the U(6,6) vertices i n our calculations, then i t i s expected that 
by using the h/d method we shall, to a reasonable extent, get the 
SO(3) degenerate masses of these SU(3) multiplets. In our 
calculations we shall, however, follow the hypothesis of N-H* 
bootstrap of Chew and consequently consider that the forces 
responsible for the binding of the baryon octet and deeouplet 
come predominantly from the exchanges of these S@f(3) multiplets 
themselves i n the crossed channels. The problem we are going 
to solve i s , i n fact, a multi-channel problem and therefore the 
matter w i l l be clear i f we discuss how these processes arise. 

I t i s well known that a l l the mesons belong to the Ikj-
dimensional irreducible representation of U(6,6). But not a l l 
of the states of 1̂ 3 correspond: to the physical particles. The 
states which correspond to the physical particles are, as we have 
discussed i n Chapter I (section 3), obtained by applying on the 
irreducible tensor corresponding to IU3. representation, the 
Bergmann-Wigner equations under which the t r i v i a l components 
vanish identically. We have shown (1.70) the U(22) <g)SBr(3) 
contents of 1̂ 3 representation. The physical states which are 
obtained by applying the Bergmann-Wigner equations correspond to 
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the contents of the subgroup IL4®S&(3), where I L 4 Is the 
inhomogeneous Lorentz group. - Thus, the physical states of 
1̂ 3 representation can be expressed as follows: 

1U3 • P © V © P <3>V (U.l) * - - o o 

where P, V, PQ, V Q denote respectively the pseudoscalar meson, 
octet, the vector meson octet, the pseudoscalar meson singlet 
and the vector meson singlet. 

Following a similar analysis discussed above, the 36k 
dimensional irreducible representation of 0(6,6) can be expressed 
i n terms of the physical baryons as follows, 

B B + D 0.2) 

where, B, B are the baryon octet and decouplet respectively. 

I f we now consider the meson (1^3) and baryon (j6h) scattering, 
a l l the 3U(3) multiplets i n (k.l) and (k.2) w i l l take part 
independently of each other i n the scattering phenomena and thereby 
give rise to the multichannel processes. From the point of view 
of SP(3) symmetry alone;, this i s , i n fact, an eight-channel 
problem; each of the processes, however, being elastic i n view of 
the U(6,6) symmetry. Let us denote an arbitrary SU(3) multiplet 
i n (^.l) "by Mft , and that i n (̂ .2) by N̂ . Then the above eight-
channel scattering phenomena can be expressed as, 
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where a, £ m 1, 2, 3, ^, i , k - 1, 2. 

I f we are interested i n the baryon octet poles i n the direct 
channels, two pairs of the above SU(3) multiplets w i l l not 
contribute to such poles. These two pairs correspond respectively 
to the occurrence of a pseudoscalar (vector) singlet and a 
decouplet at either the i n i t i a l or the f i n a l states of the 
scattering phenomena. Thus, for the baryon octet pole calculation, 
the problem reduces to a six-channel one. I t can, similarly, be 
shown that the two pairs consisting of a pseudoscalar (vector) 
singlet and a baryon octet occurring at either the i n i t i a l or the 
f i n a l states w i l l not contribute to the deeouplet poles. Thus, 
i n both the octet and decouplet pole calculations, the problem 
reduces to two six-channel ones. These have been explained i n 
d e t a i l by the second order Feynman diagrams, Fig. B.4 - Fig. B.15 
i n the appendix B. 

We assume, as we have mentioned earlier i n this section, that 
the forces responsible for the binding of the baryon octet with J « 
l/2* and baryon decouplet with J » 3/2* arise predominantly from 
the exchanges of these particles i n the respective crossed channels. 
The left-hand cuts (sometimes referred to as force-cuts) are 
associated with these forces. As i t i s well known that the long-
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range part of the forces play a very dominant role I n any 
scattering phenomena, we shall confine ourselves to the consideration 
of single-particle exchanges only. For each of the processes 
discussed above, there w i l l occur two crossed diagrams corresponding 
respectively to the exchanges of the baryon octet with J « l/2 and 
baryon decouplet with J •» 3/2. The space-time parts of these 
processes are associated with the so-called exchange Born terms 
which we discuss i n section 3 of this chapter and the SU(3) 
symmetry coefficients connected with these exchange Born terms are 
to be obtained by using the direct pole-coefficients given i n 
tables B.l and B.2 (appendix B) and the related SU(3) crossing 
matrices which we discuss below. 

For a l l the processes we shall be dealing with, there are 
only three independent SU(3) crossing matrices. We shall discuss 
these crossing matrices one by one. F i r s t , we consider the 
process of a baryon octet and a meson (pseudoscalar vector) octet 
going to a baryon and a meson octet. The two related channels 
(chapter H i ) we are interested i n are as follows: 

ax(8) + ag(8) -» a3(8) + a4(8) I 

ax(8) + S4(8) -» aa(8) + ̂ (8) I I 

where the number 8 denotes the dimension of the 88(3) irreducible 
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representation to which the respective particle belongs. The 
system at either the i n i t i a l or f i n a l state of the above processes 
being a direct product of two octets can be decomposed_into the 
following irreducible representations: 

8 ® 8 « l + ŝ  + ŝ  + w + ioa + gj (U.5) 

where 8. and 8 are respectively the well known symmetric and a n t i -
JL 2 

symmetric combinations. 

In each channel (H.U) there are seven SU(3) invariant 
amplitudes (we are not considering spins of the particles i n this 
section) corresponding respectively to the transitions, 1 -» 1, 

8 i ~* 8 i ' 82 "* 8e' 8x 82' 1 0 ~* 1 0> 1 0 * ~* 1 0 * a n d 

2J -* 2J_. The amplitudes i n the channel I I are related with those 
i n channel I through the equation (3.1l), the expression for the 
elements of the corresponding crossing-matrix being given by (3.12). 
The related crossing matrix is the following: 

N,P,7 • 1 27 10* 10 _ 8 n 8 * 821 822 

1 1 
f -1 -i 1 0 0 - 1 

27 1 7 1 1 1 1 27 8 So 12 12 5 0 0 3 

10* 1 
~ 8 & 1 

I 
1 
I 

2 
5 

1 1 
-J5 0 



1 27 10* IP a* 8» 8« 8« 

10 1 
~>8 

1 1 2 . 
5 

i 1 
J? 0 

8xx 
1 
5 21 i -

2 
1 
2 -A- 0 0 1 

" 2 

«« 0 0 0 1 
" 2 

1 
2 0 

0 0 
k k 0 1 

2 1 ~ 2 0 

8 
E2 

l ! 0 0 1 
" 2 0 0 1 

2 

Let us now consider the process of a _ baryon decouplet and a meson 
(pseudoscalar or vector), octet going to a baryon octet and a meson 
octet. The related two channels, as before, are given by, 

a x(l0) + a8(8) - a3(8) + a/8) I 

a x(l0) + a4(8) - a3(8) + a2(8) I I 

The i n i t i a l system being a direct product of a decouplet and an 
octet can be decomposed as follows: 

10(8)8 - 8©10©©2J©31 (̂ .8) 
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I n each of the above channels (h.f) there are four SET(3) invariant 
amplitudes corresponding respectively to the transitions 8 -» 6̂ , 
8 -»8g , 10 -» 10, and 27 -» 27. The related crossing matrix 
can be calculated as before and i s given by, 

27 10 8 
1 

8

2 -

27 1 
10 

1 
372 

2 
5 

2 
575 

10 9 
10^2 

1 
~ 2 

2 
"572 

2 
7l0 

8z 21 20 1 
" 275 

2 
5 

1 
" 7? 

8s ir5f 
1 

" 75 0 

(M) 

We now consider the process i n which a bayron decouplet and a meson 
« (vector or pseudoscalar)octet occur at both the i n i t i a l and f i n a l 
states and i n both the channels discussed i n this connection above. 
The irreducible SU(3) representations at both the i n i t i a l and f i n a l 
states i n either channels are those given by (^.8). There are i n 
either channels four SO(3) invariant amplitudes corresponding 
respectively to the transitions, 8 -* 8, 10 -» 10, 27 -» 27 and 
and 35 -» 35. The following iB the related SU(3) crossing matrix: 
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\ N» 
N \ 

35 27 10 8 

35 1 B . .2. 
ko 

1 
h 

2 
5 

27 7 37 1 2 27 So ~ 12 " 15 

10 I ..2. 2 10 8 UO k ~ 5 

8 I _ ± 1 1 8 
k 20 " 2 5 

(U.10) 

As mentioned before, these crossing matrices are to be used i n 
conjunction with the octet and decouplet pole ^coefficients given 
i n tables B.l and B.2 (appendix B) i n order to obtain the related 
SO(3) coefficients connected with the exchange Born terms. 

Let us now consider the processes involving the pseudo-
scalar (vector) singlets. There are i n these channels six Stj(3) 
crossing matrices which are required i n order to calculate the 
SU(3) exchange coefficients. We consider them one by one. 

I . Process P0(VQ)B «—* P(v)B 

I n the above process there are i n s-channel two SU(3)-
invariant amplitudes corresponding to the transitions 8 -» 8̂  and 
8 -» 8̂  respectively. I n the crossed (u) channel, there are also 
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two amplitudes corresponding to the transitions 8̂  -» 8 and 
8„ -» 8 respectively. Consequently, the SU(3) crossing matrix. 
A S M _ 9 

i s as follows: 

8 - 8X 8 - 82 

8 x-8 

8 e-8 

1 0 

0 1 

I I . Process P Q(V 0)B «-» P(V>D 

In this process there is one SU(5) Invariant amplti&ude i n 
the direct (s-channel) eorresponding to the transition 8 8 • 
I n the crossed _(u) channel there also occurs one amplitude 
corresponding to the transition 10 *r^* 10. Hence the one-
dimensional crossing matrix i s , 

°3 " 

N N s 

10 - 10 

8-8 2 (It.lOb) 

I I I . Process P 0(V Q)D «-» P(v)B 

I n the above process, there i s one amplitude i n the s-channel 
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corresponding to the transition 10 <-* 10. There also occurs one 
amplitude i n the u-ehannel corresponding to the transition 81—p 8 . 
Hence the one-dimensional crossing matrix i s given by, 

N >v 
8-8 

1© * 10 2 

IV. Process P (V >B«-» P(V)D o o 

There i s i n the above process one amplitude corresponding to 
the transition 10 (—> 10 i n both s- and u-channel. Consequently 
the crossing matrix which i s one-dimensional i s as follows: 

N» 
» \ 10 - 10 

10 - 10 1 (U.lOd) 

V. Process P (V ) <—» P (V )B o x o' o x o' 

There occurs i n the above process one amplitude corresponding 
to the transitions 8 <—> 8 i n both the s- and u-channel and the 
relevant crossing matrix i s , 
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1 N 
8-8 

8-8 1 (U.lOe) 

VI. Process P0(V*0)«-* P 0(V Q)D 

In the above process there is i n both the s- and u-channel 
one SU(3) invariant amplitude corresponding to the transition 
10-10 and the crossing matrix i s given by, 

N >^ 
10 - 10 

10 - 10 1 PulOf) 

As mentioned before, these SU(3) crossing matrices corresponding 
to the processes involving the pseudosealar (vector) singlets are 
to be used i n conjunction with the relevant octet and decouplet 
SU(3)-pole coefficients given i n the table B.l and table B.2 
(appendix B) i n order to _obtain the related 3U(3) coefficients 
associated with the relevant exchange Born terms. 

2. Helicity formalisms and p a r t i a l wave amplitudes; 

In the previous section, we have discussed how, when the 
U(6,6) symmetry i s broken by Bergmann-Wigner equations, the meson-
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baryon scattering decomposes into a number of independent processes 
involving two SET (3) multiplets at both the i n i t i a l and the f i n a l 
states. I f we now take into account the spins of the scattering 
particles, then the scattering amplitude corresponding to each of 
the above processes w i l l be a n x n matrix, the dimension of the 
matrix, of course, being dependent on the spins of the particles 
involved i n the processes concerned. We shall discuss, i n this 
section, this particular aspect of the scattering amplitudes from 
the view-p&int of the h e l i c i t y formalism discussed by Jacob and 
Wick^). As we shall be solving the N/D equations only-for the 
-octet and decouplet poles, we need to construct the parity ampli­
tudes which contribute to J • 1/2 and J «• 3/2. states. f i n a l l y , 
we shall discuss how these parity amplitudes are expressed i n terms 
of the p a r t i a l wave amplitudes. I n fact, one deals with the 
p a r t i a l wave amplitudes when one i s using the N/D method i n order 
to solve a scattering problem. I t i s these p a r t i a l wave 
amplitudes or the parity amplitudes discussed above that give rise 
to a number of independent channels i n any of the reactions we have 
discussed i n the previous section* Since the space-time properties 
of the pseudoscalar (the vector) singlet are the same as those of the 
pseudoscalar (the vector) octet, i t w i l l be sufficient i f we 
consider the processes involving only the pseudoscalar (the vector) 
meson octets; 
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Let us consider a general scattering process (Fig. fc.l) 

involving a baryon (octet or decouplet) and a meson (pseudoscalar 

or vector) at both the i n i t i a l and f i n a l states. 

Figure fc.la Figure fc.lb 
s-channel CM. system 

The s-matrix corresponding to the above process (Fig. 3»l) of the 

baryon-meson scattering can be written in the form: 

< f | s | i > - 8 f. - i(2n) 4 8 4(p^ - P l ) < f|R|i > (fc.ll) 

where 

1 I m5 

< f f R l i > - - i -. I < f |F|i > (fc.12) 
( 8 i % - , x 

where, F i s the well known Feynman amplitudes. I n (fc.12), m i s 

the mass of the baryon and, as we have already mentioned i n the 

previous section, i s to be taken as the U(6,6) degenerate mass. 

JtXf are the energies of the baryon and meson respectively i n 

the i n i t i a l state and E a , B 4 the corresponding energies i n the 

f i n a l states. The three invariant quantities that can be formed 

http://fc.ll


out of the four momenta, p p p p are as follows: 
X 2 3 4 

s - (Pi + Pg) 8 - ( p 3 + P 4 ) 2 -

t - (p - p j 2 - - 21^(1 - cos 0) (U.13) 

u - (p x - p 4 ) 2 • 2m2 +2|*2 - s + 2k 2(l-cos 6) 

where, Pj, - & • J 8 - * 4 -

k 2 - | s - (m + n ) 2 H s - (m - j-y/ua 

E t - E 3 - W + m2 ; Eg - E 4 - ^ k 2 + \? (U.lUb) 

where p i s the U(6,6) degenerate mass of the mesons and 0 i s the 

angle of scattering i n the cm. system and i s given by, 

cos 9 m , 2 (k.lka) |Pg»P4| 

Now, using equation (C.23) we have, 

W 1 
V p ^ V E 1 ^ E a E 4 

< *3 ^ 4 l R l e i ^ > ( U , 1 5 ) 
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The, using (̂ .15) the helicity representation of the Feynman 
amplitude, P, obtained from (^.11) and pf.12) i s as follows: 

< P a »4 x 3 \\*\VX *Z\h> " ~ i > 
vm, ma *—* 

< 9f * fX 3 X 4 | J*M« X 8 X 4 > < J'M* Xg X 4 |s-1|JM ^ Xg > 

< JM X x Xg | 9. X t >g > 
. 21 v Pi Pa 

Now the helicity amplitude between the same total angular momentum 

states i s defined as, 

1 
h J - < JM X 3 Xjs-1|JM Xj Xg > 

2i 4\ 

W s J - 1 W e " " J - 1 

XaX4;XxXg 2 i ^ P x P 3 

J 2i8, 

k 2 i k 2i 
(̂ .17) 

where 8 T i s the phase-shift corresponding to the J-th partial 

wave. 

Then substituting (̂ .17) into (U.16) we have, 

< p3 p4 ̂ 3 X J F K p8 \ ^ > - - / > 
ylm1 nig 

JM 



K 6t * f N» ̂ l*™ X a U > < M * i *BI91 * i *x *B > r J 

(^.18) 

Let X «* X 3 -X*; p » X̂  - Xg • Now taking the three-component 
momenta of the i n i t i a l particles along the z-axis and in the xz-plane 
such that 8^ • ^ • 0, we have ±rom (C.29) 

< JM X x ^ | 8± * ± Xj. \, > - Nj 6 ^ (h.19) 

How substituting (U.19) and (C.29) into (^.18) we have, 

( M 8 

< P s P4 * 3 U\V\vx Pa X x Xa > - - . ) h' 
VB, m_ 

J 
1 "fe ^a^j^x^e 

JM 

1M4>„ _ -ix«- « 
e f / ( e ) e f »j 8 ^ 

We also take the two momenta of the final-state particles in the 

xz-plane. Then multiplying the above equation by d A8) sin 8 

and integrating over 8 and using (C.26) we get, 

m + 1 

< X 3 X4|hJ|xx Xg > - - — f < X a Xg > d J (&) d(cose) 
8it |iX 

(1 .̂20) 
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For eaoh total angular momentum J there are (2s^ + l ) ( 2s g + l ) 

(2s 3 + l)(2 s 4 + l ) h e l i d t y amplitudes, where s^'s are the spins 

of the scattering particles. I n fact, one has to evaluate the 

independent helicl t y amplitudes by invoking the law of invariance 

of the scattering matrix s under parity and time reversal* To see 

how i t i s done l e t us define the helicity of a free particle as 

follows: 

X - J - P / | p | (h.2l) 

where J i s the total angular momentum, P i s the three-component 

momentum* 

a) Invariance under parity: 

Under space-inversion J does not change sign but F does 

change sign. Consequently, a state with he l i c i t y X i s transformed 

into a state with he l i c i t y -X under parity operation. I t can be 
7) 

shown 7, 
P|j M Jg > - t|x i f e ( - l ) J ~ S l ~ S 2 |J M; -Xg > (k.22) 

where i| and are the intrinsic parities of the two particles of 

spin s and s and P stands _ for the parity operator. Now, the 

invariance of the s-matrix under parity implies, 

P B P " 1 - S 0*.23) 

Using (k,22) and (k.23) we obtain from (h,lf) the following 
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relation between matrix elements with states of opposite parities: 

< -X3,-X4|hJ|-v ->g > - ~ — (_i) * < Xg,x K l x ^ > 

b) Time reversal invariance: 

Under time reversal both J and P change sign, so the helicity 

X (fc»2l) does not change. By applying time reversal, T, to a 

state we obtain a new state with the same angular momentum and 

he l i c i t i e s but with an opposite eigenvalue for J . Thus, we 
z 

obtain 

T |J M; Xj Xg > - (-1) J~ M | J,-M; X̂  Xg > (fc.25> 

Now, the invariance of the s-matrix under time reversal implies, 

I S I " 1 - S* (fc.26) 

Use of (fc.25) and (fc.26) i n (h.lf) then gives the following 

relation of the helicity amplitudes: 

< x 3 x 4|h J|x l Xg > - < x x x j h j | x 3 \ > (fc.2T) 

In this connection, we mention that when we consider a process 

li k e B + P i—»B + V, with a pseudosealar meson at one state and a 

vector meson at the other, the helici t y amplitudes corresponding 

to the time reversed process, are to be multiplied by (-1). This 



59) factor arises due to the spin of the vector meson . 

Let us now construct the parity states which contribute to 

J m l/2 and J m 3/2 states. These are obtained by taking a 

linear combination of the helicity states. The parity of such 

a jcpmbination can be given by, 

J—S ~ 5 

P { |J M; Xg > t |J,M; -xx,-Xg > } - \ 'fet" 1) 1 

I I J Mj \l\s> ± I J,M; > j-
f>.28) 

Considering the spins of the scattering particles concerned, i t 
7) 

can be shown 7 that the above combination with one sign contributes 
to / * 1/2* and the other to the state J * • 3/2*» * e shall, 

however, express these parity states in terms of the states having 

a definite orbital angular momentum and total channel spins. For 
7) 

that purpose we make use of the _ following relation , 

s 2L + 1 v \ 
< JM; L8|JM;X, X» > • ( ) C(LS J ; Ox)C(s,s as; X,, -Xg) 

\ 2J + 1 / 

where X • X̂, - Xg and C's are the related Clebsch-Gordon 

coefficients. From (̂ .29) we can obtain, 

L,8 
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I n (̂ .5°) we can drop the symbol M because the conservation of M 
i s automatically taken care of* In what follows we express the 

above mentioned parity states i n terms of the states with a 

definite orbital angular momentum and channel spins for the 

relevant vertices from which a l l the processes we consider can be 

obtained. The related orbital angular momenta are obtained by 

considering the • l/2* or J * m 3/2* states i n the intermediate 

states i n the direct channels (Fig. B.k - B.I5). We shall 

write J * » 1/2* state as B»s and J* « 3/2* as B*s. Using (k.2&) 

and (U.30) we obtain the following**0^* 

I . For the external particles PB the states are: 

\ - ~ [ |l/2j 1/2 > - I 1/2; -1/2 > ] - - I 1/2; P l / 2 > 

\ - [ |3/2; 1/2 >+ I 3/2; -1/2 > J - | 5/2; P l / 2 > 

(*.3l) 

I I . For the external particles PD the states are: 

B i - T2 t ' 1 / 2 5 ^ > + ' 1 / 2 5 " 1 / 2 > ] - " ' l / 2 ; P3/ 2 > 

\ - j r [ I 3/2; 1/2 > - I 3/2; -1/2 > ] - - | 3 / 2 ; P 3 / 2 > 

+ ^ , 5 / 2 ; P 3 / 2 > 



D* " Tz [ ' 3 / 2 ; 3 / 2 > _ ' 3 / 2 ; ~ 3 / 2 > -I " ~7To ' 3 / 2 ; ? 5 / 2 > 

i . 
- — | 3/2; F,/5> > ^10 5 / 2 (4.32) 

I I I . For the external particles VB the states are: 

B x - ~ [ I 1/2; 1/2,1 > + | 1/2; -1/2, -1 > ] - ^ |l/2; P l / g > 

1 / 2 5 V3/2 > 

\ - jr [ | 1/2; 1/2,0 > + | 1/2; -l/2, 0 > ] - - | l/2; > 

- - | l / 2 ; P 5 / 2 > 

\ - j r [ | 3/2; 1/2,1 > - | 3/2; -1/2,-1 > ] - ^ | 3/2; P l / 2 > 

D e " J£ [ I 3/2; 1/2,0 > - | 3/2; -1/2,0 > ] . ~ | 3/2i P l / 2 > 

| 5 / 2 ! P V 2 > + ^ | 3 / 2 ; F ^ > 
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[ | 3/2; 1/2,-1 > - | 3/2; -1/2,1 >]« - J - |5/2i P ? / 2 > 
«/*2 L J Vio 

For the external particles VD the states are: 

- j r [ | 1/2; 1/2,1 > - | 1/2; -l/2,^L > ] - ~ | l/2; P l / 2 > 

- J T o , 1 / 2 ; P ^ > + i . , 1 / 2 ; V 2 > 

- ^ [ I 1/2? 1/2,0 > - I 1/2; -1/2,0 > ] - ~ | l/2; P l / 2 > 

- i , l / 2 ; P 3 / 2
> - J e o i 1 / 2 ; V 2 > 

- j r [ | 1/2; 3/2,1 > - | 1/2; -3/2,-a > ] - | l/2; P l / 2 > 

[ I 3/2; 1/2,1 > + | 3/2; -1/2,-1 > ] - ^ I 3/2; P l / 2 > 

+ JTl 1 3 / 2 ; P3/ 2 > " ̂  5 / 2 j P5/2 > 
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2/3 ^3 
I 3/2; P 5 / 2 > + — I 5/2; P 5 / 2 > 

V - j r [ I 3/2; 1/2,0 > + I 3/2; -1/2,0 > ] - - | 3/2; P l / 2 > 

" TF6
1 V 2 ; V *"; 1 5 / 2 ; V* * + ^ 3 / 2 5 > 

+ ̂ 1 5 / 2 ! V* > 

D s - ~ [ I 3/2; 1/2,-1 > + I 3/2; -1/2,1 > ] - ~ I 3/2; Pyg > 

1 3 / 2 ; p 5 / 2 > + i 1 5 / 2 5 P 5 / 2 > " 5 1 5 / 2 ; P ? / 2 > 

D 4 - ~ [ I 3/2; 3/2,1 > + I 3/2; -3/2,-1 > ] m^r | 3/2; P l / g > 

- \ 1 3 / 2 ; J J 6
1 3 / 2 5 V 2 > * ; l a / 2 ; » V 2 > 

+ H 3 / 2 ; P 5 / 2 > 

[ I 3/2; 3/2,0 > + | 3/2; -3/2,0 > ] - - - ~ | 3/2; P ? / 2 > B 
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; 1 3 / 2 i p5/ 2 > - JT& ' 5 / 2 5 V * 

1 5 / 2 5 > 

In the above, P , F denote the orbital angular momentum i n s s 
accordance with the convention of the atomic theory and the 

associated suffices denote the corresponding channel spins. 

Inverting the above relations we obtain the following: 

i . For the external particles PB we have, 

| 1/2; P l / 2 > - - B l 

| 3/2; P l / 2 > - B x 

i i . For the external particles PD we have, 

| 1/2; P 5 / 2 > - - B l 

(*.51«) 

1 
J 3/2; P 5 / 2 > - - j = (Dx + 3D2) (̂ .32«) 

i i i . For the external particles. VB we have, 
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1 r 

I 1/2; p 3 / 2 > - - j y < \ + ^ 2 B
2 > 

| 3/2; P l / 2 > - ~ (>T2 Dx + D 2) (4.330 

| 3/2; P ^ 2 > - ~ (Dx - >fe D2 - 3^3 D 3) 

1 
| 3/2; P 5 / 2 > - - — (^3 Dx - f6 D2 + D 3) 

iv. Por the external particles VD we have, 

| 1/2; P l / 2 > . 1 ^ + ^2 B > - ^3 B 4) 

| 1/2; P 5 / 2 > - - — (2 V 2 B x + B s + 46 B 4) 

| 3/2; P l / 2 > " ^ < Di +• V 2 Dg + ^3 D 4) 
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1 
| 3/2; P y 2 > - - /2D 2 + 6/3 P g - 2/3 D4 

- 9^2 D5) 

I 3/2; P5/2 > - - j^r (3^ + 3>/2 Dg + 2^3 Da + ^3 D4 

+ 2 V*2 D_) 

I 3/2; P5/2 > - - ̂  (fc^3 Dx - >T6 D2 - 2 D3 - 6 D4 + /6 Dg) 

I 3/2; P 5 / 2 > - ^ ( D x + >T6 Dg - 3 D3 + D4 - & B g) 

From these relations one can express the par t i a l wave amplitudes i n 

terms of the desired parity amplitudes. From the four-types of 

vertices considered above, we can obtain a l l the partial wave 

amplitudes corresponding to sixteen processes by taking appropriate 

combinations of these vertices. There are, however, only _ ten 

independent processes; others being related through time reversal 

invariance property of the scattering matrix s. 
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3« Calculations of the Bern Terms 

a. The Direct Pole Terms: 

We have shown in the l a s t section that both P and F waves 

occur i n some of the scattering processes we consider. I t i s 

clear from the relations (4.31*) - (4.34') that F-waves occur i n 

those processes which involve the baryon deeouplets and vector 

mesons as the scattering particles. But i t i s known from the 

experiments that resonance occurs as uN resonance i n P-wave. 

Therefore, we make an investigation to see how much contribution 

these F-waves have to the J * - and J * - 5/2* poles with which 

we are concerned. With this end in view, we calculate the direct 

J M l/2 and J m 3/2 Born terms using the U(6,6) vertices (I.87) -

(1.92). We evaluate the Feynman amplitudes < X3 X 4|F|x 1 Xg > which 

we use i n order to obtain the helieity amplitudes from the equation 

(4.20). The processes which we have to consider have been shown 

(appendix B) by the Fig. B.4 - Fig. B.15. We shall, however, ignore 

the 3e*(3) symmetry properties of the multiplets and consequently 

the processes we consider are shown in Fig. 4.2 

B(D) B(D 
P(V)p xfP(V)p 4 2/ s 

B 
v Pi 

P(V)p B(D P(V)p B(D)p 
s s s 

figure 4.2a t 
Figure 4.2b 

t 
Figure 4.2e 
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I n order to obtain the pole contributions we evaluate the related 

vertex functions by putting a l l the particles on the respective 

mass shells. As the three-component momentum of the intermediate 

particle i s zero i n the cm. system, the helic i t y states of the 

intermediate particles can be taken as being normalised in the 

positive z-direetion. Further, we take the momenta of a l l the 

particles associated with the diagrams f i g . 2b and Fig. U.2c i n 

the xz-plane. In particular, we take the momenta of the particles 

i n the i n i t i a l state along the z-axls and those of the particles i n 

the fi n a l state along a direction making an angle 9 w£th the 

z-axls, 6 being the angle of scattering. How, sinoe the 

propagator of the intermediate particles (spin l/2 or spin 3/2 

particles i n this case) can be expressed as a sum over the helicity 

states of the particles concerned, the Feynman amplitude corresponding 

to any of the processes shown in the above can be expressed in the 
* 61) form ' 

e 1 i 

< *3 V'Jk & x i h > - 777 V 0 > 

(fc.35) 

where J^C®)* •^|t^0^ a r e * n e vertex functions obtained by putting 

the particles at the vertices 2 and 1 respectively on the respective 

mass shells. These can be expressed i n the following forms: 

F ^ ( 0 ) - /2m <-ps p 4 X 3 xjj^k© > (fc-36a) 
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F^(0) - 2̂m < ko|Jt||pi p 2 Xx X2 > 

where X • Xs - X4; ft • XA - X and © is the helicity of the inter­
mediate particle with U(6,6) degenerate mass m. Thus, the four-
component momentum k of the intermediate particles can be given 
in the cm* system by, 

In (̂ .36 ) J j is the U(6,6) form factors. Taking various terms 
from (1.&7) - (1*9^) we. can obtain a l l the .pole terms corresponding 
to the sixteen processes discussed in the last section. We shall, 
however, discuss two examples, and write down the results for the 
rest. For that we need the helicity states of the external 
particles as well as those of the intermediate J • l/2 or J • 3/2 
particles. The helicity states of the external particles have 
been given in appendix C so we have to obtain the helicity states 
of the intermediate J • l/2 and J » 3/2 particles. 

Corresponding to the spin l/2 particle in the intermediate 
state the helicity states, using (k.36c), are as follows: 

k • (m, 0) (U.36c) 

u(k) 
>J2m(& + m) o . p 

1 E + m ( ) (̂ .37) 

For the spin 3/2 particle in the intermediate, the helicity 
states are taken (given by C.15) as the vector sums of (̂ .37) and 



158 

the following: 

(*-) 

(o where, fc ^2 

In order to show how these pole terms are obtained we consider 
the process P + B -» P + B with J - l/2 and J • 3/2 in the 
intermediate state* 

I . For the J • l/2 particle particle in the intermediate state/ 

In this case we consider the U(6,6) vertices given by equation 
(I.87). The two vertex functions corresponding to a l l the 
particles on the respective mass-shells are obtained as follows: 

P2 / 2m N _ 
*°(E) " ( 1 + 7 ) * (PS) R* U*(K) (U,59) 

P2 / 2m v K*S°) ° — ( 1 + — ) 2̂m 5 (k) r u(p ) 
Using (k.37)> (C.2) and (C.5) we evaluate 0*.39) by putting a l l the 
particles on the mass-shells then substitute them into (̂ .35) 
which gives the following pole terms: 
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< X|P|M > • cx 

where, C • 

-1/2 1/2 -1/2 

-1 
2 cos 0/2 - sin 0/2 

1 
" 2 sin 0/2 cos 6/2 

(knt* -H 2) 2 1 

(h.ho) 

52 ms (s - nP) 

I I The J » 3/2 particle in the intermediate state: 

In this case, the U(6,6) vertices we have to consider are 
given by equation (I.89). Then the two related vertex functions 
are as follows: 

^ ( 0 ) - - ( 1 + — ) 2̂m u x(p s) u(k)®^ . q k 

F*(o) - - ( 1 + — ) S2m q k <<g>*(k) . u(p x) 

The above functions are evaluated by using (C.l), (C.5) and (C.15) 
together with (k.37) and (k.38). After having evaluated these 
functions by putting a l l the particles on the appropriate mass shells 
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we substitute them into (̂ .55) which gives the following pole terms 
for J m 3/2 in the intermediate state: 

1/2 -1/2 

1 
2 

h 
5 (1 - 3 cos 0) cos S/2; " 3 (1 + 3 cos e) sin 0/2 

1 
" 2 

k 
5 (1 + 3 cos e) sin 0/2; 

1* 
5 (1 - 3 cos 0) cos 0/2 

(lute) 

Following the above procedures and using the various U(6,6) 
vertices given by equations (I.87) - 0-92) we can evaluate a l l the 
pole terms corresponding to J • l/2 and J « 3/2 states for the 
sixteen processes discussed earlier in this section. Apart from 
some kinematic factors, i t should be noted, these pole terms 
contain functions of cos 0 or sin 0 in such a manner that these 
functions are the same as the appropriate elements of d^(0) 
matrices given by equations (G»h) and (C.l6). We can then obtain 
the related helicity amplitudes after performing the integral on 
the right hand side of (̂ .20) by using the orthogonality relation 
(C.26) of the reduced matrices d!^(0). Having obtained the helicity 
amplitudes for the total angular momentum J n 1/2 and J • 3/2 we 
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obtain the parity amplitudes discussed in the last section, by 
evaluating the appropriate combinations, given by the equations 
(U.31) - 0*»3!O» We present these values of the parity amplitudes 
in tables separately- for J « l/2 and J m 3/2 poles. We mention 
only those processes which involve pseudoscalar (vector) octets 
at either the i n i t i a l or final states. As the space-time 
properties of the pseudoscalar (vector) singlet are the same as 
those of the corresponding octet, we need not have to consider 
them separately. 

Table U.l : Direct pole-terms for J • 3/2 states, 

PB PD VB VD 

\ D l \ \ D 
s 

D D B D D 
1 2 3 4 5 

PB \ 
k 

~ 3 
V2 

</6 i 
3 

0 --, «/6, 2, 2, >T6 
V3 

V2 1 
2 

1 
2 

1 
^3 

0 - 1 

PD 

J~6 i 1 2 2 -
2 

0 - 3 

3V3 
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Table k.l (contd.) 

PB FD VB VD 

2-̂ 2 
i 

3 

1 2 
" 3 0 

2 2«/2 
— i , >T3 i , 42 i , 
V3 
«/2 i , V j i 

VB \ 0 0 0 0 0 0 0 0 0 0 0 

2^2 
1 3 

2 
0 - 2 - 242 i, - 3 ±, - 4~6 i, 

-4~6 i , - 3 i 

V 4~2 i 3>T2 i 
24~3 

0 - 2 42 1 k, 3^2, 2^3, 2^3, 
24~3 

3^2 

\ - V6 I * 4~3 i 0 - 3 i 
r g 3^3 3^3 q 

VD D 
3 

^ -2 
3 V3 
A 1 ^2 i 0 - ^ 6 i 

3>6 3^3 
2^3, 3, 3, - j r -V2 V2 

D 4 -2 A 1 42 i 0 ^6 i 
3/3 3^3 

2V3, — , 3, 3, - r -
>/2 V2 

-^6 1* h ^ 3 i 0 - 3 i 
- g 3V3 3^3 2 
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The elements in both table ̂ .1 and table k,2 are to be multiplied by 
the factor, 

1 / \2 / 2m N* Ung8 

A - ( Um8 - n e) (1 + — ) 
32m4 \ / \ u / s -m2' 

Table ̂ .2: Direct pole terms for J • l/2 states, 

PB PD VB VB 

Bx BX Bx B 
2 

Bx 

PB Bx 1 
2^2 

•v, 1 •4k i - i 
2 

0 2 

PD B l 
2V2 

V , . 1 
8 

" 3 
2 V2 - - — i 

3 
0 

1*̂ 2 

B 
1 

<fe i 
V3 

2 ^2 
2^2 

0 2^2 i 

* VB 

h 1 
2V2 

^2 2 
2 

0 2 i 

Bx 
2 1^2 

i 
3-' 

2-/2 2 
" 3 0 

0 0 0 0 0 0 0 

B 4 
-2 JT1 2>f2 i 2 i 

k 
0 - b 
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Talcing the elements from either the table 4.1 ©r the table 4.2, 
the contributions of the F-waves corresponding to any of the 
related processes discussed earlier in this section, to either 

M 5/2* or • l/2* state can be evaluated by using the equations 
(4.31*) - (4.34*). I t has been found that the F-wave contributions 
corresponding to the above pole terms vanish. I t i s , therefore, 
very likely that the effects of the F-waves in the mass-splittings 
between baryon octet and decouplet may be negligible* I f the 
approximations that have been used are justified, we may neglect 
the F-waves in the N/D calculations. 

b. The Baryon Octet Exchange Born Terms: 

We have already mentioned i n the f i r s t section of this chapter 
that we shall assume that the forces responsible for the binding of 
either octet with J* » 1/2**" or decouplet with J* » 3/2* arise 
predominantly from the exchanges of both baryon octet and decouplet 
in the relevant crossed channels. The relevant SU(3) coefficients 
of these exchange poles are to be obtained from the corresponding 
SU(3) direct-channel-^pole-coefflcients given i n tables B.l and B.2 
(appendix B) using the related SU(3) crossing matrices given by 
equations (4.6), (4.9) and (4.10), In this and the next section, 
the methods for the evaluations of the space-time parts of these 
exchange Born terms w i l l be discussed. In this connection, i t is 
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assumed further that only the long range forces are important i n 
the mass-splittings between baryon octet and decouplet. In other 
words, we assume that only that part of the left-hand cut which is 
very near to the physical out is important and consequently confine 
oufcselves to the evaluations only of the single-particle exchange 
diagrams. The exchange Born terms required to be evaluated 
correspond to the exchange diagrams given by Fig. 4.3 - Fig. 4.9. 

P(Vj> pg b B(D)pa 

s -» P A B(D) 

B(D) p. POO P 4 

Fig. 4.3 
P (Vo) b B 

s -» 

P0fro> * 
T» 

*o(V0) 

B 

B a pfr) 
Fig. 4.4 

B 

* • 

B 

B a P(V) 
Fig. 4.5 B 

JoiYoL b _ ^ J L 
„B 

,Fi£. 4.6 
A P 0(V 0)" 

D 

s -» 

D " P(V) 
Fig. 4.7 

a P(V)" a 
Fig. 4.8 Fig. 4.9. 

I t is well known that the exchange Born terms can be expressed 
in terms of the direct Born terms in the crossed channel (u-ehannel) 
using the crossing relations. In the 'pole approximation* the 
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direct Born terms i n the u-channel are calculated with a l l the 
energy-dependence (u-dependence) at the pole position u *• m8, 
where m is the mass of the exchanged baryon and i n our particular 
case is taken to be the U(6,6) degenerate mass. I t turns out 
that the threshold conditions for the contributions of the exchange 
diagrams calculated at the 'pole approximation' to the partial wave 
amplitudes are not satisfied, so one must, in fact, keep some 
explicit dependence on the energy of the crossed channel. In 
order to do this in a unique way i t is necessary to make some 
distinction between 'kinematic factors* - in which the energy 
dependence should be maintained - and 'dynamic factors* in which 
the energy dependence should be put on the mass-shell. 

In order to make clear the above prescription for how the 
energy dependence factors should be put on the mass-shell l e t us 
consider a general scattering process for which the invariant 
scattering amplitudes can be written i n the form, 

n 
T m £ .YiAi (k.k?) 

i - 1 

where Â  are the scalar invariants and are the factors that 
arise due to the spins of the external particles and we shall call 
them the spin kinematic factors. I t is these kinematic factors 
whose energy-dependence should be maintained according to our 
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prescription . On the other hand, the functions associated with 
the invariant amplitudes can be put on the mass-shell when one 
is interested in the pole approximation. I f the above procedure 
is followed, then i t has been found that the partial wave amplitudes 
obtained from these Born terms w i l l have correct threshold behaviours. 
To follow the above technique of calculating the exchange Born terms, 
one f i r s t has to find out the decomposition of the scattering 
amplitude into the scalar invariant amplitudes. Then the direct 
pole term obtained by applying Feynman rules has to be analysed 
in order to find out i t s contribution to each of the scalar 
invariant amplitudes Â  (s t u ) . Further, one has to sort out a l l 
the crossing relations for the scalar invariants (stu) and the 
' spin ̂ kinematics* Ŷ . This method, however, becomes very 
complicated when one has to consider a process like VB -» VD, where 
both the scattering particles hate spin greater than l/2. In this 
particular case, there are 30 scalar invariant amplitudes Â  (stu) 
and consequently the decomposition (k.kj) is i t s e l f a major problem. 

The problem of decomposition into scalar amplitudes may be 
avoided by calculating the Born terms between states of definite 
helicities. A typical Feynman amplitude calculated between states 
of total final helicity u and total i n i t i a l helicity X would 
look like gaF(s,u)d^i/(u - m8), where d ^ is the relevant rotation 
matrix with spin, s •» max ( |x|, |u| ). The function F(s U ) is 
the sum of the terms, each of which has a part from 'spin kinematics* 
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and a part from the dynamic factors. I f we are able to separate 
out the spin and the dynamic parts, our mass-shell prescription can 
be applied. Assuming that this separation is possible one may 
proceed in two'different ways. Firstly, the helicity amplitudes 
may be taken as direct pole terms in the u-channel. Then, 

63) 
making use of the helicity crossing matrices one can obtain the 
exchange Born terms in the s-channel. This, however, involves 
some tedious manipulations with the elements of the helicity 
crossing matrices. Secondly, one can follow the more direct 
procedure. That i s , we calculate the exchange Born terms i n the 
s-channel directly with our mass-shell prescription. That is what, 
in short, we propose to do. In this section, we discuss how we 
obtain the Born terms for the exchange of octet with J* • l / 2 + 

in the u-ehannel and the next section w i l l be devoted to the 
evaluations of the Born terms corresponding to the exchange of 
decouplet_with J* • 3/2*. Since nothing has to be put on the 
mass-shell for the baryon octet exchange, the method of vertex 
functions which we have used in evaluating the direct-channel 
poles in the last section can also be used in this case. The 
evaluations of the Born terms corresponding to the exchange deeouplet 
with m 3/2+, on the other hand, require many energy dependence 
factors to be put on the mass-shell and consequently we have to 
tackle the problem in a slightly different manner. 
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The processes for which we require the. baryon octet, B, 
exchange Born terms are shown in Fig* *̂3> where the incoming 
baryon and meson four-momenta are p and p respectively and the 
outgoing baryon and meson momenta are p s and p* respectively. 
The related three Lorentz invariant quantities s, t and u have 
been given by equation (̂ .13) in the-cm. system. Let p denote 
the four-component momentum of the internal baryon. We assume 
that the three-component momenta of a l l the external as ve i l as 
the internal particles are in the xz-plane so that the azimuthal 
angle • is zero. Now, we take three-component momentum of the 
incoming baryon in the positive z-direction and that of the incoming 
meson along the negative z-direction* Considering 8 as the 
scattering angle (shown by Fig. ^.lb) we take the three-component 
momentum of the outgoing baryon in a direction making an angle 6 
with thetpositive z-direction and that of the outgoing meson in a 
direction making an angle n+ 8 with the positive z-direction. As 
a consequence of the above convention, the helicity states of the 
incoming and outgoing baryon octet are respectively given by 
equations (C.2) and (C.5) and those of the incoming and outgoing 
vector mesons are given by equations (C.13) and (c.l^). For the 
incoming J 3/2 particle, the corresponding helicity states are 
obtained from the equation (C.15) by using (C*2) and (C.10) along 
with (C.9) and for J • 3/2 outgoing baryon we use (C.5) and (C.12) 
to obtain the corresponding helicity states. 
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From Fig. k,Xb we then obtain the following: 

P X « (E, 0, 0, k) ; p s m (w, 0, 0, -k) 

m (E,k sin 0,O,k cos 0); P4 • (w,-k sin 0,0,-k cos 0) 

E - Vk8 + m8 ; w - Vk2 + u 2 

From (̂ .̂ 5) we readily obtain, 

p - (E*, k* sin a, 0, k* cos a) 
(lu^6a) 

E* m E — w ; k* - 2k cos a, with a « 0/2 

We also have, u « p 2 • E , z - k'2 so that when we put the exchanged 
baryon on the mass-shell we have, 

k*8 - E»2 - m2 (k.k6b) 

Now, as in the calculations of the direct poles, the Feynman 
amplitude in the helicity representation with the baryon octet 
as the internal particle can be expressed in the form: 

b 1 a 
< * a V W I ' I M S S x i * e > " V § )

 Pt>X ( e ) 

where the vertex functions F** (0) and F*.(0) are calculated at 
the vertices *b* and •a* respectively (Fig. U.j) and they are 
given by, 
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< n,k|Fb|:k« r> > m Van < x a X̂ ; pjj£|k» x> > 

< t>; ̂ i F ^ l k ; X > »^2m < t>; k»|jJp^ p̂ ; X̂  X4 > 

where, u • X3 - X^j X «• Xx - X4 and t> is the helicity of the 
internal baryon octet with the U(6,6) degenerate baryon mass m. 
The Jielicity states of the internal baryon octet can be written 
in the form : 

u (k») 
Vaafi^m) 

E* + m 

2k* . t> 

where we have using (U.l*6a), 

(U.U9a) 

*l/2 
cos a/2 
sin a/2 *-l/2 

sin 0/2 
cos a/2 

(fc.U9b) 

In equation (k.l*8)^ J f t are the related U(6,6) form factors which 
have been given by equations (1.87) - (1.92). I t is evident from 
these equations that we need to evaluate only five different 
vertex functions of the types given by equation (U.^8) in order to 
calculate the exchange Born terms corresponding to sixteen 
processes shown by Fig. U.3 with only baryon octet exchange. Using 
the various terms given in the equations (I.87) - (1*92) we 
evaluate the relevant vertex functions and write them down one by 
one. Throughout these calculations we shall omit the factor 
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'iKsf/fu - n^) which w i l l be taken into account when the total 
angular momentum J projections of the Feynman amplitudes are 
obtained by using the equation (4.20). The representation of the 
Dirac matrices that w i l l come up in the calculations is given by, 

• ( o - l ) ' 

7 5 - 7Q7X7Z7* - - i ^ q J (^.5CB) 

where, 7* - 7Q I 7^ - - 7 K ; 7* - - 7 . -

Having defined above a l l the relevant quantities we write 
down the different vertex functions as follows: 

I . This type of vertex functions correspond to a pseudoscalar 
meson and baryon octet at either the vertex b or the vertex a. 
Taking the relevant factors from the equation (I.87) the two vertex 
functions are given, by using equation (4.48), in the form: 

(4.50b) 

3^ / 2m \ 
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Considering the representations of the h e l i c i t y states of a l l the 

pa r t i c l e s involved and, i n p a r t i c u l a r , using the relations (^.^5)> 

(h.k6) and (̂ .50 ) these vertex functions are evaluated. The 

factors which w i l l be common t o a l l the elements of the vertex 

functions are the following t 

p 2 / 2mv 
Ifm2 \ u / ^2m(E + m)(E» + m) 

B.x m (B» + m)k - (E + m)k»; a g - (E» + m)k + (E + m)k» 

Then the two relevant vertex functions are as follows : 

< V | r j * > - c x 

a cos a/2 ; a_ s i n a/2 
i • 2 

a s i n o/2 ; -a cos a/2 2 i 

(*.52a) 

a^ cos a/2; a g s i n a/2 

a s i n a/2 a cos a/2 2 ^ x 

(^.52b) 

I I . This type of vertex functions correspond t o a pseudoscalar 

meson and a bajryon decouplet, D, at either the vertex 'h' or the 

vertex *a* and are obtained by using the U(6,6) vertices given by 

equation (1.89). We w r i t e down the two vertex functions one by 

one* 
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(^.55a) 

Here, the o v e r a l l common factors are as follows: 

a 0 - (E + m)(E* + m) - kk» (^.55b) 

a 4 - (B + m)(S* + m) + kk» 

Then, the elements of the above vertex function are as follows: 

< 3/211/2 > m - — s i n 9 cos a/2 
S2 

4 
< 3/2|-l/2 > - - — s i n e s i n a/2 

V2 

< 1/211/2 > « - — — |~2 a 3(w + E cos fl) cos a/2 - a 4 m si n e s i n a/2 
mv6 L 

< l/2|-l/2 > • - — — |~2 a 4(w + E cos e)sin a/2 + a s m sine cos a/2 
mv6 L 

< - 1/2 1/2 > • — — [2 a 4(w + E cos,, e)sin a/2 + â m sine cos a/2~| 
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-1/21-1/2 > • jr [ s a g(w + E cos e) cos tt/z - a4m sin© sin a/2~| 

a 4 

< - 3/2|l/2 > « - -— si n 9 s i n a/2 
V2 

< -5/2|-l/2 > - s i n e cos a/2 (^.53c) 
V2 

The vertex function a t the vertex *a* i s given by, 

2m 

Here, the overall_common factors are the same as given by (^.55b). 

Now, the elements of t h i s vertex function are as follows: 

a a 
< l/2|3/2 > m - — si n 6 cos o/2 

42 

a 4 

< -1/213/2 > - — sin & si n a/2 
42 

< 1/2 j 1/2 > • — — [2 a s(w + E cos e)eos a/2 - â m s i n 0 sin 0/2! 
mv6 L 

< - l/2|l/2 > • — ["2 a 4(w + E cos 0)sin a/2 + a ^ s i n 0 cos 0/2! 
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< 1/21-1/2 > m —-jr [2 a 4(w + E cos ©) s i n 0/2 + a^n sin e cos 

< - 1/21-1/2 > m — — [2 a (w + E cos 0) cos a/2 - a^n s i n © si n 0/2"! 
mv6 L 3 J 

a 4 < 1/21-3/2 •< — s i n e s i n a/2 
V2 

a 3 

< -1/21-3/2 > « 7- s i n 6 cos a/2 (^.53e) 
V2 

I I I . This type of vertex functions correspond t o the occurrence 

o f a vector meson and a baryon octet a t eit h e r the vertex *b* or 

the vertex *a*. On account of the two types of couplings 

corresponding respectively t o the charge and magnetic couplings of 

the vector meson, we s h a l l s p l i t them i n t o two parts f o r the sake of 

convenience. F i r s t , we evaluate the two vertex functions which 

correspond t o the charge couplings, of the vector meson. Taking 

the f i r s t term from the equation (1.88) we have f o r the vertex 

function a t the vertex *b', 

< * 3 >*;£3 fcliSltfw > " ̂  C1 + 7 ) pu € i > e ) V P a > u » ( k , ) 

Here, the o v e r a l l common factor i s , 
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u , 2m x |kj 

\t£ \ (i / ^2m(B + m)(B* + m ) 

For the sake o f convenience, we w r i t e down the vertex functions 

separately f o r each of the vector meson h e l l c i t y states. Then 

there results three d i f f e r e n t vertex functions of the above type. 

Considering the factors a 3, a 4 as given by the equation (^.53b) 

these vertex functions are as follows: 

< Xa,+ 1; £3 PglF^k'tj > - -J~2 sin 6 
a„ cos a/2, a. s i n a/2 
3 * 

- a 4 s i n o/2, a cos a/2 

(*.5*c) 

a g cos a/2, a 4 s i n a/2 

- a. s i n a/2, a cosa 12 

< V ^ g a fr|l5|k,» > - ^2 s i n 0 
a g cos a/2, a 4 s i n a/2 

- a 4 s i n o/2, a cos a/2 

Now, the vertex function of the above type a t the vertex *a* i s 

given by, 



Here, the o v e r a l l common factors are the same as i n the above case. 

Then, the three d i f f e r e n t vertex functions are given, as before, 

< * p , ^ , 0 > - < ^ 0 ; 2 a ̂ |lJlk«D > ( M * g ) 

< t» k * ) * * ] ^ P^JX^-I > - - < X 3 , - l ; E 3 pjFg|k»x> > 

We now evaluate the vertex functions that arise due t o the magnetic 

couplings of the vector meson. Taking the second term from (1.88) 

t h i s type o f vertex function a t the vertex *b* i s , 

, * 8 " ' rn " W x P » ^ 7X 7s 

Taking out the o v e r a l l common fa c t o r , 
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the elements of the above function are as follows: 

< 1/2,111/2 > •» —- [ ( a k - a4E)sin 9 cos a/2 - a 4(E - w ) ( l - c o s 

s i n a/2 J 

< 1/2,11-1/2 > - — f(a k - a j ) s i n Q s i n a/2 + a (E - w) 
V2 L 

( 1 - cos e)cos a/2j 

< -1/2,1 |l/2 > • — I"(a k - a B)sin 6 s i n tt/2 - a s(E + w) 
V2 L. 

( l + cos e)cos a/2 J 

< -1/2,11-1/2 > « f(» k - a^Ejsin 9 cos a/2 + a 4(E + w) 

( l + cos e)sin o/2 j 

< l/2,0|l/2 > - a 4 11 s i n 9 s i n a/2; < l/2,o|-l/2 > - - a g u 

s i n 0 cos a/2 

< -1/2,0| 1/2 > - a 3 M s i n 9 cos a/2; < -l/2,Q}-l/2 > - a 4 u 

s i n 6 s i n a/2 

< l / 2 , - l | l / 2 > m -jr [agk - a4E)sin 0 cos a/2 + a 4(B + w) 

(1 + cos ©)sin a/2 J 
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< l / 2 , - l | - l / 2 > - — j ^ a j c - aflB) s i n 9 s i n o/2 - a 3(E + w) 

( l + cos 0 )cos a/2 J 

< -1/2,-111/2 > • — T(a k - a sE)sin 0 sin o/2 + a 3(E - w) 
v2 L 

(1 - cos e)cos 0/2J 

< -1/2,-lj-1/2 > " - — T(a k - a«E)sin 0 cos a/2 - a 4(E - w) 
V2 L 2 

( l - cos e)sin o/2J 

(4.55c) 

Using (1.88) again, the vertex function o f the above type a t the 

vertex *a* i s given by, 

< * k' l*tlEi b > - ~ C1 + - ) ^ / 2 m 

(4.56a) 

Here, the o v e r a l l common factor i s the same as given by (4.55b). 

Then the elements of the above vertex function are as follows: 

< 1/211/2,1 > « |"(a_k - a«E)sin 0 cos 0/2 - a 4(E - w) 

(1 - cos e)sin a/2̂ | 

< -1/211/2,1 > • — [a k - a E)sin 9 s i n o/2 + a (E - w) 

(1 - cos e)cos a/2J 



< 1/21-1/2,1 > - — - a sE)sin 0 Bin a/2 - a g(E + w) 

(1 + cos ©)cos a/2 J 

< -l/2|-1/2,1 > » — J ^ k - a ^ s i n 0 cos a/2 + a 4(B + w) 

(1 + cos 0)sin a/2^ 

< l/2|l/2,0 > • a 4 | i s i n 9 sin a/2; < -l/2|l/2,0 > • a 3 

s i n d cos a/2 

I 
< l/2|-1/2,0 > « -a 3 u s i n 0 cos a/2; <—l/2|-l/2,0 > • a 4 u 

sin 0 s i n a/2 

< l/2|l/2,»l > • - — [(agk - a ^ J s i n 0 cos a/2 + a^E + w) 
V2 L 

(1 + cos 0)sin a/2 J 

< -0./2|l/2,-l > - T(a k - a E>sin 0 s i n a/2 - a (E + w) 
1J2 L 1 a 

(1 + cos e)cos a/2 

< l / 2 ) - l / 2 , - l > - — ["(a^k - agEjsin 0 s i n a/2 + a s(E - w) 
v2 

(1 - cos e)cosa /2J 
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< -1/21-1/2,-1 > m • — ^(agk - a^Ejsin 9 cos a/2 - a 4(E - w) 

(1 - cos e)sin a/2^ 

IV. This type of vertex functions correspond t o the occurrence o f 

a-.vector meson and a spin 3/2 p a r t i c l e at either the vertex 'h* or 

the vertex 'a*. Using the U(6,6) vertex given by (I.90), the 

vertex function a t the vertex *b* i s given by, 

< *a V E . & l^'o > - ̂  (»• + 7 ) W x p» [X<*J ® ̂ ] 

x u ^ k * ) ^ (^.57a) 

The o v e r a l l common factor i s , 

i | k | / 2m 
(1 + - ) = (*.57b) 
\ u / V2mfe + mHE' + u / >/2m(E + m)(E« + m) 

Then the elements of the above vertex function are as follows: 

< 3/2,1I1/2 > - - I a 3(E - w ) ( l - cos e)cos a/2 

< 3/2,1I-1/2 > • - I a 4(E - w ) ( l - cos «)sin a/2 

< l / 2 , l | l / 2 > - - -^-r [2 a m 
2V3 L 

s i n 9 cos a/2 - a 4(E - w) 

( l - cos e)sin a/2J 



183.-

< 1/2,11-1/2 > — ĵ 2 a 4 m sin 9 sin o/2 + a g(E - w) 

( l - cos© )eos o/2̂  

< -1/2,111/2 > m — — ("2 a 4 m sin 9 s i n a/2 - a (E + w) 
2V3 L 

(1 + cos 0)cos a/2 J 

< -1/2,11-1/2 [2 a m sin 9 cos a/2 + a 4(E + w) 
2^3 L 

(1 + cos e)sin 9/2^ 

< -3/2,111/2 > - I *4(B + w ) ( l + cos e)sin a/2 

< -3/2,1I-1/2 - - I a a(E + w ) ( l + cos e)cos o/2 
1 

< 3/2,0|l/2 > - —- a 3 u s i n 9 cos a/2; < 3/2,0|-l/2 > 
V2 

1 
• — a 4 u s i n d s i n a/2 
^2 

1 
< 1/2,0(1/2 > - - - r a 4 u s i n 9 s i n a/2; < l/2,0|-l/2 > 

1 
w — a u si n 9 cos a/2 

/6 8 

1 
< -l/2,0|l/2 > • — a 3 u s i n 0 cos a/2; < -l/2,0|-l/2 > 

1 
• sr- a 4 u s i n 0 sin «/2 v6 



184. 

1 
< -5/2,a|l/2 > « - — a 4 u s i n 9 s i n o/2; < -3/2,0|-l/2 > 

•42 
1 

* —- a_ u s i n © cos o/2 
/2 3 

< 3/2,-111/2 > - | a 3 ( * + w ) ( l + cos e)cos o/2 

< 3/2,-l|-l/2 > • | a 4(E + w ) ( l + cos ©)sin a/2 

< l / 2 , - l | l / 2 >~ [2 a m s i n 0 cos o/2 + a 4(E + w) 
2/3 L 3 

(1 + cos 0)sin a/2^ 

< l / 2 , - l | - l / 2 > « — [2 a 4 m s i n 9 s i n a/2 - a (E + w) 
2V3 L 

( l + cos e)cos a/2J 

< -1/2,-111/2 > * — — 1*2 a 4 m s i n 9 s i n o/2 + a (E - w) 
2V3 L 

(1 - eos e)cos a/2^ 

< - l / 2 , - l | - l / 2 > » — [2 a m sin 9 cos a/2 - a 4(E - w) 
2V3 L 3 

( l - cos e)sin a/2^ 

< -3/2,-ljl/2 > - - § a 4(E - w ) ( l - cos e)sin a/2 

< -3/2,-1|-1/2 > « - a 3(E - w ) ( l - cos 0)cos a/2 

(4.57c) 
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The other vertex function of the above type i s , 

X q k € ^ 2̂m (l*.59a) 

Here, the o v e r a l l common factor i s the same as i n C+.57b). Now, 

the elements of the above vertex function are as follows: 

< 1/213/2,1 > - - | a g(E - w ) ( l - cos e)cos o/2 

< -1/213/2,1 > - | a 4(E - w ) ( l - cos e)sin o/2 

< 1/211/2,1 > • — — 1*2 a m s i n 9 cos o/2 - a 4(E - w ) ( l - e o s 0) 
2>/3L -

s i n a/2 

< -1/211/2,1 > • — [2 a 4 m s i n 0 s i n a/2 + a s(B - w) 
2^5 L 

(1 - cos e)cos a/2 J 

< 1/21-1/2,1 > - — — [2 a 4 m sin 9 s i n a/2 - a (E + w) 

(1 + cos e)cos o/2^ 

< -1/21-1/2,1 > - — — [2 a a m s i n 9 cos a/2 + a 4(B + w) 
2v3 L 

(1 + cos e)sin a/2 J 
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< 1/21-3/2,1 > - - | a 4(E + w ) ( l + cos fljsin o/2 

< -1/21 -3/2,1 > - - | a 3(E + w ) ( l + cos e)cos a/2 

1 
< 1/213/2,0 > - - •— a u s i n 9 cos a/2; < -l/2|3/2,0 > 

V2 
1 

• T a 4 M B I N 0 s i n «/2 
>/2 

1 
< l/2|l/2,0 > - - - a 4 n s i n 9 si n a/2; < -l/2|l/2,0 > 

v6 
1 

• - — a g n s i n 0 cos a/2 
v6 

1 
< l/2|-l/2,0 > » - - a o |i s i n 0 cos a/2; < -l/2|-l/2,0 > 

/6 3 

1 
« — a 4 u s i n e s i n a/2 

•ft 

1 
< l/2|-3/2,0 > » - - a 4 |i s i n 9 sin a/2; < -l/2|-3/2,0 > 

1 
w - -— a., jx s i n B cos a/2 

< 1/213/2,-1 > - | a 3(E + w)(l + cos ©)cos a/2 

< -1/213/2,-1 > - - I a 4(E + w)(l + cos e)sin a/2 

< 1/211/2,-1 > H — — 1̂2 a m sin 9 cos a/2 + a 4(E + w) 
2V3 L 3 

(1 + cos e)sin a/2^| 
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< -1/211/2,-1 > m — |~2 a 4 m s i n 9 s i n a/2 - a (E + w) 
2V3 L 

(1 + cos e)cos o/2̂  

< l/21-1/2,-1 > •> -~jr £2 a 4 m s i n 0 s i n a/2 + a g(E - w) 

( l - cos d)cos o/2̂ j 

< -1/21-1/2,-1 > - [2 a 3 m sin 9 cos a/2 - a 4(E - w) 
2V3 L 

(1 - cos ©)sin 0C/2J 

< l/2|-3/2,-1 > - I a 4(B - w ( l - cos 0)sin a/2 

< -1/2I-3/2,-1 > - § a a(B - w ) ( l - cos e)cos 0/2 
(U.59b) 

I n the above, ve have given a l l the relevant vertex functions 

which are s u f f i c i e n t f o r calculating a l l the required baryon octet 

exchange Born terms corresponding t o the sixteen processes described 

by Fig. It. 3* I n the appendix D, we have given some useful 

r e l a t i o n s , the use of which makes the calculations much easier. 

Knowing these Feynman amplitudes, the J « 1/2 and J m 3/2 

projections of the h e l i c i t y amplitudes are obtained from the 

Legendre polynomials are given by the equation (C.3l) (appendix C). 

equation (h.20), where the matrices d (©) expressed i n terms o f 
U.A. 
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I n t h i s connection, i t should bejnoted t h a t when F i s calculated 

i n d e f i n i t e h e l i c i t y states i t takes the form of a function of 

cos 0 m u l t i p l i e d by factors which exactly cancel the denominator 

of d J ( e ) i n the i n t e g r a l of the equation (k.2Q). The projection 

then involves simple integrals over the products of P^'s. These 

products arise due t o the factor ^ug^/Cu - a 2 ) which we have 

omitted so f a r . The fac t o r h% cancels with the corresponding 

factor i n equation (k»20) and the denominator of the above factor 

can be expressed, by using equation (^.13), i n the form: 

21 + 1 
u - m2 2k 2 a - cos 9 *-> 2k1 

where, 
s - m2 - 2U2 

Y Q.(a) P.(cos 9) 
L> 2k 2 1 1 

(U.66a) 

a m 1 (l+.60b) 
2k 2 

I n equation (k,60a) I s the w e l l known Legendre polynomial 

of the second kind. The r i g h t hand side of the equation (h.20) 

then involves integrals over some polynomials i n cos 9 and the 

products o f Pj's. The relevant integrations are then easily 

performed by using the following properties of the Legendre 

polynomials: 

( f + 1 ) 2 ^ (cos e) + f P ^ C c o s 0) « {21 + l ) c o s 0 P f(cos e) 

P*.6la) 
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+1 

[ P^(eos e) P m(cos 0) d(cos 0) • 
2 + 1 

fm (lu6lb) 

Following the procedures discussed above, the contributions of 

octet exchanges, corresponding to a l l the processes we are concerned 

with, to the helicity amplitudes with J m l / 2 and J • 3/2 are 

obtained. Knowing these hellc i t y amplitudes of the exchange Born 

terms, the corresponding contributions.to the relevant partial 

wave amplitudes are obtained by following the method discussed in 

section 2 of this chapter. The partial wave amplitudes so obtained 

for J • 1/2 and J « 3/2 then constitute the octet exchange Born 

terms contributing to the states with J * m l / 2 * and 3^ m 3/2* 

respectively. These are what we shall use as the respective force 

terms in the N/D calculations. 
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c. The Baryon Decouplet Exchange Born Terms 

In the subsection *b* of this section we have discussed how 

the Born terms corresponding to the exchange of baryon octet with 

J * H l / 2 * i n the crossed (u) channel are evaluated by using the 

vertex function method discussed i n the above mentioned subsection. 

Following the same procedure as before, we shall discuss here i n 

this subsection how the Born terms corresponding to the exchange of 

the decouplet with •» 3 / 2 + &?e calculated. For a l l the relevant 

processes (as shown by Fig. U.3) we are required to calculate onjy 

four vertex functions corresponding to each of the two vertices of 

the second order Feynman diagrams. We discuss them one by one for 

both the f i n a l and i n i t i a l vertices. 

Bow, as in the case of the baryon octet exchange Born terms, 

the Feyynman amplitude in the helicity representation with the 

baryon decouplet as the internal particle can be expressed i n the 

form: 

< x s v p a P J P W v p x p
2
 > m * U e ) 7 7 ^ ( k - 6 2 ) 

where the vertex functions F t >(d) and F a(e) are evaluated at the 

vertices *b* and *a* respectively (Fig. ^.3) and are given by, 

< n, k | J* |k«* > - S2*<x3 ^5 E 3 J B 2 | J f | k ^ > 

(»u63) 
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where |i • Xfl - Hgj X • X x - X4 and o •> 3/2, l / 2 , -1/2, -3 /2 , i s 

the helic i t y of the internal baryon decouplet. The helieity states 

of the spin 3/2 particle expressed as a vector sum of the helicity 

states of the spin l / 2 and spin 1 particles have been given in the 

appendix C by equation (C . I 5 ) . The spinor part of the spin 3/2 

internal particle heli c i t y states has been given by equation (^.^9) 

and the vector part of corresponding states i s given by, 

- (0, S ( 0 ) - m ( M > l f 0 ) ) (^.6Ua) 

where 

/ 2 

+ cos a 
- i 

t sin a 

(0) 
sin a 

0 
cos a 

In the equation (U.6Ua) E* and k* are respectively the energy and 

three-component momentum of the internal baryon and have been given 

by equation (h,k6). Let € and €** be the polarization vectors 

associated with the incoming and the outgoing decouplet respectively 

and g and g^the polarization vectors of the incoming and outgoing 

vector mesons respectively. The representations of the helicity 

states _ o f the incoming and outgoing vector mesons have been given* 

by equations (C.13) and (C.l 1*) respectively. For the incoming spin 

3/2 particle the corresponding he l i c i t y states are obtained from the 

equation (C.15) by using (C .2) and (C.10) along with (C*9) and for 

the spin 3/2 outgoing baryon we use (C .5) and (C.12) i n order to 
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obtain the corresponding he l l city states. We now write down the 

required vertex functions one by one. 

I . This type of vertex functions correspond to the occurrence 

of a pseudoscalar meson.and a baryon octet at either the vertex b 

or the vertex a. Taking the relevant factors from the equation 

(I . 8 9 ) the two vertex functions are given, by using the equation 

(U .63), in the form: 

<*.«) 

I I . This type of vertex functions result from the occurrence of 

a pseudoscalar megs on and baryon decouplet at either the-vertex b 

or the vertex a as external particles. Taking the relevant factors 

from the equation ( l . 9 l ) these are given as follows: 

x > w k , ) 

(k.66) 

< « ^ i P x P 4 ; x x > . ( 1 + f ) { 5 e- € • 5 * $ € 

I 
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I I I . This type of the vertex functions arise from the presence 

of a vector meson and a baryon octet at either the vertex b or the 

vertex a as external particles. Taking the relevant factors 

from the equation (1.90) these are given by, 

* V P3 ) u»< k'> 

(^.67) 

< ^ K I P , p 4 x 4 > - ±(1 + f )*»* $px*a4 
x fcujk*) u x (p x) 

IV. This type of vertex functions arise from the occurrence of 

a vector meson and a baryon decouplet at either the vertex b or the 

vertex a as external particles. Taking the relevant factors from 

the equation (1*92) these are given by, 

3P 2 3 

P.t * {(1+?>-{-f H0"' 



19^. 

3 ^ 3 

(k.68) 

Let us now write, 

&x m (E* + m)k - (E + m)k»; â , • (E« + m)k + (E + m)k» 

(^.69) 

a - (E» + m) (E + m) - kk»; (E* + m) (E + m) + kk» - a 4 

3 

^ - «/2 ̂  ^1 + ̂  ^ ag * ̂  cos «. a f l J- sin « cos a/2 

x 2 « V2 + ?p ̂  a g + — - ( l + cos o ) a 3 j - cos a sin a/2 

X3 " ^ 2 "£ (-1 + ^ ) ft3. + ^ " C ° S } C ° S * C O S € t ^ 

^ _ V 2 | ( l + | i ) a i +
 2 ^ 2 L « a 4 | B l n a s i n « / 2 

i r | - ^ l + ̂  ^ |ka 4 - w ( l - 2 cos ojag j + * (E+ w cos e)t 

x cos a/2 
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«. - J{-(i + 7)[ka»-"(1 + 2 , ! M«K] + f 
x (E + w cos fl)a4 |- sin 0/2 

( M O ) 

>/2m(E + m)(E» + m) 

Then for the calculation of the vertex functions discussed above 

we require to evaluate them at the vertex b the following results; 

a UU • C X 

a g cos 0/2 a^ sin 0/2 

a 4 sin 0/2 a f l cos a/2 
0*.71a) 

S U 7 U m C . i X 
a cos a/2 a sin 0/2 1 ' 2 

a sin a/2 - a cos a/2 2 1 

(^.71b) 

a 

where, 

a c x 
- x x x 4 

*3 *2 

; S ( " ) b - e x ' a 
x x. 

- C X 
3 

x e ^ 
(^.Tlc) 
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Similarly, in order to evaluate the vertex functions at the vertex 

a we require the following results: 

8^ m UU m c X 
a 3 cos a/2 a 4 sin a/2 

- a 4 sin a/2 a. cos a/2 

(^.72a) 

u r s u m c . i X 
•a cos a/2 a sin a/2 
1 ' 2 ' • 

a sin a/2 a, cos a/2 
2 1 

(4.72b) 

S (+)a m 

3 C X 
*4 -X 

s (-)a • e x 

X XA, 2 * 

X -X 3 1 

S (0)a m C X 
x 5 xe 

- Xe X S 

(^.72c) 

Having known the vertex functions given by the equations (4.65) -

(4.68) the Feynman amplitudes corresponding to the sixteen processes 

shown by Fig. 4.3 with the spin 3/2 particle in the crossed channel 

can be evaluated by talcing the appropriate combinations of the 

above mentioned vertex functions. The contributions of these spin 

3/2 exchange Born terms to the helicity amplitudes with J •» l / 2 and 
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J • 5/2 are then obtained by using the equations (k.2Q), (4.60) and 

(k.6l). The contributions of these helicity states to the partial 

wave amplitudes are obtained by taking the appropriate combinations 

of these helicity amplitudes which have definite total angular 

momentum. The total Born terms for the states with J** ml/2* and 

H 3/2 are then the sum of the contributions of the spin l / 2 

exchange Born terms discussed in the l a s t subsection and the spin 

3/2 exchange Born terms discussed above. These Born terms 

corresponding to the relevant processes we are concerned with have 

been used as input forces in the calculations which we discuss in the 

following section. 

k. The N/B Methods and the Results 

As has been mentioned in the section 1 of this chapter, our 

objective i s to investigate the mass splitting between the baryon 

Octet and Decouplet by using the N/D method. In U (6,6) theory the 

baryon Octet and Decouplet being the member of the same irreducible 

representation of U(6,6) symmetry are supposed to have the same 

degenerate mass. I f we use the same degenerate mass by using the 

U(6,6) vertices in the calculations, then i t i s expected that the 

N/D method w i l l give masses for the baryon Octet and Decouplet which 

w i l l be different from the input degenerate mass and thereby w i l l 

provide us with an idea as to the mass-splitting of these two SU(3) 

multiplets. In the calculation,_it i s assumed that the SU($) 
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symmetry i s approximately exact so that the masses which we w i l l 

obtain by H/D method for the baryon Octet and Decouplet should, to 

a reasonable extent, correspond to the SU(3) degenerate masses of 

these multiplets. In the calculation we have invoked the bootstrap 

hypothesis that the forces responsible for the binding of the baryon 

octet and decouplet come predominantly from the exchanges of the 

multiplets themselves in the crossed (u) channel for each of the 

processes that arise from the consideration of meson-baryon 

scattering i n the context of u(6,6) symmetry. 

The states which contribute to the state J * = l / 2 + are as 

follows: 

7 2 5 V*l/2' P 3/2>' V Pl / 2 ' P

3/2>> V o B « &\/*> P3/2> 

V* : 8 ( P l / 2 , P 3 / 2, F 5 / 2 ) (^.75) 

where P-̂ yg' ^3/2 a n d F 5/2 d e n o * e respectively the P and F partial 

wave amplitudes with the channel spin as mentioned by the respective 

subscript. I t i s thus evident from (fc.73) that the calculation for 

the / n l / 2 + state involves a thirteen-channel problem. Since the 

contribution of the F-wave, as discussed in the subsection *a' of 

the previous section, i s negligible, the F-wave i s discarded i n the 

calculation so that the number of channels reduces to twelve. 

Let us consider the states which contribute t o J * » 3 /2 + state. 

These are as follows: 
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P B s l O ( P l / 2 ) ; PQD : 10(P 5 / 2, F 5 / 2 ) ; PD : 10(P,,/2, F ^ ) ; 

VB : 10(P l / 2, P 5 / 2, P 3 / 2 ) ; VQD : 10(P l / 2, P ^ , P ^ , F ^ , F 5 / 2 ) 

VB : 1 0 ( P i / 2 , P 3 / 2, P 5 / 2, F 5 / 2 , F 5 / 2 ) (k.7h) 

I t i s thus evident from (4.7*0 that the number of channels involved 

in this calculation i s eighteen. The neglect of the F-waves 

reduces the number of channels to eleven. 

Now, using the determinantal approximation discussed in 

Chapter I I , the dispersion relation for the denominator function 

of both J P m l/2* and J * • 3/2* states i s given, by using the 

equation (2.18), i n the form: 

(^.75) 

where, 

k 2 l+l 

In deriving (4.75) we have normalised the function D^(s) at 

s m - es and Bj^(s) i n the same equation denote the Born terms 

that are obtained, as has been discussed i n detail i n the previous 

section, from the exchanges of the baryon Octet with J B 1/2 and 

baryon decouplet with J • 3/2 i n the crossed (u) channel of the 
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relevant processes concerned. Using, now, the determinantal 

approximation the partial wave amplitude corresponding to the ij 

channel i s given by, 

det i f (s) 
CV.77) 

where D(s) i s the cofactor of the determinant of the denominator 

function D(s). I f there occurs a bound state at s • s f i we have 

det D J ( s B ) « 0 (^.78a) 

On the other hand, i f there occurs a resonance at s • s^ we have, 

Re det D J(s ) - 0 P*.78b) 
K 

Using the equation (^.75) together with the equations (h,f6a.) and 

(^.78b) we evaluate the masses of the J * - l / 2 + and J * « 3/2* states. 

Since the Born terms in the integral (^.75) are very divergent we 

had to use cut-off i n performing the integrations which have been 

carried out by numerical computation. The relevant determinants 

have also been evaluated by numerical computation, the zeros of the 

determinant having been obtained by graphical method. In what 

follows we discuss the results i n detail. 

The experimental values of the masses of the baryon Octet and 

Becouplet are as follows: 

Mg m 111*6.3 Mev. Mjj - 13&%.6 Mev. 0^79) 
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The theoretical results for the masses of the baryon Octet and 

Decouplet are presented in the following table: 

Table k.l 

Channels 
Considered 

S 
c 

Out off 
in Bev 

U(6,6) 
Coupling 

«B 
Mass of the 
Baryon Octet 

i n Mev. 

*D 
Mass of the 

Baryon Decouplet 
in Mev in Mev 

3 15 3091.2 1932.0 - 1159.2 

20 2I83 .2 1725.9 - ^57.3 

30 2118.8 1217.2 - 901.6 

k 2 317^.9 -

PB 
3 

5 

2769.2 

2196.1 

31^9.2 

26>0.U 

380.0 

kkk.3 

7.5 817.9 I835 .h 1017.5 

10 - I U 6 8 . 3 IklO.k 

5 1.5 

2 

l l l f c . l 3187.8 

2691.9 

2073.7 

PB,FD 
3 

h 

50 

7.5 1011.0 

360^.6 

26lfc.6 I603 .6 

5 2035.0 2627.5 592.5 

FB,VB 3 7.5 1822.5 226o.k ^37.9 

10 1500.5 2099.1* 598.9 
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Table k,l 

Channels 
Considered 

S 
c 

Cut off 
in Bev 

U<6,6) 
Coupling 

g* 

"B 
Mass of the 
Baryon Octet 

in Mev 

Mass of the 
Baryon Decouplet 

in Mev in Mev 

2.0 2015.7 2923.8 908.1 

k 3.0 1352.4 2^08.6 IO56.2 

PB,VB 5.0 1912.7 1912.7 0 

5 
1.0 

2.0 

1288.0 3091.2 

232^.8 

1803.2 

PoB, EB,P o D j 

3 
7.5 

10 

1822.5 

1526.5 

-

ED.V B, VB ' o ' k 7.5 - 1320.2 

5 3.0 l l l U . i 176H.6 650.5 

A l l 
Channels 

3 

2 

3 

5 

1932.0 

1796.8 

1^2.6 

The_masses of the baryon Octet and Decouplet obtained from the N/D 

method by using the determinantal approximation have been presented 

i n the table h.l. As the Born terms, in particular, the ba_ryon 

Decouplet exchange Born terms are very divergent, we had to introduce 

cut off in performing the integrations associated with the denominator 
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function D(s) (**.75) and consequently the results presented in the 

above mentioned table are extremely dependent on the cut off. In 

order to obtain an idea as to the trend, of the mass-splitting of 

the baryons we have carried out investigations taking into account 

the various channels, the results having been obtained by the 

graphical methods. For each of the calculations involving the 

various channels considered we have varied the cut off parameter 

S as well as the U(6,6) coupling g 2. Corresponding to each of the 

combinations of the parameters S and g 2 the values of the determinant 
c 

of the denominator function if^fs) have been plotted against the cm. 

energy squared. The results for a l l combinations of the channels 

that have been considered, have been depicted by the graphs I - V. 

The positions of the zeros of the determinant of the denominator 

functions D^(s) then give the values of the masses squared of the 

corresponding states and in our case the states concerned are 

respectively the baryon Octet with J * » l / 2 * and baryon Decouplet 

with J * » 3/2*. 

I t i s f a i r l y evident from the table h.l that when only the PB 

channel i s considered the mass-splittings for the smaller values of 

the cut off S and higher values of the parameters g 2 occur in the c 
wrong direction. Higher values of the cut off and smaller values 

of g 2, on the other hand, however cause mass-splittings in the right 

direction but the values of the masses of the baryon Octet and 

Decouplet are muchjaigher than the corresponding experimental results. 
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Inclusion of the VB channel with h bev as the value of the cut off 

parameter and the smaller values of the coupling parameter g 2 does 

indeed give reasonably good value for the mass of the baryon Octet 

but the value of that of the Decouplet i s much higher than the 

corresponding experimental results. 

I t i s also evident from the table h.l that reasonably good 

results can be obtained i f one considers the channels F B, PB, F D, 
— o o 

ED, 1M3 and VB with cut off around 5 hev and the value of coupling 

g 2 around 3« This combination of the cut off parameter and the 

coupling g 8 gives reasonably good value for the mass of the baryon 

Octet although the value of that of the Decouplet i s l i t t l e h i g h e r 

than the experimental value. The most striking feature of this 

result i s that the corresponding value of the U(6,6) coupling g 2 gives 

for the pion-nucleon coupling the value g^jjj z 20* 

Considering the approximation we have used and the very much involved 

nature of the calculation we may conclude that the above result i s 

f a i r l y good. 

We have also carried out the calculation taking into account 

a l l the channels that arise from the consideration of the meson-

baryon scattering i n the context of U(6,6) symmetry. The results 

have been presented at the bottom of the table U.l. I t i s clear from 

the above results that the forces resulting from the inclusion of the 

VD channel may be so repulsive for the J «• l/2 state that the 

determinant of the denominator function corresponding to the J • l/2 
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state does not give any zero at a l l . As the inclusion of the VD 

channel gives only one F-wave channel to the J_» l/2 state, one 

cannot conclude that the above non-decreasing nature of the relevant 

determinant i s due to the exclusion of the contribution of the F-waves 

in the calculation. 

Considering the very much involved nature of the calculation 

described in this chapter, the results we have obtained for the 

masses of the baryon Octet and Decouplet are reasonably comparable 

to the experimental ones. In conclusion, we may add that the 

bootstrap hypothesis, in particular, the N-N* bootstrap of Chew not 

only works in SU(2) symmetry but i t also appears to be reasonably 

true in higher symmetries as well. Further, we are led to believe 

that the U(6,6) theory combining the internal symmetry with the 

space-time symmetries of the strong Interactions of the Hadrons has 

provided us with a reasonably good basis for carrying out the s-matrix 

calculations like the one that has been described in this chapter. 
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Phase-eonventionB and 33(3) vertices 

In writing SU(3) invariant Yukawa type strong interaction 

Lagrangians one has to f i x the relative phases of the eigenstates 

of the multiplets. Determination of the relative phases has 

been discussed by de Swar^^ who has used Condon-Shortley^ phase 

convention in BU(3)» Following de Swart, we discuss in this 

appendix how we have fixed the relative phases of the states of 

some SU(3)-mttltiplets which we have considered i n our calculations. 

The procedures we have followed are as follows: 

(1) We f i r s t f i x the phase (real) of an eigenstate (usually the 

state having the highest weight) then determine the relative phases 

of the other members of that isomultiplet by the actions of the 

isospin raising or the isospln lowering I ± , operators. 

Following Sondon-Shortley phase convention we have, 

I +»(I,I 3,Y) - [ (l*I a)(l± I I 3 + l , Y) 
(A.1) 

(2) The actions of the operators Wt and V± (1*9) take us to 

different isospin multiplets. Thus, using these operators, we can 

determine the phases of the other iso-multiplets relative to that 

of the one we started with. As i t i s in (A.l), the action of V + 

on an eigenstate + ( l , I s Y) i s given by, 
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V + •(1,1, Y) - a + •(I+£,I 3 + £,Y + 1) + a - • ( ! - # , I a + £,Y+ l ) 

(A.2) 
where 

a + - | ( l + I 3 + l ) [ i ( p - q ) + I + | + l ] f i ( p + 2q) + I + | + 2] 

fi(2p + q) - I - | 1 / 2 ( l + l ) ( 2 I + l ) j . 
* (A. 3) 

a- — { ( I - I 3 ) [ i ( q - P ) + I - | ][i(p + 2<i) - I + | + 1 ] 

fi(2qL+p) + I - | + 11/21(21 + 1) J -

where p, q are respectively the numbers of lower and upper indices 

of the irreducible tensors symmetric i n either indices. The 

effects of the other operators V-, U i can be obtained by using 

the commutation relations (1.10). 

-7 / 

Fig. A.la 
Weight diagram for D 3(10) 

T — I s 

Fig. A. lb 
Weight diagram for D^fOl) 
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The operators (1*7) can be written i n the form: 

k * i k * 
1 * o x k 1 n o x n 

(A.5) 

Now, for the three quarks we have the basis vectors x . x . x . 
X 2 9 

Phases are so chosen that we make the following identifications. 

- x 2; (A.6) 

The action of A^ o n \ i s given by, 

A l xm - 8m x l " * 8 i xn (A.7) 

For the three antiquarks we have the basis vectors x x, x 2, x 3 . 

Phases are to be se chosen that these form the basis of the 

3-dimensional contragradient representation. Consequently, we 

have to choose the following phases: 

Qg • x 2; Q 3 - x s 

With the above phases, the action of A^ on x m i s given by, 

(A.8) 

Fig. A.2 

(A.9) 

Weight diagram for D ^ l l ) 
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The irreducible tensor for the octet i s , 

Using (A.7) and (A.9) we have, from (A.10), 

For the pseudoscalar octet we write, 

p i • p
2 - Ko5 p

3 - *+; p* - v 

? s - P 6 - q; P 7 « KQ; F a - K-
(A.12) 

Calculating the eigenvalues, the identifications of the components 

of the mixed tensor with the physical particles with arbitrary 
3 

phases can be given by, 

For convenience we set T> • -1, i.e. P„ • . The other 

phases can then be fixed by making use of the actions of 1+, U+, 

V+ on the various states. In order to obtain the phases of P 4 and 

F we make use of, 
6 
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I - P a - /2 P 4 ; Ag *2 V l 

1 ^ 1 3 3 1 K - P - — P + — P : A • • -
i f2 * g « 3 1 3 1 

X 2 3 
and the traceless condition + + « 0. Then solving 

X c « for P t and P„ 
h 6 

1 2 
• - • 

1 2 P « — : P • 4>~ . 
^2 6 3 

Nov, determining a l l the relative phases, the pseudoscalar meson 

octet can be written in the matrix form: 

"5 -

- P-

- P. 

- P. 
2 

•2 

(A.U0 

where the lower and upper indices denote rows and columns 

respectively. The vector octet can also be written in the above 

form: 



VI 

f2 {6 
- V. 

+ 

- V, 

+ — - v. 2 

- v„ 8 

(A.15) 

where, the physical vector meson-fields have been replaced by V's 

in (A.15). These relations are as follows: 

V x - g ; V a - K* ; V a - p + ; Yh m p Q ; V, « p. 

8 (A.35') 

For the baryon octet we make the following assignments 

B x • P I B g - n ; B g • £ + ; B^ •• ; B s « £_ 

Calculating the eigenvaluesof the components of the mixed tensor 

(A.10) we can make similar association as in (A.13) with the 

physical particles (A.l6). As in the case of meson octets we set 

B a * - and then calculate the relative phases of the other states. 

Finally, we also write the Baryon octet in the matrix form, 
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& ft 

B. 

- B. 

B B u 6 

- B. 

+ — - B. 

B e - B„ 

s 

B, 

(A.17) 

For the assignments of the antipartiele states we make use of the 

following relation: 

|H* ; I I a T > - (-1) 2{|N ; I , - I , -Y > } * 
(A.18) 

where N denotes the dimension of the irreducible representation 

and H* that of the eontragradient representation. Making use of 

(A.18) we obtain from (A.16) and (A.17) for the anti-baryon octet 

the following assignments: 

B i " 

/2 + fe' 

B. 

- B a 

B B„ 

ft ft 
- — + — - B„ 

-Be 

(A.19) 
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k 
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2 

Fig. A.3 

The f u l l y symmetrised tensor (1.15) of rank 3 and vith a l l the 

lower indices i s , 

D • z f x y z * x y z + x y z + x y z + x_y z + x y z ] 
5 r u O P n p q.Jp 7 P*7 «L 

(A. 20) 

Nov, the actions of the operator A^ on the quantities x p, y^, z^ 

are given hy (A.5), so that we have. 

z 
4 ̂ 6 

8 

10 10 Weight diagram for Dlo(3,0) 

k k k k A. x y z • 8„ xAT z + & x y.z + 8 x y z. I p*q 7 p r q 7 q F I 7 7 P * ' 

- 8* x y z (A.21) 
t P*q 7 ' 

For the states in the decouplet we f i r s t make the following 

assignments: 
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(A.22) 

Choosing arbitrary phases, the physical particles (A.22) can be 

identified with the independent components of the tensor D 
N 7 

(A.20) as follows: 

D i n V> x 5 D i i2 - W 5 D22i - V>s 9 

D2*2 " \ B * $ D118 " V>5 ^ D123 - V>e 5 

D223 " V>7 > D331 " ^ 8 5 D3S2 " ^ 8 '> < k ' 2 ^ 

We choose 1^ m 1, i.e. D X I X
 m for the sake of convenience. 

The other phases are fixed by the actions of A^ on and 

using the phase conventions ( l ) and (2). Thus, we obtain the 

following assignments: 

D i - D m '> D2 " ^ B l J 8 ; D 3 « ; 

D * " D222 5 D

S " ^ 5 D113*' D6 • ^ 6 D 128* 

D7 " ̂ 5 D283 5 ® 8 " ̂ 5 D13S » D8 " ^ 5 B233 5 

B10 " D333 (A.2U) 



X 

For the anti-decimet states we use (A.18) and obtain the following 

assignments: 

- ^ B 1 1 8 ; 5 • V*3 B 1 8 8 ; 
9 

B i - - F 8 8 ; 5, - ->T3 5 1 1 3 ; 5 . </"6 D 1 8 a ; 
4 s 6 

5 7 « ->T3 B 8 8 9 ; 5fl . D 1 3 S ; 5( 8 -V3B 2 3 3 ; 

333 (A.25) 

Fig. A.Ua 
Weight diagram for D l 3(2l) 

3 3 
Fig. A.lrt> 

Weight diagram for D l 9*(l,2) 

A traceless tensor of rank 3 with one upper and two lower indices 

(symmetric in the lower indices) form the basis of 15-plet of 

i 
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SU g • Such a tensor i s given by°^ , 

+ ajGyn + V i * " ' ] (A.26) 

v 
Now, the actions of the operators Aj on the quantities 

Xijy^z* are given by, 
»i m i m i m _m i 1 i m 

(A.2T) 
As explained i n the weight diagram (Figure A.ka) we can readily 

make the following identifications: 

D 11 " \ \ » D18 " V>2 i D22 " V » ; D l l " V * 

We have chosen \ « 1, i.e. Dfc • D 1 1 for the sake of 

convenience. The other phases in (A.28) are determined by'the 

same procedure as we have used before. The phases of the other 

six states are obtained by considering the following three trace 
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conditions: 

B i 3
 + D2a + B33 " 0 (A.29) 

Then a l l the states of the 15-plet are expressed in terms of the 

independent components of the tensor (A.26) as follows: 

Since the states belonging to 15-plet are associated with fractional 



xm 

charge, we cannot make use ef (A.^8) to determine the phases of 

the states of the contragradient representation* Therefore, we 

have to follow the same. procedure as we have used for the 15-piet 

and the results are as follows: 

I m D" ; 5 - -«/~2 Iff; D « I ? 8 ; D * D 
1 3 ' 2 S a s * i 

B - - (5" - 2B*X) ; 5 « - (5f - 25f) 
8 ^5 1 2 6 

I„ . B*8 ; B « - (5 X X + ? X ) ; B a - - ~ (b* 8 + D 1 2) 7 x a -̂g i 8 9 ^ 8 i 

*io - - ^ 5 1 8 ; D x x . - B 1 8 ; 5^ . / 2 b t 3 

38 33 ^2 (5 i a
 + i g 3 ) m B B B 13 14 13 2 

(A. 51) 

/ N 

/ \ 

Fig. A.5a Fig. A. 5b 
Weight diagram for B**(02) Weight diagram for D6(2,0) 
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I 

A traceless tensor of rank 3 with one upper and two lower indiees 

(antisymmetric i n the lower indices) form the basis of 6*-plet of 

Such a tenser i s given by ̂  , 

4 • * ( V j - x
d

y i ) x k - * [ 8 i <vj - y i 

+ 8* ( x ^ - x ^ J z 1 ] (A. 32) 

Let S^(k m 1, ... 6) denote the six states (Figure A.5&) of the 

6*-plet. Then following the same procedure as we have used in 

the case of 15-plet, we obtain the following identifications: 

S - -^2 S j a ; S s - 2B[a ; - & s£ 8 (A.33) 

S L " ~ S L 5 " " s Sa ! s 3a " " s\ a 

4 - 4 - ̂  - 0 

For the states belonging to the 6-plet we follow the same 

procedure as we used i n the case of 6*-$let above. The results are 

as follows: 
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Sk • V2 • ; S s - 2 8 " ; § 6 « -/2 S^ 8 

SlS =82 -=12 S l » =13 -23 

Having determined i n the above the fields of the particles 

belonging to the irreducible representations of SUg, we can now 

easily write down the SU - invariant Yukawa type strong 
s 

interaction Lagrangians. In what follows, we write down those 

SU(3) vertices which we need i n our calculations. 

For meson-quark scattering with a Quark in the intermediate 

state the following interaction Lagrangian which we obtain by using 

(A.6), (A.8) and (A.lU), occurs at both the vertices 

£ (§<*•) - * % P ^ - { P̂ Qa - Wa + Wfe 

+ \ % - 2ftaQ3) - P 7 OA, + P 8 q.^ } (A.55) 
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The vertices involving one Quark, one meson and a 15-plet can be 

obtained by using (A.6), (A.8), (A. 1*0, (A. 30) and (A. 31) and 

these are as follows: 

- ̂  *(, < - {M-Mi+ J; ̂ + ^ s» 

i _ _ V s . 

1 1 1 
+ — D ft D„ Q + — 5 . Q ) + 

^2 1 _ ^2 

* ^5 ? x 1*̂ 3 - 8 1 ^3 6 8 

^3 1 
" j 5 i a Q 3 ) + P 7 ( - 5 l 0 Q 1 - i B 1 1 Q a 



m i 

1 1 
— — 5 b + — D (L + B, Q ) } 

(A3®a) 

11 

2^2 

1 1 -fz _ 
B + Q_ D + — ft D ) + P ( '— Q, D i **a *T • *s "'la' V .r* 1 s 2>f6 ^3 

1 ^2 1 1 
i D s ~ ^ 1^3 V t ^ ' 1 1 ' U/3 

+ V ^ i B% B, - — B 8 + jrt.Vj 

^ 3 _ 
+ V J * i De ' H Be ' D i 3 > + \ D -



^3 i _ 

f3 , 

The vertices involving one quark, one meson and a 6*-plet can be 

obtained by using (A.6), (A .8), (A.lU), (A.33) and (A .3*0 and 

these are as follows: 

(A. 37a) 



i i i 
+ 3 s - — Q S ) + P(-4Q_S + — a s ) 

+ P s ( - S " l S 8 + 2 ^ ^ S 3 ) + M ^ l S x 

(A. 57b) 

The vertices involving two nucleons and one meson are obtained by 

using (A.l^), (A.17) and (A.19). In our calculations we require 

the following: 

. r 1 1 _ 
<#§«B)F - I P X ( - - B, B 8 + — B X B 4 + B A B ? - B 2 B 5 

^ 5 _ 

1 1 ^3 ^5 

' 3k*'*'~ 
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+ P ( - V~2 B B _ + ^2 B B + B B - B, B } 

r - r - 1 - 1 -+ F (v2 B B - v S B B - — B B - — B B 

Vs. «Ts_ . _ 

- B B - — B B + — B B + — B„B 
3 X ft 7 * /fi * 8 V*2 7 6 

^ 3 . 
B B») + P ( - — B B + — B B. + B„ B. 

B » B 8 " ^ , 8 B ' + ^ B - B l ) i 

(A. 38a) 
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a B 7 

i ^5 - * c _ 
+ £ K B + "Z~ B - — B. B a) + P.( \ B B 3 a s 1 6 ^5 6 8 8 3 5 8 

i _ 5 _ 1 _ _ 
+ — B„ B B t B- B„ B - — B B 
5 I 3 3^2 h 7 3^2 2 * ^ 8 6 

+ ^ 5 « B T ) + P 3 ( 3 5 l B
2
 + 3 5 7 B B - ^ 5 « B » 

>T2 2 2^2 
— B B B B + L B ) 
f3 6 3 * ' 3 

V2 _ ^2 _ 5 5 
«/5 * 6 ^3 6 * 3^2 1 1 3^2 2 

1 1 2^2 2>fe 
— - B B, - — - B a B_ + B_ B_ B B ) 
3/2 7 7 3^2 8 8 3 • * 3 3 3 

q _ 1 ^ 2 ^2 _ 
+ P ( i B„ B + ± B a B, - — B_ B - — B a B_ 

5
X 3 e 1 3 8 7 ^ B 6 



m i 

2^2 2^2 _ ^2 _ 
I B + B B ) + P ( - — B B 

3 5 ** B s ' V ^3 3 » 

>T2 *T2 *T2 1 
+ — B B - — B B - '— B B - — B. B. 

1 _ ^ 3 _ 5 _ 
+ ^ B 8 B E " ^ ^ B 7 + ^ B 8 B e ) + P - ( 5 B B B » 

1 - 5 _ 1 _ 1 _ 
+ i B B B B B B + — B- B„ 

•̂ 5 5 _ 1, 
- — B B ) + P ( B» B B B 

•T2 « 8 8 3V2 8 * 3^2 * 1 

5 - 1 - 1 - ^ 3 - v l + ' B B + = B B - — B a B „ + — B 3)1 

(A. 38b) 

The vertex involving one meson and two decouplets can "be obtained 

from (A.l^), (A.2H) and (A.25) and i s as follows: 
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J2 >r2 

j a i©' 2* 3 2 s 3 6 

1 ^2 

3 

+ P ( - —- B D + f B_ B_ - — B D _„ _ a 

V 2 

+ — D_ B. 
3 

^2 _ , 1 1 
— D B, - ; D D j + P ( - D D - — — D D 

1 42 1 1 
— ^ - D„ D 0 - — B„ D + — — B B + -— B D 
3^2 8 3 3 * ' 3^2 8 8 ^2 * * 

•V~2 _ 1 

3 7 7 3^2 
- _ 1 - o -

+ — B B + — - D B D B) + P (- — B D + f D D 
« 7 7 ».f« 9 9 s ,^3 2 X 3 a s 

1 ^2 V*2 _ , _ 
- — 5 D + — B D - — D„ B - - B B ) 

3 • 8 • j 6 9 s 7 6 3 9 8 

+ p ( — D D - — D B + — B B - — 5 B 
• V 6 1 1 2 2 ^6 3 3 ^6 * * 
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>T6 ~ 8 ~ 8 fe> ~9 " B >T3 

s 8 r> 9 8 r io l O y 

, >T2 . 1 
+ P„( ̂  D D - — D D - — I L B + — B D 

' * 3 g 2 „ 6 *3 , "8 6 ^- 7 * 

^2 _ - j _ p _ ^2 _ 
+ — D D - ± D D +|H. D - — I L B 

_ 6 S 3 7 3 3 S 3 9 6 
5 5 

1 

/3
 Ll° ~*' 

- — D _ D ^ ) | (A. 39) 

The vertices involving one meson,, one baryon and one deooaplet 

are obtained by using (A.lk), (A.17), (A.19), (A.S^) and (A.25) 

and these are as follows: 

1 1 -ft 
+ 5 B a) + P 0( -—.5. B_ + — D B - D B 

/6 6 8 2 >T3 8 8 >f3
 3 * * * 
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+ .75 ̂ « B7 " 7Z 57 B s ) + \ + ^ 5
B •6 6 7 / 3 

+ ^ 5 » B ^ i B ' B « - ^ " V B 9 - 7 3 5 s B a ) 

J~2 J2 1 1 
+ p f — 5 B. - B„BL - — 5 B - — B B 

1 1 1 _ 
+ — ILB + — D B + — D B ) 

+ P ( - — D_ B. + D. B + — I B_ - — D B. 

+ ^ 5 7 » « " ^ 5 9 B 7 ) + P e ( - ^ B 9 B S 

^2 7 6 V 5 

+ p 7 ( . ? : 5 . B i - B„ - — D„ B. 
/ 3 " 9 " 1 V6" s 8 </6 8 * 

B. 
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XXVI 

— 5 L + — IL B - — D„ B + — 

- V V } 

Lg (B • B) . | P I ( - ̂ B ^ ^ I B ^ H - ~BABB 

(A.^Qa) 

1 1 _ 1 — B B + — B D„ - B B ) + P( — 
46 * 9 J e * 8 7 1 G 8 V 3 

i l l l B B - — BB + — B D - —BB« 
46 8 6 46. * 8 /3 s 9 >T2

 6 8 

+ B D, J + PQ( - "r- B, B_ + B B + — B D 

1 1 1 2̂ 
— i 5 + — i D _ — B B)+P (— 
4e * 7 >f2

 6 7 V 5
 7 9 * V5 

•̂2 1 _ 1 1 _ - — BD - — BB + —B B - — B B 



XXVII 

+ + 

1 1 _ 1 1 _ 
+ — B D - —- B D + — I B - — B„ D ) 

+ P ( B B + — B B - — B D„ 

I _ I _ 
+ P f S D - — B B + — B B - — B B 

Again the vertex involving a meson-singlet and two baryon octets 

i s given by, 

* ( l * 0 B ) s - BjB«*« - | l 0 ( - I 1 l l + ^ ^ - l . B . - + B 4 B % 

- B B + B B + B_ B_ - B_ B_) (A.^l) 
3 5 6 6 7 7 8 8' * * 
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Similarly the vertex involving a meson singlet and two deeouplets 

je(D*°D) - 1°^ B^S m ^ P o ^ ! ^ - ^ » m + 5. V 5 » B » 

" \ B
s
 + \ B« - 57 BT + 5e De ~ \ Be - * x o

 Bxo> 

(A.U8) 

In the derivations of the above Lagrangians we have, for convenience, 

omitted the space-time factors which are required to make these 

vertices Lorentz invariant* These factors are to be taken into 

account when ve use these vertices i n the related calculations. 
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APPEHDIX B 

Calculations of 8U(3) Coupling Coefficients 

In almost a l l the dynamical calculations involving SO(3) 

symmetry, we require SH(3)-coupling coefficients. Here, in 

this appendix, we discuss a method which makes use of the SH(3) 

invariant vertices (appendix A) for calculating the pole coefficients 

corresponding to a direct channel scattering diagram. This method 

can also be used for the exchange diagram; but i t i s always 

convenient to use the crossing matrix when direct channel pole 

coefficients are known. 

Let us consider the case of quark-meson scattering. There 

can occur, in this ease, three poles i n the direct-channel as 

shown in the following diagrams: 

" S=6» ^e*«i5 

P • 

Pig. B.3 Pig. B.l Pig. B.2 
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The method we have used can be described as follows: we 

construct a state |H; I I T > in terms of the product states 

i n the scattering process. As I , I Q and Y are conserved i n the 

strong interactions, the state |N; I , I , Y > must occur i n the 

intermediate state of the above diagrams (Fig* B.l,2,3)» We are 

then to pick out those coefficients from the two vertices associated 

with the above diagrams such that we get, by contraction, the 

relevant state |N I I a Y > as the intermediate state as well as 

the related external particles at the i n i t i a l and theffinal states. 

We shall follow this method to calculate a l l the STJ(3)-coefficients 

we require i n our calculations. 

For the 3 15 and 6* pole coefficients we construct the 

following states: 

|'HX; 1^ I l z Y x > |Ng; I g I g z Y g > of the two particles involved 

|3; o o - 7 , > 125 *3 > p_ a > 2V2 

(B.1 

[/6| |15; © 0 - 7 2V2 

(B.2) 
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|6»; 0 © V 3 > • |6*; s
x > - j r [l > " K * i > ] (*-3) 

Considering the diagram (Fig. B.l) and using the interaction 

Lagrangian (A.35) we obtain for 3-pole coefficient, 

***** " l [ ^ + > f 5 + ^ ] [ | + 

1 8_ 8 
8 * V3 " ^3 " 3 

For the 15-pole coefficient we consider the diagram (Fig, B.2) 

and use (A.56a) and (A.3 ) for vertices 1 and 2 respectively. 

Thus, we obtain, 

< i ? | l 5 > - g [ - jr - | - j r - — \~ J2~ ~^f2~ ~^f~2 ] 

For 6* we use Fig. B.3 and consider for the vertices 1 and 2 the 

Lagrangians (A.37a) and (A.37b) and obtain the following: 

Thus, collecting a l l the above pole-coefficients we have 
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< 2 l 2 > • | ; <15|15> • 1; <G*|6*> - 1 

l a the Baryon mass-splitting calculations, we consider the scattering 

of Baryons (Octet as well as Becouplet) and Mesons (Pseudosealar 

Nonet as well as vector Nonet). The 80(3) coupling coefficiencts 

which are required correspond to the Baryong Octet and Beeouplet 

poles in the direct channel. Following the method discussed 

earlier i n this appendix we calculate a l l the 3U(3) coupling 

coefficients that are required i n the above mentioned calculations. 

For this purpose, we have to consider the following uncrossed 

Feynman diagrams: 

?(v) B P(V) P(V) B 

B 
B B B 

' 1 B P(V) P(V) 
Fig. B.U Fig. B.5 Fig. B.6 Fig. B.7 

P(V 
P J V J V P(V) P(V) 

' L B B 

P<V) P(V) B B 

Fig. B.8 Fig. B.9 Fig. B.10 Fig. B . l l 
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NP(V) D P-(VJ B NO" O 

P.(V) P.(V J s P.(V_) x PV) D 

Pig. _B.12 Fig. B.13 Pig. B.l^ Pig. B.15 

Where, P, V denote the pseudoscalar and vector octet respectively 

and B, B the baryon octet and deeouplet respectively. P , V 
o o 

are respectively the pseudosealar and vector singlet. 

To calculate the Octet and Decouplet pole coefficients for 

the processes involving pseudosealar mesons (Octet or Singlet) we 

can follow the same procedure as we used i n the case of quark-

meson scattering process. As an example, l e t us calculate the 

baryon Octet pole coefficient i n the process PB -* PB (Fig.B.U). 
67) 

For that purpose, we construct the following states 7 : 

l«; 000 > - ~ [ i|PX B8 > - i | p 2 a, > - |P3 B9 > + |P4 B̂  > 

- I*. B3>- |P6B6>- i|P 7B a> +i|P 8B 1>] 

(B.5) 
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|8; 0 0 0 > - £ [ |Px B 8 > - |P2 B 7 > + |P7 B ? > - |Pa B x > ] 

(B.6) 

where 8, 8a denote the symmetric and antisymmetric octet 

representation respectively. 

Using (B.5) and (B.6) we obtain from (A.38b) the following 

Baryon Octet jjole coefficients: 

i f 1 1 

<8|8> - 1 J - — - — 
5 I 2/6 2/6 

1 -fz Jz *Tz -fz 
+ — + — + * — + — + 

^3 ^3 >T3 2̂Ta 

^3 w 1 1 J2 f z V2 «/~2 
zJzJX 2^6 2>T6 V3 4*3 ^3 ^3 

4*3 . V*3 
2^2 Z-fzJ 

± 10 10 10 
5 /6 Vo* 5 

r l 1 ^3 1 1 ^3 ^3 

X f6 V6 " / 2 V 2 J L V6 V6 >fe >fe 

. - 1 . - - . § 
>T6* ^6 " 3 



XXXV 

1 1 • 8 v 10 kS? 
< 8« 18 > m - . -jr • ( - 7T ) . T 

2 <fr A f6/ f6 3 

For the Becouplet pole coefficient corresponding to the same 

process (Fig. B.10) we construct the following state: 

1 
|10; 0 0 -2 > « T [ | P 7 BA > - |PB B7 > ] (B.7) 

V2 

Then, using (B.7) we have from (A.^Ob) and (A.^Oa) 

< 10|l0 > « \ [1 + 1] [ 1 + 1] m 2 

The above results have been checked against those calculated by 
19 68) 

a number of authors ' . Following the above procedure we can 

calculate a l l the relevant SU(3) coefficients corresponding to the 

processes involving only Hie pseudoscalar mesons at both the 

vertices. For the processes involving vector meson (Octet or 

Singlet) at both the vertices or vector meson at one vertex and 

pseudoscalar meson at the other the situation i s , however, slightly 

different owing to the occurrence_of two types of couplings 

(Chapter I section 3)* For this specific purpose, we write the 

relevant vertices in the following form: 

For the vector (Octet) at the f i n a l vertex we write: 

£(B •* B) - ct« I (B •* B ) p + P'JC (B ** B ) D + | F (B.8a) 
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Similarly for the vector octet at the i n i t i a l vertex we have, 

^ ( B ^ B ) - a « £ ( B V B ) p + p i ( B ^ B ) D + |p (B.8b) 

Again, for the vector singlet at the f i n a l and i n i t i a l vertices 

we write Respectively, 

4 (•«£%) - a»^(B»j°B) + B'.je(B*J° B) (B.9a) 

jP (B*°B) - a. 3t ( B * f B ) + B». * ( B * ° B ) (B.9b) 

In the above, a, 0 are the kinematic factors of the vertices 

concerned. For the Becouplet, on the other hand, the vertices 

are of the same form as with the pseudosealar mesons. So, we need 

to calculate the coefficients corresponding to only one type of 

meson. Having discussed the relevant procedures and the 

notations, we present the results in the following tables: 

Table B 1: B-pole coefficients i n the direct channel: 

PROCESS POLES POLE COEFFKHZHTS 

8 8 10/3 
PB — > PB 8» «—» 8 + *V5/3 

8» f-> 8' 8/3 



m m 

Table B 1: B-pole coefficients i n the direct channels: 

PROCESS POLES POLE COEFFICIENTS 

PB PB 
8 8 
8 <-» 8 » 

-5/^3 
-2^5/^3 

PB B 
o 

8 ^ 8 
8 8» 

2^5/3^6 
+ V3^6 

PD <~* PD 
P B H P B 
o o 
PB PD 
o 

8 «-» 8 
88 <-» 8 
8 <r* 8 

5/2 

1/9 
-V5/3V2 

PB VB 
8 «r̂» 8 
8« 8 
8» *-» 8» 

1031/3 
•2^5 «* + kJ5P /3 

fca* + 8p»/3 

PB V B o 
8 <-* 8 
8 <-» 8» 

2^50* / V~6 + 2/5 B»/3*/~6 
+lw*/V6 + kp/}j~6 

PB f - t VD 
8 <"-»• 8 
8 <-> 8» 

-5/V3 
-2^5/^3 

P B f—» VB 
o 

8 <-** 8 
8» f-> 8 

2^5 3» /3V6 
+ >T6o» /3 1. 2V"2 0« /3V3 

F B H T B 
o o 
PQB VD 

8 8 

8 <-» 8 
«73 + 3»/9 

- V"5/3>/2 
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PROCESS F0LBS HJLE COEFFICIENTS 

FD «—* VB 
8 8 
8» 8 

-507^3 

PD f-» V B 
o 

PD <—»• YD 

8 <—* 8 
8 8 

- V"5a»/V"2 - V5 3»/3^2 

5/2 

VB <—? VB 
8 e » 8 
8» <—• 8 
8« «-> 8» 

lopp»/3 

6e»o + Uo»p + ̂«0» + 80*0/3 

VB «—»• V B 
o 

8 8 
8 8» 

2V"5«»p//6 + 2^50'0/?V6 
+/6«'a + f6 + 20»a/>T6 + 1*0*0/3̂ 6 

VB «~f VD 
8 «—» 8 
8 8» 

-53/^3 

- / l 5 a | 2^50/^3 

V B H V B 
o o 

V B H T O 
o 
VD f-> VD 

8 f — * 8 
8 <—* 8 

a»a + e*0/3 + 0»a/3 + P'0/9 
- V"5a/^2 --75 0/3 ̂ 2 

5/2 



Table B 2: D-pole Coefficients i n the direct channel: 

PROCESS POLES POLE COEFFICIENTS 

PB £™» PB 10 *10 2 

PB 6—» ED 10 *-*10 

FD 6—* PD 10 » 10 V3 

P D fe—• PB 
0 

10 *r-> 10 

P D t—> PD 
0 

10 «—» 10 +2/3^3 

P D * - » P D o o 10 <-*. 10 1/9 
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APPENDIX C 

Helioity Formalism and Rotation Matrices 

When dealing with the scattering of particles having 
spins i t is always convenient to work with the helioity 
representations of the scattering amplitudes. I n order to obtain 
that one has to construct the h e l i c i t y states of free particles 
and this appendix w i l l he devoted to that purpose. I n our 
calculations, we are concerned with the two-particle scatterings 
and consequently we require the h e l i c i t y states of the two-particle 
systems. F i r s t , we shall discuss the h e l i c i t y states of those 
single free-particles which we encounter i n our calculations and 
then construct the h e l i c i t y states of the two-particle systems i n 
the form which can be conveniently used i n obtaining the h e l i e i t y 
representations of the scattering amplitudes. While discussing 
the h e l i c i t y states of the free particles we assume that the three-
component momenta of the particlges are i n the x z -plane so that 
we can set the azimuthal angle • « 0 i n our calculations. The 
inclusion of • i n the representation, i n fact, does not make any 
difference i n the f i n a l results of the calculation when one is 
working i n the centre of mass systems. As regards the phases 

and the normalisations of the h e l i c i t y states we shall mostly follow 
the conventions used by Jacob and Wick^. 
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1. Helieity states of spin \ particles : 

The four-component positive-energy spinor u with momentum g 
i s , 

S + m 
X ^ V2m(E+m) 2 • R 

( C I ) 

where E • Vp8 + m8; (cf. p)X^ • 2|p|x. , where X is called the 
he l i c i t y of the particle. For spin \ particle we have X • ±£. 
The normalisation constant i s so chosen that uu • u +7 0u • 1. 
I n (C.l) m is the mass of the spin \ particle and <r*s are the 
familiar Pauli matrices. For the momentum g i n the z-direction, 
the h e l i c i t y states are well known and given by, 

" ( o ) x4 * ( x ) (0-2) 

The h e l i c i t y states corresponding to the momentum g i n a direction 
making an angle 6 with the positive z-direction can be obtained by 
applying rotation around the y-axis. This is given by the following 
relation, 

Xt 

where c^t^fc) i s '^ae matrix representation of a rotation by an 
60) 

angle 9 around the Y-axis. This i s given by , 



V x ( 8 > 

* * 

* 
4 

cos 9/2 -sin 6/2 

sin 9/2 cos 9/2 

Using (C.2) and (C.U), the representation of the helieity states 
of a spin £ particle with momentum i n a direction making an angle 9 
with the z-axis are obtained from (C.3)» 

cos 9/2 
sin 9/2 

-rain 9/2 
00s 9/2 

(C.5) 

While working i n the cm. system, one requires the representations 
of the helieity states corresponding to the momentum p i n a 
direction making an angle 9* with the positive z-direction, where 
9* • w or « + 0. I n such a case the corresponding h e l i e i t y states 
are obtained from the following relation 

(C.6) 

where s i s the spin of the particle. Here, the phase factor 
( - l ) S ~ i s introduced for convenience i n such a way that for 
the particle at rest |p| • 0, the helieity states corresponding 
to the momentum i n the negative z(n+ 9) direction reduce to those 
corresponding to the momentum i n the positive z(0) direction. 



Thus, using (G.2) and (C.^) the h e l i c i t y states corresponding to 
the momentum p i n the negative z-direetion are obtained from 
(C.6) given by 

C ) '4 C o ) (C7) 

The h e l i c i t y states corresponding to the momentum p i n n + 0 
direction can be, similarly, obtained and are, 

-sin e/2 
cos 9/2 

cos 0/2 
sin e/2 

(C.8) 

2. Helicity states of spin 1 particles: 

Let us _now discuss the representations of the h e l i c i t y states 
of a spin 1 particle corresponding to the different situations 
discussed just above* Here, there are three h e l i c i t y states 
which are given by, 

«w - {0. •*«*>}, €«» - i { w . - a w } (o-s) 

where u i s the mass of the particle and m i s the energy such that 
a> *• •f |k|8 + p 8. For the momentum k i n the positive z-direction, 
the representations of the three-component polarization vectors 
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(+) (0) V t j x ' are given by, 

i v ' m — 
1 S2 

-1 
- i 
0 

,(-> „ i 
1 

- i 
0 

(CIO) 

The h e l i c i t y states corresponding to other three situations 
discussed i n connection with spin \ particles can be obtained by 
using (C*9) and (C.10) from the relations similar to (C.j) and 
(C.6), the rotation matrix d ^ t ^ ( e ) i n 0 8 1 8 6 heing, 

-1 

-1 

1+cos 0 sin 0 ( l - cos 0) 

sin 0 
42 

/2 

cos 0 

2 

sin 0 
I T 

(1 - cos 0) sin 0 1 + cos 0 
2 ^2 2 

(0.11) 

Thus, for the momentum k i n a direction making an angle 0 with the 
positive z-direetion, the representations of the polarization 
vectors iffl are, 
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1 
-fa 

-cos 9 sin e 
- i (0) 3 • 0 

sin e COB 9 

cos 0 
- i 

-sin 9 
(C.12) 

Taking into account the phase-factor discussed above, the 
representations of 3 ^ corresponding to the momentum k i n 
the negative z-direction are, 

3 (+> . i 
-fa 

1 0 
- i ; 3° - 0 
0 l 

.(-) . ± 1 
•fa 

-1 
- i 
0 
(C.13) 

where, € 

Following the similar procedure corresponding to the momentum k 
i n the direction 9 + n with the z-axis we have, 

3 " - f a 

cos 9 
- i 

-sin 9 
3 (o) m 

sin 9 
0 

cos 9 

(-) 1 

3 J 
-cos 9 

- i 
sin 9 (c.HO 
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With, € (0) " 7 { W,-«a' (o) 

5. Helicity states of spin 3/2 particles: 

She four h e l i c i t y states corresponding to the spin 5/2 
particles are obtained by taking the vector addition of the 
helieity states ocf the spin £ and spin 1 particles. Corresponding 
to the four situations described above, there w i l l be four sets of 
such states. I f fi^ denotes a h e l i c i t y state of spin 3/2 
particles, then corresponding to any of the four-combinations 
that we can obtain we have, 

* u i • € 3/ '2 

(C15) 

(0) (-) + So u 

*-3/2 m u l4 (-) 
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We shall also require the matrix t h e e l e m e n t s o f which are 
obtained from (C.k) and (C.ll) with the help of the related Clebsch-

6o\ 
Gordon coefficients Thus, we obtain the following: 

3/2 1/2 -1/2 -3/2 

|(l+cos e)cos |, -^(1+cos e)sin |, ̂ (l-<sos 0)eos |, - |(l-cos fl)sin | 

^(1+cos 0)sin |, - |(l-3cos e)cos |, -|(l+3cos fl)sin f , ^ ( l - c o s 0)eos | j 

"^(l-cos 9)cos |, |(l+3cos 0)sin |, -|(l-3cos 0)eos f , - T?(l+cos 0)sin | 

1 0 
^(l-ces e)sin g, ^(1-cos 0)cos |, ̂ (1+cos fl)sin |, ^(l+cos S)COB £ 

(c.16) 

Two-particle states and h e l i c i t y representation of the scattering 

amplitudes: 

Let us construct the he l i e i t y states of two free particles 1 and 2 
with masses m and m_, and spins s and s . These states may, of X 2 x 2 
course, be constructed as direct product Rp^* * • % 

9x'Bx»~*x Px*x 
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(2) R* « * t - , of the individual states of the above particles. 

where R^- . are the rotation operators corresponding to the 
W ~ * i 

rotations by the Euler's angles 4̂ , 8±f operating on the i - t h 
particle. When one i s dealing with a scattering problem one works 
i n the CM. system of the two particles. I n C«M. system, we have 
Px m -p 2 • p with zero t o t a l linear momentum. I f the linear 
momentum g> is directed along a direction defined by the angles 
9, •, then 9X • 9, *x • • and 9& » x -9, »a « • + .% and the two 
rotations R ^ and R^) can be replaced by a single rotation R 
involving the t o t a l angular momentum J • J x + £2 of the two particles. 
I n order to obtain that one usually takes the relative momentum g of 
the two-partieles i n the C. M. system along the z-axis. Taking 
into account for one of-be two particles the phase-factors discussed 
earlier i n this appendix we can define a product state for the two 
particles, 

V*. - VMWD (C-17) 

where the relative momentum j> i s directed, along the positive 
z-direction. States with the direction of p defined by the angles 
9 • are obtained by applying a rotation, 
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(C.18) 

where, x • 1 - 3̂  i s the resultant angular momentum of the two-
particle system, the particle numbered 2 having been taken i n i t i a l l y 
with momentum i n the negative z-direction. 

Now, the method of constructing a state of two particles 
having definite h e l i c i t i e s , relative momentum £ ; t o t a l angular 
momentum J with J * M is well known. Such a state i s constructed z 
as follows: 

|p; J M ^ > . - j T d u B ^ C a P r ) R ^ ^ 

(0.19) 

where R_ _ i s a rotation operator corresponding to a rotation 
« P7 

through arbitrary Baler's angles a, ̂ , 7 and B^(aP7) i s the 
corresponding representation and is given by, 

^{tpj) - e - ^ d ^ f c ) e " 1 * (C.20) 

The integral i n (C.19) extends to thee region 0 < a < 2n , 0 < 6 < it, 
0 < 7 < 2* and du » sin PdotdPdr . 

Row, substituting (C.18) into (C.19) and performing the 
integration over one ••s we have, 
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|p; J M > - N J DĴ  (*,e,-*)|pe*; > dn 
(C.21) 

where dfl • sin 0 d 0 d * • 

Vow for the product state | P 1 P 8 ^ 1 > &
 > with the independent 

momenta for the two particles we assume the following normalisation, 

(e.22) 

Then introducing the new variables P̂  * (P0,P) with P Q • I x + Eg 
and P m g. + and the two polar angles G, • to specify the 
direction of the relative momentum g • £1 ~ Jgs> ' t a e scattering 
matrix s corresponding to the two-particle scattering can be 
written i n the form: 

< iiiW>tlH Ex*.V» > - »A - (g gT1 

x < fl,*,xj>»Me-ex1xa > (c.23) 

where, v p and v', p* are the magnitudes of relative velocity and 
the momentum i n the CM. system of the i n i t i a l and the f i n a l states 
respectively. 

Equation (C.22) together with (C.23) then fixes the following 
normalisation: 
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< ©'• ,X^|e«X 1> 8 > « 8(eos 0 - eos 0») 6(* - 8 ^ 

(fl.2fc) 

The orthogonality relation of the rotation D(aB7) i s , 

J H*x " A gj + 1 V f e m i m e 31 3S 

(C.25) 

From (C.25) we obtain, 

* t 2 
/ < ( p ) dmu ( p ) 8 i n p * p • ̂ 77 
0 

Also, we have, 

£^(23 + l^W^fe 1) " °(<»s P- eos 8') (C.27) 

Now, using (C.2*0 - (c.26) we obtain from (C.21) the following 

normalisati on: 

< J»M»XiX||J M X1Xfi > - 8 J J* 8 M M* 8 ^ , 8 ^ 

(C.28) 
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where we have chosen • | (2J + l ) / U* J- . 

i 
Again, using the transformation matrix obtained from (C.2l) 

i s , . 

< e O X i ^ f j M X ^ > - H j B x x , 8 3. (•,<>,-•) (C.29) 

where X « X x - X g and N j is given as i n (C.28). 

The above (C.29) transformation matrix satisfies the following 
un i t a r i t y conditions: 

J* dfl < © • X 1 X 2 | J M X 1 X 2 > < 94 >* " 8JJ. o^ j , 

(0.350a) 

]T < V s l J M Vfe > < e ,* ,X 1X 2|jMX 1X 2 > *- B(cos 9 - cos 9*) 

JM 
x a(* - •») (c.30b) 

5. Representations of d^(f>) matrices i n terms of the Legendre 
polynomials: 

In order to obtain the p a r t i a l wave amplitude one needs to 
express the matrices d**(0) i n terms of the Legendre polynomials 
Fj (cos d). The following matrices are required for our purpose: 
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j J(J-»HJ+5/2)1* r i ! 

i W - k(l+=o. e).tn »/* L 7^1 ' **** + ? P j + * 

~ ra4 - J ' , - 3 / 2 ] ( c - 5 l ) 

j , , 1 f J - i 3 ( J - i ) 

* w • Kl+CM 9)co, e/2 L 771 + — '»4 
3<J + 3/2) (J+ 3/2) 1 

+ "777" + -T~'* J 
The other elements of dJ(© ) are obtained from (A .3l) using the 
following symmetry relations: 

<,« • • (-i)x"" *> - ^ 0 9 ) 

/ ( 8 ) - ( - l ) J + X / { * - < > ) (C.32) 

The above representations of the matrices d J(d) w i l l be very often 
used i n the calculations of exchanged Born terns. 



I LIV 

APPEHDIX D 

Some Useful Relations for the Calculations of Exchange Born Tents 

We have, 

E« m E - w; k» - 2k cos fi/2; E»s - k t S + vP (D.l) 

a x - (B» + m)k - (E + m)k»; Sg « (B» + m)k + (B + m)k» 
(D.2) 

a 3 » (E + m)(B» + m) - kk»; a 4 - (E + m)(B» + m) + kk* 

(D.3) 

B - 4i? + ; v - -7k2 + M 2 ( ® . ^ ) 

Let, c » (E + m)(E» + m) (D.5) 

Then using the above relations we obtain the following: 

a* + a| - lfc(EE» - nP); a 2 - a 2 - -fcc k k ^ 

(©.6) 

. .ag •= 2m c (E - B*) 

a* + a* « ^(EE* + n?); a g - a 2 - -^kk'c 

a a a 4 ** 2mc(E + E*) 
(D.7) 



a a 
1 3 

2c(E»k - Ek»); a x a 4 • 2m c (k - k») 

ag a 3 « 2mc (k + k»); a g a 4 » 2c(E'k + Ek») 

(a xk - agB)2 + (a^k - a 4E) 2 - knPc(m' + a^) 

(a^k - a 3E) 2 - (a gk - a 4E) 2 - IfaiPc kk» 

LV 

(B.8) 

(D.9) 

a (a k - a4E) + a^(a k - a E) • -kmc (EE* + m2) 
> (B.10) 

a g(agk - a4E) - &^(a^k. - a.^) m k mc kk* 

a 4(a gk - a4E) + agfejk - a^) » -UmPcfE + E'A 

a A(a k - a4E) - a (a k - a E) • 0 

(a ak - a aE)(a ak - a4E) = 2m3c(E + E») 

(D.11) 

a (a k - a„E) + a (a k - a E) a -'fackE' i x 2 * ' 2* i s 

a x(a 2k - a4E) - a^a,^ - agE) m kmck'E 
(D.12) 



a x(a xk - a3B) + a g(a 2k - a4B) » -ItaPck 

a ^ k - a3E) - a a(a gk - a^E) « lun2 ck» 

a. a Q + & a x » Ifc E*k 
l a 2 4 

a a, - a, a„ - k c Ek* 
2 * I S 

ag a g + a^ a 4 * Umck 

a a - a, â  • buck* 
2 3 1 4 

LVI 

(D.13) 

(B.HO 

(D.15) 
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