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Abstract. We use the dynamic length and time scale separation in suspensions to formulate a general
description of colloidal thermophoresis. Our approach allows an unambiguous definition of separate con-
tributions to the colloidal flux and clarifies the physical mechanisms behind non-equilibrium motion of
colloids. In particular, we derive an expression for the interfacial force density that drives single-particle
thermophoresis in non-ideal fluids. The issuing relations for the transport coefficients explicitly show that
interfacial thermophoresis has a hydrodynamic character that cannot be explained by a purely thermody-
namic consideration. Our treatment generalises the results from other existing approaches, giving them a
clear interpretation within the framework of non-equilibrium thermodynamics.

1 Introduction

The thermal motion of colloids in a temperature gradient
is known as thermophoresis. Since its discovery by Carl
Ludwig and Charles Soret in 1856 and in 1879, respec-
tively [1, 2], thermophoresis has been studied experimen-
tally in various systems, from charged particles in aqueous
electrolyte solutions [3–10] to long-chain polymers in polar
or non-polar solvents [11–14]. Some of these studies have
proven thermophoresis to be a promising technique for
the fractionation [15] or accumulation [16] of biomolecules.
Thermophoresis is mainly governed by system-specific in-
teractions, which sometimes may be tuned such that dif-
ferent molecular species migrate into opposite directions.

Although different models have already been proposed
for colloidal thermophoresis [17–21], a complete theoreti-
cal description is still lacking. However, as the name sug-
gests, the consensus is that thermophoresis is a phoretic
phenomenon: the thermal motion of a colloid is mainly
driven by local hydrodynamic stresses in the surrounding
liquid, confined in a region close to the particle surface,
often referred to as the interfacial layer.
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The flow of colloids in suspensions is quantified by the
net particle flux [22]

J = −D∇c − cDT∇T, (1)

where D is the Fickian diffusion coefficient, c is the col-
loidal concentration (number density), DT is the thermal
diffusion coefficient and T is the temperature. The second
term describes the particle flux induced by a temperature
gradient. From the relation J = cvT , the thermophoretic
velocity can be identified as vT = −DT∇T .

Most experimental techniques rely on observing the
steady-state distribution of colloids in a closed cell, which
is reached when J = 0:

∇c = −cST∇T. (2)

The ratio ST = DT

D is called the Soret coefficient and
is widely used to quantify the strength of thermophoretic
forces. From the definition of ST , it can be seen that col-
loids move to lower temperatures if ST > 0 and to higher
temperatures otherwise. Predicting the overall sign of ST

is not trivial as thermophoresis turns out to be an inter-
play of multiple contributions that may follow different
trends [23].

The difficulty in describing colloidal thermophoresis
with a unique theoretical model is twofold. First, col-
loidal masses and sizes are much bigger than those of
solvent molecules, but they are small enough for the on-
set of Brownian motion. Secondly, thermophoresis is a
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non-equilibrium phenomenon, meaning that a formula-
tion based on local equilibrium thermodynamics only ap-
plies under certain conditions [24]. Most theoretical mod-
els [8, 21, 23, 25] describe thermophoresis as driven by a
gradient in surface tension or excess chemical potential,
usually adopting either a purely hydrodynamic or ther-
modynamic viewpoint. In analogy to molecular thermod-
iffusion [17, 26], a thermodynamic approach relates the
Soret coefficient to the excess enthalpy [27] or a gradi-
ent in thermodynamic potential [20], but it neglects dis-
sipation via local fluid flows, thus restricting its validity
to particles that are small compared to the interaction
range. This dissipative character is correctly incorporated
in a hydrodynamic approach [21, 28] that describes the
fluid as a continuous medium subjected to stresses due to
colloid-fluid interactions. However, hydrodynamic descrip-
tions are usually formulated in a single-particle picture
that ignores collective effects and Brownian motion.

So far, these approaches have mostly been discussed
independently in the literature due to a lack of common
ground, although they are not mutually exclusive. This
has led to a general confusion and a disagreement about
which thermophoretic contributions should be considered
in a thermodynamic or hydrodynamic picture. Here, we
show that the length and time scale separation in colloidal
suspensions can be used to clarify this matter. This sep-
aration reflects the fact that the fluid particles are much
smaller than the colloids and have a much higher number
density. We derive system-specific relations between dif-
ferent transport coefficients that describe the coupling of
thermodynamic forces to the colloidal flux. Our starting
point is the theory of Non-Equilibrium Thermodynamics
(NET), in which the temperature gradient is treated as a
first-order perturbation from equilibrium. NET has only
received little attention in the discussion of colloidal ther-
mophoresis, even though it provides a most general frame-
work for thermal motion in multi-component systems.

2 Non-equilibrium thermodynamics

The theory of NET is based on the laws of thermody-
namics, stating that the evolution of all components in a
system is governed by its rate of entropy production. A
key requirement for NET is that the system is at Local
Thermodynamic Equilibrium (LTE), meaning that it can
be partitioned into small volume elements, each of which
may be assumed in thermodynamic equilibrium. This con-
dition is usually satisfied for moderate temperature gradi-
ents in the absence of large-scale advection [7,24]. An im-
portant thermodynamic relation that remains valid for a
volume element at LTE is the Gibbs-Duhem equation [24]

dP = sdT +
∑

k

nkdμk, (3)

where s is the entropy density and P is the total pressure
of the volume element. nk is the number concentration of
component k and μk is the corresponding chemical po-
tential. In the presence of thermodynamic gradients, the

Gibbs-Duhem equation can be interpreted as a balance
equation for the forces acting on a local volume element.

Let us now consider a continuous thermodynamic sys-
tem at LTE, in the absence of chemical reactions. From
the resulting balance equations for heat, mass and internal
energy, it can be shown that the rate of entropy production
σs inside a volume element takes the following form [24]:

σs = Jq∇
1
T

+
∑

k

Jk

{
−∇μk

T
+

1
T

Fk

}
− 1

T
Γ : ∇u, (4)

where Γ is the viscous stress tensor and u is the centre-
of-mass velocity of the volume element. Jk = nk(vk −
u) is the net particle flux of component k relative to u,
satisfying

∑
k mkJk = 0, where mk is the corresponding

particle mass. The total heat flux Jq accounts for both
heat conduction and heat diffusion and the body force Fk

includes external forces as well as internal forces whose
range exceeds the typical LTE scale (e.g., thermoelectric
forces). A more convenient form of eq. (4) can be obtained
by rewriting ∇μk

T as

∇μk

T
= H̄k∇

1
T

+
1
T
∇T μk, (5)

where
H̄k = −T 2 ∂

∂T

(μk

T

)

P,nj

(6)

is the partial molar enthalpy of component k. With eq. (5),
the rate of entropy production can now be expressed as

σs = J′
q∇

1
T

+
1
T

∑

k

Jk {−∇T μk + Fk} −
1
T

Γ : ∇u, (7)

where the “modified” heat flux J′
q is related to Jq via

J′
q = Jq −

∑

k

H̄kJk. (8)

Equation (7) shows that entropy can be produced by
two vectorial fluxes J′

q and Jk; and one tensorial flux re-
lated to the fluid flow gradient ∇u. Onsager’s theory of
NET postulates linear constitutive relations between the
vectorial fluxes and thermodynamic forces, of the form

Ji = Liq∇
1
T

+
1
T

∑

k

Lik {−∇T μk + Fk} , (9)

J′
q = Lqq∇

1
T

+
1
T

∑

k

Lqk {−∇T μk + Fk} , (10)

where the scalar coefficients L are known as the Onsager
transport coefficients. The flux induced by an external
force Fi is more commonly written as

Ji =
ni

ξi
Fi, (11)

where ξi is the friction coefficient of a particle of compo-
nent i. As a result, ξi and Lii are related by

Lii =
niT

ξi
. (12)
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An important feature of Onsager’s theory, also known
as the reciprocal relations, is that the cross-coefficients are
symmetric, so that [29,30]

Lik = Lki and Liq = Lqi. (13)

Although the Curie symmetry principle forbids cou-
pling between tensorial forces and vectorial fluxes in a ho-
mogeneous isotropic medium, a local hydrodynamic cou-
pling between shear flows and vectorial forces can occur
inside the interfacial layer around a colloid. Furthermore,
it should be noted that the Onsager flux (9) carries a
large number of variables in an N -component system, with
(1 + N)N/2 independent transport coefficients and N − 1
independent thermodynamic forces. This suggests that an
introduction of specific assumptions is required to achieve
a hydrodynamic description of thermophoresis in terms of
a reduced number of independent variables.

3 Dynamic length and time scale separation
in colloidal suspensions

Onsager’s theory provides general expressions for the par-
ticle and heat fluxes, but it makes no attempt to determine
the relevant transport coefficients L in specific thermody-
namic systems. Here, we construct a framework that al-
lows the formulation of system-specific relation between
these coefficients for thermophoresis in colloidal suspen-
sions. The system of interest is a closed suspension at LTE,
subjected to a constant and uniform temperature gradi-
ent by keeping opposite sides of the system in contact with
thermostats at different temperatures. It is assumed that
the system is not subjected to any external forces, so that
the total pressure P of the system is uniform everywhere.
The colloids are dispersed in a fluid that mainly consists of
solvent molecules, but that can additionally contain small
solutes of negligible size (e.g., ions). In the following, the
index i = 0 is reserved for the solvent. The colloidal con-
centration and flux are denoted by c and J, respectively,
and the index i = 1 is used to refer to other quantities of
the colloidal component.

Our framework is based on the dynamic length and
time scale separation between the colloid and fluid [10,31]
and we therefore introduce the following assumptions:

1) The colloids are much larger/heavier than fluid parti-
cles.

2) The component densities satisfy c � nk �=0,1 � n0.
3) The solvent is incompressible.
4) Fluid flow has a Reynolds number much smaller than

one.
5) Fluid mass diffusion dominates over fluid advection

and colloidal motion (the fluid Peclet number is much
smaller than one).

This set of assumptions forms the basis for the hydro-
dynamic approach to thermophoresis. In particular, as-
sumptions 1) and 2) allow the use of the continuum ap-
proximation. The fluid may thus be treated as a continu-
ous medium and the incompressibility of the solvent allows

an “instantaneous” equilibration of the pressure P , such
that ∇P = 0. Further, the presence of a large bulk reser-
voir of pure fluid allows the introduction of an effective
bulk fluid pressure P b

s , which can be defined via eq. (3) as
the pressure resulting from thermodynamic forces inside
a volume element of pure fluid:

dP b
s = sb

sdT +
∑

k �=1

nb
kdμk, (14)

where sb
s is the entropy density of the bulk fluid and nb

k is
the corresponding bulk concentration of component k.

For colloids, a departure from the ideal state occurs
due to specific interactions with the surrounding compo-
nents. The colloidal chemical potential can then more gen-
erally be written as μ1 = μid +μexc, where μid is the ideal
chemical potential. The excess chemical potential μexc ac-
counts for a specific interaction between colloid and fluid,
denoted by μcs; and for a collective contribution μcc due
to hard-core interactions or specific pair-interactions be-
tween colloids. According to assumptions 1) and 5), the
fluid responds to these interactions with a rapid relaxation
to a local equilibrium distribution around the colloids that
remains unperturbed by colloidal motion or advection. At
uniform temperature, this allows the formulation of a “re-
duced” description [32,33], in which the colloid-fluid inter-
action μcs is treated as a local interfacial layer around the
colloid, separated out from the bulk. Inside the interfa-
cial layer, the local thermodynamic properties of the fluid
differ from those of the bulk fluid, which in turn barely
feels the presence of the colloids. As the introduction of
a colloid necessarily leads to the build-up of an interfa-
cial layer, μcs is equal to the surface energy of the created
interface:

μcs = Ac

(
∂G

∂A

)

P,T,Nk �=1

= Acγcs, (15)

where γcs is the interfacial tension. The surface area Ac is
assumed constant, meaning that the increase in the sur-
face area ∂A exclusively occurs by adding colloids to the
suspension. The change in surface energy can further be
related to interfacial excess properties of the fluid via the
Gibbs adsorption equation

−dμcs = SφdT +
∑

k �=1

Nφ
k dT μk, (16)

where Nφ
k is the excess number of fluid particles of com-

ponent k and Sφ is the interfacial excess entropy. As equal
and opposite forces are exerted on the colloid and its inter-
facial layer, using eq. (16) at uniform temperature further
yields the relation

−∇T μcs + F1 = −
∑

k �=1

Nφ
k {−∇T μk + Fk} . (17)

A collective contribution μcc arises from the interac-
tion between overlapping layers. From this description, it
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follows that the colloidal chemical potential can be ex-
pressed as a sum of two separate terms:

μ1 = μcs + μc, (18)

where μc = μid + μcc is the “bulk” chemical potential of
the colloidal component. To make progress in the descrip-
tion of thermophoresis, we assume that this superposition
principle can be extended to colloidal motion in a tem-
perature gradient, so that the total flux can be written
as

J = Jcs + Jc. (19)

This is achieved by formulating a source term analo-
gous to eq. (4) separately for the bulk entropy of the sus-
pension and the excess entropy of the fluid at the colloidal
surface [34]. However, the separation of the flux in eq. (19)
also relies on the fact that the hydrodynamic flows induced
by each term can be treated as decoupled from each other.
This assumption is indeed valid for low Reynolds number
fluids, where the linear Stokes equation allows the use of
the superposition principle of fluid flows. A similar sep-
aration must also hold for the heat fluxes, implying that
heat transport inside the interfacial layer is predominantly
due to interfacial flows, which in turn do not significantly
contribute to the transport of heat in the bulk of the sus-
pension. Following these arguments, Jc and Jcs can now
be written as two decoupled Onsager fluxes

Jc = Lc
1q∇

1
T

− L11

T
∇T μc +

1
T

∑

k �=1

Lc
1k {−∇T μk + Fk}

(20)
and

Jcs = Lcs
1q∇

1
T

+
L11

T
(−∇T μcs + F1)

+
1
T

∑

k �=1

Lcs
1k {−∇T μk + Fk} . (21)

For the hydrodynamic considerations that are about to
follow, it is useful to eliminate the term −∇T μcs+F1 with
eq. (17), allowing us to express eq. (21) in the alternative
form

Jcs =
L11

T

⎛

⎝−Q∗
cs

∇T

T
+

∑

k �=1

N∗
k {−∇T μk + Fk}

⎞

⎠ , (22)

where the interfacial excess quantities Q∗
cs and N∗

k are
given by

Q∗
cs = Lcs

1q/L11, (23)

N∗
k = Lcs

1k/L11 − Nφ
k . (24)

A carefully chosen set of assumptions that specifically
applies to colloidal suspensions has thus led us to a frame-
work in which the separate evaluation of Jcs and Jc is rea-
sonable. As a result, the interfacial contribution Jcs may
now be determined in a hydrodynamic single-particle pic-
ture, which is the subject of the next section.

Fig. 1. Schematic depiction of hydrodynamic stresses caused
by a temperature gradient inside the electric double layer
around a charged colloid. The gradient in excess pressure in-
duces a thermo-osmotic flow close to the colloidal surface (grey
lines). In response, the colloid moves in the opposite direction
(big red arrow).

4 The interfacial contribution: hydrodynamic
approach

The hydrodynamic picture discusses how thermodynamic
bulk gradients induce interfacial stresses in the fluid close
to the surface of a single colloid, by treating the colloid
as a macroscopic object and the surrounding fluid as a
continuous medium. It is well known that a thermody-
namic gradient across an interfacial layer gives rise to an
interfacial fluid flow in one direction and a corresponding
phoretic drift of the colloid in the opposite direction [35]
(fig. 1). In a homogeneous system at uniform temperature,
a radially symmetric distribution of fluid around the col-
loid is maintained by a local balance between a body force
density f and a gradient in fluid pressure Ps, such that
f −∇Ps = 0. A thermodynamic bulk gradient (in temper-
ature or chemical potential) then breaks this balance and
sets the colloid and fluid into motion. A steady-state drift
velocity v is reached when the total force on the colloid is
zero and the resulting colloidal flux can then be written
as

Jcs = cv =
c

ξ
Fcs, (25)

where, in view of eq. (22), the interfacial driving force Fcs

is given by

Fcs = −Q∗
cs

∇T

T
+

∑

k �=1

N∗
k {−∇T μk + Fk} . (26)

Although the “interfacial heat of transport” Q∗
cs has

commonly been identified as the driving force behind in-
terfacial thermophoresis, the contribution related to N∗

k
has often been overlooked. This is rather surprising, as it
is the latter contribution that can give rise to the well-
known effect of diffusiophoresis at uniform temperature.
Based on Onsager’s reciprocal relations, Q∗

cs and N∗
k can
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be determined from the heat and particle fluxes that arise
inside the interfacial layer when the colloid moves through
a homogeneous fluid at uniform temperature. The corre-
sponding interfacial excess densities of the fluid must how-
ever be defined carefully before these fluxes can be com-
puted. For this purpose, we first consider the momentum
balance equation of the fluid, which is governed by the
Navier-Stokes equation

�F + η∇2us = 0, (27)

where �F = f−∇Ps is the net force density acting on a fluid
element, us is the local centre of mass velocity of the fluid
and η is the fluid viscosity. The inertia term has been ne-
glected in eq. (27) due to the assumption of small Reynolds
number. Our aim is to derive a general expression for the
excess force density �Fφ that drives interfacial fluid flow. In
the recent literature [19,21,23], different expressions have
only been given in the limit where the interfacial excess of
fluid is described by Poisson-Boltzmann theory, suggest-
ing that a general expression of �Fφ for non-ideal fluids is
still lacking.

We start by considering a colloid whose surface is in
contact with a fluid made of solvent molecules and small
solutes. The solvent is pictured as an incompressible, po-
larisable medium. Due to the linearity of eq. (27), the in-
terfacial force density �Fφ can be treated as decoupled from
the subsequent stresses induced by collective colloidal mo-
tion. In the following, we denote a fluid property x with
an index b to refer to its value in the bulk and by x(r) to
refer to its local value at a position r from the colloidal
centre. Excess densities will be denoted with an index φ,
to show that they rely on the presence of a specific inter-
action between colloid and fluid. A fluid component k can
be subjected to a local conservative body force −∇T φk(r),
deriving from a potential φk at the colloidal surface that
tends to zero in the bulk; and a body force Fk induced
by the temperature gradient in the bulk. The local body
force density on a fluid element is thus given by

f = −
∑

k �=1

nk(r) (∇T φk(r) − Fk) + p∇E(r), (28)

where the last term accounts for the electric force due to
the solvent polarization p in the non-uniform electric field
E of the colloid. Further, the Gibbs-Duhem equation for
a polarisable medium can be used to relate the gradient
in fluid pressure Ps to thermodynamic gradients at the
colloidal surface [24]:

∇Ps = ss(r)∇T +
∑

k �=1

nk(r)∇μk(r) + p∇E(r). (29)

In order to express eq. (29) in terms of the same ther-
modynamic forces as eq. (22), we split ∇μk(r) up into

∇μk(r) = −S̄k∇T + ∇T μk(r), (30)

where S̄k is the partial molar entropy of component k.
Substitution into eq. (29) then yields

∇Ps = s′s(r)∇T +
∑

k �=1

nk(r)∇T μk(r) + p∇E(r), (31)

where s′s(r), the “modified” contribution to s(r), is given
by

s′s(r) = ss(r) −
∑

k �=1

nk(r)S̄k. (32)

The “modified” contributions related to other exten-
sive thermodynamic quantities can be defined analogously
and are henceforth denoted with a prime. It is crucial to
note the delicate difference between the entropy densities
s′s and ss. The change from ss to s′s is analoguous to the
transition from Jq to J′

q, which naturally arises when the
basis of thermodynamic forces is changed from (∇ 1

T ,∇μk)
to the linearly independent set (∇ 1

T ,∇T μk). A discussion
of entropy and heat flux is therefore only meaningful if
these quantities are clearly specified within the chosen ba-
sis.

With eqs. (31) and (28), the local force density �F =
f −∇Ps on a fluid element equals

�F = −s′s(r)∇T −
∑

k �=1

nk(r) {∇T (μk(r) + φk(r)) − Fk} .

(33)
In a homogeneous system at uniform temperature, the

equilibrium structure of the interfacial layer around a col-
loid is determined by the condition of zero force density

�F = −
∑

k �=1

nk(r)∇T (μk(r) + φk(r)) = 0, (34)

where all quantities only depend on the radial distance r
from the colloidal centre due to the radial symmetry. This
condition is satisfied if ∇T (μk(r)+φk(r)) = 0. Integration
from the colloidal surface into the bulk of the suspension
then directly yields

μk(r) + φk(r) = μb
k, (35)

where μb
k is the chemical potential of component k in the

bulk. In a non-equilibrium system, μb
k can more generally

be understood as the value of the chemical potential far
away from the colloidal surface, along the isotherm of the
considered fluid element.

The condition of LTE implies that the chemical equi-
librium given by eq. (35) remains valid in a temperature
gradient when the temperature T is approximately con-
stant over the layer. Within the scope of NET, the net
force on the colloid is thus evaluated to first in the gradi-
ents by assuming that the interfacial layer remains radially
symmetric. This crucial assumption further allows us to
redefine the fluid chemical potential μk by including the
potential φk as an internal interaction in the fluid equation
of state:

μk ≡ μk(r) + φk(r) = μb
k, S̄k = −

(
∂μk

∂T

)

P,nj

. (36)

The index “b” for μk can hence simply be omitted and
it directly follows from the standard relations Ts = h −∑

nkμk and T S̄k = H̄k − μk that

Ts′s(r) = h′
s(r), (37)
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where h′
s(r) is the corresponding “modified” contribution

to the fluid enthalpy density. Further, eq. (33) can now be
written as

�F = −h′
s(r)

∇T

T
+

∑

k �=1

nk(r) {−∇T μk + Fk} , (38)

where h′
s(r) and nk(r) only depend on the radial distance

r from the colloidal centre. As interfacial thermophoresis
is concerned with the part of �F resulting from the specific
interaction between colloid and fluid, we have to subtract
from eq. (38) the value of �F in the absence of the interfa-
cial layer, giving

�Fφ = −qφ(r)
∇T

T
+

∑

k �=1

nφ
k(r) {−∇T μk + Fk} (39)

with

qφ(r) = hφ(r) = h′
s(r) − h′b

s , (40)

nφ
k(r) = nk(r) − nb

k, (41)

where qφ(r) is the interfacial heat density and nφ
k(r) is the

interfacial excess (number) density of fluid component k.
With eq. (39), we have thus derived a most general

expression for the excess force density resulting from the
specific interaction between colloid and fluid. This result
specifically relies on the assumption of LTE inside the in-
terfacial layer and shows that thermodynamic forces cou-
ple to the interacial excess densities of the fluid, which
are now unambiguously defined by eqs. (40) and (41). It
should however be noted that eq. (39) ignores heat conduc-
tion through the colloid, which must be taken into account
if its thermal conductivity κc differs from the conductivity
κs of the fluid. For convenience, let us denote the interfa-
cial excess densities (qφ or nφ

k) by xφ and the correspond-
ing interfacial excess quantities (Q∗

cs or N∗
k ) by X∗. Based

on Onsager’s reciprocal relations, the general form of X∗

can be obtained by noticing that the integrated flux X∗v
resulting from the “interfacial polarization” of a colloid
moving with a velocity v through a homogeneous fluid at
uniform temperature is given by [36]

X∗v =
∫ ∞

R

xφ(r)us(r)dV, (42)

where R is the radius of the colloid and us(r) is the in-
duced fluid flow inside the rest frame of the colloid. As
the interfacial excess density xφ(r) only depends on radial
distance, the angular integration in eq. (42) can be carried
out over the fluid flow, yielding (see appendix A)

X∗ = −
∫ ∞

R

4πr2

(
1 − b

R

r

)
xφ(r)dr, (43)

where the dimensionless constant b takes the value b = 1
for stick and b = 2/3 for slip boundary conditions at the
colloidal surface.

Now, let us further introduce a characteristic length
scale λ that defines the “thickness” of the interfacial layer.

Of particular interest are the limiting cases of “large lay-
ers” (R � λ) and “thin layers” (R � λ), which are respec-
tively known as the Hückel limit [37] and the boundary
layer approximation [23]. In the Hückel limit, the parti-
cle size is negligible (R/r → 0) and eq. (43) reduces to a
volume integral over the layer. Further, heat conduction
through the colloid can be ignored, so that qφ = hφ. We
thus obtain

Fcs = Hφ
∇T

T
−

∑

k �=1

Nφ
k {−∇T μk + Fk} , (44)

where Nφ
k =

∫
nφ

kdV is the interfacial excess of fluid par-
ticles and Hφ =

∫
hφdV is the interfacial excess enthalpy.

The flux Jcs is hence independent of the boundary con-
dition at the colloidal surface and the corresponding On-
sager coefficients reduce to

Lcs
1q = −HφL11, (45)

Lcs
1k = 0. (46)

Further, eqs. (16) and (17) can be used to rewrite
eq. (44) in the alternative form

Fcs = −∇μcs + F1. (47)

This result shows that the Hückel limit corresponds to
an effective “thermodynamic” treatment of colloidal mo-
tion, driven by a gradient in surface energy −∇μcs. As the
Hückel limit is restricted to particles that are small com-
pared to the layer thickness, it is however not expected
to hold for colloidal thermophoresis. Colloids usually have
diameters that largely exceed the interaction range and
should therefore be considered in the boundary layer ap-
proximation (R � λ), where the heat flux through the
colloid modifies its thermal polarization. In this limit, the
interfacial heat density is therefore no longer equal to the
interfacial enthalpy density hφ but can be related to hφ via
qφ = Chφ where the constant C is set by the ratio between
κc and κs [23]. Alternatively, one can directly derive a
similar relation between the integrated heat and enthalpy
flux, as shown in appendix B. By expanding eq. (43) to
first order in z/R � 1 where z = r − R is the distance
from the colloidal surface, we find:

X∗ = −4πR2(1 − b)
∫ ∞

0

xφ(z)dz

−4πR(2 − b)
∫ ∞

0

zxφ(z)dz, (48)

=

⎧
⎪⎪⎨

⎪⎪⎩

−4πR

∫ ∞

0

zxφ(z)dz, for stick,

−1
3
Xφ − 16

3
πR

∫ ∞

0

zxφ(z)dz, for slip,

(49)

where Xφ =
∫

xφdV = 4πR2
∫

xφdz.
Interestingly, the expression for a stick boundary in

eq. (49) coincides with the expression first derived by Der-
jaguin, who based his derivation on Onsager reciprocity
by considering isothermal fluid flow through a porous
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medium [35, 38]. An important feature of the boundary
layer approximation is that, although thermophoretic mo-
tion is still induced by a gradient in surface energy μcs,
the force Fcs that drives thermophoresis can no longer just
be written as −∇μcs. In general, we note that this hydro-
dynamic nature of thermophoresis is characterised by a
non-zero coupling coefficient L1k and a value of −Q∗

cs that
differs from the interfacial excess enthalpy Hφ. It can fur-
ther be seen from eq. (43) that the thermodynamic limit
(R/r → 0) constitutes an upper bound for Fcs. As a result,
the presence of a solid surface generally leads to dissipa-
tive effects that tend to inhibit thermophoretic motion.

Before moving on to the next section, we briefly re-
turn to the fact that a thermal gradient induces a long-
ranged perturbation in the flow field around the colloid
(or, conversely, that flow around a colloid induces a long-
ranged perturbation of the temperature profile). It is im-
portant to distinguish these long-ranged perturbations in
the steady flow (or temperature profile) around a fixed
colloid from the long-ranged correlations that appear in
the fluctuations of, say, the energy or momentum density,
for a system in a steady thermal gradient (see, e.g., [39]).
We note that these fluctuations do not change the de-
scription of the phenomenona that we are describing as
these are linear in the temperature gradient, whereas the
long-ranged non-equilibrium fluctuations are (to leading
order) quadratic in ∇T . However, the macroscopic argu-
ments presented in the above section provide a physical
illustration how long-range correlations could appear if we
were to study fluctuations in thermophoretic transport.

5 The bulk contribution: collective effects

We now turn to the remaining bulk contribution Jc that
represents the effect of Brownian motion and collective ef-
fects. Collective thermophoresis is usually described using
a microscopic approach that relies on a clear separation
between inter-colloidal and interfacial interactions. To jus-
tify the validity of such an approach, let us first consider
the Gibbs-Duhem equation for a volume element at LTE:

c∇T μ1 +
∑

k �=1

nk∇T μk = 0. (50)

In order to obtain a balance equation for the bulk of
the suspension, we need to make eq. (50) independent of
the direct specific interaction between colloid and fluid,
which can indeed be achieved by using eq. (16). The ap-
plicability of the Gibbs adsorption equation is therefore
crucial to arrive at separate balance equation for the bulk,
as it relies on the existence of an interfacial layer that
can simply be “subtracted”. By eliminating the interfa-
cial term c∇T μcs with eq. (16), we obtain

c∇T μc +
∑

k �=1

nB
k ∇T μk = 0, (51)

where nB
k = nk−cNφ

k is the number of bulk fluid particles
per volume. As every colloid occupies a volume Vc of the

volume element, nB
k is related to the bulk density nb

k of
the pure fluid via nB

k = nb
k(1 − ϕ), where ϕ = cVc is the

colloidal volume fraction.
Equation (51) is independent of the direct interfacial

interaction between colloid and fluid and therefore justi-
fies the formulation of a separate microscopic approach
that only considers the mutual interaction between col-
loids in a heat bath. A most general starting point for
such a microscopic description is the generalised Fokker-
Planck equation [40]

∂PN

∂t
+

∑

i

vi∇iPN +
∑

ij

Fij

m

∂PN

∂vi
=

∑

ij

∂

∂vj

[
βij

(
vjPN +

kBTj

m

∂PN

∂vj

)
+ γijPN

∇jT

Tj

]
,

(52)

where PN is the N -particle probability distribution of the
colloids. The indices i and j run over all colloids inside
the volume element, so that Fij represents the force that
colloid j exerts on colloid i. The coefficients βij and γij

are microscopic Onsager coefficients for momentum and
heat transfer between colloid i and j. Under the assump-
tion that γij = 0, the N -particle Smoluchowski equa-
tion can be recovered from eq. (52) [41], yielding the
result Jc = −∇Π/ξ, where Π is the osmotic pressure
of the colloids [20, 42]. The friction coefficient is given
by ξ = 6πbηR/K(ϕ), where the mobility factor K(ϕ)
accounts for hydrodynamic interactions at finite volume
fraction [43]. As this result is obtained with the neglect of
γij , we propose the more general form

Jc =
cT

ξ
γ(ϕ)∇ 1

T
− 1

ξ
∇Π, (53)

where the collective heat coefficient γ(ϕ) disappears when
the volume fraction tends to zero. Equation (53) can be
rearranged into the same form as eq. (20) by noticing that
−∇Π = ∇P b

s . By applying the Gibbs-Duhem equation to
a bulk fluid element, the bulk fluid pressure gradient ∇P b

s

can be expressed as

∇P b
s = s′bs ∇T +

∑

k �=1

nb
k∇T μk (54)

= h′b
s

∇T

T
+

∑

k �=1

nb
k {∇T μk − Fk} , (55)

where we have used the condition of charge neutral-
ity

∑
k �=1 nb

kFk = 0 to arrive at eq. (55). Combining
eqs. (55), (53) and (51), the flux Jc can now be written in
the Onsager form

Jc = L11

(
γ(ϕ) − h′b

s

c

)
∇ 1

T
− L11

T
∇T μc

−L11

T

∑

k �=1

Vcn
b
k {−∇T μk + Fk} . (56)
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By comparing eq. (56) to eq. (20), the “collective” On-
sager coefficients for Jc can hence be identified as

Lc
1q =

(
γ(ϕ) − h′b

s

c

)
L11, (57)

Lc
1k = −Vcn

b
kL11. (58)

The bulk diffusion flux Jc can now be combined with
the interfacial contribution Jcs to obtain the total colloidal
flux J.

6 The thermophoretic flux

Collecting all derived relations for the Onsager coeffi-
cients, given by eqs. (23), (24), (57) and (58), the colloidal
flux finally takes the form

J = Jcs + Jc (59)

= Liq∇
1
T

+
1
T

∑

k

Lik {−∇T μk + Fk} , (60)

where

L11 =
cT

ξ
, (61)

L1q = Lcs
1q + Lc

1q =
(

Q∗
cs + γ(ϕ) − h′b

s

c

)
L11, (62)

L1k �=1 = Lcs
1k + Lc

1k =
(
N∗

k + Nφ
k − Vcn

b
k

)
L11. (63)

As the solvent (k = 0) is incompressible, there is no
interfacial excess of solvent (N∗

0 = 0) and (dn0)T = 0.
Although the diffusion flux Jc must be balanced by a
back-flow of bulk fluid, eq. (51) shows that the corre-
sponding force on a particle of fluid component k is ex-
pected to be about c/nk times smaller than the thermo-
dynamic force −∇T μc. In dilute suspensions (c � nk �=1),
it is then reasonable to assume that this back-flow leaves
the steady state of the bulk fluid unperturbed. Based on
eq. (2), the steady-state distribution of the remaining so-
lutes (k �= 0, 1) in the bulk fluid is thus described by
∇nb

k = −nb
kSk

T∇T , where Sk
T is the Soret coefficient of

solute k. The gradients ∇T μk and thermoelectric forces
Fk in eq. (60) can hence be written as

∇T μk =
∑

j �=0

(
∂μk

∂nb
j

)

P,T

∇nb
j (64)

= −∇T
∑

j �=0,1

nb
jS

j
T

∂μk

∂nb
j

+ ∇c
∂μk

∂c
(65)

and
Fk = −zkVT

∇T

T
, (66)

where zk is the valence of a particle of component k. The
thermoelectric potential VT is fixed by the steady state of
the solutes [44]. To simplify the notation, let us introduce

the ratios L1k = L1k/L11 and L1q = L1q/L11. By substi-
tuting eqs. (65) and (66) into eq. (60), the colloidal flux
finally takes the form

J = −D∇c − cDT∇T, (67)

where the thermal diffusion coefficient DT can be identi-
fied as

ξDT =
L1q

T
−

∑

k

L1k

⎧
⎨

⎩
∑

j �=0,1

nb
jS

j
T

∂μk

∂nb
j

− zkVT

T

⎫
⎬

⎭ (68)

and the Fickian diffusion coefficient D is given by

ξD = c
∑

k

L1k
∂μk

∂c
(69)

=
∂Π

∂c
+ c

∑

k �=1

N∗
k

∂μk

∂c
. (70)

From eqs. (68) and (69), it can be seen that the Soret
coefficient of the colloids ST = DT /D is independent of
the friction coefficient. For a separate interpretation of in-
terfacial and collective thermophoresis, it is useful to split
DT up into DT = Dcs

T + Dc
T , where each term represents

the thermal diffusion coefficient of the corresponding flux
contribution. From the expressions of Jcs and Jc, these
coefficients can readily be identified as

ξDcs
T =

Q∗
cs

T
−

∑

k �=0,1

N∗
k

⎧
⎨

⎩
∑

j �=0,1

nb
jS

j
T

∂μk

∂nb
j

− zkVT

T

⎫
⎬

⎭ ,(71)

ξDc
T =

γ(ϕ)
T

+
1
c

∂Π

∂T
. (72)

If the colloids are ideal and point-like (Vc = 0), we have
γ(0) = 0, L1k = δ1k and nb

k∂μc/∂nb
k = δ1kkBT . The Ein-

stein relation ξD = kBT is then recovered from eq. (69).
The ideal osmotic pressure is just given by Π = ckBT ,
yielding an ideal thermal diffusion coefficient ξDT = kB .
In general, both Dcs

T and Dc
T can depend on the Soret

coefficient Sj
T of the solute, meaning that the signs of

Dcs
T and Dc

T do not only depend on whether the specific
interactions are attractive or repulsive. In dilute suspen-
sions, colloidal motion is mainly driven by interfacial ther-
mophoresis and the single-particle limit is therefore of par-
ticular interest. For a single colloid, the Einstein relation
ξD = kBT holds and the thermal diffusion coefficient is
given by DT = Dcs

T + kB/ξ. The ideal contribution kB/ξ
is usually multiple orders of magnitude weaker than Dcs

T ,
so that it can safely be neglected.

Within the single-particle limit, let us now consider
the special case where the fluid only consists of solvent.
The Soret coefficient of a colloid is then simply given
by ST = Q∗

cs/(kBT 2). In fact, this result is also com-
monly used to describe ionic thermophoresis due to hy-
dration [36], by treating the ionic solute as a dilute gas of
non-interacting, charged particles surrounded by hydra-
tion shells. The steady state of the ionic solute in the bulk
is thus governed by

∇nb
j + nb

jS
j
T∇T = 0 (73)
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with an ionic Soret coefficient

Sj
T =

Q∗
j0 + zjVT

kBT 2
. (74)

The interfacial heat of transport of the ion Q∗
j0 =

I(hH) is due to the hydration enthalpy density hH of the
surrounding water molecules and the term zjVT accounts
for the thermoelectric force that directly acts on the ion.
It should however be noted that small ions do not neces-
sarily satisfy assumptions 1) and 5) of the hydrodynamic
approach, so that deviations of I(hH) from eq. (43) should
be expected. An explicit expression for VT can further be
obtained by multiplying eq. (73) by zj and summing over
all ionic solutes (j �= 0, 1), giving

VT = −
∑

j nb
jzjQ

∗
j0∑

j nb
jz

2
j

, (75)

where we have also used the condition of charge neutral-
ity

∑
j zjn

b
j = 0. Substituting eq. (74) into eq. (71) and

noticing again that nb
j∂μk/∂nb

j = δkjkBT for the ionic gas
(k �= 0, 1), the thermal diffusion coefficient Dcs

T of a single
colloid simplifies to

ξTDcs
T = Q∗

cs −
∑

k �=0,1

N∗
k Q∗

k0. (76)

For dilute suspensions of charged colloids, eq. (76)
shows that the thermal diffusion coefficient Dcs

T is directly
related to the interfacial heat of transport of colloid and
ions, meaning that Dcs

T can be evaluated without explic-
itly determining the thermoelectric potential VT .

The results that we have derived here make a clear and
well-founded statement on the evaluation of transport co-
efficients in colloidal suspensions, a topic that has been
under debate in recent literature. We will therefore com-
pare our results to other existing theoretical models in the
following discussion.

7 Discussion

7.1 Comparison: Würger’s force density for charged
colloids

Würger et al. [23, 37] have derived an expression for the
interfacial force density at the surface of a charged colloid
in an aqueous electrolyte solution. The colloidal surface
is screened by the ions, leading to the formation of an
electric double layer [45] (fig. 1). The ions are treated as
a non-interacting gas and the local pressure gradient is
directly evaluated from the excess pressure Pφ = P − Pb

as
∇Pφ = ∇

∑

k �=0,1

nφ
k(r)kBT (77)

with nφ
k(r) = nb

k[exp(−φk(r)
kBT ) − 1]. In our notation, the

body force density given by Würger reads

f = −
∑

k �=0,1

nk(r) (∇φk(r) − Fk) − 1
2
εT εE2(r)

∇T

T
, (78)

where Fk is the thermoelectric force, ε is the electric per-
mittivity and εT = ∂ ln ε/∂ ln T . The last term in eq. (78)
corresponds to the hydration enthalpy density of the po-
larised solvent (e.g., water) in the local electric field E of
the colloid [46] and should therefore be interpreted as a
contribution to the pressure gradient rather than the body
force density. With eqs. (78) and (77), Würger’s interfacial
force density is thus given by

�Fφ = −
∑

k �=0,1

(
nk(r)φk(r) + nφ

k(r)kBT
) ∇T

T

−1
2
εT εE2(r)

∇T

T

−
∑

k �=0,1

nφ
k(r)

(
kBT∇ ln nb

k − Fk

)
. (79)

As expected, we simply have ∇T μk = kBT∇ ln nb
k for

a non-interacting ionic gas. The corresponding enthalpy
densities at the surface and in the bulk are

h(r) = P (r) +
∑

k �=0,1

nk(r)
(

φk(r) +
3
2
kBT

)
, (80)

hb = Pb +
3
2
kBT

∑

k �=0,1

nb
k. (81)

As the partial molar enthalpy of an ideal-gas ion is just
H̄k = 3

2kBT , the interfacial enthalpy density hφ(r) of the
ions is given by

hφ(r) = h(r) − hb −
∑

k �=0,1

nφ
k(r)H̄k (82)

=
∑

k �=0,1

(
nk(r)φk(r) + nφ

k(r)kBT
)

. (83)

With eq. (83), eq. (79) can hence be written in the
same form as eq. (39), proving that Würger’s interfacial
force density is in agreement with our more general result.

7.2 Comparison: minimal models

Other authors [8, 20, 47–49] have used different minimal
models to derive a force (called internal or chemical force)
from a gradient in a certain potential UT associated with
the colloid. Most authors have hinted at an interpretation
of UT as an excess chemical potential. The interfacial con-
tribution to UT is usually determined using a “capacitor”
model [8], which considers a Gibbs adsorption process at
uniform temperature and pressure:

U cs
T = −

∑

k �=1

∫
Nφ

k (dμk)T = μcs, (84)

showing that U cs
T indeed corresponds to the interfacial

chemical potential (or surface energy) μcs. Within these
minimal models, the colloidal flux is then given by one of
the following forms:

J = − c

ξ
∇μexc −

1
ξ
∇ (ckBT ) , (85)
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or
J = − c

ξ
∇μcs −

1
ξ
∇Π, (86)

where we recall that μexc = μcs + μcc.
First of all, we notice that none of the above forms

accounts for a thermoelectric force F1. Equations (85)
and (86) are only equal if c∇μc = ∇Π, which is however
not a valid thermodynamic identity. Equation (85) uses a
gradient in chemical potential to account for specific in-
teractions but accounts for the ideal contribution with an
osmotic pressure gradient, meaning that it neither agrees
with our result for Jcs, nor with our expression for Jc.
Equation (86) contains the appropriate form for Jc with
the neglect of γ(ϕ). By comparison with eq. (47), it be-
comes clear that both forms evaluate Jcs in the Hückel
limit, which should however not apply to colloidal ther-
mophoresis.

The general problem with minimal models is that they
are purely based on the minimisation of a thermodynamic
potential. The form of this potential then automatically
imposes certain relations for the Onsager coefficients that
should actually be determined based on hydrodynamic
and reciprocal arguments, as shown in the previous sec-
tions. It is therefore clear that such minimal models can-
not properly account for the hydrodynamic character of
colloidal thermophoresis.

8 Conclusion

We have introduced a well-founded framework for ther-
mophoresis based on the length and time scale separation
in colloidal suspensions. This framework justifies the sep-
arate evaluation of the interfacial and bulk contribution
to the colloidal flux and yields system-specific relations
for the Onsager transport coefficients. We have derived
a most general expression for the interfacial force den-
sity and have shown that thermophoresis cannot be ex-
plained by a purely thermodynamic treatment, which only
holds in the Hückel limit when the colloid is reduced to
a point-like particle. The hydrodynamic nature of interfa-
cial thermophoresis is related to irreversible fluid flows in
thin boundary layers and is characterised by a non-zero
coefficient Lcs

1k. The obtained expression for the thermal
diffusion coefficient shows that the strength and direction
of thermophoretic motion is not only set by the sign of
the specific interaction, but that it also depends on the
steady state of the bulk fluid. We have further shown that
the thermal diffusion coefficient of a charged colloid in
the presence of an ionic gas can directly be expressed in
terms of heat of transport, without an explicit evaluation
of the thermoelectric field. Existing limiting cases have
also been recovered from our results, showing that our
introduced framework draws a clear connection between
hydrodynamic and thermodynamic approaches within the
theory of NET.
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Appendix A. Thermal polarization:
computation of the interfacial heat of
transport

Below we derive eq. (43) for the interfacial heat of trans-
port Q∗

cs based on Onsager’s reciprocity relations by fo-
cussing on the heat flux inside the interfacial layer. The
computation of N∗

k can be treated analogously, by ap-
plying the same reciprocal arguments to the flow-induced
excess transport of component k, instead of the heat flux.

We consider a single colloid subjected to a force F,
moving with a velocity v = F/ξ = vŷ through an in-
finitely large, homogeneous fluid at uniform temperature.
ŷ is the unit vector in the direction of F. The reciprocal
relation Lcs

1q = Lcs
q1 allows us to determine Q∗

cs by comput-
ing the modified heat flux inside the interfacial layer in the
rest frame of the colloid. We restrict ourselves to the case
of a stick boundary, although the same procedure may
be applied to a slip boundary. For a stick boundary, the
fluid flow velocity us(r) with respect to a spherical colloid
moving at v can be written as us(r) = uRP (r)−v, where
the contribution uRP (r) is described by the Rotne-Prager
tensor:

uRP (r) =
3
4

R

r

[(
1 +

R2

3r2

)
I +

(
1 − R2

r2

)
r̂r̂

]
· v. (A.1)

I is the identity matrix and r̂r̂ is the dyadic product of
the radial unit vector r̂. The excess heat transported by
the fluid flow is given by [36]

Q∗
csv =

∫ ∞

R

qφ(r)us(r)dV. (A.2)

Due to the circular symmetry around the line of motion
along ŷ, only the y-component of us contributes to the
volume integral, so that we can write

Q∗
csv =

∫ ∞

R

qφ(r)us(r)ŷdV. (A.3)

As the interfacial heat density qφ(r) only depends
on the radial distance from the colloidal centre, we can
carry out the angular integration of us(r)ŷ, yielding
〈us(r) · ŷ〉 = −v(1 − R/r). Using this result in eq. (A.3),
we obtain

Q∗
cs = −

∫ ∞

R

4πr2

(
1 − R

r

)
qφ(r)dr. (A.4)
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With eq. (A.4), we have thus recovered the form of Q∗
cs

for a stick boundary.
Whilst the expression proposed in ref. [36] is adequate

for particles with no internal degrees of freedom (e.g.
atoms), it cannot be used for colloidal particles that can
conduct heat internally. In the latter case, we must ac-
count for the fact that the flow-induced heat flux near a
particle leads to a thermal polarization that, in its turn,
results in an intra-colloidal heat flux in the direction op-
posite to the “bare” excess heat flux. The net excess heat
flux is the difference between the bare and the intra-
colloidal heat fluxes. Computing the magnitude of the
intra-colloidal heat flux is similar to a problem in elec-
trostatics, and is addressed below.

Appendix B. Heat flow in the boundary layer
approximation

To compute the effective, rather than the bare excess heat
flux due to flow, we view the colloid in a flow field as a
spherical heat pump with radius R and thermal conduc-
tivity κc embedded in a solvent with thermal conductivity
κs. The easiest way to treat the problem of a heat pump
in a medium is to consider the total heat flow as a sum of
two (fictitious) contributions: the ‘intrinsic’ heat flow q0

and the counterflow q1 induced by the temperature gra-
dient in the sphere. Note that only the total heat flow
Q0 = q0 + q1 is observable. Nevertheless, the separation
into two fictitious flows is helpful because if the temper-
ature profile around the sphere changes, then there will
be a real counterflow Δq1 and this counterflow is propor-
tional to the change in the temperature gradient over the
sphere.

In the boundary layer approximation (R � λ), the
heat flow is generated at the colloidal surface and can be
described as resulting from a homogeneous flux density
that, by analogy with electrostatics, we denote by Dh:

4
3
πR3Dh = J′

h. (B.1)

This heat flux creates temperature gradients inside and
outside the colloid. As the temperature must satisfy Pois-
son’s equation, the temperatures inside and outside the
colloid are given by

Tin = AinrP1(cos θ) + T0, (B.2)

Tout = Aout
P1(cos θ)

r2
+ T0, (B.3)

where P1 is the first-order Legendre polynomial. Using the
continuity condition, we further have

Aout = R3Ain. (B.4)

If we compute the normal component of the heat flux just
outside the sphere, we obtain

Dout = 2κs
Aout

R3
= 2κsAin, (B.5)

where the last equality follows from eq. (B.4). In addition,
the heat flux inside the colloid is given by

Din = −κcAin.

As the total heat flux Dout is conserved, we can write

Dout = Dh + Din

or
(2κs + κc) Ain = Dh.

It hence directly follows that

Dout =
2κs

2κs + κc
Dh.

In terms of the integrated heat fluxes, this can alterna-
tively be written as

J′
q =

2κs

2κs + κc
J′

h. (B.6)

Hence, the following limiting cases can occur in the bound-
ary layer approximation:
1) J′

q = J′
h if κin = 0,

2) J′
q = 0 if κin = ∞,

3) J′
q = 2

3J
′
h if κin = κout.

In the Hückel limit (R � λ), the heat flow through
the colloid can be neglected, so that J′

q = J′
h.
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