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Abstract

We show that a group presented by a labelled oriented tree presentation in

which the tree has diameter at most three is an HNN extension of a �nitely

presented group. From results of Silver, it then follows that the corresponding

higher dimensional ribbon knots admit minimal Seifert manifolds.
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1 Introduction

It is well known that every classical knot k (knotted circle in S3 ) bounds a

compact orientable surface, known as a Seifert surface for the knot. A Seifert

surface � of minimal genus (among all Seifert surfaces for the given knot k ) is

called minimal, and satis�es the following property: the inclusion-induced map

�1(�nk) ! �1(S
3nk) is injective. Conversely, a Seifert surface for k for which

this map is injective is necessarily minimal.

For a higher dimensional knot, or more generally a knotted (closed, orientable)

n-manifold M in Sn+2 , a Seifert manifold is de�ned to be a compact, orientable

(n + 1)-manifold W in Sn+2 , such that @W = M . A Seifert manifold W

for M is de�ned to be minimal if the inclusion-induced map �1(WnM) !

�1(S
n+2nM) is injective. In general, any M will always admit Seifert manifolds,

but not necessarily minimal Seifert manifolds. For example, Silver [13] has

shown that, for any n � 3, there exist n-knots in Sn+2 with no minimal Seifert

manifolds, and Maeda [9] has constructed,for all g � 1, a knotted surface of

genus g in S4 that has no minimal Seifert manifold. Further examples of

knotted tori in S4 without minimal Seifert manifolds are constructed by Silver

[16].

A theorem of Silver [14] says that, for n � 3, a knotted n-sphere K in Sn+2

has a minimal Seifert manifold if and only if its group GK = �1(S
n+2nK) can

be expressed as an HNN-extension with a �nitely presented base group. (It is

standard that any higher knot group can be expressed as an HNN extension

with a �nitely generated base group.)

As Silver remarks, the proof of his theorem does not extend to the case n =

2. However, it remains a necessary condition for the existence of a minimal

Seifert manifold that the group be an HNN-extension with �nitely presented

base group. This applies also to knotted n-manifolds in Sn+2 , a fact which is

used implicitly by Maeda in the result mentioned above. It remains an open

question whether every 2-knot in S4 has a minimal Seifert manifold. This seems

unlikely, however. For example Hillman [5], p. 139 shows that, provided the

3-dimensional Poincar�e Conjecture holds, there is an in�nite family of distinct

2-knots, all with the same group G , such that the commutator subgroup of G

is �nite of order 3; and at most one of these knots can admit a minimal Seifert

manifold.

In the present article we consider the case of higher dimensional ribbon knots,

for which the existence of minimal Seifert manifolds is also an open question.

Indeed, as we shall point out in the next section, higher ribbon knot groups are
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special cases of knot-like groups, in the sense of Rapaport [12], and Silver [15]

has conjectured that every �nitely generated HNN base for a knot-like group

is �nitely presented. It would therefore follow from Silver's conjecture (and his

Theorem) that every higher ribbon knot has a minimal Seifert manifold.

Now any higher ribbon knot group has a Wirtinger-like presentation that can

be encoded in the form of a labelled oriented tree (LOT) [7]. Indeed the LOT

encodes not only a presentation for the knot group, but the complete homotopy

type of the knot complement. In [7] it was shown that, if the diameter of the

tree is at most 3, then the group is locally indicable, and using this that the 2-

complex model of the associated Wirtinger presentation is aspherical. A shorter

proof of this fact is given in [8], where it is shown that the presentation is in

fact diagrammatically aspherical.

In the present paper, we show that, under the same hypothesis on the diameter

of the tree, the group is an HNN-extension with �nitely presented base group,

and hence that the higher ribbon knot has a minimal Seifert manifold.

Theorem 1.1 Let � be a labelled oriented tree of diameter at most 3, and

G = G(�) the corresponding group. Then G is an HNN-extension with �nitely

presented base group.

Corollary 1.2 Let K be a ribbon n-knot in Sn+2 , where n � 3 , such that

the associated labelled oriented tree has diameter at most 3. Then K admits

a minimal Seifert manifold.

The paper is arranged as follows. In section 2 we recall some basic de�nitions

relating to LOTs and higher ribbon knots. In section 3 we prove some prelim-

inary results about HNN-bases for one-relator products of groups, which will

allow us to simplify the original problem. In section 4 we reduce the problem

to the study of minimal LOTs, In section 5 we construct a �nitely generated

HNN base B for G , and describe a �nite set of relators in these generators. In

section 6 we prove some technical results about the structure of these relations,

which we apply in section 7 to complete the proof of Theorem 1.1 by proving

that this �nite set is a set of de�ning relators for B . We close, in section 8,

with a geometric description of our generators and relators for the HNN base,

and a discussion of how this might be used to generalise Theorem 1.1.
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2 LOTs and higher ribbon knots

A labelled oriented tree (LOT) is a tree �, with vertex set V = V (�), edge set

E = E(�), and initial and terminal vertex maps �; � : E ! V , together with

an additional map � : E ! V . For any edge e of �, �(e) is called the label of

e . In general, one can consider LOTs of any cardinality, but for the purposes

of the present paper, every LOT will be assumed to be �nite.

To any LOT � we associate a presentation

P = P(�) : h V (�) j �(e)�(e) = �(e)�(e) i

of a group G = G(�), and hence also a 2-complex K = K(�) modelled on P .

The 2-complex K is a spine of a ribbon disk complement D4nk(D2) [7], that is

the complement of an embedded 2-disk in D4 , such that the radial function on

D4 composed with the embedding k is a Morse function on D2 with no local

maximum. Conversely, any ribbon disk complement has a 2-dimensional spine

of the form K(�) for some LOT �.

By doubling a ribbon disk, we obtain a ribbon 2-knot in S4 , and by successively

spinning we can obtain ribbon n-knots in Sn+2 for all n � 2. In each case the

group of the knot is isomorphic to the fundamental group of the ribbon disk

complement that we started with. Conversely, every ribbon n-knot (for n � 2)

can be constructed this way, so that higher ribbon knot groups and LOT groups

are precisely the same thing.

Recall [12] that a group G is knot-like if it has a �nite presentation with de�-

ciency 1 (in other words, one more generator than de�ning relator), and in�nite

cyclic abelianisation. It is clear that every LOT group has these properties, so

LOT groups are special cases of knot-like groups.

The diameter of a �nite connected graph � is the maximum distance between

two vertices of �, in the edge-path-length metric. A key factor in our situation

is the special nature of trees of diameter 3 or less. For any LOT � of diameter

0 or 1, it is easy to see that G(�) is in�nite cyclic, so such LOTs are of little

interest.

Remark. Every tree of diameter 2 has a single non-extremal vertex. Every

tree of diameter 3 has precisely 2 non-extremal vertices.

We recall from [7] that a LOT � is reduced if:
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(i) for all e 2 E , �(e) 6= �(e) 6= �(e);

(ii) for all e1 6= e2 2 E , if �(e1) = �(e2) then �(e1) 6= �(e2) and �(e1) 6= �(e2);

(iii) every vertex of degree 1 in � occurs as a label of some edge of �.

For every LOT � there is a reduced LOT �0 with the same group as �, and

the same or smaller diameter, so we may also restrict our attention to reduced

LOTs.

A subgraph �0 of a LOT � is admissible if �(e) 2 V (�0) for all e 2 E(�0). If �0

is connected and admissible, then it is also a LOT. A LOT is minimal if every

connected admissible subgraph consists only of a single vertex.

If � is a LOT and A � V (�), we de�ne the span of A (in �) to be the smallest

subgraph �0 of G such that:

(i) A � V (�0); and

(ii) If e 2 E(�) with �(e) 2 V (�0) and at least one of �(e), �(e) belongs to

V (�0), then e 2 E(�0).

We write span(A) for the span of A , and say that A spans, or generates �0 if

�0 = span(A). The following is essentially Proposition 4.2 of [7].

Lemma 2.1 If � is a LOT spanned by A , then P(�) is Andrews-Curtis equiv-

alent to a presentation with generating set A . If �0 is an admissible subgraph

of � with V (�0) � A , then the presentation may be chosen to contain P(�0) ,

and the Andrews-Curtis moves can be taken relative to P(�0) .

Corollary 2.2 If � is a LOT spanned by two vertices, then G(�) is a torsion-

free one-relator group.

Proof Let A be a set of two vertices spanning �. Then P(�) is Andrews-

Curtis equivalent to a presentation hAjRi . Since P(�) has de�ciency 1, the

same is true of the equivalent presentation hAjRi . In other words jRj = 1, and

G(�) is a one-relator group. But the abelianisation Gab of G is in�nite cyclic,

so the relator r 2 R cannot be a proper power, and so G is torsion-free. 2

We will require the following generalisation of Corollary 2.2. Recall that a one-

relator product of two groups A;B is the quotient of the free product A �B by

the normal closure of a single word w , called the relator.
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Corollary 2.3 If � is a LOT spanned by V (�0)[fxg , where �0 is an admissible

subgraph of � and x is a vertex in V (�)nV (�0) , then G(�) is a one-relator

product of G(�0) and Z , where the relator is not a proper power.

Proof Let A = V (�0)[fxg and apply the Theorem. Then P(�) is equivalent,

relative to P(�0), to a presentation Q with generating set A and containing

P(�0). Now each of P(�), P(�0) and Q has de�ciency 1. Moreover, Q has

one more generator than P(�0), so Q also has one more de�ning relator than

P(�0). It follows that G(�) is a one relator product of G(�0) with the in�nite

cyclic group hxi . Finally, since the abelianisations of G(�), G(�0) and hxi are

all in�nite cyclic, it follows that the relator cannot be a proper power. 2

3 One-relator groups and one-relator products

The following result is merely a summary of some well-known properties of one-

relator groups, which have useful applications to our situation. Recall that a

group G is locally indicable if, for every nontrivial, �nitely generated subgroup

H of G , there exists an epimorphism H ! Z .

Theorem 3.1 Let G be a �nitely generated one-relator group. Then

(i) G is either a �nite cyclic group, or an HNN extension of a �nitely pre-

sented, one-relator group (with shorter de�ning relator);

(ii) if the de�ning relator of G is not a proper power, then G is locally

indicable.

Proof See [11] and [3] respectively. 2

In order to complete the process of reducing ourselves to a simple special case,

we require a generalisation of the above theorem to one-relator products. Sup-

pose that A and B are locally indicable groups, and N = N(w) is the normal

closure in A �B of a cyclically reduced word w of length at least 2 that is not

a proper power. Then the one-relator product G = (A � B)=N is known [6] to

be locally indicable. We show also that G has a �nitely presented HNN base,

provided that A and B also have this property.
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Theorem 3.2 Let G = (A �B)=N(w) be a one-relator product of two �nitely

presented, locally indicable groups A and B , each of which has a �nitely pre-

sented HNN base. Suppose also that Gab is in�nite cyclic, with each of the

natural maps Aab ! Gab and Bab ! Gab an isomorphism. Then G is a

�nitely presented, locally indicable group with a �nitely presented HNN base.

Remark. The condition on Gab in this theorem is unnecessary for the proof

that G has a �nitely presented HNN base. It can be removed at the expense of

a less straightforward proof. However the condition does hold for all the groups

that we are considering in this paper, so there is no loss of generality for us in

imposing that condition. The condition also ensures that w cannot be a proper

power, so that G is locally indicable by the results of [6].

Proof A presentation for G can be obtained by taking the disjoint union of

�nite presentations for A and for B , and imposing the single additional relation

w = 1. Hence G is �nitely presented. As pointed out in the remark above, w

cannot be a proper power, so G is locally indicable by [6]. It remains only to

prove that G has a �nitely presented HNN base.

Let

A = hA0; aja
�1
ga = �(g) (g 2 A1)i

and

B = hB0; bjb
�1
hb = �(h) (h 2 B1)i

be HNN presentations for A and B with �nitely presented bases A0 and B0

respectively. Since A and B are �nitely presented, it follows also that the

associated subgroups A1 and B1 are �nitely generated.

The commutator subgroup G0 of G can be expressed in the form

(A0
� B

0
� h cn (n 2 N)i)=N(fwn (n 2 N)g);

where cn = an+1b�1a�n and wn = a�nwan .

Now A0 is an in�nite stem product

� � � (a�1A0a) � A0 � (aA0a
�1) � � �

(a�1A1a) A1

Since A0 is �nitely presented and A1 is �nitely generated, the subgroup

(a�kA0a
k) � � � � � � � � (akA0a

�k)

(a�kA1a
k) (ak�1A1a

1�k)
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is �nitely presented for each k . Moreover it is also an HNN base for A . Re-

placing A0 by this subgroup, for any su�ciently large k , we may assume that

w0 2 A0 �B
0 � h cn (n 2 N)i .

Similarly, possibly after replacing B0 by a su�ciently large �nitely presented

HNN base for B , we may assume that w0 2 A0 � B0 � h cn (n 2 N)i . Now let

� and � be the least and greatest indices i such that ci occurs in w0 . (Note

that at least one ci occurs in w0 , for otherwise w0 2 A0 � B0 , so w 2 A0 � B0 ,

whence Gab �= Aab � Bab 6�= Z , a contradiction.) De�ne G0 = (A0 � B0 �

hc�; : : : ; c�i)=N(w0) and G1 = A0 �B0 � hc�; : : : ; c��1i , and observe that G0 is

a �nitely presented HNN base for G , with associated subgroup G1 . 2

4 Reduction of the problem

Recall from section 2 that a LOT � is minimal if it contains no admissible

subtree with more than one vertex. In this section we reduce the proof of the

main theorem to the case of a minimal LOT of diameter 3, using the results of

section 3. The key point is that a non-minimal LOT can be obtained from a

minimal admissible subtree by successively expanding to the span of the existing

tree with one extra vertex. By Corollary 2.3, this construction corresponds at

the group level to taking a one-relator product of a given group with an in�nite

cyclic group.

Lemma 4.1 Let � be a LOT of diameter at most 3, containing a proper

admissible subtree with more than one vertex. Then there is such an admissible

subtree �0 and a vertex x 2 V (�)nV (�0) such that � is spanned by V (�0)[fxg .

Proof Suppose �rst that some extremal vertex x of � does not occur as a

label of any edge of �. In this case we take �0 to consist of � with the vertex x

and the edge incident to x removed. Clearly �0 is connected, so a subtree of �.

Since x is not the label of any edge in E(�0), it follows that �0 is admissible.

Moreover � is spanned by V (�) = V (�0) [ fxg , as required.

We may therefore assume that every extremal vertex of � occurs at least once

as the label of an edge of �.

Next suppose that � has a proper admissible subtree that contains all the non-

extremal vertices of �. Let �0 be a maximal such admissible subtree. The

vertices in V (�)nV (�0) are all extremal in �, so occur as labels of edges of

�. But since �0 is admissible, no such vertex can be a label of an edge of �0 .
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Since the �nite sets V (�)nV (�0) and E(�)nE(�0) have the same cardinality,

it follows that each vertex in V (�)nV (�0) is the label of precisely one edge

in E(�)nE(�0). In turn, this edge has precisely one endpoint in V (�)nV (�0),

so we can de�ne a permutation � on V (�)nV (�0) by de�ning �(x) to be the

extremal endpoint of the unique edge labelled x , for all x 2 V (�)nV (�0). Now

�x some vertex x 2 V (�)nV (�0), let t be the size of the orbit of � that contains

x , and de�ne xi = �i(x), i = 1; : : : ; t . Now � = span(V (�0) [ fxg) contains

the vertex x = xt , together with any non-extremal vertex of �. Hence �

contains the edge labelled xt , and hence its endpoint x1 . Similarly � contains

x2; : : : ; xt�1 , as well as the edges labelled x1; : : : ; xt�1 . On the other hand, The

vertices x1; : : : ; xt , the edges labelled by them, and the vertices and edges of �0

together form an admissible subtree of �, which by maximality of �0 must be

the whole of �. Hence � = �, in other words � is spanned by V (�0) [ fxg .

Finally, suppose that no proper admissible subtree of � contains all the non-

extremal vertices of �. In particular, � must have more than one non-extremal

vertex, so has diameter 3. By hypothesis, there is a proper admissible subtree

�0 of � that contains more than one vertex. Hence �0 contains precisely one of

the two nonextremal vertices of �, say u . As an abstract graph, � is the union

of �0 with another tree �00 , such that �0 \ �00 = fug . Note that �00 contains

both of the non-extremal vertices of �, so cannot be an admissible subtree, by

hypothesis. Hence at least one edge f of �00 is labelled by a vertex a of �0

(other than u). Let e be the edge of � that joins the two non-extremal vertices

u; v , and let � = span(V (�0) [ f�(e)g). Then � contains �0 and the edge e ,

and hence v , and hence the edge f . Each extremal vertex of � is the label of

an edge of �, and hence of �, since � contains at least one endpoint (namely

u or v ) of every edge of �. Moreover there are jE(�0)j+1 edges of � labelled

by the jV (�0)j = jE(�0)j+1 vertices of �0 , so an easy counting argument shows

that there must be at least jV (�)j � 1 edges in �. In other words � is a tree,

so the whole of �. In other words � is spanned by V (�0) [ f�(e)g . 2

Remark. If � is a minimal LOT of diameter 2, then the above argument still

applies (to the subtree consisting of only the unique non-extremal vertex). In

this case we see that the permutation � is transitive, and that � is spanned by

two vertices.

Lemma 4.2 Let � be a minimal LOT of diameter 3, and let u; v be the two

non-extremal vertices of � . Then one of the following holds:

(i) One of u; v is a label in � , and � is spanned by fu; vg ;
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(ii) Some vertex a occurs twice as a label in � , and � is spanned by fa; u; vg .

Proof By minimality of �, every extremal vertex of � occurs as a label.

There are jV j � 2 extremal vertices, and jV j � 1 edges, so either one of u; v

occurs as a label or some unique extremal vertex a occurs twice as a label.

Note that every edge of � is incident to at least one of u; v , so if u; v 2 A � V

then every edge labelled by a vertex of span(A) is an edge of span(A).

(i) Suppose that u occurs as a label, and let �0 = span(fu; vg). If �0 has

k + 2 vertices u; v; x1; : : : ; xk , then x1; : : : ; xk are all extremal in �, so

each of u; x1; : : : ; xk is a label of an edge of �, which must therefore be

an edge of �0 . Hence �0 has at least k � 1 edges, so is connected. By

minimality of � we have � = �0 = span(fu; vg).

(ii) Suppose that an extremal vertex a appears twice as a label, and let

�0 = span(fa; u; vg). If �0 has k+3 vertices a; u; v; x1; : : : ; xk , then each

of x1; : : : ; xk is extremal, so the label of an edge of �, while a is the label

of 2 edges of �. Each of these k + 2 edges is an edge of �0 , so �0 is

connected, and by minimality again we have � = �0 = span(fu; vg).
2

Corollary 4.3 If � is either a minimal LOT of diameter 2, or a minimal LOT

of diameter 3 in which no vertex occurs twice as a label, then G(�) is a locally

indicable group with a �nitely presented HNN base.

Proof By Lemma 4.2 or the remark following Lemma 4.1, � is spanned by

two vertices. Hence G = G(�) is a 2-generator, one-relator group. Since Gab is

in�nite cyclic, G is not �nite, and the relator of G cannot be a proper power.

The result follows immediately from Theorem 3.1. 2

Using the above results, we can reduce our problem to the case of a minimal

LOT of diameter 3 that is not spanned by two vertices. In particular, some

extremal vertex must occur twice as a label.

Corollary 4.4 If the group of every reduced, minimal LOT of diameter 3 which

is not spanned by two vertices is locally indicable with �nitely presented HNN

base, then the same is true for every LOT of diameter 3 or less.

Recall [7] that the initial graph I(�) of � is the graph with the same vertex

and edge sets as �, but with incidence maps �; � . Similarly the terminal graph
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T (�) of � has the same vertex and edges sets as �, but incidence maps �; � . It

was shown in [7] that the commutator subgroup of G(�) is locally free if either

I(�) or T (�) is connected. (If I(�) and T (�) are both connected, then G(�)0

is free of �nite rank.) In particular, any �nitely generated HNN base for G(�)

is free, so automatically �nitely presented.

Hence we can concentrate attention on the case of a minimal LOT � of diameter

3, not spanned by any two of its vertices, such that neither I(�) nor T (�) is

connected. Our next result gives a detailed description of the structure of I(�).

In particular it will show us that I(�) has precisely two connected components,

one containing each of the nonextremal vertices of �. A similar statement holds

for T (�).

Lemma 4.5 Let � be a minimal LOT of diameter 3, with nonextremal vertices

u and v , and an extremal vertex a that occurs twice as a label of edges of � .

Then:

(i) u and v are sources in I(�) ;

(ii) no vertex other than u or v is the initial vertex of more than one edge of

I(�) ;

(iii) a is the terminal vertex of precisely two edges of I(�) ;

(iv) each vertex other than a; u; v is the terminal vertex of precisely one edge

of I(�) ;

(v) any directed cycle in I(�) contains a ;

(vi) each component of I(�) contains at least one of u; v ;

(vii) I(�) has at most two connected components.

Proof

(i) Since �(e) 6= u for all e 2 E(�), u is not the terminal vertex of any edge

in I(�), in other words u is a source. Similarly v is a source in I(�).

(ii) Any vertex x of �, with the exception of u and v , is extremal in �, so

the initial vertex of at most one edge of �. Hence x is also the initial

vertex of at most one edge in I(�).

(iii) a = �(e) for precisely two edges e 2 E(�).
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(iv) If x 2 V (�)nfa; u; vg then x = �(e) for precisely one edge e 2 E(�).

(v) Suppose (e1; e2; : : : ; en) is a directed cycle in I(�). Then there are vertices

x1; : : : ; xn 2 V (�) with xi = �(ei) for all i , �(ei) = xi+1 for i < n , and

�(en) = x1 . Now each xi is extremal since it occurs as a label. If no xi

is equal to a then we can remove the vertices x1; : : : ; xn and the edges

e1; e2; : : : ; en from � to form a connected, admissible subgraph �0 that

contains at least three vertices (a; u; v ). This contradicts the minimality

of �, and so xi = a for some i , as claimed.

(vi) By (iv) if x 62 fa; u; vg then x is the terminal vertex in I(�) of a unique

edge. If the initial vertex of this edge is not one of a; u; v then it also

is the terminal vertex of a unique edge. Continuing in this way, we can

construct a directed path that ends at x , and either begins at one of

a; u; v or contains a cycle. By (v) any directed cycle contains a , so in any

case we have a directed path from one of a; u; v to x . It su�ces therefore

to �nd a path in I(�) from u or v to a . But a is the terminal vertex

in I(�) of precisely two edges, with initial vertices x1 and x2 say. Now

apply the above argument to each of x1; x2 . If there is a path from u or

v to x1 or x2 then we are done. Otherwise there are directed paths from

a to each of x1; x2 . Neither u nor v can belong to these paths, since they

are sources in I(�). But then from (ii) it follows that there is at most

one directed path of any given length beginning at a , whence x1 = x2 , a

contradiction. Hence there is a directed path in I(�) from u or v to a ,

as claimed.

(vii) This follows immediately from (vi).

2

A similar result holds for T (�).

Lemma 4.6 Let � be a minimal LOT of diameter 3, with nonextremal vertices

u and v , and an extremal vertex a that occurs twice as a label of edges of � .

Then:

(i) u and v are sinks in T (�) ;

(ii) no vertex other than u or v is the terminal vertex of more than one edge

of T (�) ;

(iii) a is the initial vertex of precisely two edges of T (�) ;
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(iv) each vertex other than a; u; v is the initial vertex of precisely one edge of

T (�) ;

(v) any directed cycle in T (�) contains a ;

(vi) each component of T (�) contains at least one of u; v ;

(vii) T (�) has at most two connected components.

Corollary 4.7 Suppose that � is a reduced, minimal LOT of diameter 3, which

is not spanned by two vertices, and such that neither I(�) nor T (�) is con-

nected. Then

(i) There is a unique extremal vertex a of � that is the label of two distinct

edges of � . One of these edges has an extremal initial vertex, and the

other has an extremal terminal vertex.

(ii) I(�) has precisely two connected components, each containing one of the

two nonextremal vertices u; v of � .

(iii) There is a unique cycle in I(�) , which is either a directed cycle containing

a , or consists of two directed paths (one of length 1, the other of length

at least 2), from u or v to a .

(iv) T (�) has precisely two connected components, each containing one of the

two nonextremal vertices u; v of � .

(v) There is a unique cycle in T (�) , which is either a directed cycle containing

a , or consists of two directed paths (one of length 1, the other of length

at least 2), from a to u or v .

(vi) The cycles in I(�) and T (�) are not both directed.

Proof

(i) We already know that there is an extremal vertex a occurring twice as a

label, by Lemma 4.2, since otherwise � can be spanned by two vertices.

We also know that a is unique, since every extremal vertex occurs at

least once as a label. Now suppose that neither of the edges labelled a

has extremal initial vertex. The initial vertices of these two edges must

be distinct, since � is reduced, and so must be the two nonextremal

vertices u; v of �. But then there are edges of I(�) from both u and v
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to a . Hence u and v belong to the same connected component of I(�).

By Lemma 4.5, (vi) it follows that I(�) is connected, a contradiction.

A similar contradiction arises if neither edge has an extremal terminal

vertex.

(ii) This is just a restatement of Lemma 4.5, (vi), together with the hypothesis

that I(�) is not connected.

(iii) Since I(�) has the same vertex and edge sets as �, it has the same euler

characteristic, namely 1. Since I(�) has two components, it follows that

H1(�) �= Z , so there is a unique cycle in I(�). If this cycle is directed,

then it must contain a , by Lemma 4.5, (v). Otherwise it must contain

at least two vertices at which the orientation of the edges of the cycle

changes. This is possible only at a vertex which is either the initial vertex

of at least two edges or the terminal vertex of at least two edges, and by

Lemma 4.5 the only such vertices are a; u; v . Let us assume that a is in

the same component of I(�) as u . Then the cycle must contain both a

and u , and indeed must consist of two directed paths from u to a . By

uniqueness of the cycle (or directly from Lemma 4.5), we see that there

only two directed paths in I(�) from u to a . Moreover, precisely one of

these paths is of length 1, since precisely one of the edges of � labelled a

has a nonextremal initial vertex.

(iv) Similar to (ii).

(v) Similar to (iii).

(vi) If the cycle in I(�) is directed, then there is an edge of I(�) with initial

vertex a , and so also there is an edge of � with initial vertex a . Similarly,

if the cycle in T (�) is directed, then there is an edge of � with terminal

vertex a . Since a is extremal in �, these cannot both occur.
2

5 Construction of the HNN base

In this section, we construct a presentation of a group that will turn out to be

an HNN base for G . As a �rst step, we �x names for the various vertices of �.

Throughout we make the following assumptions:

� � is a minimal LOT of diameter 3, which cannot be spanned by fewer

than three vertices.
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� The non-extremal vertices of � are u and v .

� The unique vertex of � that appears twice as a label is a .

� Of the edges labelled a , one has its initial vertex in fu; vg and its terminal

vertex extremal, while the other has its initial vertex extremal and its

terminal vertex in fu; vg .

� Neither I(�) nor T (�) is connected.

We know from Lemma 4.2 that � is then spanned by fa; u; vg . Let � denote

the subtree of � whose vertex set is fa; u; vg . We give inductive de�nitions

of two sequences fb1; b2; : : : ; bP g and fc1; c2; : : : ; cQg of vertices of �, and two

sequences fe0; : : : ; eP g , ff0; : : : ; fQg of edges of � as follows.

De�ne e0 to be the edge of � whose label is a and whose terminal vertex

is in fu; vg . For i � 0, assume inductively that ei has been de�ned. If

ei is an edge of �, then we de�ne P = i and stop the construction of the

sequences fb1; b2; : : : ; bP g and fe0; : : : ; eP g . Otherwise ei joins one of fu; vg

to an extremal vertex other than a , and we de�ne bi+1 to be that extremal

vertex, and ei+1 to be the unique edge of � labelled bi+1 .

Similarly, de�ne f0 to be the edge of � whose label is a and whose initial

vertex is in fu; vg . For i � 0, assume inductively that fi has been de�ned.

If fi is an edge of �, then we de�ne Q = i and stop the construction of the

sequences fc1; c2; : : : ; cQg and ff0; : : : ; fQg . Otherwise fi joins one of fu; vg

to an extremal vertex other than a , and we de�ne ci+1 to be that extremal

vertex, and fi+1 to be the unique edge labelled by ci+1 .

Note that the P+Q+3 vertices fu; v; a; b1; : : : ; bP ; c1; : : : ; cQg and the P+Q+2

edges fe0; : : : ; eP ; f0; : : : ; fQg together form an admissible subgraph of �, which

has euler characteristic 1 and hence is connected, and hence by minimality of

� must be the whole of �. In other words

V = V (�) = fu; v; a; b1; : : : ; bP ; c1; : : : ; cQg;

and

E = E(�) = fe0; : : : ; eP ; f0; : : : ; fQg:

We also introduce the following notation. For i = 1; : : : ; P , xi denotes the

unique non-extremal vertex of � (i.e. xi 2 fu; vg) incident with the edge ei�1 .

For i = 1; : : : ; Q , yi denotes the unique non-extremal vertex of � incident with

the edge fi�1 . In other words, xi is the vertex adjacent to bi in �, and yi is

the vertex adjacent to ci .
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Lemma 5.1 (i) If x2 = : : : = xP = u , then x1 = v and eP is incident at v .

(ii) If x2 = : : : = xP = v , then x1 = u and eP is incident at u .

(iii) If y2 = : : : = xQ = u , then y1 = v and fQ is incident at v .

(iv) If y2 = : : : = yQ = v , then y1 = u and fQ is incident at u .

Proof We prove (i). The other proofs are similar.

Suppose �rst that x1 = x2 = : : : = xP = u , and consider the subgraph �0 =

spanfa; ug of �. Since �(e0) = a and e0 is incident to u , we have e0 2 E(�0),

and since b1 is an endpoint of e0 we have b1 2 V (�0). Similarly e1 2 E(�0)

and b2 2 V (�0), and so on, until eP 2 E(�0). If eP is incident with v , then

v 2 V (�0), and since � is spanned by fa; u; vg it follows that � = �0 is

spanned by fa; ug , a contradiction. Otherwise, eP joins a to u , in which case

the vertices a; u; p1; : : : ; bP and the edges e0; : : : ; eP form an admissible subtree

of � of diameter two, which again is a contradiction.

Now suppose that x1 = v and x2 = : : : = xP = u , and let �0 = spanfb1; ug .

Arguing as above, we see that �0 contains the edges e1; : : : ; eP�1 and the

vertices u; b1; : : : ; bP . If eP is not incident at v , then it joins u to a , so eP

and a also belong to �0 . But then e0 joins b1 to v and has label a , so we also

have v 2 V (�0). Hence � = �0 since � is spanned by fa; u; vg , and so � is

spanned by fb1; ug , a contradiction. 2

We next subdivide each of the sequences fbig , fcig into two subsequences,

depending on the orientation of the edges labelled by these vertices. Speci�cally,

let:

� p(1); : : : ; p(s) be the sequence, in ascending order, of integers i such that

0 < i � P and bi = �(ei�1);

� p0(1); : : : ; p0(s0) be the sequence, in ascending order, of integers i such

that 0 < i � P and bi = �(ei�1);

� q(1); : : : ; q(t) be the sequence, in ascending order, of integers i such that

0 < i � Q and ci = �(fi�1); and

� q0(1); : : : ; q0(t0) be the sequence, in ascending order, of integers i such

that 0 < i � Q and ci = �(fi�1).
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For consistency of notation in what follows, we set p(0) = p0(0) = q(0) =

q0(0) = 0.

Thus each bi , for i = 1; : : : ; P , can be written uniquely as bp(j) or as bp0(j) ,

and each ci , for i = 1; : : : ; Q , can be written uniquely as cq(j) or as cq0(j) .

This notation allows us to give a more precise description of the structure of

the initial and terminal graphs of �. Speci�cally, I(�) is constructed from the

vertices fa; u; vg by adding two edges

x x x- �

y1 b1a

f0 e0

together with directed chains

x x x x- . . . . . . . . . . . . . . . . . -

xp(i)+1 bp(i) bp(i�1)+2 bp(i�1)+1

ep(i) ep(i�1)+1

for each i = 1; : : : ; s , and

x x x x- . . . . . . . . . . . . . . . . . -

yq0(i)+1 cq0(i) cq0(i�1)+2 cq0(i�1)+1

fq0(i) fq0(i�1)+1

for each i = 1; : : : ; t0 ; and �nally single edges

x x-

xj+1 bj

ej

for p(s) < j � P and
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x x-

yj+1 cj

fj

for q0(t0) < j � Q .

In the above diagrams xP+1 and yQ+1 (which have not been de�ned) should

be interpreted as �(eP ) and �(fQ) respectively. Note that at most one of these

is equal to a . (This happens if and only if a is the initial vertex of its incident

edge in �.) All other xj and yj belong to fu; vg .

If I(�) contains a directed cycle, for example, then this cycle must contain a .

From the above, we see that this can happen only if s = 1, p(1) = P , and

xP+1 = a .

The structure of T (�) is entirely analogous, and similar remarks apply. We

omit the details.

Now we are ready to construct a speci�c presentation for an HNN base for

G = G(�). Recall that G is given by a �nite presentation

P(�) = hV (�) j �(e)�(e) = �(e)�(e); e 2 E(�)i:

Since � is connected, we have Gab �= Z , and the commutator subgroup G0 is

the normal closure in G of the subgroup B = B(�) generated by the �nite set

fxy�1 ; x; y 2 V (�)g . A theorem of Bieri and Strebel [2] says that G is an

HNN extension of B with stable letter t (which can be taken to be any element

of V (�)) and associated subgroups A0 = B \ tBt�1 and A1 = B \ t�1Bt :

G = hB; t j t
�1
�t = �(�); � 2 A0i;

where � : A0 ! A1 is the isomorphism induced by conjugation by t .

Clearly B is �nitely generated. It remains to prove that B is �nitely pre-

sentable, and we do this by constructing an explicit set of de�ning relators.

Recall that our assumptions on � imply that each of I(�) and T (�) has pre-

cisely two connected components, with the vertices u; v belonging to separate

components in each case.

Let F denote the subgroup of the free group on V (�) generated by

fxy
�1 ; x; y 2 V (�)g:
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Then F is free of rank jV (�)j � 1 = jE(�)j , and any basis for F can be chosen

as a �nite generating set for B . Rather than �x a speci�c basis for F , we

proceed as follows. Let �K = �K(�) be the maximal abelian cover of the 2-

complex K = K(�) associated to � (which is the standard 2-complex model

of the presentation P(�)). Then since K has a single 0-cell, we identify the

0-cells of �K with integers, via the isomorphism H1(K) �= Gab �= Z . The 1-cells

of �K with initial vertex i 2 Z can be denoted wi , where w 2 V (�), and each

wi has terminal vertex i+1 2 Z . Let L be the 1-subcomplex of �K with 0-cells

0; 1 and 1-cells fw0; w 2 V (�)g . Then F is naturally identi�ed with �1(L; 0).

We also construct a graph L̂ and an immersion � : L̂! L as follows. V (L̂) =

f0; 1g � fu; vg , E(L̂) = E(L), �(w0) = (0; x) where x 2 fu; vg belongs to the

same component of I(�) as w , and �(w0) = (1; y) where y 2 fu; vg belongs to

the same component of T (�) as w . The graph homomorphism � is de�ned to

be the identity map on edges, and is de�ned on vertices by �(i; u) = �(i; v) = i ,

i = 0; 1. It is not di�cult to see that L̂ is connected. Indeed, if the edge of

� between u and v has label w , then the edges u; v; w of L̂ form a spanning

tree. Since � is bijective on edges, it is an immersion, and hence injective

on fundamental groups. Indeed, the fundamental group F̂ of L̂ embeds as a

free factor of F = �1(L) via �� , as we can see by the following construction:

add an edge X to L̂ with �(X) = (0; u) and �(X) = (0; v), and an edge Y

with �(Y ) = (1; u), �(Y ) = (1; v), to form a larger graph ~L . The immersion

� : L̂! L extends to a homotopy equivalence � : ~L! L that shrinks the edge

X to the vertex 0, and the edge Y to the vertex 1. Hence we have

F = �1(L) �= �1(~L) = �1(L̂) � hX;Y i:

Since the map � : L̂ ! L is bijective on edges, any path in L which lifts to a

path in L̂ does so uniquely. Given a closed path C in L that lifts to a closed

path Ĉ in L̂ , we de�ne two related paths in L , namely the forward derivative

@+C of C and the backward derivative @�C of C , as follows. For @+C we

�rst �x a maximal subforest �I of I(�). Next, we cyclically permute Ĉ so

that it begins and ends at one of the vertices (1; u) or (1; v). Hence Ĉ is a

concatenation of length two subpaths of the form x�1y , where x; y 2 E(L̂) =

V (�) belong to the same component of I(�). The next step is to replace each

such subword x�1y by the product

(x�1
z0)(z

�1
0 z1) : : : (z

�1
m y);

where (x; z0; z1; : : : ; zm; y) is the geodesic from x to y in �I . We now have

a concatenation of length 2 subwords of the form x�1y where x and y are

joined by an edge in �I . This edge corresponds to an edge of �, and hence to
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a de�ning relation in P(�) that can be written

x
�1
y = gh

�1

for some g; h 2 V (�). The �nal step is to replace each such word x�1y by the

corresponding word gh�1 . The result is a closed path @+C in L .

Remarks.

(i) @+C depends on the choice of maximal forest �I , and then is well-de�ned

only up to cyclic permutation.

(ii) If C 0 is a cyclic permutation of C , then C 0 also lifts to a closed path in

L̂ , so @+C
0 is de�ned. It is equal to (a cyclic permutation of) @+C .

(iii) The de�nition of @+C does not depend on C being (cyclically) reduced.

Indeed the insertion into C of a cancelling pair xx�1 may alter @+C .

However, the insertion of a cancelling pair x�1x will not alter @+C .

(iv) C and @+C are (freely) homotopic in �K (since the last part of the con-

struction involves replacing a path x�1y by a homotopic path gh�1 ). In

particular, if C is nullhomotopic in �K , then so is @+C .

(v) The unique lift of @+C in ~L does not contain the edge Y .

The backward derivative @�C is de�ned similarly. This time we �x a maximal

forest �T of T (�), and choose a cyclic permutation of Ĉ beginning at (0; u) or

(0; v), split Ĉ into subpaths of the form xy�1 with x; y in the same component

of T (�), and then use relations of P corresponding to edges of �T to transform

Ĉ . Remarks analogous to the above hold also for @�C .

Now consider the unique cycle in T (�). If z0; : : : ; zm are the vertices of this

cycle in cyclic order, de�ne R̂0 to be the nullhomotopic path

(zmz
�1
0 )(z0z

�1
1 ) : : : (zm�1z

�1
m )

in L̂ and R0 = �(R̂0) the corresponding nullhomotopic path in L . Now de�ne

R1 = @�R0 . If R1 lifts to L̂ then de�ne R2 = @�R1 , and so on. In this way we

obtain either an in�nite sequence R1; R2; : : : of paths in L , or a �nite sequence

R1; : : : ; RM such that RM does not lift to L̂ .

In a similar way, the unique cycle in I(�) determines a nullhomotopic closed

path S0 in L that lifts to L̂ , so a sequence S1; : : : of closed paths in L (�nite

or in�nite), such that Si = @+Si�1 for each i � 1, and if the sequence is �nite

with �nal term SN then SN does not lift to L̂ .
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Lemma 5.2 The paths Ri and Sj are all nullhomotopic in �K .

Proof This follows by induction and Remark (iv) above, since R0 and S0

are nullhomotopic. 2

Now suppose that the sequence fRig contains at least m terms. We con-

struct a 2-complex Lm as follows. The 1-skeleton of Lm is the subcomplex

of �K consisting of L , together with the 0-cells 2; : : : ;m + 1 and the 1-cells

u1; v1; : : : ; um; vm . Then Lm has precisely m 2-cells attached to L using the

paths R1; : : : ; Rm . We also consider the full subcomplex �Km of �K on the set

f0; 1; : : : ;m+ 1g of 0-cells.

Lemma 5.3 The 2-complexes Lm and �Km are homotopy equivalent.

Proof We argue by induction on m , there being nothing to prove in the case

m = 0. Let 
 denote the covering transformation of �K that sends a 0-cell n 2 Z

to n+1. Note that the link of the 0-cell m+1 in �Km is naturally identi�able

with the graph T (�). Let d be the unique edge in E(�) = E(T (�)) that does

not belong to the maximal forest �T � T (�). Then d is contained in the

unique cycle in T (�), so R0 has a subword xy�1 , where x; y are the endpoints

of d in T (�). Corresponding to d is a relator xy�1h�1g in P , which lifts to

a 2-cell � with boundary path xmy
�1
m h

�1
m�1gm�1 in �Km . Modulo the other

2-cells of �Km , the boundary path of � is homotopic to 
m(R0)
�1 � 
m�1(R1).

Since R0 is nullhomotopic in the 1-skeleton of �K , this is in fact homotopic to


m�1(R1). This in turn is homotopic (in �Km�1 ) to 
m�2(R2), etc. Repeating

this argument, we see that the boundary path of � is homotopic in �Kmn�

to Rm . A simple homotopy move allows us to replace � by a 2-cell whose

boundary path is Rm .

The link of m+1 in the resulting 2-complex K 0 is then isomorphic to T (�)nd =

�T . Since �T is a forest with two components (one containing u and the other

containing v ), it collapses to the graph with no edges and vertex set fu; vg .

Each move in this collapsing process (removing a vertex and an edge from

the graph) can be mirrored by a collapse in the 2-complex K 0 (removing a

1-cell and a 2-cell that are incident at the 0-cell m + 1). After performing

all these collapsing moves, we are left with a 2-complex K 00 , simple homotopy

equivalent to �Km . By inspection, K 00 is formed from �Km�1 by adding a 2-cell

with boundary path Rm , a 0-cell m+ 1, and two 1-cells um; vm , each joining

m to m+ 1.

By inductive hypothesis, �Km�1 is homotopy equivalent to Lm�1 , so �Km is

homotopy equivalent to the 2-complex obtained from Lm�1 by adding a 2-cell
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with boundary path Rm , a 0-cell m+ 1, and two 1-cells um; vm , each joining

m to m+1. But this 2-complex is precisely Lm , and the proof is complete. 2

Remark. An analogous result holds for the Sj . We omit the details, but will

use this result implicitly in what follows.

Corollary 5.4 If R1; : : : ; Rm and S1; : : : ; Sn are all de�ned, then m + n <

jV (�)j .

Proof By the Lemma and its analogue for the Sj , �Km is homotopy equivalent

to a 2-complex formed from L by attaching m 2-cells and then wedging on m

circles; and 
�n( �Kn) is homotopy equivalent to a complex obtained from L by

adding n 2-cells and then wedging on n circles. Since 
�n( �Km+n) = 
�n( �Kn)[
�Km , with 
�n( �Kn) \ �Km = �K1 = L , it follows that 
�n( �Km+n) is homotopy

equivalent to a complex formed from L by adding m + n 2-cells and then

wedging on m+n circles. Hence �1( �Km+n) � m+n . Now H2(K) = 0, and �K

is a Z-cover of K , so H2( �K) = 0 by [1], Proposition 1. Hence also H2(K
0) = 0

for any subcomplex K 0 � K . In particular H2( �Km+n) = 0 = H2(L). Since

also H0( �Km+n) = Z = H0(L) and �( �Km+n) = �(L) = 2 � jV (�)j , it follows

that

m+ n � �1( �Km+n) = �1(L) = jV (�)j � 1: 2

Corollary 5.5 Each of the sequences fRig and fSjg are �nite, and if the �nal

terms are RM and SN respectively then M +N < jV (�)j .

We claim that the �nite sequences fRig and fSjg form a full set of de�ning

relators for the HNN base B of G , which completes the proof of our Theorem

1.1. In order to prove this claim, we need to derive some further information

about the structure of the words Ri and Sj .

Remark. The de�nitions of Ri and Si depend, a priori, on speci�c choices

for the maximal forests �T and �I respectively. Suppose we were to choose a

di�erent maximal tree �0

I in I(�), for example. Then geodesics in �I and �0

I

would di�er at most by the unique cycle in I(�). It follows from this that the

resulting de�nitions of @+C , for any closed path C in L that lifts to L̂ , are

equal modulo the normal closure of S1 . An easy induction shows that, for any

i , the de�nitions of Si resulting from di�erent choices of �I are equal modulo

the normal closure of fS1; : : : ; Si�1g . Hence our set of de�ning relators does

not depend in an essential way upon the choices of maximal forests �I and �T .
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6 Structure of the relations

In this section we examine the structure of the proposed de�ning relators Ri

and Si of the HNN base B for G . Recall that each of Ri and Si is a closed

path in the 2-complex L , and that we have a homotopy equivalence � : ~L! L ,

which restricts to an edge-bijective graph immersion on L̂ = ~LnfX;Y g and

shrinks each of the 1-cells X;Y to a point. Let ~C denote the unique (up to

cyclic permutation) cyclically reduced closed path in ~L that maps to a given

cyclically reduced closed path C in L . Then C lifts to L̂ if and only if ~C is a

path in L̂ , in which case ~C is the unique lift. By de�nition, each Ri (resp Si )

is de�ned if and only if Ri�1 (resp Si�1 ) lifts to L̂ . Hence ~Ri is a path in L̂

for 1 � i � M � 1, and Si is a path in L̂ for 1 � i � N � 1. Moreover, the

path ~RM involves Y but not X , while the path ~SN involves X but not Y .

For any group A and letter Z , we say that a word w 2 A�hZi is positive (resp.

negative) in Z if only positive (resp. negative) powers of Z occur in w . We

say that w is strictly positive (resp. strictly negative) if in addition at least one

positive (resp. negative) power of Z does occur in w , in other words w 62 A .

We will concentrate our attention on the relators Si . The analysis of the Ri is

entirely analogous.

We �rst treat the case where I(�) contains a directed cycle C .

Theorem 6.1 Suppose that the unique cycle C in I(�) is directed. Then:

� N = 1 ;

� ~S1 is either strictly positive or strictly negative in X ;

� S1 involves each of a; b1; : : : ; bP exactly once, and no cj ;

� each of a; b1; : : : ; bP is an extremal source in � .

Proof The vertex a is contained in C , by Lemma 4.5, (v). Since �(f0) 2

fu; vg , f0 is not an edge of C , so the edge of C coming into a is e0 . Hence

b1 = �(e0) is a vertex of C , and since e1 is the only edge with �(e1) = b1 ,

it is also an edge of C , and so on. Hence each of b1; : : : ; bP are vertices of

C , �(eP ) = a , and the edges of C are precisely eP ; : : : ; e0 (in the order of the

orientation of C ). Each of the vertices of C is extremal in �, and since it is
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the initial vertex of an edge of I(�) it is also the initial vertex of an edge of �,

ie a source in �. Moreover

S0 = (a�1
bP )(b

�1
P bP�1) : : : (b

�1
1 a);

so

S1 = @+S0 = (bP �(eP )
�1)(bP�1x

�1
P ) : : : (b1x

�1
2 )(ax�1

1 );

where each xi 2 fu; vg .

Suppose that S1 lifts to L̂ . Then �(eP ) belongs to the same component of I(�)

as bP�1 , xP to the same component as bP�2 , and so on. Since a; b1; : : : ; bP all

belong to the same component of I(�), it follows that the xi also all belong

to the same component. But u and v belong to di�erent components of I(�),

and so the xi are all equal, which contradicts Lemma 5.1.

Hence S1 does not lift to L̂ , and so N = 1. Moreover, by the above argument,

some of the xi belong to the opposite component of I(�) from a . If a; u

belong to the same component of I(�), this means that some of the xi are

equal to v . Then ~S1 is formed from S1 by replacing each occurrence of v�1 by

v�1X�1 , and so ~S1 is strictly negative in X . Similarly, if a; v belong to the

same component of I(�), then ~S1 is strictly positive in X . 2

For the rest of the section, we can assume that the cycle C is not directed.

Then y1 = �(f0) = �(ep(1)) 2 fu; vg . We may assume that y1 = u . Then C has

the form

x x x x

x x

- . . . . . . . . . . . . . . . . . -

-

6?

a

bp(1) bp(1)�1 b2 b1

u

Figure 6.1

For the purpose of de�ning forward derivatives, and hence the Si , we �x �I to

be the maximal subforest of I(�) obtained by removing the edge f0 (the edge

joining u to a in C ).

For k � min(s; t0 + 1), let Ik(�) denote the subgraph of �I consisting of the

edges fei; 0 � i � p(k)g and ffi; 1 � i � q0(k � 1)g , together with all their
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incident vertices. Note that Ik contains no more than two components, one

contained in each component of �I . Hence whenever two vertices of Ik belong

to the same component of �I , then the geodesic between them is also contained

in Ik .

Theorem 6.2 Suppose that the cycle in I(�) has the form shown in Figure

6.1. Then:

(i) Each Si can be written, up to cyclic permutation, in the form aUia
�1Vi ,

where Ui is a word in

fa; u; v; c1; : : : ; cq0(i�1)+1g;

and Vi is a word in

fa; u; v; b1; : : : ; bp(i)+1g:

(ii) If p(i) < P , then Vi contains a single occurrence of bp(i)+1 and does not

contain a .

(iii) If q0(i � 1) < Q , then Ui contains a single occurrence of cq0(i�1)+1 and

does not contain a .

(iv) Every letter occurring in Si , other than bp(i)+1 and cq0(i�1)+1 , is a vertex

of the subgraph Ii � I(�) .

(v) If p(i) = P or q0(i� 1) = Q then i = N .

Proof We prove this by induction on i , the initial case being when i = 1.

We have

S0 = (u�1
a)(a�1

b1)(b
�1
1 b2) : : : (b

�1
p(1)

u);

so

S1 = @+S0 = (ac�1
1 )(x1a

�1)(x2b
�1
1 ) : : : (xp(1)b

�1
p(1)�1

)(bp(1)+1b
�1
p(1)

)

(if p(1) < P ). The vertices a; u; b1; : : : ; bp(1) are contained in I1 , but not

c1 , bp(1)+1 . The �rst four statements of the result (for i = 1) follow, setting

U1 = c
�1
1 x1 and

V1 = (x2b
�1
1 ) : : : (xp(1)b

�1
p(1)�1

)(bp(1)+1b
�1
p(1)

):

For the last statement, certainly Q > 0 = q0(0). Suppose that p(1) = P and

i < N . Then

S1 = (ac�1
1 )(x1a

�1)(x2b
�1
1 ) : : : (xP b

�1
P�1)(�(eP )b

�1
P )
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lifts to L̂ , so each of x2; : : : ; xP belongs to the same component of I(�) as

a; b1; : : : ; bP�1 , in other words x2 = : : : = xP = u . By Lemma 5.1 we have

x1 = v and eP incident with v . But �(eP ) = u so �(eP ) = v , which does not

belong to the same component of I(�) as bP�1 . It follows that S1 does not,

after all, lift to L̂ , a contradiction.

This completes the proof of the initial case of the induction.

Now assume inductively that i > 1 and the result is true for i�1. In particular,

i � 1 < N , so p(i � 1) < P and q0(i � 2) < Q . Hence Ui�1 contains a

single occurrence of cq0(i�2)+1 , Vi�1 contains a single occurrence of bp(i�1)+1 ,

and every other letter occurring in Si�1 is a vertex of the subgraph Ii�1 of

I(�). Consider the construction of Si = @+Si�1 from Si�1 . We �rst write

a suitable cyclic permutation of Si�1 as a product of length two subwords of

the form g�1h . For all but two of these subwords, both g and h are vertices

of Ii�1 . (There are precisely two exceptions, since the occurrences of bp(i�1)+1

and cq0(i�2)+1 in Si�1 are separated at least by an occurrence of a�1 .)

Suppose �rst that g; h are vertices of Ii�1 . The next step is to replace g�1h

by the product

(g�1
z1)(z

�1
1 z2) : : : (z

�1
t h)

where g; z1; z2; : : : ; zt; h are the vertices on the geodesic from g to h in �I . This

geodesic is contained in Ii�1 , so each bracketed term here is (�(e)�1�(e))�1 for

some edge e of Ii�1 . The �nal step is to replace this by (�(e)�(e)�1)�1 . Note

that �(e) is a vertex of Ii , and �(e) 6= a . Also, none of the intermediate vertices

zi in the geodesic is equal to a , since a is an extremal vertex of �I . Note that,

if g�1h is a subword of Ui�1 , then all letters in the resulting subword of Si
come from fu; v; c1; : : : ; cq0(i�1)g , while if it is a subword of a�1Vi�1a then all

letters come from fa; u; v; b1; : : : ; bp(i)g .

A similar argument holds if, say g = bp(i�1)+1 . Here, however, the geodesic

from g to h is not contained in Ii�1 . It is the union of the geodesic from

bp(i�1)+1 to z in Ii , where z 2 fu; vg , with the geodesic (in Ii�1 ) from z

to h . Edges in Ii�1 give rise to length 2 subwords of Si consisting of letters

which are vertices in Ii . The same is true for an edge ej from bj to bj+1 , for

p(i � 1) < j < p(i). (The corresponding word is xjb
�1
j .) Finally, the edge

ep(i) (from bp(i) to z ) contributes a subword �(ep(i))b
�1
p(i)

. If p(i) < P then

�(ep(i)) = bp(i)+1 ; otherwise �(ep(i)) 2 fa; u; vg .

The analysis if h = bp(i�1)+1 , or if one of g; h is cq0(p�2)+1 is similar to the

above.
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Each of the two subwords g�1h of Si�1 that contain the letter a gives rise to a

subword of Si containing an occurrence of a with the same exponent. If g = a

then the subword begins (x1a
�1) : : : , while if h = a then the subword ends

: : : (ax�1
1 ). If p(i) < P and q0(i� 1) < Q then this will be the only occurrence

of a in this subword of Si .

Statements (i)-(iv) follow.

To prove (v), suppose for example that i < N and p(i) = P . Another induction

on i shows that x2 = : : : = xP = u . An argument similar to that given above

in the initial case of the induction again gives rise to a contradiction: by Lemma

5.1, �(eP ) = v , which does not belong to the same component of I(�) as bP�1 ,

so Si does not lift to L̂ and i = N .

If i < N and q0(i� 1) = Q then a similar argument applies. Here we can show

that y1 = : : : = yQ = x1 2 fu; vg , which contradicts Lemma 5.1. 2

This result contains all the necessary information about Si if i < N . We now

need to investigate further the structure of ~SN , particularly as regards occur-

rences of X . Note that, up to cyclic permutation, we have ~SN = a ~UNa
�1 ~VN ,

by Theorem 6.2 (i).

Lemma 6.3 Each of ~UN , ~VN is either positive or negative in X .

Proof As indicated in the proof of Theorem 6.2, all of VN , except for the

part arising from the geodesic 
 from bp(N�1)+1 to u , consists of letters which

are vertices in IN�1 . All of these vertices are in the same component of I(�)

as u . The part of VN arising from 
 is

[(xp(N�1)+2b
�1
p(N�1)+1

) : : : (xp(N)b
�1
p(N)�1

)(�(ep(N))b
�1
p(N)

)]�1
;

or, if 
 passes through a (i.e. if �(ep(N)) = a):

[(xp(N�1)+2b
�1

p(N�1)+1
) : : : (�(ep(N))b

�1

p(N)
)(x1a

�1) : : : (bp(1)+1b
�1

p(1)
)]�1

:

The expression in square brackets is a product of terms gh�1 with h in the same

component of I(�) as u . To lift to ~L , we replace h�1g by h�1Xg whenever

g belongs to the same component of I(�) as v and h to the same component

as u , and by h�1X�1g if g belongs to the same component as u and h to the

same component as v . Hence ~VN is either positive or negative in X

A similar argument applies to ~UN , replacing u by x1 in the above. 2

We will also need to investigate possible occurrences of a in SN other than

those indicated in Theorem 6.2.
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Lemma 6.4 The words ~UN and ~VN contain in total at most one occurrence

of a .

Proof From the discussion in the proof of Lemma 6.3, the word VN (and

hence also ~VN ) contains a single occurrence of a if ep(N) is incident with a in �,

and no occurrence of a otherwise. Similarly UN (and hence also ~UN ) contains

a single occurrence of a if fq0(N�1) is incident with a in �, and no occurrence

of a otherwise. The result now follows from the fact that a is extremal in �.

2

7 Completion of the proof

De�ne

G0 = �1(L̂)=fR1; : : : ; RM�1; S1; : : : ; SN�1g;

G+ = (G0 � hXi)=f ~SNg;

G� = (G0 � hY i)=f ~RMg;

and

G1 = (G0 � hX;Y i)=f ~RM ; ~SNg �= (�1(L))=fR1; : : : ; RM ; S1; : : : ; SNg:

Lemma 7.1 The group G0 is free.

Proof By Theorems 6.1 and 6.2, and the analogous results for the Ri , the

set of M + N � 2 distinct numbers B = fp(1) + 1; : : : ; p(N � 1) + 1; p0(0) +

1; : : : ; p0(M � 2) + 1g has the property that each j 2 B is the greatest index

of a b-letter occurring in a unique relator Ri or Si , and moreover that relator

contains precisely one occurrence of bj .

It follows that the 1-complex L0 obtained from L̂ by removing the 1-cells bj; j 2

B is connected, with fundamental group isomorphic to G0 . 2

Lemma 7.2 The natural maps G0 ! G+ and G0 ! G� are injective.

Proof We show that the map G0 ! G+ is injective. The proof of injectivity

of G0 ! G� is entirely analogous. Since G0 is a free group and G+ is a one-

relator group G+ = (G0 � hXi)=f ~SNg , we need only show that ~SN , regarded
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as a word in (G0 � hXi), genuinely involves X . The result then follows from

the Freiheitssatz for one-relator groups [10].

Consider the various possibilities for the structure of ~SN . If the initial graph

I(�) contains a directed cycle, then N = 1 and ~S1 is a strictly positive (or

strictly negative) word in X , by Theorem 6.1. Thus ~S1 , regarded as a word in

the free product G0 � hXi , is also strictly positive (or strictly negative) in X ,

and so genuinely involves X .

Suppose then that I(�) does not contain a directed cycle. By Theorem 6.2 (i)

and Corollary 6.3 we have (up to cyclic permutation) ~SN = a ~UNa
�1 ~VN , with

each of ~UN and ~VN being either positive or negative in X . We also have ~SN
de�nitely involving X , since otherwise SN would lift to L̂ .

If X occurs in ~SN with nonzero exponent-sum, then occurrences of X survive

modulo the relators R1; : : : ; RM�1; S1; : : : ; SN�1 , so we may assume that X

appears with exponent-sum zero. Thus one of ~UN , ~VN is strictly positive, and

the other is strictly negative, with precisely the same number of occurrences of

X�1 . We may rewrite ~SN (again, up to cyclic permutation) as

~SN = XA1X : : : AtXW1X
�1
BtX

�1
: : : B1X

�1
W2

for some t � 0 and words Ai; Bi and W1;W2 that do not involve X . If we can

show that neither W1 nor W2 is equal to the identity element in G0 , then it

will follow that the above expression for ~SN does not allow for cancellation of

X -symbols, when reducing modulo the relators of G0 . The result will follow.

Now a occurs with exponent-sum zero in each of the relators R1; : : : ; RM�1

and S1; : : : ; SN�1 of the group G0 , by Theorem 6.2. If neither UN nor VN

contains the letter a , then each of W1 , W2 contains precisely one occurrence

of a , and so has in�nite order in G0 . In particular, they are nontrivial in G0 ,

as required.

This reduces us to the case where one of UN , VN involves the letter a . By

Corollary 6.4 we know that this can happen for only one of UN , VN .

First suppose that a occurs in UN . Then q0(N � 1) = Q (and so also N > 1).

As in the proof of Corollary 6.3, the part of UN that gives rise to occurrences

of X comes from the geodesic � in �I from cq0(N�2)+1 to x1 . The relevant

subword of UN has the form:

[(yq0(N�2)+2c
�1

q0(N�2)+1
) : : : (yQc

�1
Q�1)(�(fQ)c

�1
Q )]�1

;
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or, if � passes through a :

[(yq0(N�2)+2c
�1
q0(N�2)+1

) : : : (�(fQ)c
�1
Q )(x1a

�1) : : : (bp(1)+1b
�1
p(1)

)]�1
:

The occurrences of X in ~UN correspond to those yj , j � q0(N�2)+2 that are

not equal to x1 , and also from �(fQ) if this is not in the same component of I(�)

as x1 . In the case where � passes through a , we see that, in ~SN = a ~UNa
�1 ~VN

the a-letters that occur in the same Wi have the same exponent, and hence the

Wi are both nontrivial in G0 , as required. In the other case, �(fQ) = a and

the unique occurrence of cQ in ~VN lies on the same side of all the X -letters

as the unique occurrence of a . Hence cQ occurs (precisely once) in the same

Wi that contains two a-letters. To prove that this Wi is nontrivial in G0 , it

su�ces to show that cQ does not occur in any of the relators R1; : : : ; RM�1

or S1; : : : ; SN�1 . But cQ can occur in Sj (j < N ) only if j = N � 1 and

q0(N � 2) = Q� 1, while cQ can occur in Rj (j < M ) only if j =M � 1 and

q(M � 1) = Q� 1. In either case y2 = : : : = yQ = x1 (since RM�1 and SN�1

lift to L̂) and fQ joins a to x1 , which contradicts Lemma 5.1.

Suppose next that a occurs in VN . Then p(N) = P . The occurrences of X

in ~VN arise as indicated in the proof of Corollary 6.3. The relevant subword of

VN has the form:

[(xp(N�1)+2b
�1
p(N�1)+1

) : : : (xP b
�1
P�1

)(�(eP )b
�1
P )]�1

;

or, if 
 passes through a :

[(xp(N�1)+2b
�1
p(N�1)+1

) : : : (�(eP )b
�1
P )(x1a

�1) : : : (bp(1)+1b
�1
p(1)

)]�1
:

The occurrences of X in ~VN correspond to those xj , j � p(N � 1) + 2 in this

subword that are equal to v , and also to �(eP ) if �(eP ) = v . If a = �(eP ) then

since

~SN � a ~UNa
�1 ~VN � XA1X : : : AtXW1X

�1
BtX

�1
: : : B1X

�1
W2

we see that the two a-letters that occur in the same Wi have the same exponent,

and hence both Wi are nontrivial in G0 , as required.

If a = �(eP ) then 
 passes through a . Assume for the moment that x1 =

u . Then the unique occurrence of bP in ~UN lies on the same side of all the

X -letters as the unique occurrence of a . Hence the Wi that contains two

a-letters also contains a single occurrence of bP . To prove that this Wi is

nontrivial in G0 , it su�ces to show that bP does not occur in any of the relators

R1; : : : ; RM�1 or S1; : : : ; SN�1 of G0 . But bP can occur in Sj (j < N ) only
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if j = N � 1 and p(N � 1) = P � 1, while if bP occurs in Rj (j < M ),

then j = M � 1 and p0(M � 2) = P � 1. In either case x1 = : : : = xP = u ,

contradicting Lemma 5.1.

This last argument does not apply if x1 = v . In this case we still have x2 =

: : : = xP = u , and since a = �(eP ) it follows from Lemma 5.1 that �(eP ) = v .

If, say, W1 = 1 in G0 , then At = vb
�1
P and AtW1Bt = AtBt 6= 1 in G0 , since

this word contains a single occurrence of bP , which by similar arguments to the

above cannot occur in any of the relators of G0 . Hence no more than one pair

of letters X�1 in SN can cancel modulo the relators of G0 , and so SN , as a

word in G0 � hXi , de�nitely involves X , as required.

This completes the proof of the Lemma. 2

Corollary 7.3 The maps G� ! G1 are injective.

Proof The commutative square

-
? ?

-

G�

G0 G+

G1

is a pushout, and the maps G0 ! G� are injective by the lemma. Hence G1

is the free product of G+ and G� , amalgamated over G0 . 2

Let L+ be the 1-complex obtained from L̂ by identifying the 0-cells (0; u) and

(0; v) to a single 0-cell 0. Then L+ is homotopy equivalent to the subcomplex

L̂ [X of ~L , and G+ is a homomorphic image of the free group �1(L̂) � hXi ,

which is naturally identi�able with �1(L+). Let us �x the 0-cell 0 as a base-

point for L+ , and consider the generating set

B+ = f�e = �(e)�(e)�1 ; e 2 E(�)g

for �1(L+; 0). Note that B+ is not a basis, since the unique cycle in T (�) gives

rise to a relation R0 among the �e . However, this is the only relation, in the

sense that �1(L+; 0) has a one-relator presentation hB+ j R0i .
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Similarly, if L� is obtained from L̂ by identifying the 0-cells (1; u) and (1; v) to

a single 0-cell 1, then G� is a homomorphic image of the free group �1(L�; 1),

which is generated by

B� = f�e = �(e)�1
�(e) ; e 2 E(�)g

modulo a single relator S0 arising from the unique cycle in I(�).

Theorem 7.4 The correspondence �e $ �e (e 2 E(�)) induces a group iso-

morphism G+ $ G� .

Proof The relation R0 among the generators B+ is precisely the nullhomo-

topic path R0 in L , which lifts to L+ (indeed to L̂). Under the isomorphism

	 : F (B+)! F (B�) induced by the map �e 7! �E , this relation R0 is mapped

to @�R0 = R1 , which is a relation in G� . Hence we have an induced homomor-

phism �1L+ ! G� . In order to show that this in turn induces a homomorphism

G+ ! G� , we must show that each relation of G+ is mapped to a relation of

G� .

Each word Ri , 1 � i � M � 1 is mapped under 	 to @+Ri = Ri+1 , which is

a relation in G� . Similarly, for 1 � j � N we have 	�1(Sj�1) = @�Sj�1 =

Sj , so 	(Sj) = Sj�1 , which is also a relation in G� . Hence 	 induces a

group homomorphism G+ ! G� , as claimed. Similarly 	�1 induces a group

homomorphism G� ! G+ , and these homomorphisms are mutually inverse

isomorphisms, by standard arguments. 2

Corollary 7.5 G(�) is isomorphic to an HNN extension of the �nitely pre-

sented group G1 , with associated subgroups G� .

Proof This is an easy exercise, given the isomorphism described in the pre-

vious lemma. 2

This completes the proof of our main result, Theorem 1.1.

8 Further remarks

In the proof of Theorem 1.1, we have relied heavily on one-relator theory to

show that our HNN base G1 is indeed de�ned by the relators Ri and Si . If we

look at LOTs of larger diameter, we no longer have these tools at our disposal.
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As long as I(�) and T (�) each have only two components (and hence only

one cycle), a great deal of the proof goes through. Certainly the forward and

backward derivatives give rise to two �nite sequences Ri and Si of relators for

G1 , but in order to prove that these relations are su�cient to de�ne G1 we

would need to prove a Freiheitssatz for the one-relator products (G0 � hXi)=SN
and (G0�hY i)=RM . In our case, we have used the combinatorics of the diameter

3 situation in a nontrivial way to show that G0 is free and that SN properly

involves X (resp. RM properly involves Y ) modulo the relations of G0 , from

which the Freiheitssatz follows.

It seems reasonable to conjecture in more generality that the HNN base B for

G , generated by fxy�1; x; y 2 V g will be �nitely presented. One may construct

sets of relations on this generating set analogous to the Ri and Si above, by

repeatedly applying the forward derivative construction to nullhomotopic paths

arising from closed paths in I(�) (analogous to our S0 ), and the backward

derivative construction to nullhomotopic paths arising from closed paths in

T (�) (analogous to our R0 ). Provided we restrict attention to simple closed

paths, only �nitely many relations arise in this way, and one can conjecture

that these form a set of de�ning relators for B .

Before making this conjecture precise, let us �rst give a geometric interpretation

of these relations. On the 2-complex K = K(�) we de�ne a track T in the

sense of Dunwoody [4] as follows: T intersects each 1-cell in a single point, and

each 2-cell in two arcs as in the diagram below.

-

6 6

-

@
@
@
@
@@

@
@
@
@
@@

Figure 8.1

The initial graph I(�) is naturally embedded as a subgraph of the link of the

0-cell in K . Corresponding to a cycle

C = (x1; : : : ; xn)
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in I(�) is a Dehn diagram D1 over P(�) with a single interior vertex (whose

link maps isomorphically to C ). We also have a nullhomotopic closed path

S0 = (x�1
1 x2) : : : (x

�1
n x1)

in K(1) . The boundary label of D1 is S1 = @+S0 . Moreover, if we regard D1

as a map from the disc D2 to K , then the track T on K induces a track on

D2 . This track consists of a single circle in the interior of D2 , together with a

collection of arcs, each connecting two adjacent track points on @D2 .

Now suppose that S1 lifts to L̂ . Then the Dehn diagram D1 can be extended

to a diagram D2 with boundary label S2 = @+S1 , and so on. On any Dehn

diagram arising in this way, the track induced by T consists of a collection of

concentric circles in the interior of D2 , together with a collection of arcs, each

connecting two adjacent track points on @D2 .

Dual to the track T is a 
ow on K , indicated on the boundary of the 2-cells by

the arrows in Figure 8.1. The 
ow induced on D2 by any of the Dehn diagrams

obtained as above has only one singular point in the interior of D2 , which is a

sink.

We can perform a similar construction for any cycle in T (�). The boundary

label of the resulting Dehn diagram is obtained by repeatedly applying the

backward derivative operator to a nullhomotopic closed path in K(1) . Again,

the induced track on D2 consists of a collection of concentric circles in the

interior of D2 , together with a collection of arcs, each connecting two adjacent

track points on @D2 . The induced 
ow has only one singular point in the

interior of D2 , which is a source.

Let us de�ne a Dehn diagram to be tame if the induced track on D2 consists of

a collection of concentric circles in the interior of D2 , together with a collection

of arcs, each connecting two adjacent track points on @D2 . This is equivalent

to the induced 
ow having only one singular point in the interior of D2 , which

is either a sink or a source. It is not di�cult to show that every tame Dehn

diagram arises by the above construction from a cycle in I(�) or T (�), and

that its boundary label is an alternating word in the generators V (�) of G(�).

Conjecture 8.1 Let B be the subgroup of G(�) generated by the alternating

words in V (�). Then B has a �nite presentation in which the de�ning relators

are the boundary labels of tame Dehn diagrams.

34



References

[1] J F Adams, A new proof of a theorem of W H Cockcroft, J. London Math. Soc.
49 (1955), 482{488.

[2] R Bieri and R Strebel, Almost �nitely presented soluble groups, Comment.
Math. Helv. 65 (1990), 243{254.

[3] S D Brodski��, Equations over groups and groups with a single de�ning relator,
Siberian Mathematical Journal 25 (1984), 231{251.

[4] M J Dunwoody, The accessibility of �nitely presented groups, Invent. Math.
81 (1985), 449{457.

[5] J Hillman, 2-Knots and their Groups, Austral. Math. Soc. Lecture Series 5,
Cambridge University Press (1989).

[6] J Howie, On locally indicable groups, Math. Z. 180 (1982), 445{461.

[7] J Howie, The asphericity of ribbon disc complements, Trans. Amer. Math. Soc.
289 (1985) 281{302.

[8] S V Ivanov, On asphericity of group presentations given by labelled oriented

trees, preprint, 1996.

[9] T Maeda, Knotted surfaces in the 4-sphere with no minimal Seifert manifolds,
in: Combinatorial and Geometric Group Theory (A J Duncan, N D Gilbert and J
Howie, eds), London Mathematical Society Lecture Note Series 204, Cambridge
University Press (1994), 239{246.

[10] W Magnus, �Uber diskontinuierliche Gruppen mit einer de�nierenden Relation

(der Freiheitssatz), J. reine angew. Math. 163 (1930), 141{165.

[11] D I Moldavanski��, Certain subgroups of groups with one de�ning relation (Rus-
sian), Sibirsk. Mat. Zh. 8 (1967), 1370{1384.

[12] E S Rapaport, Knot-like groups, in: Knots, Groups and 3-Manifolds (L P
Neuwirth, ed), Annals of Mathematics Studies 84, Princeton University Press
(1975), 119{133.

[13] D Silver, Examples of 3-knots with no minimal Seifert manifolds, Math. Proc.
Cambridge Phil. Soc. 110 (1991), 417{420.

[14] D Silver, On the existence of minimal Seifert manifolds, Math. Proc. Cambridge
Phil. Soc. 114 (1993), 103{109.

[15] D Silver, HNN bases and high-dimensional knots, Proc. Amer. Math. Soc. 124
(1996) 1247{1252.

35



[16] D Silver, Free group automorphisms and knotted tori in S4 , J Knot Theory
Rami�cations (1997) 95{103.

36


