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ABSTRACT

Measurement of sound wave velocity and attenuation by the
ultrasonic pulse-echo technique are used to obtain insight into
the nature of weak interatomic binding forces which are present
or develop in certain materials, In particular, anomalies are
found in both the elastic and anelastic properties in the vicinity
of the martensitic phase transformations which occur in TiNi and
indium=thallium alloys, Considerable differences found between
the elastic moduli of the two phases of TiNi are shown to arise
mainly from a variation in the free carrier density. Previously
reported elastic constant data of some fcc indium-thallium alloys
are complemented by the present results and an overall picture of
the compositional dependence of the elastic properties of these
alloys in both the tetragonal and cubic phases is provided,

Zirconia can be forced into a cubic structure by the addition
of more than 7 mole % yttria: elastic constant data of two
zirconia~yttria solid solutions, technologically important
materials, provides a basis for the discussion of the stability
of the cubic phase,

Finally, on the basis of an evaluation of the elastic moduli
of arsenic, a pronounced layer-type crystal, the ultrascnic wave

propagation characteristics in this material are extensively




compared and contrasted with those of the other two rhombohedral
elemental semimetals antimony and bismuth, neither of which are
themselves layer-like, The elastic wave propagation in antimony
and bismuth is shown to differ not only in degree but also in
kind from that in arsenic which exhibits the characteristics
expected for a layer-like crystal,

The weak binding forces in each of the materials studied are

shown to play a dominant role in their elastic behaviour,
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CHAPTER 1

Introduction




Introduction

Study of ultrasonic stress wave propagation provides basic
information on both the elastic and anelastic behaviour of a solid,
Because elastic moduli are directly related to the second derivative
of the total energy of a sclid with respect to strain, they lead to
an insight into the nature of the binding forces,

The main theme of this thesis is an investigation of the
elastic and anelastic properties of materials in which, for some
reason certain interatomic binding forces are weak or develop a
weakness, When the strength of the interatomic binding forces
becomes very small, phase changes to a different crystal structure
can ensue, Transitions of the martensitic type are of great
theoretical and practical interest; effects on the ultrasonic
wave propagation characteristics in the vicinity of such transitions
in TiNi and indium=thallium alloys form a major part of this work,
In addition an incipient phase change in the technologically
important ionic zirconia=yttria solid solutions is investigated.

Another aspect of weak binding forces is manifested in layer-
type crystals: arsenic is a case in point having tightly bound
double layers held together by weak forces. In such crystals,
highly anisotropic effects are expected not least in the elastic

behaviour which is investigated here.



1.1 Elastic constants and binding in solids

There are two main theoretical approaches to the relationships
between the binding forces and elastic moduli. One is the force
constant method in which radial and angular forces are postulated
to exist between an atom and its neighbours; the other attempts to
explain the elastic properties by use of microscopic models, The
classic force constant calculation is that by Born and von Karman
(1912) for the simple cubic case: two nearest neighbour force
constants and several second neighbour constants are employed. The
force on an atom is calculated in terms of the force constants and
atomic displacements, The equations of motion of the atom in the
long wavelength limit in terms of the components of the strain
gradients are then compared with the macroscopic equations of motion
and the relations between the force constants and elastic moduli
thereby obtained,

The quantum approach first requires a theory of the forces
responsible for the cohesion of the solid and second an estimate of
the strain dependence of these forces. The accuracy of any atomic
model is severely tried in this process of differentiation and
theories which can predict the cohesive energy satisfactorily may
not give the correct elastic constants. Ionic solids are the

simplest to consider.Born's (1923) theory of the lattice energy of



ionic crystals is based on the assumption that they are built up

of positive and negative ions, If these ions have a spherically
symmetrical charge distribution, then the attractive coulomb force
between two such ions depends only on their separation. To
prevent the lattice from collapsing, repulsive forces, in addition
to the coulombic repulsion of like ions, are required. These
arise from the overlap of electron shells of neighbouring ions

and are quantum mechanical in origin. The lattice summations
required to obtain the total coulombic potential energy are the
same for all ionic crystals of the same structure and are given by
the Madelung constant; only nearest neighbour interactions need be
considered for the short range repulsive force contribution to the
potential energy and may be expressed in terms of two adjustable
parameters, This approach to the cohesion in ionic solids has been
followed in the analysis of the elastic moduli of the zirconia-
yttria solid solutions in chapter 6,

Metallic cohesion differs from that in ionmic solids in that
the closing of the outer electron shell takes place by a sharing
of the walence electrons of all the atoms, Thus the interactions
responsible for metallic bonds arise from forces between the
positive metal ion cores and the collectively shared electrons.

The contributing terms to the total energy W of a metal may be



written

W = Wo + NF + W§

where wo is the energy of the valence electron lowest state,
corresponding to wave vector k = O or to zerc momentum, WF is

the Fermi energy (kinetic energy) of the valence electrons measured
with respect to wo. Wh is the interaction energy between the
closed shell ion cores. These contributions will now be discussed
in turn. W  may be split up into WO(I) and WB(II); the former

is the electrostatic potential energy of a uniform distribution

of valence charge in the field of the periodic structure of the
positive ion cores and is termed the electrostatic energy WE. The
other portion WO(II) represents the kinetic energy and part of the
potential energy of the lowest electron state. If those elastic
distortions are considered which change the shape of the unit cell
but leave the volume unaltered, then WO(I) and WO(II) and in the
case of monovalent metals WF, have no effeét on these shear moduli.
For example, Fuchs (193%6) showed that the shear constants Cyy, and
(C11-C12)/2 for monovalent cubic metals can be obtained from a
consideration of only the electrostatic energy W_. and the exchange

E

energy W§. For metals of higher valency an additional term derives

from the change in Fermi energy caused by movements of the Brillouin

zone planes as the metal is sheared. Taking this into account,
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Leigh (1951) has shown that the observed near isotropy of the shear
constants of trivalent aluminium results from the negligible effect
of Wh coupled with the compensating effects of the individually

anisotropic contributions from WE and WF. The origin of the
effect the Fermi energy can have on the shear constants may be seen
"by initially considering the alkali metals: only half the states in
the first Brillouin zone are filled as these metals are monovalent,
On the assumption of a spherical Fermi surface any volume conserving
distortion will not change the Fermi energy because of the
availability of other states of the same energy: this is depicted
schematically in Figure (1.1) a,bsc. But in the case of a strain
which does not conserve volume the Fermi energy does contribute to
the associated modulus. Jones (1949) has given an expression which
provides that part of the bulk modulus attributable to the Fermi
energy alone: use is made of this in analysing the elastic moduli
of TiNi in chapter 4, In trivalent metals such as aluminium and
indium there are enough electrons to fill more than one Brillouin
zone and therefore the Fermi surface is cut by Brillouin zone planes,
Figure (1.1) shows schematically the first Brillouin zone of a fcc
material; TFigure (1.1d) shows the unstrained condition while Figures

(1.17e) and (1.1f) represent the strained Brillouin zone corresponding

to elastic shear moduli 044 (= C) and (C11-C12)/2 (= C') respectively.



The states just inside one pair of hexagonal faces (1) in Figure
(1.1e) have receded from the origin and their energy (propertinnal
to k2 in the free electron theory) has increased: the situation
is reversed for states just inside the other pair of hexagonal
faces (2),. The net result is an increase in the full zone energy
and a positive addition to the shear modulus, An analogous
situation occurs for the other type of shear in Figure (1.1f).
Leigh (1951) found for aluminium that the full zone term alone could
not account for the observed elastic isotropy. In a state of strain
corresponding to C the energy of the overlap electrons on one pair
(1) of hexagonal faces will have increased whereas the energy of
the electrons on the other pair (2) of hexagonal faces will have
decreased, Electrons then transfer from high energy overlap
positions to low energy overlap positions until the maximum energy
of the occupied states in the two sites attains the Fermi energy.
There is then a large low energy population and a small high energy
population and in fact the total overlap energy in this case for
aluminium is decreased, When this negative overlap contribution
to the shear moduli is added to those from the full zone and
electrostatic terms, the observed elastic isotropy of aluminium is
essentially explained.

Finally it should be mentioned that although van der Waals

forces are present in all solids they are frequently negligible:



their origin is found in the fluctuations of the electrostatic
field of an ion, the resultant dipole then interacting with
neighbouring dipoles, However van der Waals forces can be
important in highly anisotropic crystals; such a situation may
exist in arsenic and in chapter 7 is critically discussed in the

light of elastic constant data,

1.2 Plan of the work

The general characteristics of elastic wave propagation in
solids and the way in which the velocity and attenuation of the
ultrasound are measured is introduced in chapters 2 and 3
respectively, Subsequent chapters are concerned with the ultrasonic
study of the transformations in TiNi (chapter 4), the indium-
thallium system (chapter 5) and the zirconia-yttria system (chapter
6). Finally chapter 7 reports the elastic properties of arsenic

and contrasts them with those of antimony and bismuth,



CHAPTER 2

Propagation of elastic waves in

anisotropic solids




2e1 Introduction

A1l bodies are deformed under the action of external forces.,
If, after removal of the external forces, the body returns to its
original form, it is said to be elastic, The physical property of
elasticity may be understood as describing the relation between the
stress field developed and the strain field caused. The functional
relation between stress and strain must reflect the property of
complete recovery from strain on removal of stress. The strain is
thus a unique homogeneous function of stress.

This chapter will be concerned with the equation of motion
of anisotropic elastic solids under the action of applied periodic
stresses, The propagation velocity of the resultant high
frequency stress wave is obtained as a solution to the equation of
motion.

It is thus indicated how measurements of the propagation
velocity of ultrasonic waves in specific directions in crystals of
various symmetries may be related to the elastic moduli.

The subject of elastic wave propagation in anisotrcpic media
has been dealt with in depth by many research workers:
comprehensive and detailed discussions have been presented by
Musgrave (1954 a,b, 1957), Waterman (1959), Brugger (1965) and

Neighbours and Schacher (1967).
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2.2 Stress-Strain relationships for a crystalline body.

2.2.1 Definition of strain

If a one dimensional solid of original length x is stretched
to have a length x + R, then a portion of the solid of original
length Ax will now have a length Ax + AR. The strain in the section
of original length Ax is defined as AR/Ax. The strain e at a point
in the one dimensional solid is thus the limiting value of AR/Ax,

that is

1im AR
e = x =

Ax = o (2.1)

5

In a three dimensional solid the strain is a second rank
tensor which defines the deformation for small deformation, in the
neighbourhood of a point specified in the undeformed solid by the
position vector x(x1, X5 x3.) Analagous to the one dimensional
case, the variation of the displacement R with position e in the

body may be written in terms of the displacement gradients,

R,
=3, @i=123 (2.2)
3

e. .
1]

The tensor eij is composed of an antisymmetrical part which

represents body rotations and a symmetrical part which represents

the change in shape and size of the body. The symmetrical part

of e, . is €, . where,
1] 1)
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€5 ° %(eij + eji) (2.3
BRi 3R,
and ei.] = %(Fx—j + '5;2 > (2.4)

The sij defined by (2.3) and (2.4) have a simple geometrical

meaning; Eij(i = j) is the change in length per unit length of a

straight line segment originally parallel to the xj axis;
eij(i # 3) is twice the change in an angle whose defining sides
were originally parallel to the xj and X, axes.

2.2.2. Definitition of Stress

The stress °ij in a three dimensional solid is a second rank
tensor and represents the components of force acting on an element
of area; the first subscript represents the normal to the plane
on which the stress component acts and the second subscript the

direction of the stress component. The stress tensor is symmetric

ij ji

2.2.3 Hookes Law

Hookes Law states that the stress acting on an elastic body
is proportional to the strain. The stress components are thus
linear functions of the strain components. The constants of
proportionality Cijkl’ are fourth rank tensors and are called the

elastic constants of the material. Thus Hookes Law may be written

as, oik = Cijkl ejl (205)
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81 elastic stiffness constants are defined by this equation which
is the most general linear stress~-strain relation yielding zero
strain for zero stress. In practice, the elastic constants in the
13kl are written in a condensed or matrix

notation; the following correspondence of indices is used.

tensor notation C

Tensor notation 11 22 33 23,32 13,31 12,21

Matrix notation 1 2 3 4 5 6

For example C in tensor notation would be written 065 in the

1231
matrix notation.

2.2.4 Physical Significance of the elastic constants

The quantity Cji expresses the stress-strain ratio oj/fi
under the condition that all the strains other than ej are zero.
The physical significance of this can be seen by reference to a
cubic crystal as follows.

If a normal stress o (see Figure (2,1)) is applied to two
(110) faces of g cubic crystal and such stresses are applied to
other faces to emsure that only the normal strain € parallel to
the [110] directiom occurs,
then an/en = C_and is expressed

by C. = (C., + C:

o 11 1 * 20‘1}4)/2 (2.6)

If the same sample is under a shear strain such that the angle

between the [001] and the [110] directions decreases, then this



P!

L
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may be achieved by a shear stress applied to the (110) faces in
the [001] direction (see Figure (2.1)); this is the only stress
necessar&. For this example, the ratio of shear stress to shear
strain referred to cubic axes is C(=044).

In a similar way, a shear stiffness may be defined if the
shear stresses are applied in the [110] direction on the (110)
faces to produce a shear strain measured by the decrease in angle
between the [110] and [110] directions. The stfess strain ratio

in this case is
' — -
C’ = (011 612)/2 (2.7)

Thus, the three independent stiffnesses of a cubic crystal can be

expressed as two shear stiffnesses and one normal stiffness.

203 Relations between the elastic stiffness constants and the

elastic compliance constants

The set of linear homogeneous independent equations
represented by (2.5) can be solved for the strains in terms of
the stresses.

€ = S o

ik ikil (2.8)

il

where the Sikjl are the elastic compliance constants.
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The relation between the Si'

skl and the Ci'

k1 is given in

matrix notation by

5. . = (=it A;:_j/Ac (2.9)

ij

where Ac is the determinant of the Cij terms and A;j is the minor

of the element Cij'

2.3.1 Adisbatic and isothermal elastic moduli

The total energy of an elastic body is, from the first law
of thermodynamice, the sum: of the mechanical and thermal energies.
In measurements of elastic moduli by the ultrasonic pulse echo
method the entropy is effectively constant and the adiabatic moduli
are obtained. The difference between the adiabatic and isothermal
moduli may be found by taking the élastic energy to be a function

of the stresses and temperature.

o¢. (a,, D
(s. ) - i i
ij’Adiabatic P i 8 (2.10)

This may be written as

Si'8 = <a'€_l> *(aa_£> <§r5 )s



- 14 =

where @, is the change of strain ei with temperature and S is the
entropy. For compressive strains o, is a component of the linear

thermal expansion tensor. From standard thermodynamic relationships,

aT T
<B_S->o = CP (2.12)

J

where Cp is the heat capacity at constant stress. Also,

(_ag) -&F _ ﬁZF_ = Efi (2.13)

X3, "% .9T =~ ade. ~ oT
j T J " J

where F is the Helmholtz free energy. Thus, by substituting (2.12)
and (2.13) into (2.11) the difference between the adiabatic and

isothermal elastic compliances is obtained as

[« 9« 3% .
<s. > - (s. ) = ”——Lfv (2.14)
ij/q i Jp Cp

This difference is usually small and of the order of 1% of the

ij*

2.4 The effect of symmetry on the number of independent elastic

moduli
Because both the stress and strain tensors are symmetrical,

it follows that
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C.. . = C .. = C. .. (2.15)

These conditions reduce the number of independent elastic constants
from 81 to 36. A further condition is that the strain energy is
a function of state of the body and is independent of the path

by which the state is reached; this imposes the condition
C. . = C.... (2.16)

thus further reducing the number of independent moduli to 21.
Any further reduction in the number of independent moduli is
determined by the symmetry.of the crystal of interest.

For a lattice to be stable, the strain energy must be a
positive definite quadratic function of the strain components
(Born and Huang 1954). This is satisfied if the discriminants
of the C, , matrix are positive. For a cubic crystal this leads

ij
to the conditions

c >o3 C__-C > o

and for a trigonal §3m) crystal

¢ 2 ¢ <C11+°12) .
15 33 2 !
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whilst for tetragonal (4/mmm) crystals the condition requires,
C11>o; 033>o; Ch#>°; C66>o;

2

2
c,.-C..>; cC,[(C +c12)> 2c13

C1123%C43 7 €11Cq2 23¢9

2.5 The equation of motion of an elastic body and its solutions

The equation of motion for an elastic medium is obtained
by considering the forces acting on an element of volume in the
medium. In particular if one considers the forces on opposite
pairs of faces of a small rectangular parallelpiped, then by
taking the differences between these pairs of forces the components
of the resulting force on the volume considered are obtained. On
equating the force components to the acceleration components for

a medium of density p, the equations of motion are

9o, . a°
i R .
-a;d?- = P-a-—z- (1 = 1, 2, 3) (2017)
J t
or i T P

where R (R1, R2, R3) is the displacement vector and

x (x1, X5 x3) the position vector. On substituting (2.5) into



- 17 =

(2.17) the equations of motion become

cijkl ‘kl,j = PR (2.18)
where from (2.4)

€ ., = R .+ .

kl,J % ( 1,kj RK’]-J)

and the comma notation is used to indicate differentiation with
respect to x.

Plane wave solutions to (2.18) will be looked for. Consider
a plane wave travelling in a direction given by the propagation

vector k (k1, k2, k3) which is normal to planes of constant phase.

The unit vector m (n,, n,, n3) is also normal to the wave front
W
and k = ;) n = -2%;-> n where w is the angular frequency,

v is the phase velocity and A the wavelength of the wave. The
particle displacement vector R is in general not parallel to k.
The expression for the components of any one of the plane wave

solutions is written as

R = R ei(wt—g.g&) , (

1 o1 1=1, 2, 3 (2.19)

On differentiation (2.19) becomes,

(2.20)

2 ) Jilat-k.x)

o
By = B By Ry (v_é

and R =R, ,2i(et-k.x) (2.21)
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Thus on substituting (2.20) and (2.21) into (2.18) the equations

of motion of the elastic medium are finally obtained as,

C

15k1 Fo1

nk nj

2
=p v

Roi’

i =1,

2, 3)

(2.22)

The condition for (2.22) to have solutions is that the determinant

of the coefficients of the displacement components Ro R R03

be zero, and is written as

L13

L23

-

1, 02,

0

2n2n3056 + 2n3n1C15 + 2n n 016

n2n3(C46+025) + n3n1(C1q¢056) +

+036) + nj, (C.+C.__) +

137755

2n3C2# + 2n3 1 46 + 2n n CZ6

g ~ oV L2
L2 Ly, =# v
Lz Loz
where
2 2 2
L11 = n1C11 + n2066 + n3C55 +
2 2. 2
L12 = n1C16 + n2026 + n3045 +
2 2 2
L13 = nlc15 + 00 + n3C35 + n2r13(cl+5
( 2
L22 = n1C66 + n2022 + n3044 +
2 2 2
L23 = n1C56 + n2024 + n3034 +
11785 (Co54C,0)
2 2. 2
L33 = n,lC55 + n2044 + n_C +

2n2n30

+ 2n3n1C35

n,05(Cp#C,z) + nghy (CopiCyc) +

+ 2n n 045

(2.23)

(2.24)
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and the n's are the direction cosines.
Equation (2.23) is a cubic equation in pVZ. For a given
propagation direction the roots of (2.23) yield in general three
possible velocities and hence three elastic waves may be

and Ro

propagated. The values of Ro1’ R corresponding to

o2 3
a given root are usually such that the wave is neither purely
longitudinal (for which R N n = o) nor purely transverse (for

which R « n = o). Directions of propagation may be chosen such

that one pure longitudinal and two pure transverse waves result.

2.5.1 Solutions of the equations of motion for isotropic

materials
In an isotropic material the elastic constants must be
independent of the particular set of rectangular coordinate axes
chosen. This requires that the elastic constants are unaltered
by any rotation of axes and leads to the conditionms,

C12 = C13 = O3, Cu = Cs5 = Cger Cqq = Oz = O3

(2.25)
and CM+ =(C11-C12)/2

with all the other elastic constants zero.
The solutions of (2.23) are the same whatever propagation
direction is chosen; on taking n, = 1, n, = o, n3 = 0,

equation (2.23) becomes



- 20 =

Cip= e
0 Gy, - Ra 0 =0 (2.26)

yielding three solutions namely

(@) oV = c, (®) oV =Cpy (@) oV =Gy (2.27)

1'

To discover the particle displacement}vector and thus which

solutions correspond to longitudinal waves amd which to transverse
waves, the solutions (2.27) are substituted in turn into (2.22).

For solution (a) the only component of the particle displacement
vector is parallel to the propagation vector and thus (a) gives

the velocity of a longitudinal wave. In the case of both (b) and (c¢),

the solutions correspond to degenerate transverse waves. Thus

C,A\% Cip\=
11\2 _ Ll
Viong © <_;..> v = <——p ) (2.28)

The elastic properties of isotropic materials are often expressed

in terms of the Lame constants A and p which are defined by

C,p = A+23 Cy =3 C, =A (2.29)
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2.5.2 Solutions of the equations of motion for

materials possessing cubic symmetry

In studying the elastic properties of crystals one is
directly concerned with only the eleven Laie groups (Henry,
Lipson and Wooster 1951) and not with the thirty two point groups.
This results from the fact that elastic properties are always
centrosymmetrical. As a result the speed of an elastic wave
mode depends on the direction of propagation but not on the sense
of this difection. All point groups belonging to the same Laue
group have common arrays of elastic coefficients.

In the particular case of cubic symmetry the five point
groups, each of which is contained in one or other of the two
cubic Lane groups, have the same Cij matrix. Cubic symmetry
reduces the number of independent moduli from 21 to 3, namely

c C

11? G420 Chh’ as detailed in the matrix.

C11 C12 C12 ° ° °
. 012 C12 0 0 0
. . C11 0 0 0
. . . 044 0 0
. . . . 044 0
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TABIE (2.1)

ggﬁiﬁﬁim Particlesei)itiilacement o7
[100] (1001 Caq
[100] in (100) plane Cps
(1101 [110] 3(c,, + C,p + 2C,))
(110] foo1] Chy
(1101 (1703 gt(c1 ; 012)
[111] [111] %(Cn + 20, + kCy,)
[111] in (111) plane 3C, . + Cpy = Cy)

Propagation and polarisation wectors for pure mode propagation

in cubic crystals.

The relation between the measured velocity

of propagation V and the elastic moduli Cij is given.
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For a general propagation direction E(n1, n., n3) the determinant

2
(2.23) becomes

(€11 C)m 0¥ nny (€00 ny05(C5+Cy)
S B W L nyn5(C,4C,,)
5,85(C,1 540, nng(C,#0y)  n,(C, 1-044)+c44—ﬁi2

=0 (2.30)

Pure mode solutions of (2.30) are obtained for. the crystallographic

directions, [100], [111] and [110]J. The relations between the

various velocities and elastic constants for pure mode propagation

are given in Table (2.1). It may be noticed that all three
elastic moduli characterising a cubic solid are obtainable from
measurement of the three possible wave velocities in the [110]

direction.

2.6 Discussion of pure, quasi-pure and impure propagation

directions and the associated energy flux wsectors

Unless the propagation direction for the elastic wave is
carefully chosen the direction of énergy flow is not along the
normal to the planes of constant phase nor is the particle

displacement wector normal or parallel to these wave fronts.
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A pure direction is defined such that the three possible
elastic waves propagate with the particle displacement wvector
either parallel to (longitudinal mode) or perpendicular (transverse
modes) to the propagation direction.

A quasi-pure direction allows propagation of one pure mode
whilst the other two modes are neither pure transverse nor pure
longitudinal modes. But usually these two quasi-pure modes have
particle displacement yectors such that the modes closely resemble
pure modes.

An impure direction is one in which none of the three elastic
waves is a pure mode.

It may be noted that whatever the propagation direction, the
three particle displacement ¥ectors associéféd with the three
elastic waves are’ always orthogonal.

In practice wheﬁ measurements are made of wave velocities
using the ultrasonic pulse-echo technique difficulties sometimes
arise due to the deviation of the energy flux ¥ector from the
propagation direction. In particular when the specimen cross
section is not appreciably larger than the cross section of the
excited region or when for some reason it becomes necessary to
excite the specimen near an edge, deviation of energy from the
propagation direction may cause the wave to impinge on side walls,
giving rise to mode conversion and deterioration of the echo

train. (See Figure (2.2)).
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Brugger (1965) has discussed the effect of the symmetry of
the propagation direction on the energy flux vector and showed
that for a pure longitudinal mode the energy flux vector can never
deviate from the propagation direction. The same result holds for
a pure transverse mode provided the propagation direction is a
twofold, fourfold or sixfold rotational axis or normal to a plame
of reflectiom symmetry. If the propagation direction is not
included in these four categories, then in general a deviation of
the energy flux from the propagation direction may be expected.
Specifically for propagation along an axis of threefold symmetry,
this deviation manifests itself in the form of internal conical
refraction. A propagation axis of threefold symmetry is
encountered in the [111] direction of a cubic crystal and along
the Z direction of a trigonal crystal. (A threefold symmetry axis
allows degenerate pure shear modes of arbitary polarisation to
propagate). As the plane of particle vibrationvis rotated about
the threefold axis through an angle n, the energy flux vector
rotates about the threefold axis in the opposite sense through an
angle 2n, thus generating a cone of possible directions for
energy flow (Waterman 1959). Knowledge of the behaviour of.the
energy flux vector is especially important in the case of quasi- .
pure and impure propagation directions. In particular, the complete

tensor set of elastic constants for both tetragonal and trigonal
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symmetries, to name but the two which are of interest here,

require wave propagation in quasi-pure directions. Thus,

detailed below are the expressions for the energy flux components.
The ith Cartesian component of the energy flux Pi is given

by Love (1944t) as the negative of the scalor product of the

component of the stress tensor on the surface normal to the ith

direction with a particle displacement velocity R, as

P = =g,..R. (2.31)

Equation (2.19), the plane wave solution to the equation of

motion, may be written as

ei(wt - _k- o‘ E)

R = P RO (2.32)

where p is the scalar amplitude of the displacement. After
performing the necessary differentiations and substitutions Pi
is obtained as

2
_ —(pw)
P, = 30 Cs 11 Roj Box ™1 (2.33)

where v and n1 are respectively the wave propagation velocity and
the cosine of the angle between the propagation direction and

the 1th coordinate axis.



CHAPTER 3

Ultrasound velocity and attenuation

measurements
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3.1 Principle of the single ended pulse echo technique

The attenuation and velocity of ultrasound can be measured
by introducing a single short duration pulse of high frequency stress
waves into a solid normal to two parallel faces. The decrease in
amplitude of successive echoes is a measure of the ultrasound
absorption with time of travel; the distance in time between the
echoes is the transit time and thus provides the ultrasound velocity.
The pulse of sound is introduced by electrically exciting a quartz
transducer which is bonded to one of the two parallel faces of the
sample (see Figure (3.1)). A signal from a pulsed transmitter is
applied between the transducer faces and as a consequence of the
converse piezocelectric effect (see 3.4), a stress wave is produced
which propagates into the sample. The transducer is both the
source of the initial pulse and the receiver of the resultant
echoes. The initial pulse is almost perfectly reflected from the
opposite face of the sample and is returned to the transducer-sample
interface where all but a small fraction of the energy is again
reflected. By the time the first echo arrives at the transducer,
the transmitter has been turned off. As the stress wave passes
through the sample it loses energy and thus successive echoes
produce smaller signals. The locus of the echo heights on an
oscilloscope screen is exponential with time of travel of the
sound in the sample (see Figure (3.2)). The measurement of

ultrasonic attenuation and velocity by the pulse echo technigue
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imposes a number of conditions and requirements that must be

met in connection with sample preparation, with the bonding of
the transducer to the specimen and with the interpretation of

any special peculiarities of the resulting echo train. A pre-
requisite is that opposite faces of the sample Should be flat and
parallel and that the sample face area should be somewhat larger
than the transducer diameter (tolerances for these and other

requirements are discussed in (3.6)).

3.2 Description of the measuring system

A Matec Inc attenuation comparator model 9000 was used for
all the ultrasonic measurements. This equipment is a complete
electronic system for the generation, detection and display of
ultrasonic echoes and is shown in block diagram form in Figure (3.3).
The unit generates pulsed oscillations which are continuously
variable in frequency between 10 MHg and 310 MHz and are applied
to the quartz transducer. The width of the pulses is variéble
between O<5 and 5 usec; the pulse amplitude is continuously
variable and has a maximum of 3 kv peak-to-peak at 10 MHZ which
decreases a little at higher frequencies. The pulse repetition
rate can be varied between 10 and 1000 pulses per sec. When each
echo is reflected at the sample=-transducer interface, the small

amount of energy lost from the sound beam is converted by the
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direct piezoelectric effect (see 3.4) into an electrical signal
which is then fed to a high gain (80 db), QMHg bandwidth amplifier.
Each high frequency wave group is rectified and its envelope
displayed as an echo on a built in 5" oscilloscope screen.

Figure (3.2) shows a photograph of a typical series of echoes. A
calibrated exponential wave form is projected on the screen and

by matching this to the echo peaks the attenuation suffered by the
ultrasound in the sample is obtained in db per nsec from calibration
curves. A calibrated delay generator allows measurement of the time

separation of the echoes to an accuracy of ¥ 0.01 usecs.

3.3 Units of attenuation

For the purpose of definition of the units of attenuation of
the ultrasound in a material, it is assumed that the transducer

produces a plane stress wave.

ei(ut - kx)

o(x, t) = (3.1)

where - is the angular frequency and k is the propagation constant
such that k2v2 = QZ where v is the propagation velocity. This
wave will be attenuated if either the propagation constant and

velocity or the frequency is complex. On taking the former case

v andk are written as
(3.2)

k = k - ia (3.3)
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On substituting equation (3.3) into equation (3.1) the equation

of a plare attenuated wave is obtained as

a(x,t) = e—axei(“t - k1X) (3.4)

where a has the units of reciprocal distance. If, on the other

hand, the frequency is taken to be complex then

@ = w, - ia (3.5
and the resulting plane attenuated wave is

a(x,t) = coe_a"tei(mlt = kx) | (3.6)

where a, has the units of reciprocal time.
Since the attenuation is determined by the envelope of the

high frequency wave, one can use

a(x) = coe-ax (3.7)
to specify the attenuation a. If it is assumed that a is not a
function of x, then
1 d(x']) ' (3.8)

a = log s X DX
>~ e O(%5) 2771
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Because any ratio of two amplitudes such as c(x1) and o(xa)
must, in order to be expressed in decibels or in nepers, be

written respectively as,

20 1 o) db (2.9)
1) .
g10 o‘(xz) 33

1 (1) (3.10)

or oge d(xa) nepers 3.1

then a 1 20 log ) db/unitlength (3.11)

= en .
x2-x1 10 o(xz)

and a = ] 1 “0) /unitlength (3.12)

= T -log, pryen nepers/unitleng 3.
2 (*2)
Thus a(db/unitlength) = 8-686 a(nepers/unitlength)

Bpnergy loss can also be expressed in terms of the logarithmic
decrement 4 which is defined for a harﬁonically oscillating system
in free decay as A = W/2E, where W is the energy loss per cycle in
the specimen and E is the total vibrational energy stofed in the

specimen per cycle. It turns out that
A(nepers) = a(nepers/cm) A (cm) (3.13)

A dissipation factor "Q—1" is sometimes used and is defined as,

7 = ol (3.14)



- 32 -

and is thus related to the decrement by

-1
QR .A = T (3.1%)
The attenuation measurements made here using the pulse echo
equipment are taken in db/usec. These are then converted to db/cm
in order to include any velocity changes.

Finally, listed below are the unit conversions.

a(db/ps) = 8-686 X 10-6 v(cem/s) a(nepers/cm) (3.16)
a(db/ps) = a(db/cm).x 10-6 x v(em/s) (3.17)
a(db/ps) = 8‘686 x 10-6 x f(sec-1) x A(nepers) (3.18)

2.4  Quartz transducers as ultrasound generators and detectors

Appropriate stress waves can be produced from electrical
ascillations by using the piezoelectric effect. If a stress is
applied to a piezoelectric crystal, an electric moment is developed,
whose magnitude is proportional to the applied stress. This is
termed the direct piezoelectric effect: in the converse
piezoelectric effect a strain results from an applied electric
field. The polarisation component Pi is related to the stress
through

1 T %5k Ok (3.19)
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where the coefficients 4. .
ijk

a third rank tensor. A similar relation holds between the applied

are the piezoelectric moduli and form

field and strain in the converse effect; the coefficients are the
same as for the direct case. Only non-centrosymmetric materials

can be piezoelectric. Quartz (sioa), having a point group 32, is

a suitable material and has been employed here for both longitudinal
and shear wave transducers. When the symmetry properties of

quartz are taken into account all but 5 of the 18 piezocelectric
moduli are zero. Using the matrix notation (see 2.2,4) equation

(3.19) is written as

01 0'2 03 d’+ 0‘5 06
P1 d11 -d11 © d14 © ©
(3.20)
P2 0 0 0 0 d14 2d11
P 0 0] 0 0 0 0
3

Detailed consideration of equation (3.20) shows that no possible
condition of stressing can produce a polarisation along the Xz (z)
axis, that a disc cut perpendicular to the X, (x) axis will produce
a polarisation along the x, direction on being subjected to a
tensile or compressive stress in this direction and that a disc

cut perpendicular to the x, (y) axis, on being subjected to a shear
stress in the X, = x3 plane in the x3 direction, will produce a

polarisation in the X, direction.
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Thus to generate longitudinal stress waves the transducer
is cut from the quartz crystal so that the normal to the disc face
is the X, direction : this is termed an "X-cut" transducer
(see Figure 3.4). Similarly a transducer for generation of shear
stress waves is cut with the disc face normal along the %, direction
and is termed a 'Y-cut" transducer.

Because the piezoelectric moduli are tensor components, the
application of a field in one direction will produce, for example
in an X-cut transducer, strains in addition to that produced parallel
to the field. But in operation the transducer is excited at a
frequency equal to the thickness mechanical resonant frequency
and thus the response of the additional strains is small. When the
transducer is excited to its nth harmonic, its thickness is divided
into n equal parts with compressions and expansions taking place in
aajoining sections; if n is even, no net strain results, and so
in operation only the odd harmonics are used.

X-cut and Y-cut quartz transducers were obtained from
Quartz Crystal Co. Ltd. to have fundamental frequencies between

8 and 25 MHz. The faces were gold plated to act as electrodes

(see Figure 3.4)
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3.5 Preparation of samples for ultrasonic measurements

'Single crystal samples for ultrasonic measurements require
two flat and parallel faces cut perpendicular to the desired
crystallographic direction with the minimum of mechanical damage.

Crystal orientations were determined by the back reflection
Laue x-ray technique; the maxdmum misorientation of 0.5 degrees
from the desired direction was sufficiently small to introduce
negligible errors into the ultrasonic measurements (see (3.7,4) and
(2.6)).

Either a spark machine or a diamond wheel was used to cut
the samples, the choice of method being determined by the electrical
conductivity of the material to be cut.

The spark machine

A Metals Research spark machine type SMD was used. The
cutting action is produced by a rapid series of spark-discharges
between the tool and the work, both of which are immersed in a
kerosene bath. The sparks erode the work at a rate dependent on
the energy and frequency of the discharge. A sensitive servo
system is provided to eliminate the chance of mechanical damage due
to contact between the tool and the work.

The tool employed was either a rigid brass plate or a
continuocusly moving thin, tin coated copper wire. It was found
that the brass plate was adequate as a tool for cutting both

TiNi (Chapter 4 ) and arsenic (Chapter 7 ) but when used to
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cut the indium=thallium alloys (Chapter 5), which are relatively

soft materials, the tool began hunting when the cut was about

half completed, Sometimes the tool actually made mechanical

contact with the sample, which caused such deformation as to render
the sample useless for purposes of ultrasonic measurements.,

Therefore a wire cutter was used for preparation of the indium-
thallium samples with good results, After two cuts had been made,
the sample faces were spark planed to achieve an accurate parallelism
between them, The planing disc of the spark machine was first

used to plane a brass reference surface onto which one flat face

of the specimen was then fixed. After planing one face, the

sample was turned over and the other face planed, In this way
sample faces were prepared parallel to within 0.0002 cm at a separation
of 1 cm. Lightly etched spark planed surfaces needed no further
preparation: they were parallel to within the regquired tolerance
(see (3.7.2)) and the Laue spots on back reflection x-ray

photographs demonstrated the absence of significant mechanical damage.

The diamond wheel

Zirconia-yttria solid solutions (Chapter 6) were unsuitable
forspgrk machining and were therefore cut with a diamond wheel.
After being cut, sample faces were polished with diamond pastes

until they were sufficiently paralliel, -
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3,6 Transducer-specimen coupling

The character of the transducer-sample seal is of great
importance in the successful use of the pulse echo technique; the
following requirements are desirable:'

(a) the thickness of the seal should be uniform and a small
fraction of the ultrasound wavelength,

(b) any extraneous material or air bubbles must be excluded,

(c) the seal characteristics must not change over the
temperature range of the measurements.

A bonding agent which forms a good seal between the transducer
and one material may be ineffective in bonding the transducer to
another material, In the present work several bonding agents were
used and are detail below together with a description of the method
of making the bonds, The quality of the resulting bond was evidenced
by the exponential nature of the echo train (assuming wedge and

sidewall effects were absent (see (3.7))).

3,601 Silicone Fluids (250000 and 1000000 cs)

These were found to be suitable mainly below room temperature
and were used for bonding transducers to the zirconia-yttria solid
solutions (Chapter 6).

Before making a bond (with any agent) both the sample and the
transducer were carefully cleaned with acetone, A small drop of the
silicone fluid was placed on both the sample and the transducer and
spread out over the surfaces with a clean razor blade to form a thin,
even layer. The transducer was pressed onto the sample and wrung

down with a twisting motion to give a homogeneous, thin seal,
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3,6.2 Mannitol, Resorcinol, Benzophenone and phenyl salicylate

For the measurements above room temperature on TiNi
(Chapter 4) and the indium-thallium alloys (Chapter 5), the bonds
which retained their characteristics most successfully over the
required temperature range were found to be various organic materials:
mannitol (m.pt.16900), resorcinol (m.ptd10 °C), benzophenone
(m.pt. 48 oC), phenyl salicylate (m.pt. 44°%). Transducer bonds
using these materials were all made in a similar way. A small
amount of the particular bonding agent was placed on the surface of
the sample which was then warmed on a hot plate until the bonding
material melted. A transducer at the same temperature was floated
on this liquid and gradually pressed down onto the sample surface;
a small weight was then placed on the transducer and the sample

allowed to cool so that a solidified bond was formed.

3,6.3 Tensol Cement

Extreme difficulty was found in bonding transducers to
arsenic (Chapter 7). Many materials were tried including those
mentioned above. Tensol cement was eventually found to give
reasonable results but only at room temperature. To form the bond,
a thin layer of cement was spread over the sample and transducer '
faces with a razor blade. The transducer was then pressed onto
the sample with a slight twist motion and held there with finger

tight pressure until the cement became hard.
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3.7 Sources of error in the measurement of ultrasonic attenuation

When ultrasonic attenuation is measured by the pulse echo
method, there are, in addition to intrinsic material absorption
mechanisms, contributions due to diffraction of the sound beam, non-
parallelism of the sample faces, slight misorientation of the sample
in the case of single crystals and transducer coupling to the sample.

These will now be discussed in turn.

3.7 1 Diffraction loss

A vibrating transducer produces a radiation pattern of
mechanical waves travelling into the specimen. Energy is lost from
the cylindrical region defined by the area of the source and the
propagation direction because the transducer is finite in extent and
thus has an associated diffraction field. 1In the extreme case of a
small diameter tramsducer on a not much larger diameter sample the
beam divergence is such that parts of the beam reach the sidewalls
after a number of passages through the sample. Reflections then occur
in such a way that a part of this energy returns to the main beam and
interference effects results. These appear similar to the effects of
non-parallelism (discussed in (3.7.2)) of the sample faces shown in
Figure (3.5). If sidewall effects are absent, the apparent attenuation
caused by diffraction is only important at frequences of 10 MHz or
lower in materials with low intrinsic attenuation. The attenuation
due to diffraction has been estimated as 1 db per aa/l where a is
the transducer radious and Athe wavelength of the ultrasound (Granato

and Truell, 1956). This relation serves as a useful estimate of the

diffraction loss.



3.7.2 Losses due to non-parallelism of the sample

Because the transducer is a phase sensitive device and the
measured voltage is an integrated response of the transducer over
its area, phase variations that occur over its area lead to
interference effects. Thus effects which cause phase variations
to occur at the transducer are a source of error in the measurement
of attenuation.

In the pulse echo method a plane wave, after reflection
from a surface not quite parallel to the first will meet the
trangducer in such a way that the planes of constant phase will
not be parallel to the plane of the tramsducer; consequently the
different surface area elements of the transducer will detect
different phases of the wave. From an analysis of this source
of error Truell and Oates (1963) found that the locus of the
amplitude of the echo pattern is modulated by an envelope factor
to give the appearance shown in Figure (3.5). When the wedge effect
is small, as is the case for the parallelisms achieved here

(see 3.5) the apparent attenuation B due to this effect is
B =8.686 " £28°0° n /L v° dbowm ! (3.21)

where f is the sound frequency, a is the transducer radius, n is
the echo number, v is the sound velocity, L is the sample

thickness and @ is the wedge angle. The equation (3.21) may also
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be used to estimate the degree of parallelism in order to
measure the attenuation to some prescribed accuracy. For example,
in TiNi (see Figure (4,8))for accuracy of 5% in an attenuation
of 6 db/cm it is found on putting the relevant . .numerical values
into equation (3.21) that the wedge angle @ mist be less than
S x 10-4 radians for a frequency of 25 MHz. Tolerances of better
than 10—4 radians can be achieved by the spark planing technigue
used: this loss can be made negligible by careful sample
preparation.

An apparent loss process can result from mode conversion
which is the partial conversion of say a longitudinal mode to a
shear mode. For example, if the wave vector of a longitudinal
wave is incident at some angle « (£ 90°) to the boundary of the
medium this wave on reflection gives rise to a longitudinal wave
with wave vector at an angle a and a transverse wave with wave
vector at an angle B to the boundary. For normal incidence there
is no mode conversion. Thus lack of parallelism of the sample
faces in ultrasonic measurements causes apparent attenuation which
could be confused with intrinsic material absorption mechanisms.

Again, careful sample preparation renders this loss negligible.

2,7.3 Transducer coupling losses

Measurement of the losses arising from the transducer and
the transducer-specimen coupling were made by the method

described below.



- 42 -

On each of several samples of different lengths Li’
identical transducers are bonded. Then under the same conditions
the attenuation (Ki db/ps) is measured in each sample. The
measured attenuation (Kiti db) is then equal to the real
attenuation (ati db) plus any losses (c:::.L db) to the bond and
transducer. (ti is the time for the sound to make two transits

of the sample). Then using the equations

Ki ti = (ati + ai) db (3.22)
the intrinsic material attenuation is

o = (Ki ti -ai)/ti db/us (3.23)

and i = 1, n where n is the number of samples of different
lengths available. At least three samples are required to test
whe ther @, =&, = a3, as required. It is best to use as high a
frequency as possible in these measurements to avoid any
diffraction effects contributing.different amounts due to
dissimilarities in sample geometries.

The above procedure was followed in the analysis of the
attenuation measurements on TiNi (Chapter 4). The room temperature
attenuation was measured in three samples of different lengths but
having the same right circular cylindrical shape at an ultrasonic
frequency of15/¥Hz. Values of a, were : o, = 3.9 ; @, = 4.3
Gz = 4.5 db.
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3,7.4 Errors in the velocity measurements

There are three main sources of error associated with values
of velocities measured by the pulse-echo technique used here.
Firstly, measurement of the time separation of echoes using the
calibrated delay can only be done to about 1% accuracy. Secondly,
the transit distance, measured with a micrometer is accurate to
about Oe1%, In single crystals any misorientation from the desired
propagation direction will not of its own accord result in an
error in velocity measurement but the velocity measured does not
correspond to that in the desired direction. For an error in
the orientation of 0-50 the misorientation velocity error is
typically about 0¢03%. Waterman (1959) has discussed this point
extensively.

When the velocities are converted to elastic moduli, the

velocity errors are doubled and density errors are introduced,

3,8 Sample holder used in ultrasonic measurements

The sample holder, shown in Figure (3.6), is designed so
that electrical contact can be made with a transducer bonded to
the sample over the range of experimental conditions without
disturbing the bond character., The sample (A) is located on a
brass platform (B) which may be moved vertically by tightening

or slackening three springs (C); only two are shown in the



diagram. These springs are mounted concentric with three brass
columns (D) which pass freely through the sample platform (B).

A sensitive screw arrangement (E) allows a second platform

to move vertically and control the tightness of the springs

and hence the position of the sample platform (B). The sample is
thus gently raised until the transducer and the spring loaded
plunger (E), which terminates a coaxial line, make contact.

The dimensions of this plunger (F) are such that it covers the

gold plated centre region of the transducer (see Figure (3.4));

the reverse side of the transducer is earthed by contact between
the outer gold plated ring on the transducer and the sample holder
(see Figure (3.6)); a conducting path through the sample to the
gold plated reverse side of the transducer is thus completed.

(In the case of non-conducting samples a highly conducting silver
paint can be used to provide this conducting path). In practice
sample holders of this design were satisfactory for the temperature
range (-196°C to 150°C) of the ultrasonic measurements. The sample
holder illustrated in Figure (3.6) is the one which was used for
measurements above room temperature in the oil bath (see 3.8).

For measurements between room temperature and liquid nitrogen
temperatures a sample holder built to the same design but with
smaller dimensions was used; the size was dictated by the cryostat

bore (see 3.9.2).
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3,9,1 Oil bath for high temperature ultrasonic measurements

For ultrasonic measurements above room temperature samples
were immersed in a modified Grant Instrument oil bath type SB 1
(Figure (3.7))e A main heater (maximum power 1.5 kw), supplied
from the mains through a voltage stabiliser and a variac, allowed
the bath temperature to be set roughly. A subsidiary heater (60 watt
electric light bulb) was switched in and out in response to a signal
from a Jumbo-Shandon adjustable contact thermometer located in the
oil bath, When well stirred this oil bath could be maintained to

within t 001°C of the desired temperature over long periods,

36942 Cryostat for measurements below room temperature

The cryostat design allowed stabilisation of the sample
temperature at any temperature between 300°K and 77°K. This
cryostat is the one designed and built by Dr., 0., Oktu and used by him
for galvanomagnetic measurements and is detailed in his Ph,D. thesis
(Durham University 1967). The essentials of the method of
temperature control are as follows: the space between an inner and
outer vessel is evacuated; the outer vessel is surrounded by a
dewar of liquid nitrogen; the sample in the sample holder (as in
Figure (3.6) but of smaller dimensions) is placed inside the inner
vessel which contains a refrigerant liguid; the temperature of the
sample is stabilised by controlling the air pressure between the two
vessels and if necessary using aheater which is wound on the outside

of the inner vessel.
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CHAPTER 4

An ultrasonic study of the

martensitic transition in TiNi
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4,1 Introduction

The direct connection which exists between the velocity of
elastic waves and the binding energy of a solid is of great value
in the study of solid state phase transformations, The
instabilities which are responsible for the onset of phase changes
manifest themselves as anomalous variations in both the velocity
and the attenuation of uwltrasonic waves; dinsight into the
transformation mechanisms is provided by ultrasonic measurements.

The main objective of the work presented in this chapter has
been to measure the ultrasonic wave propagation characteristics in
the vicinity of the martensitic phase transition in nitinol (TiNi),
This transition, which occurs in the vicinity of 60°C is now
recognised as the archetype of the shape memory effect (de Lange
and Zijderveld, 1968) and is thus of special interest. Because of
the intimate relation between transition mechanisms and crystal
lattice behaviour, data complementing the ultrasonic results was
provided by measurements of the thermal expansion and thermal
conductivity in the transition region,

Before the present work is dealt with, a brief description of
martensitic transitions in general is presented and is followed by an
account of the pertinent work on TiNi previously reported.

Section (4.2) deals with the present experimental work and
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section (4,3) deals with the differences between the elastic
properties of the two phases away from the transition region while
section (4.4) discusses the anelastic effects in preparation for

the discussion of the transition region in section (4.5).

4,1.,1 Martensitic transitions

The name martensite was originally used to describe the
plate-like appearance of the product of certain phase changes in
steels, HNow the term martensite refers to the product of phase
transitions which exhibit certain characteristics and are termed
martensitic tramsitions, The following features are often observed
in martensitic transitions (see Barrett (1966) and Pretty (1970)

for further discussions),

(a) The transformation only proceeds whilst the temperature
is falling and is thus termed athermal, It takes place over a
characteristic range of temperature beginning at Ms and
continuing until at Mf the parent phase is entirely converted or
the reaction becomes self stopping. 1In general the martensite is

surrounded by untransformed material and the constraints imposed

on it produces various shapes of platelets,

(b) The individual atoms execute well defined and correlated

movements which are similar to those which occur during mechanical
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twinning, the movements being somewhat less than one interatomic
distance, In a martensitic transformation a different crystal
structure results from these atomic movements, Each martensite
plate is a single crystal whose lattice orientation is strictly

determined by the lattice orientation of the parent phase,

(c) No diffusion of atoms is required in a martensitic
transition as evidenced by the impossibility of retaining the
parent phase by quenching, An important consequence of such a
diffusionless transition is that the martensite has exactly the

same composition as the parent phase,

(d) The metallographic appearance of the martensite is as
upheavals or tiltings of the surface which manifests the

macroscopic strains accompanying the transition.

4,1,2 The TiNi martensitic transition

At elevated temperatures the structure of the intermetallic
o]
compound TiNi is B2 (CsCl) with a lattice spacing of 3+00A. Cn
cooling, the material undergoes a diffusionless transition to two

slightly different but distinct base centred monoclinic martensites

o (o) o ' o

(aom = 5.194, bom = L.964, com = 4254, Y° = 99°%; aom = 5¢194,
! o ' o ' .

by = 5524, cy = 4e25A, Y' = 116°; where m and m' refer to

two martensites) (Marcinkowski, Sastri and Koskimaki 1968).
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If atom types are not considered, the martensite lattices have
distorted hexagonal structures, The transition is accomplished
by a simple shear on the (112) planes of the original B2 structure.
When equal amounts of the two martensites are present there is no
net shear strain, It is athermal, the transformation taking
place over a temperature range which is extremely composition
sensitive, and is not usually complete at room temperature.
Further transformation can be induced by plastic deformation.

If, after such plastic deformation, the sample temperature is raised
above the transition point, the original shape is regained because
the reverse transformation annihilates the deformation (deLange
and Zijderveld 1968). This phenomenon has been termed the

shape memory effect and has engineering potential in stored energy
devices., Because of the interesting nature of the shape memory
effect the hypothesis put forward by deLange and Zijderveld will
be described briefly. Since a definite crystallographic
relationship exists between the parent phase and the martensite, the
number of possible variants of the martensite is determined both
by this orientation relationship and the symmetries of the two
phases, Martensite formed by thermal transformation is formed
throughout the sample randomly distributed over the possible
directions dictated by the above considerations., A limitation on

the possibilities is introduced, if the tramsformation occurs by
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mechanical deformation; only those orientations will be formed
that contribute to a release of applied stress by change of

lattice parameter. The texture induced by tensile stress should
be different from that induced by compressive stress; this was
observed by delange and Zijderveld, who then proposed that:

the oriented crystals of martensite formed by deformation transform
on heating to the original crystal structure and the latter
transformation causes a deformation which annihilates the former
mechanical deformation,

Associated with the transition are many anomalous property
changes. An extensive investigation of such changes in the
electrical resistance, Hall effect, magnetic susceptibility and
differential thermal analysis has been made (Wang, deSavage and
Buehler 1968). The elastic and anelastic properties of TiNi have
been looked at in the kilocycle frequency range (Wasilewski 1965,
Spinner and Rozner 1966) and demonstrate a large damping capacity
below the transition, But the sound velocity at room temperature
calculated by Spinner and Rozner from measurements of Young's
modulus and Poisson's ratio (3.8 x 105 cm.sec-1) is in complete
disagreement with the then only direct measurement of sound velocity'
(5425 x 105 cm.sec-1) reported by Bradley (1965); prior to the
present measurements, those of Bradley of the longitudinal sound

velocity at SMHz were the only ultrasonic data available on TiNi.
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Two kinds of information have resulted from this ultrasonic
wave propagation study; first comparison between the elastic
behaviour on either side of the transition has lead to an
understanding of the basic energy difference between the two
phaées; second, the data in the near vicinity of the transition
has been found to be consistent with the hypothesis that phonon

mode softening takes place,

4,2 Experimental

Samples of an arc cast TiNi alloy with a composition close to
50 at. % Ni were kindly supplied by Dr. B.F. deSavage (U.S. Naval
Ordnance Laboratories); since the majority of the reported work on
TiNi has been carried out at these laboratories, correllation of
the results obtained here with other studies is readily made.
The transition temperature is extremely composition sensitive
(Figure (4.1)) near 50 at. % Ni, and that of the samples used here
is 59°C which indicates a nickel content of 50.830.1 at. %.
(The "transition temperature" in TiNi referred to throughéut this
work is identified with the temperature of the maximum in the

ultrasonic attenuation in Figure (4.8)).
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4,2.1 Grain size determination

The size and shape of grains in polycrystalline materials are
important factors in ultrasonic scattering. Therefore these
parameters were evaluated in the TiNi samples actually used in the
ultrasonic experiments, Usually etches are used to reveal these
grains. An etch (HF, HN‘O3 and HZO) given by Buehler and Wiley
(1962) for TiNi was tried on carefully polished surfaces but without
success, But microscopic examination of spark planed but otherwise
untreated surfaces showed up the grain clearly, plausibly. because
of preferential erosion by the spark planer at the grain boundaries.
Fhotographs of grains revealed in this way are shown in Figure (4.2)
and are seen to be on the whole equiaxed, This latter point is
important because an analysis of the ultrasonic attenuation due to
Rayleigh scattering (see (4.4)) is based on equiaxed grains,
Papadakis (1968) has shown how an average grain size may be obtained
from photographs such as Figure (4.2). A grain volume T, which

is the effective scattering volume of importance in ultrasonic work is

T = 1.0 & (%.1)

95
where d95 is the diameter of an image on the photograph (Figure
(4,2)) in the 95th percentile., The largest 5% of images cover
about 25% of the area of the photograph, so it is sufficient to

block off the largest images until 25% of the area is covered and to
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take the diameter of the next largest image as d The value

95°

of d95 obtained in this way from several photographs of various

parts of the surface of the TiNi samples.was 2614 microns.

L,2,2 TUltrasonic velocity and attenuation measurements in TiNi

Ultrasonic samples were cut between Oe4 cm and 1 cm in length
with opposite faces spark planed flat and parallel to within
©-0001 inches., The X-cut quartz transducers were successfully
bonded to the sample at all temperatures in the range 100°%C to
-196°C with mannitol (see (3.6.2)). Bond quality for Y-cut
transducers deteriorated in the vicinity of the transition
temperature. This difficulty was compounded by the high shear wave
attenuation (see Figure (4.8)), thus subjecting measurements of
shear wave velocities near the transition to considerably larger
errors (33%) than those for the longitudinal wave velocities
(*1%; see (3.7.5))e Improved bond quality for shear wave
injection was achieved by using benzophenone (see (3.6.2)) below
the transition.

The importance of the thermal history on the physical
properties of TiNi has been stressed (Wang et al., 1968).
Preliminary experiments were carried out which showed that thermal
cycling within the limits of 50°C either side of the transition
greatly affects the ultrasonic propagation characteristics of the

sample: successive sets of results differed by amounts greater
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than the errors associated with the measurement. A twenty hour
650°C anneal followed by a furnace cool was used to remove effects
of prior work (deSavage, private communication). Then to ensure
an identical thermal history for each set of measurements, samples
were always cycled completely between 200°C and -19600. Once
heating or cooling commenced the sense of the temperature changes
was not altered, This procedure gave reproducible results,
Because the transition is athermal, the measurements were always
made during either continuous slow heating or cooling in the oil
bath (see (3.9.1))s Most of the measurements were made during
slow cooling (OoOSOC per minute). The temperature (measured with
precalibrated copper/constantan thermocouples) was effectively
constant (fO-OZOC) for the time taken over a reading.

In the absence of preferred orientation, polycrystalline
samples are elastically isotropic, That this was so for the TiNi
samples used here was substantiated by the lack of dependence of
the sound velocities on the wave direction and polarisation;
longitudinal velocities parallel to and perpendicular to the axis
of the rod shaped samples were the same within the experimental
error at room temperature; shear wave velocities were independent
of both the plane of the particle displacement and propagation

direction, However, if an isotropic material is subjected to
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uniaxial compression, elastic isotropy is removed, Throughout
the temperature range studied the longitudinal wave velocity showed
no dispersion between 10MHz and 25MHz to within the experimental
accuracy of the transit time measurement. Measurements of wave
velocities under conditions of uniaxial compression can lead to
knowledge of the three third order elastic constants which describe
the non-linear elasticity of an isotropic body. In TiNi, a
stress of 108 dynes cm'."2 was applied perpendicular to the velocity
propagation direction; mno resultant change in velocity could be
observed,

The elastic moduli characteristic of an elastically isotropic
solid (see (2.5.1)) are related to the sound velocities (Vi and Vé)

by the equations

K = (% - 4oV3)/3 (4a2)
p o= oV (4.3)
E = V30V - holg)/(aVy - oV3) (1)
g = O-5(pV§ - 2pV§)/(pr - pvg) (4.5)

where K is the bulk modulus, p is the shear modulus, E is Young's
modulus, 0 is Poisson's ratio (defined as the ratio between the
lateral contraction and the longitudinal extension of the specimen,
the lateral surfaces being free). p is the density which was

obtained as 6439 gms. cmy” by Archimedes method, The measured
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velocities in TiNi, converted to the elastic moduli using equations
(4.2) to (4,5) are shown in Figures (4.3) to (4.,7) as a function of
temperature, At -196°C the longitudinal and shear elastic

2 and Q0«39 x 1012 dynes cm? respectively.

stiffnesses are 1+90 x 101
Although the linerea thermal expansion coefficient passes through a
large maximum at the transition (see (4.2.,3) and Figure (4.11)),
thé maximum apparent change in the velocity which results from
neglecting the change in length of the sample is less than 0+5%,
well within the uncertainty in the transit time measurements:
no corrections need be made.

The ultrasonic attenuation in TiNi is shown in Figure (4.8)
as a function of temperature in the frequency range 10MHz to 25MHz.
The main errors in these attenuation measurements arise from
diffraction effects (see (3.7.1)) and transducer coupling losses
(see (3.7.3)) and constitute an apparent background damping upon
which intrinsic material effects are superimposed. The diffraction
loss has been shown theoretically to be 1 db per a%/A (see (3.7.1))
and experimentally verified for the system used here (Alper 1969)
and is readily substracted; coupling losses, estimated by the
method described in (3.7.3) were found to be about 4.2 db (knowledge

of sample length and sound velocity allow the coupling losses to

be substracted from the measured attenuation).
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L,2.3 Thermal expansion of TiNi

The thermal expansion of TiNi was measured as a function of
temperature using a dilatometer technique (Figure (4.9)) with a dial
gauge reading to 2 x 10-5 inches., The arrangement shown in Figure
(k.9) compensates for any expansion in the quartz rod (A) by an
equal movement of the dial gauge due to expansion of the quartz
tube (B)., Measurements were taken  during either slow heating or
cooling in the oil bath (see (3.9.1)). The same thermal cycling
procedure, described in (4.2.2), was followed. The thermal
expansion is shown in Figure (4.10); the usual displacement of the
transition to a higher temperature during heating from that
occurring during cooling is well demonstrated, It is also evident
that the initial room temperature length is not the same when the
sample is cooled to room temperature from temperatures above the
transition: the transition has not gone to completion at room
temperature but requires further cooling, The reference length
used for calculating the linear thermal expansion coefficient was
taken to be that measured by a micrometer at room temperature:
errors introduced into the thermal expansion coefficient by the
changing value of the reference lengths were negligible in comparison
with other errors: measurement of length changes were accurate to

5

*2 x 1077 inches and the actual length was measured to a T0.¢1%

accuracy.
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An arrangement was provided (see Figure (4.9)) for the
simultaneous measurement of thermal expansion and ultrasonic
attenuation to confirm that the attenuation and thermal expansion

coefficient maxima occur at the same temperature.

L,2,3,1 Discussion of the thermal expansion results

The thermal expansion coefficient (Figure (4.11)) exhibits a
pronounced maximum at the transition temperature in TiNi which
indicates that the lattice vibrations undergo drastic changes.
Because the major contribution to the thermal expansion of solids
arises from the anharmonicity of the lattice vibrations, the large
change in the thermal expansion in the vicinity of the ftransition
is a manifestation of the presence of a lattice instability.

The Gruneisen parameter Y (see (7.5.1) for a definition) is
important in the analysis of ultrasonic attenutation data and is
available from the thermal expansion coefficient (a) and bulk

modulus (K):

\N
B

(4.6)

=
n
|

p

where CP‘ is the total lattice constant pressure specific heat if

* The specific heat of TiNi has been found (Berman et al. 1967) to
exhibit a sharp peak at the transition temperature which has been
(Wang et al. 1968) attributed entirely to the changes in the free
carrier density. The background specific heat upon which the peak
is superimposed has a value of 29 x 107 ergs degT1 cme” which is
close to the Dulong and Petit value of 2.8 x 107 ergs deg?1 cms3,
A1l values of the Gruneisen parameter quoted here and in (4.5) are
calculated on the basis of a constant value of lattice specific heat
1 3

equal to 2.9 x 107 ergs deg. cm.”.
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the adiabatic bulk modulus is used (see (2.3.1)).

The anomalous behaviour of the thermal expansion (Figure (4.11))
and bulk modulus (Figure (4.5)) is reflected in the Gruneisen parameter
shown in Figure (4.12). The relevance of the rapid changes in the
Gruneisen parameter to those in the ultrasonic attenuation (Figure
(4.8)) and velocity (Figure (4.3)) is discussed later (see (4.5)).

For body centred cubic metals and alloys it has been found
(Sirdeshmukh 1967) that the product aV where V is the molar volume
is inversely proportional to the bulk modulus. TiNi has such a
cubic structure above the transition and fits well into this scheme

as shown in Figure (4.13).

L,2,4 Thermal conductivity measurements in TiNi

The method adopted for thermal conductivity measurements was that
of measuring the temperature gradient developed by a known gquantity
of heat passing along a bar of the material,

The sample holder used for the thermal conductivity
measurements is shown in Figure (4.14). The TiNi sample (see
Figure (4.14) for details of size) was cemented into slots in the
heater block and heat sink using a silver dispersion (Silverdag,
Acheson Colloids Ltd.) in order to obtain good thermal contacts.
The two copper/constantan thermocouples for measuring the temperature

gradient along the sample were held tightly in place against the
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sample by attaching them to lengths of small diameter enamelled
copper wire wound once round the sample, Sample dimensions and
the distance between the two thermocouple junctions were measured
with a travelling microscope, The arrangement of the thermocouples
allowed both the actual isotherms at the points of contact with the
sample and also the temperature difference between these isotherms
to be measured (see Figure (4.14)). The heater (~ 2 ohms) used to
develop the temperature gradient was made by coiling a length of
refrasil covered Kanthal wire and cementing into the cavity provided
in the heater block., The potential and current leads to the heater
were thermally anchored to the heat sink, An accummulator supplied
the heater current through a variable series resistance; both the
heater current and the voltage across the heater were measured
potentiometrically as were all thermocouple voltages.

Measurements were taken with the sample holder in an evacuated

5

enclosure (about 10f torr)., All leads in and out of the vacuum
chamber were continuous; they were passed through a neoprene seal

(see Figure (4.14)).

4,2.4.,1 EBrrors in the measurement of thermal conductivity

The errors in the measurement of the temperature gradients

developed along the sample and the uncertainty in the knowledge of
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the heat flow and their effect on the measurement of the thermal
conductivity will now be discussed in turn.

In the temperature range of the measurements a temperature
gradient of 1% along the sample produces a difference in the output
of the thermocouples AB and BC (see Figure (L4.14)) of 3%uv. Stray
voltages of the order of a few microveolts are easily generated,
for examnle by a temperature variation along a strained thermocouple
wire, But with the arrangement of thermocouples used here, the
temperature gradient may also be read directly using terminals D
and E (Figure (4.14)). Throughout the experiment the disagreement
between the two different measurements of temperature gradient was
never greater than 3%. When the errors associated with the room
temperature measuremént and temperature variation of the sample
dimensions are included, then only changes greater than 4% in the
thermal conductivity may be detected with confidence,

Not all the power supplied to the heater is respomnsible for the
observed temperature gradient: heat losses from the heater block

in addition to that lost to the sample, arise in the following ways:

(a) The residual pressure in the evacuated enclosure was
about 5 x 10-# torr; heat losses due to gaseous conduction are
always to be expedted and can be estimated from the expression
(White 1959)

Q = BP(T2 - T1)A (4.7)
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where B is é constant for the residual gas and for air is 0.016,
P is the residual pressure, T2 is the temperature of the heater

block and T, is that of the enclosure walls and A (= 146 cm2) is
the surface area of the heater block. For a temperature difference
T,-T, = 65°K the heat loss is only 8 x ‘IO'-I+ watts: gaseous
conduction losses were thus negligible,

(b) Thermal conduction along the current and potential leads
is another source of heat loss and is easily calculated when the

heater block and heat sink temperatures are known. Losses

occurring in this way are shown in Figure (4.,15).

(¢) By far the greatest source of heat loss is by radiation;

this may be estimated roughly from (White 1959)

Q = oA(Tg - Tf;)e (4.8)

where ¢ is Stefan's constant, € is the emissivity of the heater
block surface and'is expected to be about 0.9 (€ for tarnished brass
is approximately unity). But because of the importance of these
radiation losses, they were experimentally determined as follows,
When the sample holder without the sample in place is in thermal
equilibrium, the heat supplied to the heater block to maintain
equilibrium is equal to the total heat losses from the heater block,

After the calculated loss by thermal conduction along the leads, which
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is greater than when the sample is in place, have been subtracted,
the remainder is that lost by radiation from the heater block,

Details are available in Figure (4.15).

L,2,4.2 Results and discussion of thermal conductivity of TiNi

The temperature dependence of the thermal conductivity of TiNi,
calculated from the data in Figure (4.15) is shown in Figure (4.16).
A distinct change is evident at the transition. The only other
thermal conductivity data available is that reported by Goff (1964)
which extends from about 4°K to room temperature and thus does not
include the transition region, the main concern here, The room
temperature value obtained by Goff, included in Figure (4.16), is
in reasonable agreement with the present results,

In general, the thermal conductivity k is the sum of lattice kL
and electronic ke components, The latter is related to the
electrical resistivity ¢ by the Lorentz number L (= kep/T) which
has the Sommerfeld value of 244 x ‘IO"8 watts, In the vicinity
of a structural change the thermal conductivity might be expected
to show changes due to either the lattice or electronic component.

A case in point where the lattice contribution is affected is an
anomalous dip in the thermal conductivity of ferro electric
crystals (Suemune 1967; Inone 1968) at their Curie temperatures.

In the present case, a calculation of the Lorentz number (see
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Figure (4.16)) using the electrical resistivity data of Wang et al.
(1968) and the measured total thermal conductivity, shows that the
lattice component is not negligible in comparison with the
electronic cocmponent. In fact by assuming the Sommerfeld value
for L, most (65%) of the change in the thermal conductivity in the
vicinity of the transition is attributable to that in the lattice

component,

L,3 Discussion of the ultrasonic velocity results in the two

phases away from the transition region

It has been suggested (Wang et al. 1968) that the instabilities
associated with the transition are largely electronic in origin,
and that the anomalous specific heat (see L4.2.3.1) can be accounted
for by carrier density changes. A two-band model has been put
forward for the high temperature CsCl phase (Allgaier 1967); in
a reduced zone écheme the Fermi surface is essentially a hole
octahedron (the s band) located near the zone corners and an
electron jack at the zone centre, In the high temperature phase
both the number of holes and the electrical resistance are larger
than in the low temperature phase (Wang, deSavage and Buehler 1968),
results considered by Wang, deSavage and Buehler on the basis of
a 'conduction' to 'covalent' electronic transformation, However,

the electrical behaviour on either side of the transition can be
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interpreted as follows by recourse to the usual features exhibited
by transition metals and their alloys (see Figure (4.17)). Above
the transition the Fermi level location is such that the octahedral
pockets of the Fermi surface contain a large number cf holes and
the overlapping d band a smaller number of heavy holes, Holes in
the broad s band carry the current and vacant sites in the narrow,
low mobility d band result in high s-d scattering probability,
which reduces the relaxation time for carriers in the s band: the
carrier Hall mobility is only 0«6 cm2 volt—1 sec-1, so the resistance
in this phase is high, Below the transition the Fermi level is
above the d band edge, so that the d band is full, and the reduced

number of carriers in the s band are more mobile (pH = 37 cm2

1 sec-1) with longer lifetimes thus enhancing the conductivity,

although the free carrier density (035 x 1023

this phase than in the other (156 x 10%% cm"3)

volt™
cm2) is lower in
The large changes in the number of free carriers will be
reflected in the binding forces and thus in the elastic properties
(see 1.1). The temperature variations of the elasti¢ moduli
(see Figures (4.3) and (4.L4)) exhibit both pronounced changes at
the transition point and the considerable differences between the
elastic properties of the two phases of TiNi. The total energy of

a system, the second derivative of which with respect to strains
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gives the elastic constants, may be expressed as the sum of terms
which can be calculated separately. These include the Fermi
energy, the energy of the lowest electron state and exchange and
correlation terms (see 1.1). A reasonable hypothesis is that the
difference between the total energy of the two phases in TiNi can
be attributed largely to the change in the Fermi energy. The;
elastic constant data attest to this, The contributions to the
bulk modulus due to the Fermi energy alone is given by (Jones 1949):

1r daﬁF

= -z (4.9)
-

where r is the radius of the atomic sphere defined so that (1+/3)nr3
equgls -, Assuming a free-electron model, that is that the
s-band hole octahedra are spheres, the Fermi energy EF is given by,

) 2,

(—-) (4.10)

2 3y
1Y

EF =

I

where n is the number of free carriers per atom, The radius of
the atomic sphere is found from the unit cell dimensions to be
effectively the same above and below (1-47742) the transition,
Differentiation of the Fermi energy twice with respect to r
gives the bulk modulus f;om (4,9)s Therefore, the change in the

bulk modulus between the two phases due to the change in the volume
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of the Fermi sphere is:

2 2/3 2/3 2/3
3nh 9 - n -1
1 2
K, = —(—5 —_— (4.11)
20m <#n2 ) ( r5 )

where 1 and 2 refer to the high and low temperature phases
respectively, From Hall effect measurements (Wang et al. 1968)
the number of free carriers per atom in the high and low temperature
phases is found to be n, = 2¢11 and n, = 0«47 respectively, These
give a value of AKF equal to 3+16 x 1011 dynes cm:2 which compares
with the experimental value of 23 x 101 dynes cns? (see Figure
(4.5))s Thus a most important contribution to the change in

those binding forces responsible for resistance to bulk deformation
comes directly from the change in the free carrier concentrationm,
Further, this suggests that the magnitudes of the binding energy
contributions arising from the energy of the lowest electron state
and the exchange and correlation energies are not very different

on either side of the transition., The calculated contributions KF
from the Fermi energy to the total bulk modulus. K are about 30% of
the experimental value above the transition and only 14% below the
transition (see Table (4.1)). Thus while the total bulk modulus
accrues from the large contributions other than that due to the

Fermi energy, the difference in the bulk modulus between the two

phases can be largely accounted for by the free carrier component,
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TABLE (k4.1)
T> Tc T<C Tc
o o
Radius of atomic sphere 1e4772 A 14774 A
. o3 o
Atomic volume 1350 A 13+51 A
Number of free carriers per cm3 1056.‘10‘23 ('>o311-8.1023
Number of free carriers per atom 211 Oe47
Number of atoms per cm3 007#.10‘23 0-’74.10‘23

(a) Parameters for TiNi above and below the transition

temperature T o

K, T Tc measured 156
Kgs T> T, calculated k.99
K, T < T, measured 134
KF’ T< 'I.‘c calculated 183
AK measured 243
4K, calculated 3416

(b) Values of the measured and calculated bulk moduli K for the
two phases of TiNi, KF is the Fermi energy contribution.

(Units are 101 dynes cm-z)
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The main feature exhibited by the shear modulus shown in
Figure (L4.L4) is that the low temperature phase is the more
resilient against shears, This is demonstrated strikingly by
the difference between the Poisson ratios of the two phases away
from the transition region (see Figure (4.7)). The larger
Poisson's ratio is (the maximum possible value is 0.5), the less
stable the material is to shears. No contribution is made by
the Fermi energy to the shear modulus unless the Fermi surface is
in contact with, or intersects as it does in TiNi, the Brillouin
zone boundaries (see 1.1 ). For example, the stability of p~brass
with‘respect to shears across the (110) plane in the [110]
direction arises mainly from the change in the Fermi energy as a
result of shearing the Brillouin zone (Jones 1952). Similarly
in TiNi, since the number of holes is less in the low temperature
phase, the area of the Brillouin zone boundary which the hole
octahedron cuts is smaller than that in the high temperature phase,
thus giving an increase in the shear stability below the transition,
as demonstrated by the shear modulus and the Poisson ratio.

The difference in elastic properties of TiNi between the two
phases away from the transition point thus arises mainly from

changes in the free carrier concentration.
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4,4 Discussion of the background ultrasonic attenuation

The anomalous ultrasonic attenuwation effects in the vicinity
of the transition (see Figure (4.8)) are superimposed upon a
background attenuation composed of the apparent attenuations due to
diffraction and transducer coupling losses (see (4.2.2) and (3.7))
and the attenuation due to scattering in the polycrystalline
material., In such a material each grain is elastically anisotropic
and has it crystallographic axes misoriented with respect to those
of its neighbours, thus giving rise to elastic gradients which cause
an ultrasonic energy loss. In general the frequency dependence
of the attenuation due to this scattering varies between the fourth
and second power, depending upon whether the wavelength of the
ultrasound is greater or less than 2nD, where D is an average grain
 diameter (Papadakis 1968). In the samples used here the grains
were equiaxed and had an average diameter of 26}4 microns (see
(44241)). Thus Rayleigh (A > 2nD) scattering is expected. The
attenmation separates at 90°C into a constant term and one varying
as the fourth power of the frequency as shown in Figure (4.18).
For longitudinal waves propagating in an elastically isotropic,
polycrystalline material with single phase, equiaxed grains, the

' attenuation a due to Rayleigh scattering is given by (Papadakis 1968):

@ = TSfudB per cm, (4.12)
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Here f is the frequence and T is the effective grain volume (see

(4,2.1))e The scattering coefficient is:
s = Y3(8.686. 8:°/3750°V ) (2/v7 + 3/Vg) (4. 13)

Y is the anisotropy factor (011-012-2Gh4) and is estimated for
TiNi as (~=2¢3%0.5) x 101 dynes cm:2 and S as 8301350 db cmfh MHz-u.
These may be compared with those for nickel (Y = =147 x 1011 dynes

b MHZ-4; Papadakis 1968).

cms? and S = 896 db cmy
In this material shear wave velocity is sufficiently small to
carry the scattering losses out of the Rayleigh into the frequency
squared region, Above the transition (which was the only
temperature range in which the shear wave attenuation could be
measured) the ratio of the attenuation of the longitudinal wave due
to scattering to the measured attenuation of the shear wave corrected

for diffraction and coupling losses was found to be 75 x ‘IO"3 at

12MHz. This ratio may be calculated from (Papadakis 1968):

6
_ 1¢12 T f2 VS/

2 3
& DV \\;E_ i ;5—:>

S

[P

(b.14)

where D is the average grain diameter, This equation does not
contain the anisotropy factor which is the only unknown quantity
and the ratio turns out to be 7.8 x 10-3 in agreement with the

experimental value.



-72 -

Each grain continues to act as a scattering centre as the
transition proceeds, Depending on whether the grains become more
or less anisotropic below the transition, so the attenuation due to
Rayleigh scattering will either increase or decreasse, Below the
transition each grain will contain both untransformed material and
monoclinic martensite, the amount of the latter increasing the more
the sample is cooled, Papadakis (1968) suggests that if the ratio
of the anisotropy factor of the martensite to that of the high
temperature phase is greater than ~2 then the scattering will
increase, Unfortunately, knowledge of single crystal elastic
constants are required to calculate this ratio, But even so the
attenuation below the transition results from a more complicated
scattering procedure: the grains are ne linger single phase but
contain both untransformed material and martensite, the latter
being formed in a number of different orientations within each
original grain.

Awey from the transition region the ultrasonic attenuation can
thus be accounted for by scattering by the grains., But in addition
there are other mechanisms of absorption present which could become
more important as the transifion is approached. These include
the thermoelastic loss, Zener loss and losses due to interaction

with free carriers. These will now be discussed in turn.
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The thermoelastic loss results from temperature changes
which take place in the strained regions due to passage of a
longitudinal stress wave; heat flows from the hotter compressed

regions to the cooler extended regions., The thermoelastic loss

Gup is given by (Lucke 1956):
2.2
o, = —& Ll (4.15)
2T M 1wT
where AN 1+0 . a?TE
M (1-20)(1-0) Cp
and T = kL/vab
V.., is the Debye velocity, o is Poisson's ratio, E is Youngs

D
modulus and k the lattice compoment of the thermal conductivity.

The maximum thermoelastic loss occurs at the transition where both
0 and a have their maximum values. At this point the thermoelastic
attenuation is 030 db cms | at an ultrasonic frequency of 15MHz;
while this is a relatively large value for thermoelastic loss

(see Table (5.8)) it still makes a negligible contribution to the
total attenuation., Furthermore, the shear wave atltenuation also
undergoes a sharp rise as the transition is approached and shear
waves cannot suffer thermoelastic loss, Thus although the
thermoelastic loss is present, it is small in comparison with the

measured loss,
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Zener (1937) loss is due to heat flow between neighbouring
grains resulting from their different states of strain when the
material is deformed elastically, Zener has given a relation

for the freguency at which the resultant loss is a maximum,

£ = 31tk/CP52 (4.16)

max

vhere k is the thermal conductivity and D an average grain
diameter: for TiNi this frequency is about Q.1MHz. The Zener
loss is typically smaller than the thermoelastic loss and thus may
be neglected in TiNi. Even though the transition in TiNi involves
a large change in the free carrier density, the resultant changes

in the ultrasenic attenuation due to this are superimposed on a

6 1

background free carrier attenuation of the order of 10 = db cm,
(estimated from expression given by Mason (1955)) and may also be
neglected,

Finally, phonon viscosity losses will be present both away from
the transition where they are small in comparison with that due to
Rayleigh scattering and also in the vicinity of the transition

where they achieve dominance; this is the subject of the next

section,
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4,5 Discussion of the ultrasonic attenuation and velocity in

the vicinity of the transition

Vhile the considerable differences found between the elastic
moduli of the high temperature structure and the low temperature
~ phase were shown in (4.3) to accrue essentially from changes in
the free carrier density, this concept can provide no information
on the mechanism by which the transformation proceeds. From
consideration of the ultrasomic propagation characteristics it
seemed likely that marked changes in the lattice behaviour in TiNi
onset in the vicinity of the tramsition, This has been
substantiated by the thermal expansion behaviour (Figure (4.11))
further consideratior of which in conjunction with the ultrasonic
data now leads to some insight into the microscopic nature of the
transition, The pesk observed in the thermal expansion is
reflected in the Gruneisen parameter Y (= BaQ/Cp) plotted in
Figure (4.12). The marked peak in the Gruneisen parameter
strongly evidences a direct connection between the transition
mechanism and the lattice vibration spectrum. Somewhat similar
behaviour of the Gruneisen parameter has been observed in the
perovskites Sr'I‘i03 (Rewald 1970) and Kmo3 (Barrett 1969). The
ferroelectric transition in crystals of this type is known te be

associated with the lowering of the frequency of transverse optic
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(T0) phonon modes and a consequent incipient lattice instability
as the temperature approaches T, (Cochran (1961); Cowley (1965)).
In these circumstances the Gruneisen parsmeter rises since it
becomes approximately inversely proportional to the square of the
soft optic mode frequency (Barrett (1969)).

As the transition is approached in both TiNi and in the
displacive type ferroelectrics there is a large increase in
ultrasound absorption accompanied by pronounced decreases in the
ultrasonic wave velocities (Rehwald (1970); Cochran (1960, 1961);
Cowley (1965)). |

The large attenuation peak at Tc in TiNi has been shown to be
superimposed upon a background attenunation due to Rayleigh
scattering by the grains (see (4.4)) and an apparent attenuation
due to diffraction and transducer coupling losses (see (3.7)).
Cowley has explained the temperature dependence of the ultrasonic
attenuation and the elastic constants in Sr’I'iO3 in terms of an
accidental degeneracy in the TO and LA dispersion curves, The
large peak in the ultrasound attenuation and the step in the sound
velocity found in SrTiO3 as a function of temperatures can then be

explained quantitatively in terms of an Akhieser-type process

with a strongly temperature dependent Gruneisen parameter (Rehwald

(1970)).
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Here the hypothesis is put forward that the ultrasound wave
propagation behaviour in the vicinity of the martensitic phase
transformation in TiNi can also be explained by increased damping
due to Akhieser-type interactions with soft lattice modes near Tc’
In the Akhieser process strains produced by the propagating
ultrasonic wave modulate the thermal lattice mode frequencies and
thus the equilibrium phonon populations; a finite relaxation time
T is required to regain the equlibrium configuration; the actual
populations lag in phase behind the driving strain wave and there
is a net energy dissipation during each cycle. The detailed
treatment of the Akhieser effect by Woodruff and Ehrenreich (1961)
was modified by Barrett (1969) to obtain expressions for the
attenuation and velocity of ultrasound resulting from modulation
of soft phonon modes,

In Barrett's treatment all the low frequency phonon modes
are lumped togefher into a single "mode"™ characterised by a
specific heat Ca, and a Gruneisen comstant Ya’ a frequency Ma and
a relaxation time Ta' Similarly, a single "mode! denoted by
subscript b, is used to describe all the acoustic phonon meodes.
Near Tc the soft phonon mode contributes little to the total
specific heat (Ca+Cb). The ultrasound attenuation due to Akhieser—

type interaction with the soft mode is (Barrett (1969)):
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CaTzszT
2pv2(1+w272)

where v = Yafo, T is the absolute temperature, 7T is an effective

(%.17)

relaxation time, p is the density arnd Vo is the sound velocity
when Ya equals Yb' that is in the absence of soft mode damping,
The change in velocity AV(= VLV§) resulting from the anharmonic

contribution of the soft mode to the velocity is

2
-CaTY 1

(4.18)
2e Vb 1+w27

AV

and thus, the effective relaxation time 7 is found from

T = '—2- (4.19)

Thus the experimental results for the attenuation and wvelocity of
sound may be used to calculate the soft mode specific heat and

the effective relaxation time. The effect of the transition in
TiNi on the ultrasonic attenuation is found by subtracting off

the effect of the various background attenuation mechanisms from
the measured attenuation (see (4.4)); the contribution of the

soft mode to the velocity is more uncertain: the approach used has
been to estimate the deviation of the ultrasound velocity from the

straight line extrapolation of the velocity measured from -196°C to
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0°C up towards T,. Although the calculated values of C_ and T
shown in Figure (4.19) cannot be considered as exact due to this
uncertainty in AV, their order of magnitude and general behaviour
are certainly consistent with a phonon mode softening in the
vicinity of the transition. For the model used, 7 can be written
as (Ta+(Ca/Cb)Tb); close to the transition Ca is much less than Cy
and 7 is dominated by the relaxation time Ta due to ultrasound

interaction with the soft modes,

4,6 Conclusion

The martensitic transition in TiNi has been the subject of a
primarily ultrasonic investigation. It has been shown that the
difference in elastic properties between the two phases away from
the transition region arises mainly from changes in the free carrier
concentration, Further, the measured lattice properties of TiNi -
the ultrasonic wave attenuation and velocity, the thermal expansion
and Gruneisen parameter -~ attest to a marked alteration in lattice
behaviour in the vicinity of the martensitic phase transiticn.
Increased Akhieser-type damping by thermal vibrations can account
for the ultrasonic effects. The large value achieved by the
Gruneisen parameter is a characteristic expected in & material in
whigh a low lying soft phonon mode develops. However, the

hypothesis that this transition proceeds through a soft phonon mode
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mechanism is contentious, Ultrasonic, thermal and lattice
transport measurements cannot establish the model conclusively;
a neutron diffraction analysis of the phonon dispersion curves

would provide a further test.



Elastic properties in relation to the binding

and structure of indium-thallium alloys
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51 Introduction

During the progress of the work on TiNi it was decided to
extend the study of martensitic phase transitioms to include
that which occurs in the indjium-thallium system, alloys of which
may be prepared in single crystal form. These alloys transform
in a certain composition range (see Figure (5.1)) from a high
temperature face centred cubic (fcc) to a low temperature face
centred tetragonal (fct) structure. The present work in which
the characteristics of ultrasonic wave propagation in a number
of tetragonal and cubic alloys are measured complements previous
' studies (Novotny and Smith 1965) of the elastic properties of
some fcc indium=~thallium alloys.

A complete breakdown of the elastic wave propagation in
tetragonal (4/mmm) crystals is given in (5.2) which is then used
in (5.4) to discuss exéensively the elastic behaviour of a 10 at.%
thallium alloy and to compare it with pure indium, However,
tetragqnal alloys which have suffered the phase change comsist of
fine parallel bands of twins; this precludes measurement of all
the independent elastic moduli of samples of these compositions
(see Figure (5.1)), Nonetheless, an overall picture is provided
of the compositional dependence of some of the elastic moduli of

alloys from well below (pure indium) to well above (39 at.% thallium)
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the room temperature transition composition (22 at% thallium).
In addition to the elastic data large anomalies are observed in
the ultrasonic attenuation in the vicinity of the martensitic
transition,

Before the present work is dealt with, previous pertinent

studies of the indium-thallium system are reviewed.

5+1.1 Phase diagram of the indium-thallium system

The composition~temperature phase diagram at atmospheric
pressure of the indium-thallium system (Figure (5.1)) is a
composite of results reported by several workers (Valentiner 1940;
Lipson and Stokes 1941; Guttman 1950; Meyerhoff and Smith 1963;
Pollock and King 1968; Luo, Hegen and Merrian 1965; Stout and
Guttman 1952), ‘The region of interest here (the fcc te fct
transformation) is shown enlarged (Pollock and King 1968) in
Figure (5.1b). The apparent two phase region which is evident
below about 200°K has been discussed at length by Pollock and King
(1968); as the fcc to fct transformation proceeds by cooling some
plastic deformation must occur in the as yet untransformed fcc
matrix because of the stresses involved in maintaining the coherent
interface between martensite (fct) and austentite (fecc), At
transformation temperatures close to the melting point this plastic

deformation should recover continuously; but the growth of existing
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martensite in alloys with larger thallium content and thus lower
transformation temperatures may be inhibited by the plastic
deformation ahead of the interface: the temperature must be
lowered to provide an additionsl driving force before the
transformation can proceed by further growth, Thus it must be
emphasised that the boundary lines between the fec and fct
structures are not to be regarded as equilibrium boundaries; the
two phase region represents a metastable equilibrium between two
phases of the same composition under conditions of varying
temperature and pressure, that is the restraining effect of the
untransformed region on the transformed region, The two phases
have the same composition as a result of the diffusionless nature

of the transition,

5.1.,2 Crystallography of the cubic to tetragonal transformation

Visual observations of the cubic to tetragonal transition in
indiﬁm-thallium alloys have been reperted by several workers
(Bowles, Barrett and Guttman 1950; Burkart and Read 1953; Pollock
and King 1968)., VWhen a well annealed single crystal of the cubic
phase transforms by slow cooling, the low temperature tetragonal
phase consists of a banded twin aggregate formed by the passage of
a single plane interface which traverses the specimen from one end

to the other (Burkart and Read 1953). The plane of this interface
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which is the habit plane, has been shown to be approximately a
(110) plane of the cubic phase; anyone of the six different (110)
planes could form the interface, Transformation by the passage
of more than one interface can be observed if the specimen is bent,
mishandled or subjected to violent transformation upon heating.
The presence of twins in the tetragonal phase is a result of the
structural difference hetween the two phases: it is not possible
to have a coherent interface between two single crystals of these
phases without severe strain over appreciable distances from the
interface, However this misfit strain can be minimised if the
tetragonal phase is twinned so that the sign of the strain changes
from twin to twin, Bowles, Barrett and Guttman (1950) have
analysed the transition in terms of a double shear mechanism: the
observed (110) habit plane was taken as the plane of first shear;
a second shear on another (110) plane at 60° to the plane of first
shear was postulated; these two shears very nearly produce the
observed tetragonal structure. More recently Wechsler,'LieBerman
and Read (1953) have shown, by using the concept of zero average
interfacial strain between the two phases, that the shears actmnally
occur on irrational planes 0-#30 from the (110) planes.
Extrapolation of Novotny and Smith's (1965) elastic constant

data of fcc alloys towards the indium rich region indicates the
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TABLE (5.1)
Composition Temperature
Constant at % Tl. A B Range °K
28+13 00938%0.003 =0+35%0.18 277-300
30616 1.058%0.001 ~0e69+0. 04 273-330
o
bl 3515 1¢103}0.002 -0.78%0.05 204-300
3906 1+11820.001 -0+83%0.03 193-301
28413 0-0162%0.0002 | +0-043%0.016 274=299
30.16 0404101040001 | -0001130.006 | 234-299
%(011‘C12)
3515 00870100003 | =0.092%0.008 207-300
39.06 041394300003 | =0¢212%0.008| 209-269
28+13 Le172%0.005 -0e5510.12 206-298
30416 Le424%0.003 =11740.07 203-361
c
1 35415 Leyorto.ooh | =1.10%0.09 203-297
39.06 Le451%00 004 =1+25%0+10 198-347

Elastic moduli of fcc Indium=Thallium alloys (Novotny and Smith 1965):

C = A+10™ BT with C in units of 10'! dynes cm > and T in K.

At % |
thalli o] 10 1645 18 21 25
Densit -

/bm% 7428 7466 787 7487  7.97 8440

Density of indium-thallium alloys determined by Archimedes method.
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onset of instability of the fec structure near the fece-fct
transformation, The elastic constant (C11-C12)/2 reflects the
instability strongly, DBecause these results will be frequently
referred to in the present work, a summary of the values is

presented in Table (5.1).

5.2 Relations between elastic wave velocities and elastic

moduli in tetragonal crystals

Before the elastic wave velocities in tetragonal.crystals can
be used to determine the elastic moduli, it is essential to have
a full understanding of the advantages and disadvantages of wave
prépagation in certain crystal directions as well as the usual
elastic moduli - wave velocity relationships. Thus, in this section
the most suitable procedure for the measurement of the elastic
moduli of tetragonal crystals is developed.

Indium and its fct alloys with thallium exhibit 4/mmm symmetry
which place them in the T I Laue group., ‘The six independent
elastic stiffness moduli required to describe their elastic behaviour

ares

1 712 713

12 11 13

013 c13 c33 0 0 0 (5.1)
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TABLE (5.2)
Lropagation Polarisation ﬁ
direction | direction | Elastic constant equation = pV°
100 100 Cpq = pvf
100 010 Ceg = pvg
100 001 Cpy, = pV§ -
001 001 Cyz = pVi )
001 in x=-y plane chh = pvg
110 110 (C14#C1,#20cc)/2 = R
110 170 (CyqmCp0)/2 = pvg
110 001 Chp, = pvg
On 0, 100 ng(c%-c“})w% = pvg
Onn, ¢ %[L22+L33+{(L22+L33)2-4(L22L33 L23) %] = pviog
On,n, P+/2 %[L22+L33- {(1.22+L33 4(14221;33 23)} %J = ij}

Relations between the elastic wave velocities and elastic stiffness

constants for tetragonal (4/mmm) structures. (The angle ¢ is

explained in the text as are the n's and L's).
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The propagation and polarisation vectors of the sound waves are

available from solutions of equation (2.23):

O v2)301 + LoByp + LygRyz = 0
LigBoq + (Dpom VZ)Roa + LogRyz = 0 (5.2)
L13R01 + L23303 + (L33- V2)303 = 0

where for the crystal symmetry of interest here

2 2 2
Lia = BCyq + 805 + 2304,

L

12 n,0,(C 5 + Cgg)

L

2 2 2.
L22 n1066 + nac11 + nBCl_}l+
L23 = n2n3(c44 + 013)

2 2 2
L33 = 11,]C!,+l+ + n2044 + n3033

For practical reasons it is convenient to perform sound velocity
measurements in direction of high symmetry. Solutions of equation
(5.2) for the [100], [001] and [110] directions are collected in
Table (5.2). By substitution of these solutions in turn into
equation (5.2), the particle displacement vectors gssociated with
each mode can be determined; in each of these directions all

three modes are pure modes (Table (5.2)). TFurther, as a result of
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the symmetries exhibited along these directions, the energy flux
assoclated with the transverse modes is parallel to the propagation
direction (see (2.6)).

Examination of Table (5.2) shows that all the elastic moduli

with the exception of C,_ are available from velocity measurements

/ 15
in the pure directions [100], [001] and [110].
Inspection of equation (5.2) shows that 013 can be obtained

from velocity measurements in any direction which does not require
both n, and n, to be zero or n3 to be zero. The most convenient
directions which satisfy these requirements are those which lie in
the (170) plane at any angle to the [110] direction except 0° and
90° and those which lie in the (100) plane at any angle to the [010]
direction except 0° and 90°. All directions in the (170) plane

which might be used for determination of C_,_, are impure except for

13
one which is pure., Knowledge of all the elastic moduli is required
to calculate the direction cosines of this pure mode: Brugger (1965)

gives these as

(0, 5-20,,,~C )2
i 13 (5.3)

n1=n2= %
(2(C -2044 13) (C -2066-C1a)+2(0 -2chk 13) )

3
(2(C11'2044 C13) (011 2066'012))

and n3- (5.4)
(2(C, 1~2C)~C5)-(C =20 ~C, )+2(c33-2c44-c13)%)

In a cubic crystal this pure direction is the [111]. A

choice of the [111] direction for the tetragonal case could perhaps



be useful for a first approximate determination of 013. To obtain
the three wave velocities in an arbitary direction in the (110)
plane, the solutions of a cubic equation in pV2 are required.

For such a directiom (n =n %COSB, n3=s:.n9, wvhere 0 is the angle
the propagation direction makes with the [110] direction) the

determinental equation (2.23) becomes

p3V6-A.p2VI+ + BV +C = 0 (5.5)
where

A= 2L11 + L33

B =1L, + 2Ly4bsz" %‘Lia

© = [0y (gm0 (gl =213 )]

But since directions in the (110) plane are impure, it is impessible
to know in advance whether one predominately longitudinal and two
predominately transverse waves can be excited. Another unknown
factor is the behaviour of the energy flux vector.

However from an experimental viewpoint it is more profitable
to cogsider wave propagation in the (100) plane. All directions
from which 013 is available in this plane are quasi-pure except
one which is pure. Again knowledge of the elastic moduli is

required to determine this pure mode direction. The advantage of
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(100) plane propagation is that an arbitary quasi-pure direction
may be chosen for velocity measurements from which an initial
determination of the elastic constant set may be completed, Use
of this preliminary moduli set allows the pure mode direction to
be closely estimated. The velocities of the three possible

elastic waves in the [O, Ny n3] direction are obtained from (5.2)

as
pv2 = ng(css-c,m) + Cpy (5.6)

and
207 = Loty * (Lot ) Poi(i, L1202 (5.7)

Equation (5.6) gives the velocity of a pure transverse wave
polarised along the [100] direction and equation (5.7) the
velocities of the quasi-longitudinal (+ve sign) and quasi-
transverse (-ve sign). The particle displacement vector for the
quasi-longitudinal wave is obtained from substitution of equation

(5.,7) into equation (5,2) whence

Ro3 o (Laa-pvz) (5.8)
R L °
02 23

Thus ¢ (= tan-1 (ROB/ROZ)) is the angle the particle motion
direction makes with the [010] direction for the quasi-longitudinal

wave; that for the quasi-transverse is ¢+?/2. The pure mode
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occurs when

“T(a,) (5.9)

5.3 Experimental Procedure

The choice of alloy composition was influenced by the
existence of previous elastic constant measurements (Novotny and
Smith 1965) of cubic alloys of the indium-thallium system., To allow
the determination of all the elastic moduli of a tetragonal alloy,
the composition 10 at.% thallium was chosen because it is almost
as close to the phase boundary as the phase diagram allows without
the restricting effect of banded twins: this alloy never suffers
transformation with temperature. A direct comparison of its
elastic properties with those of indium is possible., A 25 at.%
thallium alloy was also grown and thus elastic moduli were obtained
close to the phase boundary in the cubic phase, Samples of other
compositions, namely 16+5, 18 and 21 at.,¥ thallium alloys were also
prepared, These particular alloys are twinned at room temperature

and velocity measurements had to be treated with caution,

5¢3e1 Crystal growth and sample preparation

The specimens were prepared from 99¢999% purity indium and
thallium by a modified Bridgman technique, iThe material, placed

inside an evacuated quartz growth tube, was lowered through a
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stationary temperature gradient produced in a vertical furmace,

The indium was weighed first and put immediately into the pre-
cleaned quartz growth tube (see Figure (5.3)) which was then
evacuated, Special precautions were needed with thallium which
oxidizes rapidly in air, The thallium was first weighed roughly
and then etched to remove the oxidized layer by successive washings
in dilute nitric acid and distilled water. Accurate weighing was
completed while the thallium was immersed in distilled water and
then the material put into the growth tube which was again
immediately evacuated., After the tube had been sealed the indium
and thallium were melted and thoroughly mixed, The furnace, shown
in Figure (5.2), has three windings whose resistance may be varied
to obtain the temperature gradient (Figure (5.3)) which experience
showed gave satisfactory crystal growth. The current through the
windings and thus the stability of the temperature gradient was
controlled by a solid state potentiometric device, The growth tube
was placed on top of a stainless steel rod and lowered through the
temperature gradient at a slow constant rate (0«7 mm per hour) by
an electric motor coupled to a gear system, The problem of
removing the crystal from the tube without damage was overcome most
satisfactorily by dissoclving the growth tube completely in

hydrofluoric acidj the boule was also attacked but only very slowly.



— e e e e e I e

—_—— e e~ s m T

Bt S

e

A
yd

7

bluas

q
}
3
]
{

!
!

N T S e R S (i
i Mlll l”rru -t llf l.lll./;tu.l\-uxl»t.v..,l..-i s s e ,*v,lvldv uL
el iAo (oo g S ipivbelll Hapisisbe et ¢ p= puniane poawndalingts il e —
i o T ~ S5 |
i \>. i
/ n |
\ Y < @ ,ﬁ
v b -~ -~ —id |
’ TN g g o |
i -1~ O u fin] i, i
K IS It = ) - <
L) g T —4 N 8 2 Lo
= s = = v 5
% = <= R P - 4
= 5 R R 3 ~< &
Y HAWA .Ilvu L) — .= b /O
D =D ~} .1y s =L Nn .

; ~
: /
—

.

~, .
- \ . N
- — b VJI.. DR UL R | [ u

™ . AN AN \ ,,,, / |
AN // / /

// /, |

rd

A
of

oouoooooooormiosl/OO

|
lo
lp
gO

<— - . ~N -

-~

:\ 2 fZ
e T «V A-l - ——— 3

5f ]

.ﬂl....l

%

u
7

. .
< ""z 2.

| —

/
PEOREDPL AN v

AHG{‘

The furnace used for growth of indium - thallium alloys,

guare (5.2

b



Temperatu.ve °C

doc ey

{60 “\\

120 | N

///

=
o
i

|

Distance in mm.

ity >3 42 56 70 84 g8
O 4i- 1 ¢ H ! 1 4 1 i J il i 1 |
; T — T [ L 1 1 L i i T T I
o 3 . 50 oc 120

1
i
o
Time in Houwrs

growth tube end temperature gradient used in the
growth of indium - thalliua alloys.



- 94 -

The samples were then lightly etched in dilute nitric acid and
washed in distilled water, There was no tendency for the crystals
to oxidise in air,

X~-ray back reflection Laue photography of the single crystal
samples and the twinned samples differed in that while the former
evidenced good crystal perfection the latter showed a break up of
the Laue spots. Figure (5.4a) shows a Laue photograph taken down
the fourfold axis, that is the [001] direction in the (tetragonal)
10 at.% thallium alloy which does not exhibit twinning. Al though
the Laue spots on photographs of twinned compositions (16+5, 18 and
21 at.% thallium) were split, the same Laue photographs were obtained
at different points along the samples indicating that the
transformation had ensued probably by passage of a single interface:
Figure (5.4b) is a Laue photograph of a twinned alloy.

The 4/mmm symmetry (see Figure (5.5)) of the tetragonal alloys
introduces the problem of distinguishing between the two twofold
symmetry axes which occur along the <1007 and along the <110
direction forms, This can be resolved by reference to the fact
that these tetragonal alloys are close to being cubic: the c/a
ratio for alloys from pure indium to the phase boundary (22 at.%
thallium at room temperature) varies from the small value of 1-08

to unity. As cubic crystals exhibit threefold rotational symmetry






Figure (5.5) Symmetry of (4/mmm) tetraganal crystals,
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in the <{111) direction forms, then in these nearly cubic alloys a
pseudo-threefold symmetry axis is readily distinguishable on X=-ray
Laue photographs in the (111) tetragonal direction forms. Thus
the procedure adopted was first to locate the fourfold symmetry
axis and the two different twofold symmetry axes: a rotation from
a twofold towards a fourfold axis passes through a pseudo-threefold
axis if that twofold axis was a [110] direction. The aligned

samples were cut out by the spark cutter (see (3.5) for details).

5.3.2 Elastic wave velocity measurements

The details of transducer-specimen coupling have been
described in (3.5) and the errors associated in general with
ultrasonic velocity measurements by the pulse echo method in (3.7.5).
Errors in velocity measurements peculiar to indium~thallium
specimens are detailed below, The sample holder used here has been
described in (3.8) as have the oil bath (3.9.1) for measurements
above room temperature and the cryostat (3.9.2) for those below room
temperature. |VWave velocity measurements in each alloy composition

will now be described in turn.

5¢3.201 Velocity measurements in indium-10 at.% thallium

All the elastic stiffness moduli of this tetragénal crystal

were measured. The equations relating the wave velocities to the
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six independent moduli have been developed in (5.2): Table (5.2)
gives the propagation and polarisation directions which were used.
Velocity measurements in the (100) plane are the most favourable

from a practical point of view for obtaining C After all the

13°
veiocities required, except those in the (100) plane, had been
measured an experimental extrapolation procedure was employed for

the accurate determination of the elastic moduli in general and

013 in particular: the three velocities in the direction

fo, cos14-5°, sin1h-5°] were measured, Then using the six elastic
moduli obtained, the direction in the (100) plane, which in

addition to the [010] and [001], is a pure direction was calculated
and found to be [0, cos50°, 5in50°]., A further three wave
velocities were measured in this direction with the advantage that
the energy flux associated with the longitudinal wave would be almost
parallel to the propagation direction (see (2.6) and (5.2)); even

if this initial determination of the pure mode direction was exact
the energy flux associated with the two pure transverse waves would
not coincide with the propagation direction, Thirteen velocities
(see Table (5.2)) were measured from room temperature to -170°¢.

The transducers were bonded successfully to the sample over this

range with silicone fluids (see (3.6.1))e The experimental

velocities obtained are given at selected temperatures in Table (5.3).
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TABLE (5.3) ‘
300k 246%k  218%  186°%k  149%k  10k°K
v, 2:40 243 2445 248 2+49 259
Vé 1423 126 129 132 135 139
Vs 0957 0966 0973 0984 04996 1.01
ke vy 2038 2441 2e44 2+ 47 249 2450
'§ - Vs 0¢953 04956 00962 04970 0.981 1.00
§ 'g Ve 2¢52 253 256 257  2+58  2.58
(5]
ia & v, 0e453  0e493 0533 0e588 04650 0735
Q
3 v 1ok 1ok 1¢15 1015 116 1017
g B 9
'E :’ V.0 2438 2.4 2Ll 2448 251 253
é; Vo 0870 (0887 0913 0+937 0961 00979
vy 1+10 1.12 1013 1+15 1417 1¢20
V;O 251 2453 2455 2456 257 2457
Vi, 0460 0495 0536 0582 0642 00710
A hesO  Lhe51  Le60  Le72  4e73  La8k
PV 1416 1422 1.28 1433 140 147
Py 0705 00715 04725 0e745 04760 04780
oV, Le3h  Lel6  4e56  L4e68 4?5  L4e?8
.§ T pVs 070  0e703 0e710 0e721 0e737 04767
T 3]
g 2 PVg 4e8L L4492 5401 5406 5610 510
Tg E; PV, 0¢157 04186 04218 0264 0324  Oel41h
D <«
-§ o pVg 00987 1.00  1.01 102  1.03  1.04
E% * Vo Le35 Lons L.58 Le70 482 Leg2
pV§1 06580 0+600 0s640 0672 0:710 0735
p(Vé)Z 0e925 0958 0985 1.02 1+06 110
p(VI)2  LeB3 ka9l 4e99  5.01  5.05 505
p(vh)2 0:162 0s188  0e222 0+260 04317 04386

The experimental velocities of elastic waves in indium=-10 at.% thallium,
The velocities Vg, V1o, V4q correspond to a propagation direction [O,

cos 14e59, cos 75+5°] and Vé, Vior V44 to a propagation direction (o,

cos 50°, cos 40°]
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The six elastic moduli may be fOund from the thirteen equations

but an exact solution will not exist because of experimental errors,
which in the case of this alloy were no larger than the normally
expected errors in pulse-echo measurements; see (3.8). A least-
mean squares computer fit was obtained using a programme developed
by Jeavons (1969), The basic idea may be seen by considering the

overdetermined case of three equations in two unknowns:
A = f1(x,y); B = fz(x,y); cC = f3(x,y)
. 2 2 2
Define M= [(£-8)" + (£-B)" + (fB'C) ] (5.10)
If all three equations are exact, x and y exist such that

f1-A = f2-B = f3-C = 0 (5.11)

and therefore M=0. If the equations are approximate, then the
best values of x and y may be found by minimising M. This
procedure is easily extended to thirteen equations in six unknowns,
Further details of this programme are given by Jeavons (1969).

The six moduli obtained by the least-mean squares computer fit
are given in Table (5.4) at 273%K and are plotted as a function of
temperature in Figure (5.6), The errors in the velocity measurements
(see (3.8)) will produce errors in the moduli which are greater for
some moduli than for others, With the exception of C_, and C

12 13
all the moduli are related directly to a velocity measurement:
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TABLE (5.4)
c c ¢ C C C Error in

11 12 13 35 LL 66 oduli
Indium (a)
(Room Temp. ) belih 1 39k beOL Lok 04653 | 1.22
Indium (b)
(300° K) he535 | L4s006 | 4151 4e515| 04651 1.207
Indium (c¢)
(300° K) 4520 | 4004 | 4e191| he512| 0.650| 1.207| 1%
Indium-
10 at.% +
thalldum Le160 | 3.847 | 3+941| L4.299| 0.709 ] 1.078 +20
(a) (273°K) ,
Indium-
25 ato% +
thallium 4e005 | 30958 | 3.958 | L4.005| 0808 | 0.808 +og
(d) (273°K) ,

Units are 101 dynes cm_

2

(a) Winder and Smith (1958)

(b) Chandrasekar and Rayme (1961)

(¢) Re-calculated values of (b) - see text

(d) This work.,

Single crystal elastic stiffness constants of indium, indium-10 gt.%

thallium and indium~25 at.% thallium,
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errors for these moduli will be double that in the velocity.,
012 and 013 are indirectly related to two and four measured
velocities respectively; errors in these may be slightly greater

than those in the other moduli.

5e3.2+2 Velocity measurements in indium-25 at.% thallium

The moduli C,,, C,, and Cy, of this cubic alloy were obtained
from measurement of the three pure wave velocities along the [110]
direction (see (2.5.2)). Difficulty was found in obtaining echoes
for the slow shear wave polarised along the [110] direction; this
velocity is given by pV2 = %(011-012). Because this composition
at room temperature is close to the fcc to fct boundary (C11-C12)/2
is small and thus this wave velocity is slow; in fact the time
between echoes for a sample of length 0628 cm was ?Sﬁs. at room
temperature and only two echoes were visible on the oscilloscope.
The Y-cut transducer polarisation needed to be accurately oriented
along the [110] direction in order to excite and receive this mode,
The room tempefature velocities and elastic moduli are collected in

Table (5.4).

5e3.203 Velocity measurements in alloys containing 16+5,

18 and 21 at.% thallium

All these alloys are tﬁinned tetragonal at room temperature.

If the split spots on Laue X-ray photographs were ignored, these
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samples could be rotated from one symmetry axis to another as if
they were single crystals., With this reservation, the twinned
samples were prepared for sound propagation along "[110]" direction.

As in the 25 at.% thallium alloy the slow shear wave velocity
was 50 small that only two echoes could be obtained., Any
reduction in the normal 1% error in transit time measurements in this
case due to the very large values of the transit time were over-
shadowed both by the small amplitude of the second echo as a result
of the large decibel loss per double transit time and the received
pulse spread (see Figure (5.7)). In both the 18 and 21 at. %
thalljum alloys the slow shear velocity could only be measured in
a limited temperature range: as the temperature approached that of
the transition the separation between the two echoes visibly altered,
the decibel loss per double transit time also increased markedly
until the second echo was not longer measurable.

An investigation of the thermal expansion of indium=thallium
alloys along the [110] direction in the vicinity of the transition
~ has been reported by Pahlman and Smith (1968); 1large increases in
the coefficient of linear expansion were found. In the present
case the thermal expansion of the 21 at.% thallium slloy was
measured using the dilatometer technique described in (k.2.3).

Figure (5.8) shows the results along the "[110]" direction, Although
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the coefficient passes through a large maximum at the transition,
the maximum apparent change in the velocity which results from
neglecting the change in length of the sample is less than 0+2%
well within the uncertainty in the transit time measurements: no
corrections need be made.

Thus although the error in the measured moduli of these
particular alloys is about 2%, that involved in identifying these
~moduli with those characteristic of the [110] direction of the
tetragonal crystal is more uncertain, The velocity of a sound
wave which is propagated normal to the twin plane is the same as
it would be in a single crystal., In the present case the twin
plane is a (110) plane of the cubic phase: the three sound
velocities measured in the "[110]" twinned tetragonal direction will
be closely related to the moduli %(011+C12+2C66), Cyy, and (011-012)/2
respectively.

The moduli corresponding to the three wave velocities in the
"[110]" direction of the 18 and 21 at.% thallium alloys are shown
as a function of temperature in Figureé (5.9) and (5.10). The
most interesting fact is the complete lack of temperature dependence
of the longitudinal modulus for both alloys. In contrast the
moduli corresponding to the fast shear velocities in both alloys

exhibit anomalies at temperatures clese to the fct to fcc transition.
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The modulus corresponding to the slow shear velocity approaches
very close to zero in both alloys as the temperature approaches
that of the transition, This modulus is effectively equal to
(011-012)/2. In crystals of tetragonal symmetry (see (2.4))
(011-012)/2 must be positive; a negative value results in a
spontaneous collapse of the lattice. The transformation mechanism
involves shears on approximately (110) planes in [110] directions
and these are the shears specifically associated with the modulus
%(011-012). A similar approach of this modulus to zero occurs in
the fecc 28+13 at.% thallium alloy (Novotny and Smith 1965); the
temperature coefficient in the cubic phase is positive hear the

phase boundary,

5¢3.3 Ultrasonic attenuation measurements

The ultrasonic attenuation was measured primarily in the region
of the fcc to fct phase change. Figures (5.11), (5.12) and (5.13)
show the attenuation as a function of temperature and frequency of
both longitudinal and fast shear waves in a 21 at.% thallium sample,
The attenuation of the slow shear wave along the "[110]" direction
in the vicinity of the transition could not be measured. This was
not primarily because the decibel loss per unit time was too high
but rather because the decibel loss per transit time was anomalously

large (see (5.3.2.3)). The errors associated with attenuation
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measurements have been discussed elsewhere (see (3.7) and (4.4)).
The diffraction loss is readily subtracted and knowledge of
transducer coupling losses can be obtained from measurements om
several samples of different lengths, As the sample was aligned
and cut in the twinned tetragonal condition, a further loss of
energy from the ulirasonic beam in the tetragonal phase results
from mode conversion at the twin boundaries. In general six
waves are generated by a single elastic wave incident om a solid-
solid interface, one quasi-longitudinal and two quasi-transvérse
modes on either side of the boundafy. At certain angles of
incidence various surface waves may also be propagated along the
interface itself (Musgrave 1959). The echoes picked up by the
transducer correspond to waves of the same polarization as that
initially generated by the transducer: energy is thus lost from the
ultrascnic beam, The large anomalous attenuation near the
transition which is the particular interest here will thus be
superimposed upon a background attenuation arising from the
several causes mentioned above, as well as from the background
intrinsic material losses. Among these are frequency squared
dependent terms which are due to the thermoelastic and phonon
viscosity losses neither of which are negligible in metals. The

thermoelastic loss (see (4.4)) is given by (Lucke 1956):
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5> Np./ps (5.12)

where AM/M is the fractional change of the adiabatic and isothermal

elastic moduli

AM Mg Yo

and is for a cubic crystal given by
22
Mo 2(C11+2C12) a T (5.14)
M (C11+C12+2044) Cp

in the [110] direction; a is the thermal expansion coefficient.
In the megahertz frequency range the product of the fregumency
and relaxation time 7 is much less than unity and the thermoelastic

loss reduces to

° ’ 2
o = S8 M 2 s (5.15)
2 M
The specific heat is estimated from the Dulong and Petit law to be

7 =3

1.8 x 10 ergs c].eg-1 cm ~ and the relaxation time is given by

T = 3K/ CPVE where K is the thermal conductivity and is estimated,

by assuming the Wiedmann and Franz law to be O«4 watts cm-1 deg-1

at 70°C. The relaxation time turms out to be 0«7 x 10-11 secs and
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TABLE (5.5)
i (%)1 x 1072 /2
x 10" secs 10 10~16
Al 0.227 337 0e122
Cu 0e526 3617 O« 147
Ag . 1e21 3493 0531
Pb 0455 6487 0365
aFe 0+ 064 1+63 0011
In-T1 *
(21 at.% T1) 0-75 1.22 1.6
Thermoelastic loss parameters for various materials. * this work;

all other values are taken from Truell and Elbaum (1962).
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the attenuation due to the thermoelastic loss at 70°C is 0.016

db/cm at 10 Mhz., Table (5.5) collects the thermoelastic loss

parameters for the present case together with similar parameters

for other materials for purposes of comparison. At temperatures

closer to the transition the thermoelgstic attenuation will

increase as a result of the increase in the thermal expansion

coefficient, At the transition temperature the maximum attenuation

attributable to the thermoelastic loss is expected to be of the

order of 0.5 db ems | at 10 Mhz. Although this is a very large

thermoelastic attenuation, it is certainly not significant enough

to account for the observed anomalies in the measured attenuation.

This is further emphasised by the large, sharp peak in the

attenuation of the fast shear wave (Figure (5.13)); shear waves

cannot suffer thermoelastic loss because the adiabatic and

isothermal shear moduli are always identical (see (2.3.1) and (4.4)).
The background phonon viscosity (see (4.5)) which is also

termed the Akhieser loss is given by (Woodruff and Ehrenreich 1961)

C TYZQ;T

a = (5.16)

3,1

where Y is an average Gruneisen constant (see (4.5) and (7.5.1))
and T is a relaxation time, The Gruneisen constant can be got from

the bulk modulus and thermal expansion data but evaluation of T
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requires a knowledge of the lattice component of the thermal
conductivity; this is not available for the indium-thallium alloy.
Pypically (Mason 1968) the background phonon viscosity losses are
of the same order as the thermoelastic loss at high temperatures.
Additional background losses which occur below the transition find
their origin in the presence of the banded twins., The loss due to
mode conversion at the twin interfaces has already been mentioned;
losses due to stress induced movement of twin boundaries are
expected. The anelasticity of twinned tetragonal copper-manganese
(90% Mn) has been studied by Siefert and Worrel (1951) who
concluded that high internal friction is due to stress relaxation
across twin boundaries.

The large peak in the attenuation occurs at the same
temperature as that in the thermal expansion (Figure (5.8)); a
resistivity experiment showed a slight change at the transition in
an 18 at.% thallium alloy (see Figure (5.1it)) but not in the
21 at.% thallium sample. In the case of PiNi large changes in both
the loﬁgitudinal and shear velocities accompanied the peak in
attenuation, However the present case differed in that changes
enly occurred in the shear velocities at the transition, the

longitudinal velocity remaining constant (see Figure (5.10)).
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Interpretation of the large attenuation near the tramsition
must await further measurements of thermal parameters such as

lattice~thermal conductivity and specific heat.

S.it Discussion of elastic moduli results

S.4,1 Elastic wave velocities in indium and indium=-10 at.%
thallium |
Here the elastic wave propagation in the monocrystalline
10 at.% thallium alloy is compared and contrasted with that in
pure indium, The elastic moduli of indium have been reported at
room temperature (Winder and Smith 1958) and as a function of
temperature between 1+4°K to 300°K by Chandrasekar and Rayne (1961)
(hereinafter referred to as CR), To measure 013, CR chose a
direction in the (100) plane at 51-5° to the [001] direction but
they knowingly used the equations relating the sound velocities to
the elastic moduli which are applicable only at 45°, 4
recalculation of the elastic moduli of pure indium was undertaken
here using the velocity data of CR and the relevant velocity-
elastic moduli equations (see (5.2)). Results are presented in

Table (5.4); where it is seen that C1 is the only modulus to be

]
significantly changed from the CR value and that only by 1%.
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The recalculated CR values for indium and those obtained for
the 10 at.% thallium alloy were used to evaluate the orientation
dependence of elastic wave velocities in the two materials in the
(100) and (110) planes. Figures (5.16) and (5.17) show the three
(100) plane velocity sections for indium and the 10 at.% thallium
alloy obtained by solutions of equations (5.6) and (5.7) at one
degree intervals. The two materials show little difference in
behaviour; the fast shear wave velocity section for indium is
slightly more prolate along the [010] direction than it is for the
alloy, manifesting the effect of its slightly larger c/a ratio.

The (110) plane is much the most interesting; if indium and
the 10 at.% thallium alloy were to undergo the fct to fcc transition®*,
the sound wave velocities in a plane near.the (110) plane would be
the ones most affected. The (110) velocity sections for the three
waves for both indium and the 10 at,¥ thallium alloy are shown in
Figures (5.18), (5.19) and (5.20), These sections were obtained
by a computer solution (see appendix (1)) of the cubic equation (5.5)
at degree intervals, A1l three velocity sections indicate a
decrease in the stability of the 10 at.% thallium alloy over that
for pure indium, This is most evident along [110] directions
(Figure (5.20)5 as might be expected: wave velocities in those

directions are related to the modulus (011-012)/2.

* In fact it has been suggested (Graham 1955) that if melting could
be inhibited then indium would undergo a crystallographic

transformation.
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Knowledge of the behaviour of the energy flux associated with
particular modes can be of great importance in ultrasonic
experiments on crystals, Accordingly, expressions are now
derived for the energy flux for directions in the (100) plane.

The ith component of the energy flux vector P is given by equation
(2.33) as

P = _(—Pw_)f.
i 2V

c (5.17)

1 1 %01 For™
Because P1 is zero for all directions in the (100) plane, the

angle which the energy flux vector associated with any one of the

three modes makes with the [010] direction is

B = tan” (P./P.) (5.18)
32
In particular for the pure transverse wave
_ -1
while for the quasi-longitudinal wave
sindtan®g

23 (5.20)

X 2
C11c056+(C13+Chh)s;n&tan¢+chhcosetan ()

-1

ﬁL = tan

C4hsin9+(0#4+013)cosetan¢+C

The energy flux vector for the quasi-transverse wave BT s is
2
obtained from equation (5.20) by replacing the angle the particle

displacement vector makes with the [010] direction for the quasi-
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longitudinal wave ¢ by ¢+§ as a result of orthogonality of particle
displacements (see (7,2)). 6 is the angle the propagation
\direction makes with the [010] direction, A computer programme
(see appendix (1)) was written to calculate the energy flux and
particle displacement directions for the three modes at one degree
intervals., Results are plotted in Figures (5.21) and (5.22) as
angular deviations from the propagation direction versus propagation
direction,

The deviation of the energy flux associated with the quasi-
shear mode is substantial in both indium and the alloy for most
directions: it is zero along the [010] as a result of crystal
symmetry and close to the [011] direction. The energy flux
associated with the pure shear mode follows the propagation -
direction more closely: in the case of indium the deviation is

nagebiie Swmallor
always positive (i.e. the energy flux vector makes a greater angle
with the [010] direction than does the propagation vector) whkiXe awd
for the alloy it i;?;;gative. The behaviour of the particle
displacement and the energy flux associated with the quasi-
longitudinal mode indicates that this mode and thus the quasi-shear
mode is close to being pure for all directioms in the (100) plane.
In fact at one direction in addition to the [010] and [001] an

accidental pure mode (see equation (5.9)) does occur: this is

manifested in Figures (5.21) and (5.22) by the zero deviation of



1
" i)
e~
v Q@
\ =
[
!
S
.
.|~. .
a5 v
A
oy
[
)
>
2
ot
.

- !
A

3
™

=

(

2
>

Pigase

e ]
ot

>
o
o0
42 e
B
G oty
e~
oy f

i

[
b4
3 M,L
.0
j
S Ly
O
i)
9K
0+
-~
G IS
o, i
S
— g
i
QO U
1o
N nfl.
i
[
PR
3
o>
ot G
53

o
o A

Ci.

01 mCO_v Uj 1o1323241p —“690“_ uio4y | .w_mr.< |
Q9 0S or - oY ¢ Ol

s e

T
/
/

.l"/

- - e —— O e a——

f

1
o
~N

]

]

O Q (o}
~ < Vel
' ! '

ot ~

'O

25 aeynbu

Ad ioss MO}Q?

v

1

PN

3
L
.

i)

OW L =
5 @

0
0T+,
o

<
(£



o talinal partiele Aisplacement (—-—)
oo PLaw oveotors nssocleted with the

S e T e - o - A S L T o]
,:,’:,\_U.x_-_,,;;. s ), _;‘_,'._x.).._':,:,-";._".f‘._jr \ yoand

¢ —— R B S . o O . K} I
AT e omedes din the (J00) tlane of Andiune

H P I B . P L T - -
Lliwa plotted 2s deviatioms From

7

\\

1
&0

el RN
N N vy — -

< A
- ——— . @ s’
S e 4 b .o . - — R

— . G @ ————

60
n (100Y nlane

!
!
!

50

-

/

T

/

/

N\
\

!
10

3 2 B
L R |

I

Q o
~

!

4
orgebedoad wouy uoizerasp sembuy

1O N

le Crnrm TOIOT divecrt

A

w7



- 113 -

both the particle displacement and energy flux associated with

the quasi-longitudinal mode from the propagation direction. It
is termed an accidental pure mode direction because it does not
occur in the same direction for all crystals belonging to the same
Laue group irrespective of their individual elastic meduli values;
the direction for indium is 44.90° and for the alloy 46.75° to the
[010] direction, The fact that this accidental pure mode
direction occurs so close to the [011] direction in these crystals

is a comsequence of their approximate cubic symmetry.

S5.4,2 A force constant model for indium and indium-10 at.%

thallium
Sharan and Bajpai (1969) have developed a force comstant
model for tetragonal crystals involving first, second and third
nearest neighbour, central and non-central interactions, Six
force constants are obtained in terms of the lattice parameters

and elastic modulij;

Cpq = %Ea1 +:—-§— + Bl (5.21)
n
1
- 2r@a _ 1 _ 1
012 - c [L}nz « B ] (5022)
1
1
_ 2 o= 2 1 1,.2
013 = 2 [Lmz n~ - (a + v )n"] (5.23)
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1
_ 2ra=a 2 1 1
013 - c [4112 n - (a + B )J (502)'4')
1
1
Chyp = % [ + ——:"g )o° + v'n? - 525
n
1
c _2[1 a.-a.1 2+ 1J (5.26)
T gl T 4n? B ‘
n
1
1
_ 2 1, a2y 2 2
C33 = 3 [(a' + Z:i- n°) n° + yn“] (5.27)
-1
¢, = 2[d aa 1 (5.28)
66 - ¢ t* * b 5~ + P ¢
B

where a, By Y are the central force constants and a1, 51, Y1 are

the angular force constants and

(5.29)

T

2
n, = 3 + ZEE)% ; n=

where ¢ and a are the lattice parameters.

Force constant models have been discussed in depth by
Keating (1966) who points out a simple test of adequacy for any
model: the expression for the bulk modulus which in the present
case of tetragonal symmetry is (S, +S. . +5 +2(s12+s +5 ))'1,

11 722 733 25 31
must be independent of angular force constants. Several widely
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TABLE (5.6)
central force constants angular force constants
@ B ¥ a1 B1 Y1
+5- 5% +12-0 + 308 2.8 + o0 -S1io + (-0
Indium 42+6 968 Zh6 ~3+66 ~0%235 =0+109
Indium~ +L8V |Ho-€ | ¥2-54 _2.39 o- 427 AT
10 at.% 4340 &6 | 671 ~2+10 | —0+508 «5+501
Thallium

Units: 103 dyne cm.
Force constants for indium and indium~10 at.% thallium in the

Sharan-Bajpai (1969) model at room temperatufe.

€3 | %s | %3

C12 C44 c11

Indium 1405 | 186 +995

Indium-
10 at.% 103 154 103
Thallium

Ratio of elastic constants which would be equal if the materials

were cubic.
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quoted (Born and von Karman 1912; Born 1914) force constant models
do not obey this requirement, Neither does this one, In the
case of the alloy the presence of two different atomic masses
further invalidates the applicability of the model., However it
is instructive to calculate the various force constants for pure
indium and'compare them with those for the 10 at.% thallium alloy.
The results of a computer least-mean squares fit 6f the elastic
constant data to equations (5.21) to (5.28) is presented in

Table (5.6). The two angular force constants B1 and Y1 for the

alloy are very close whilst for pure indium the separation is

mach larger: 51 and Y1 are equal if the crystal is cubic.

5.4;3 The compositional dependence of the elastic properties

of indium=-thallium alloys

The compressibilities of tetragonal crystals are given by

/ 2(c )+ Cpp * C
O L Kt i (550
Ca5(Chq + Cpp) = 2045
C,.+C..-2C
By = ——2 13 (5.57)
c33(c11 + 012) - 2013
C,. -C
P = 2D (5.32
033(011 + 012) - 2c13
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where B is the bulk compressibility and ﬁl

linear compressibilities perpendicular and parallel to the c-

and B11 are the

axis respectively. The relations for cubic crystals are obtained

by replacing C and C Table (5.7) collects the

353 27 Caq 13 7 Cq20
results for indium, and the 10 at.% and 25 at.% thallium alloys.
The compressibilities show that the 10 at.% thallium alloy is

more resilient to volume changes under hydfostatic pressure than
is indium and has the more anisotropic response: & much greater
fraction of the volume change in both indium and the alloy results
from length changes along the a-axis than from changes along the
c-axis: this is more proncunced in the alloy than in indium,

Thus under hydrostatic pressure both indium and the alloy show a
tendency to adopt a cubic structure: in the alloy the effect is
much the greatest. Figure (5.23) collects the available bulk
modulus (1/B) data for the indium~-thallium alloys. Novotny and
Smith (1965) found that the bulk modulus of some fcc alloys and
that of indium reported by Winder and Smith (1958) all lay on a
straight line when plotted as a function of compositicn, A more
accurate elastic moduli set for indium (see Table (5.4)) and the
results obtained here for the 10 at.% and 25 at.% thallium alloys

indicate that the bulk modulus is not linear with composition but

rather varies as shown in Figure (5.23).
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TARLE (5.7)
B By Py
Y36 .
Indium 2746%068 9+6670.29 4.28%0.13
Yo (g
Indium-10 at.% Thallium 26.2%1.6 10071204 6L 3475%0022
Indium-25 at.% Thallium 25+230.5 9¢8 *0.2 9.8 0.2

The bulk and linear compressibilities of indium, indium-10 at.%

thallium and indium-25 at.% thallium at 273°K: units are 1077 cm®

dyne-1.
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The moduli corresponding to the three sound wave velocities
measured along the [110] direction are shown in Figure (5.2}) for
several alloys. Changes in the composition dependence of these
moduli are associated with the transition at 22 at.% thallium
composition,

Table (5.8) collects values of the stability criteria (see
(2.4)) for indium and the 10 at.%, 25 at.% and 39 at.% thallium
alloys: the criteria are less wéll satisfied for the composition
(25 at.% thallium) closest to the room temperature transition

composition (22 at.% thallium),

5.5 Conclusion

The various contributions to the total energy for a solid
have been discussed in (1.1) and in particular the effect of the
Fermi energy term on the elastic shear constants was described
with reference to Leigh's (1951) treatment of aluminium, a
polyvalent fcc metal. Winder and Smith (1958) adapted Leigh's
approach to interpret the elastic data of indium by treating
indium as a pseudo-cubic fcc structure with é lattice constant
egual to (aac)1/3. The two pseudo-cubic shear constants of indium
were taken as

Z(ECM+ + 066)

(e¢,, + C..)/3; and
LL 66 2(C11 + 033 - 2013) + (011 - C12)/§
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TABLE (5.8)

Stability Criteria

Material > >

C11C537C4z20 | Cyq=C 20 | Cy5(C 1 4C,5)-2C000 | €050 | €350 | €30 | Cpn0
Indium 28 0516 5e1 Le52 Le51 0650 1e21
Indium=-
10 at.% 24 0313 3ol L.16 Le30 0709 1+08
thallium
Indium=—
25 at.% Oely 0+047 Oel k.01 L.01 0.808 0+808
thallium
Indiume
39 at.% 106 0e152 147 Le08 L.08 0869 04869
thallium

Stability criteria for

tetragonal and cubic indium thallium alloys: wunits 1011 dynes

- 02t -
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In a cubic crystal these two constants are the familiar C44 and
(011-012)/2 respectively, The first Brillouin zone for a fcc
structure bounded by six square faces normal to 100 and eight
hexagonal faces normal to 111 direction forms was adopted.
Since indium has three electrons per atom the first zone is
completely filled, the remaining electron density overlapping
into the second zone in a similar way to the schematic diagram
in Figure (1.1). By following Leigh closely, Winder and Smith
obtained the numerical values of the coulomb, first zone, hexagonal
face overlap and square face overlap theoretical terms which
contribute to the two pseudo-cubic shear constants of indium.
These are given in Table (5.9).

The effect of the addition of thallium, which is alsoc trivalent,
to indium eventually results in the adoption of the cubic structure
at a certain composition, It is thus instructive to visualise
qualitatively the effect a tetragonal lattice would have on the
pseudo-cubic Winder and Smith model of indium, The Brillouin
zone plane in the tetragonal structure normal to the c-axis will
nove inwards with respect to the position of the same plane in the
pseudo~cubic structure; square face overlap transfer terms should
then be greater for c-a transfer than a-a transfer and so on

see Figure ( 1.1 )). On this simple basis (C11+033-2C13)/h is
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TABLE (5.9)
nu(acr+ct)/3 S(2C, ) +Ce ) /3
Coulomb 067 5¢99
ol 5t
Hexisziiipface 3499 ~8e74
e 538 0-69
TOTAL 035 1.38
?Eiiﬁlidand Smi th) 035 1.38
Observed 0wk 1437

(see Table (5.4)

Numerical values of the terms contributing to the pseudo-cubic
shear constants of indium, Energy units are ev, and nLis the
atomic volume., (Winder and Smith 1958): C' = (C11-C12)/2;

cr' = (011+033-2C13)/4.
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expected to be greater than (011-C12)/2 as found experimentally
(these two shear constants in a cubic structure are equal), The
effect of thallium in indium has been discussed by Novotny and
Smith (1965) in the case of fcc alloys. They conclude that the
sharp rise in the anisotropy ratio 2044/(C11-C12) as the
composition approaches that of the transition (see Figure (5.29))
was not caused by core-core interactions, In fact the
contribution of the coulomb term to the anisotropy ratio

(2(2c44+066)/(2(c1 C 3)/’4 + (011-012)/2)) in pure indium

1#03372C,
obtained from Winder and Smith's calculations, has the same value
as have the fcc alloys. It may thus be expected that changes in
the electronic energy distribution control the rapid increase in
shear anisotropy and the associated decrease in lattice stability
of both the tetragonal and cubic alloys. Further, it seems
plausible that the full zone contributions to the shear anisotropy
will not alter markedly with change in thallium content or with
temperature at constant composition, Thus the origin of the
instabilities in the indium-thallium alloys appears to arise from
that part of the Fermi surface not in the first zone, In the case
of TiNi (Chapter 4) the change of the Fermi level results in an

appreciable change in the effective number of free carriers and

their mobilities above and below the martensitic phase change in
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that material: this is manifested in large changes in resistivity
and Hall coefficient. However in the present case, careful
measurements of electrical resistivity (5.3.5) showed no drastic
changes between the fct and fcc modifications of the indium-
thallium alloys; this does not however preclude the conclusion
reached above that the instabilities in the indium~thallium alloys

are electronic in origin.

5.6 Resume

Alloys in the indium-thallium system have been the subject of
an ultrasonic study. Large increases were found in the ultrasonic
attenuation in the vicinity of the fcc to fct transformation: it
seems plausible that these anomalies are connected with a softening
of the lattice similar to the hypothesis put forward in the case of
TiNi (chapter 4)., A complete breakdown of the characteristics of
elastic wave propagation in tetragonal (4/mmm) crystals and for the
first time the elastic moduli of a tetragonal indium-thallium alloy
has been given: a detailed comparison of the elastic properties of
this alloy (10 at.% thallium) with those of pure indium showed that
although the two méterials are similar in many ways there are in
fact significant differences particularly in their compressibilities.
Correlation of the present measurements with those of other workers

has provided a more complete picture of the elastic behaviour of the
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indium-thallium alloys in the vicinity of their martensitic phase

transformation.



CHAPTER 6

The elastic constants and interatomic

binding in yttria-stabilised zirconia
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6.1 Introduction to the zirconia-yttria system

The technical importance of zirconia (Zr02) as a high
temperature refractory conductor is frustrated by the existence
of a phase transformation at IOOO?C which takes the usual monoclinic
form to a tetragonal modification. Both phases are close to being
cubic; the monoclinic (baddeleyite) lattice which may be considered
as a distorted fluorite structure has parameters a = 5-1748,
b = 5{2668, c = 5-3083, ¥ = 80+8° while those of the tetragonal
(rutile) lattice are a = 5:07% and ¢ = 54268 (Ruff and Evert, 1929).
The fluorite and rutile lattices are typical of ionic compounds that
have the formula sz where M is a metal and X;is either fluorine or
oxygen. The deciding factor in most cases between the adoption of
one structure or the other is the ratio of the cation to apion radius.
If riT, <0¢73, then the rutile structure occurs; otherwise the
fluorite lattice is the stable one. Zirconia has a value of 066
for this ratio (Zhdanov 1965) which is close to the bounding value.
Only at high temperatures is the expected rutile lattice adopted.
This transformation is accompanied by a 9% volume contraction.which
renders the production of coherent, strong pleces of sintered
material impossible.

With a view to avoiding the problems associated with the phase
transformation, solid solutions of zirconia with several materials

have been studied (Ryshkewitch 1960). Because both the monoclinic
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and tetragonal forms of zirconia are almost cubic, certain cubic
oxldes, when alloyed with zirconia result in a cubic structure.

In particular, cubic solid solutions of yttria:(Iaos) in zirconia
do not exhibit phase changes with temperature and are thus referred
to as Mstabilised." Magnesia (Mg0) and Calcia (Ca0) are also known
to force the adoption ofithe fluorite type lattice when in solution
with zirconia (Ryshkewitch 1960). But not all cubic oxides have
this stabilieing effect; strontium oxide and barium oxide are
insoluble in zirconia as a result of the dissimilarity between their
cation radius and that of zirconium. The latter ion: has a radius
of 0-9K, that of calcium is 1+058 and that of magnesium is 0.8%.

In contrast, the radius of the barium ion is le43R : it camnot be
accommodated in the zirconia lattice.

The latest phase diagram reported (Duwez, Brown and Odell 1951)
shown in Figure (6.,1) demonstrates that the lower limit for
stabilisations is 6 mole¥. yttria : below this composition the solid
solutions exist only in the monoclinic formj the cubic phase externds
to 55 mole¥ yttria at room temperature. In the region of 56 to
76 mole% yttria two phases are present. A simple eutetic, composed
of both end solid solutions, forms the miscibility gap. Above
76 mole% yttria there exists a single phase of cubic solutions of
zirconia in yttria.

At low temperatures pure zirconia is an insulator, having a

14

resistivity of 107> to 101" ohm cm (Schweitzer 1931). At 1000°C



5
R

R~ ~
Vo~
2500 kYo = o
S,
~ .
] ~ ~
i RN
‘ ~
100 TeTRAG 2r 0, S5
: o _ <
"37'; 4~ CurC lwalh
§
9
al
Jd
- La
1So0 Py
<
¢ 4
<‘ Cun\c z"°z Ss
o
A
>
oo b |
| |
{
1 ) \
\ | |
500 ‘\'/P“.uHOCL Tre, §S : | e
t
MeNOSL 2yo, SS
~+-cveic 21, SS

——— —

]

1 [ 1 |

Pigare-(6,1) Fhase diagram of the zirconia-ytirizs
‘ cystem after Duvez et ol (1331).



- 128 -

the resistivity is still about 10/ to 10° ohm cm. In contrast

yttria stabilised zirconia is a comparatively good conductor,
particularly at high temperatures : at 1000°C the resistivity is

200 ohm cm and at 2200°C it is O+6 ohm cm. This enhanced conductivity
results from the replacement of the tetravalent zirconium ion by

the trivalent yttrium fems producing oxygen vacancies with which, for
electroneutrality of the lattice, an electron is associated.

Zirconia~yttria solid solutions are of technical importance
as refractory conductors, especially as high temperature electrodes
in magnetohydrodynamic generators and as solid electrolytes for fuel
cell applications. An unfortunate result of high temperature current
passage through zirconia-yttria solid solutions is a marked tendency
for fragmentation of both sintered, polycrystalline and single
crystal electrodes. Much effort has been put into finding practical
solutions to this problem but the reason for_the effect is not yet
known. One relevant aspect which has been neglected is the
mechanical properties and their relation to crystal stability.

The concern here has been to look for variations in the
mechanical properties of the cubic solid solutions near the stability
edge composition of 6 mole¥% yttria in zirconia. In particular, the
elastic constants, certain of which are very sensitive to changes
in crystal stability, of two compositions (8 mole% and 12 mole¥

yttria) of yttria stabilised-zirconia close to the stability edge,
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have been measured by the ultrasonic pulse echo technique.

In spite of'the cbvious importance of the yttria stabilised
solutions, no previous studies have been reported of any lattice
properties. And elastic constant data is able to give positive
indications of the type of binding and the nature of the lattice

stability.

6.2 Experimental details

Two different compositions of yttria-stabilised zirconia
have been studied. One of 8 mole¥ yttria was chosen because it is
near the stability edge (see Figure (6.1)) of the cubic to monoclinic
transformation; the other contained 12 mole% yttria, being further
away from the transition composition. The crystals were grown by
electrofusion and supplied by Dr. J.S. Thorpe.
The physical appearance of the two compositions differed in that
the 8 mole% yttria sample was a translucent amber while the 12 mole¥
sample was an opagque brown. Chemical purities were high., Optical
spectrographic analysis showed that the only impurities present at
trace level were silicon, hafnium, magnesium and tin. This result
was substantiated by the absence of observable electron spin
resonance spectra (sought at 9Gﬁﬁ and 4¢2K) which also indicated
freedom from other paramagnetic impurities (J.S. Thorpe 1969,

Private Communication). Examination of the crystals by x-rays
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showed on back reflection Laue photographs the pin point spots
which gave evidence of high crystal perfection. These are shown
in Figure (6.2) and exhibit the fourfold and twofold rotational
symmetries characteristic of the [100] and [110] crystallographic
directions. The calcium fluoride structure has the point group
mpm, the symmetry elements of which are shown in Figure (6.3);
also shown is a unit cell of the calcium fluoride structure. The
lattice parameters of the two compositions were obtained from
Debye-Scherrer powder photographs. The Nelson-Riley extrapolation
procedure (Nelson and Riley 1947) was performed in order to obtain
most accurately the lattice parameters. Values for the 8 mole%
yttria and 12 mole% yttria compositions were found to he

501276f 0-0001 & and 5.1401% 0.0001 & respectively. The denmsities
of the crystals, found by Archimedes principle, were for the

8 mole¥ and 12 mole% yttria 6.036% 0+001 gms em™ and

54894 0.001 gms en™>

respectively at room temperature. All the
elastic constants of a cubic crystal may be obtained from
measurement of the velocities of the three possible polarisations
of pure mode, ultrasonic waves propagated in the [110] direction
(see 2.5.2). Samples for ultrasonic measurements were aligned for
this direction by the x-ray Laue back reflection technique to
within tOoSO. Because of this misorientation the equations shown
in Table (2.1) relating the measured velocities to the elastic

constants are not strictly accurate. Waterman (1959) gives







Rigure {€.3) -The symme try elements and unit cell of the
' calcium fluoride type structure.
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expressions for the change in velocity for small deviations from
pure mode propagation directions. For example, the longitudinal
velocity in the 8 mole% yttria sample in the{lg;ggll’ 9;2%1}: O.}
direction. differs by Ok cm/sec from the velocity (7.09 x 105 cm/sec)
in the | 5’ 5’ Ojdirection. Thus a misorientation of = 0e5°
contribution less than 0.01% to the total error in the elastic
moduli determination which is estimated to be 2:6% (see Chapter 3).
Two parallel [110] faces were cut, using a diamond wheel, and then
polished with diamond pastess of successive fineness down to one
micron. The final faces were parallel to within 0.0001" at a
separation of about one cm. For both compositions the most successful
fluid for bonding the quartz transducers-to the crystal surface was
found to be 10608 silicone fluid; the bonding procedure is
discussed fully in Chapter 3. X-cut transducers, used for generation
of longitudinal waves, were satisfactorily bonded with this fluid
at all temperatures between 300°K and 779K, but the bond quality for
Y-cut transducers used for shear wave injection deteriorated at
temperatures above about ZOOQK, thus limiting the range of
measurements. However the temperature dependence of the velocities
was slight.

The sample holder and cryostat system used in these

measurements is described in Chapter 3.
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6.3 Results and discussion

The linear combinations of the elastic constants derived
from the velocity data using equations shown in Table (2.1) are
given as a function of temperature for the two compositions in
Figure (6.4). The sound velocities for the three wave polarisations
propagated in the [110] direction are given at 77°K and 196%K. for
the two compositions in Table (6.1). Also included are the elastic
compliances (see Chapter 2, Section 3 for definition), the bulk
moduli, the anisotropy ratios and the Cauchy relations. That the
mechanical properties of the two compositions are fairly close is
evidenced by the similarity in their elastic éroperties. This is
well demonstrated by the sections of the wvelocity surfaces in the
(110)plane (Figure (6.5)) and the (100) plane (Figure (6.6)).
These sections were obtained using the computer programme written
for the tetragonal case (Chapter 4) suitably modified. Because the
8 mole% yttria sample is the closer to the phase boundary for the
cubic to monoclinic transformation this should be reflected in any
conditions which are demanded for crystal stability. The condition
that the crystal energy density be positive definite (see Chapter 2,
Section 4) leads to various relations between the elastic constants
vhich must be satisfied. For cubic crystals in particular these
are all satisfied if C,, and (cll-c12) are greater than zero.

Table (6.2) presents values for these criteria for both compositions:
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TABLE (6.1)
(z:-oa)o.‘92 (Y2°3)0508 (2r0,) 5, 8 (1{203)0._12
Elastic Constants
dynes cm™2 x 1012 7% 196k 77°K 196%
(c11 +Cos +‘2c44)/2 3403 3403 2. 14 3ok
(€19 - C12)/2 0585 | 04585 0627 | 04617
Clyy 1+58 1458 1+ 54 154
C11 204 240k 223 2.22
Ci2 0.870. [ 0870 0-973 0+983
Cll + 2012
——z— Bulk Modulus 126 1426 1439 140
?21 —Adisotropy ratiol 2:70 2+70 2. 46 250
Sound Velocities
%cm sec=1 x 105
ropagation Polarisation
Direction Direction
110 110 7409 709 7030 730
110 001 5¢12 5¢12 5078 5-78
110 170 311 311 3426 3424
— — — —
Elastic Compliance =+
cm? dynes"1 x 10-12
541 0-658 0+ 658 0+610 0+619
S12 0197 | =0+197 -0.185 | -0+190
ﬂ Suy 04633 0633 0+649 0+ 649
The elastic moduli of (ZrOa) 0492 (12'03) 0.08 2nd

0.)

(2x0,) gg (¥, Oy .12

at 77%K amd 196°K. Also included are values

for the three pure mode sound velocities in the [110] direction for

both compositions.
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TABLE (6.2)
Stability Criteria | (2r0,); o, (Y203)0.08 (Zr02)0(88 (1{203)0._12
3 (c11 - 012) >0 0+585 0-627
% (Cpq * 2615)> 0 1.26 1439
¢, 2= C.0 >0 3+305 ko032

(Units of Cij's are 10'° dynes cm )

The elastic stability conditions for (ZrOZ) 0.2 (Y2 03) 0-08

and (210,) .85 (T, 05) o,1p 3t 77°K.
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it is seen that all the conditions are well satisfied. Values

for the 8 mole¥ yttria crystals are all significantly lower than
those for the 12 mole% yttria which is consistent with the
composition edge for stabilisation occuring near 6 mole¥ yttria
in zirconia (see Figure (6.1)). Cyy is the only elastic temsor
coefficient which may be interpreted directly in terms of the
crystal structure (see Chapter 2, Section 2.4). It is a measure
of the resistance to deformation with respect to a shearing stress
applied across the (100) plane in the [010] direction (see

Figure (2.1)). It is desirable to find linear combinations of

C,, and C

11 12
+ 2612)/3, is a measure of the resistance to deformation

which have simple interpretations. The bulk modulus,
(€q4
with respect to hydrostatic pressure and must be positive. The
combination (011'012)/2' the resistance to deformation by a shear
stress applied across the (110) plane in the [1J0J direction, must
also be positive, (see Figure (2.1)). That both (cll + 2012)/2
and (Cll - 012)/2 decrease between the 12 mole% and 8 mole%
yttria samples is again consistent Qith the 6 mole% yttria lower
limit to the fluorite phase. A negative value for either of these
moduli would cause a spontaneous collapse of the lattice.

The absence of a substantial temperature dependence of

c,, - Clz)/Z for these crystals is a reflection of the vertical

11
phase boundary line between the cubic and monoclinic modifications

(see Figure (6.1)). If the composition at which stabilisation of
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the fluorite structure is achieved did vary substantially with
temperature, then (cll - C12)/2 near the limit would be
temperature sensitive.

For an elastically isotropic cubic crystal (C11 - Clz) should
equal 2044. The extent to which this relation holds is a good

indication of the isotropy of the crystal. Values of acuh/(cll -C..),

12
quoted in Table (6.2) for the two solid solutions are not close
to unity: a shear on a (100) cube face is resisted rather fore than
one on a diagonal (110) face. Values for the anisotropy ratio for
the 8 mole% yttria are about ten per cent greater than for the
12 mole% yttria sample, indicating a decrease in the resistance
to shears on a (110) face as the composition tends to that of the
phase boundary.

Knowledge of the bulk modulus and equilibrium lattice spacing
can be used to develop an understanding of the type of binding
between the atoms in the crystals. The approach used here is to

assume that the binding is predominately ionic and then to see if

this is justified by the results.

The potential energy function and its relation to the bulk modulus

The lattice energy of a crystal may be defined as the energy
involved in the process of bringing the ions from infinity to the

positions which they occupy in the crystal. The net result of the

electrostatic attraction between unlike ions and the electrostatic
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repulsion between 1like ions is that each ion is closer to ions of
opposite charge. In the calcium fluoride lattice, each fluorine
jon is surrounded tetrahedrally by four calcium ions and each
calcium ion is at the centre of a cube of eight fluorine ions

(see Figure (6.3)). In order to account for the observed
stability of crystals composed of ions, it is necessary to
introduce interionic non-coulombic forces of repulsion. This
repulsive term may be chosen to contain just two empirical
parameters. In the early treatments of ionic crystals the repulsive
term was taken to vary as the inverse nth power of the ionic
separation, so that the potential energy # of a system consisting

of two ions at a distance and apart is written as

2
2. 2. e
12 b
¢ = .___r + —rn ( 6 . l)

where Zl and Z2 are the valencies of the ions, e is the electronic
charge and b is a positive constant. This is the pofential

jnitially used by Born (1921). But because the repulsive interaction
is of a quantum mechanical nature essentially resulting from the
Pauli exclusion principle, Born and Mayer modified the initial
treatment (1932, 1933). They replaced the b/r" type repulsion by

-r/p

one varying as ae , Where a and p are constants. This form

was suggested by the exponential behaviour of electron wave functions
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at large distances from the nucleus. In addition they included
terms due to the van der Waal's interaction and dipole-quadrupole
interaction. A constant term due to the zero point energy (eo)
was also put in. The final equation for the potential energy

between two unlike ions was

w
0
t
H b

- ﬁ% ¢ aeTP, %8 + € (6.2)
where B/r6 is the van der Waaml's attractive term and B/r8 is the
dipole-quadrupole term.

The most detailed quantum mechanical treatment of ionic
crystals was performed by LBwdin on a series of alkali halides (1947).
These calculations assumed that the wave functions of the ions could
be taken as those determined self-consistently for the corresponding
free ions. Good agreement with experiment was obtained. As
mentioned later, this theory gave the first explanation of the
observed departures for ionmic crystals from the @auchy relations.

A large amount of data has been collected on the elastic and
thermochemical behaviour of ionic crystals. The vast majority
have been analysed on the basis of the original Born equation (6,1).
Theoretical values of crystal emergies have been computed from
knowledge of two quantities: the bulk modulus, the equilibrium
lattice spacing. These crystal emergies were then compared with

those experimentally determined from the Born-Haber thermochemical
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cycle (Born, 1919; Haber, 1919). The fair agreement which
resulted in most cases is contained in the small variation in
computed values of crystal energies which would result from a
variation in the repulsive exponent by as much as unity

(see Table (6.3)).

The data for the zirconia-yttria solid solutions may be
analysed on the basis of the Born equation and the results,
compared with the ionic crystals which have been dealt with in
the same way.

The crystal energy per unit cell is obtained by summing
equation (6.1) over all pairs of ions. Because the repulsive
potential varies rapidly with distance, only nearest neighbours
need be considered for this term. Following Sherman (1932), the

energy per unit cell may be written as

- e2 n AR
g = —=2 + = (6.4)

r

where a is the largest common factor in the valencies of all the
jons (in this case 2), p is the number of molecules in the unit
cell and ARo is the Madelung constant which will be defined
below. B and n are constants; B can be determined by setting
the forces of attraction and repulsion equal and opposite at the
equilibrium configuration of the lattice, and is expressed by

putting (dg/dr)r=Ro equal to zero; R is some characteristic
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TABIE (6.3)
Substance §§§‘éﬁ§i§e g:?.:gon ggneﬁeri_ gglculated
€12/,
AgCl 95 577 2073 187+3
Ca F> 8.0 1-45 618+0 617-7
K Br 9+5 1415 156+2 1578
K C1 9-0 0499 16k 4 16k bt
KI 1045 1.02 1515 149-0
Ii F 6+0 0:67 24041
Mg O 70 059 940. 1
Na Cl 8.0 0-93 182.8 180+ 4
Pb S 10+5 1.20 731 705
Zn S 9.0 1975 851 819
Pb 0 95 2831 2620
A1, Oz 70 3617 3708
(z:-oa).92 (Yzoj)-OB 8e5 0«55 2597
(2r0,) g5 (Y305) 45 9e 1 0463 2571

The analysis of various ionic crystals on the basis of the Born

equation.

obtained experimentally from the Born-Haber cycle.

is the repulsive exponent and the Cauchy relation.

The calculated crystal energy is compared with that

Also included
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equilibrium distance and is related to the lattice parameters in
a way to be defined below.

From equation (6.4)

a8 a2 e2 n AR nﬁ
<dr> r=Ry, 1;:? 2 ;on_,.o] = 0 (6.5)
Hence,
a® e2 B Eh R2-1
B = —— (6.6)

n

Substituting for B in equation (6.4)

-2 2 2 2 n-1
a e B ABO a e u ARo Ro
nr
Thus, for a crystal in equilibrium,
- a2 e2 a A‘R
S ___© I
(L (n)
g, g, + 8
where @ o(l) is the potential energy due to the coulombic forces

(n)

and @ o that due to the intrinsic repulesive forces. The lattice

energy per mole is

T, = 2, (6.9)
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where N is Avogadros number. By combining (6.8) and (6.9) and

choosing Ro to be the cube root of the molecular volume 60

a? e2 N A6
o}

U= ——2 - I11) (6.10)

o

This choice of Ro’ to a first approximation takes into account the
presence of oxygen vacancies.

The Madelung constant A, for a particular choice of

%

equilibrium distance 60 is defined as follows. The electrostatic

energy per unit cell may be written as

2 v ="' z.z
A Z ) Bk (6.11)
= t
s =1 t =1 s
where Zs and Zt are the valencies of the Sth and tth ion
respectively and Tt is the distance between them. The primes

indicate that the terms for r equal to zero (s = t) are omitted.
y is the number of ions per unit cell and the factor % ensures that

each ion pair is only counted once. If ¢°(1) is written as

I
2
¢(1) = --e'E Z Z/s ns (6.12)
s T

then Mg is given by

J
Z
t
= — (6.13)
8 Z rSt
t
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From equation ( 6.8)

A y !

2 _ 2 Zz n (6.14)
6o 2a ap - 8 s

The series for 118 vas first calculated by Madelung for sodium
chloride. The most commonly used method for computing Madelung
constants is that given by Ewald (1921).

The final expression for the lattice energy per mole

becomes

U, = -39-7a% (o Y3 a

(o]

a-» (6.15)

Where M is the weight in grams of one molecule and ¢ is the
density; values of (P /M) are given in Table (6.4). A6° for
the fluorite lattice is 7133058 (Shermen 1932; van Gool and
Piken 1969). Calculated values of the Madelung energy

(329:7 & (o )3 A ) are collected in Table (6.4). e
attractive energies of the solid solutions are slightly greater
than for pure zirconia. The difference between the Madelung
energies for the two compositions of zirconia-yttria is small;
in fact that for the 8 mole% yttria is larger than that for the
12 mole% yttria composition. At first sight this might seem
surprising; but it must be remembered that the stability of a

crystal is govermed by the second derivative of the total cohesive
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TABLE (6.4)
Madelung |Repulsive |Tot
P M a%tgaggg enggg;lve bggg%ng g:bye _
‘% - 3 jtive N energy tugzera
energy Uy U=Up+Un
2r0, -2889 - - -
(20)0.88 (To05)0.1p |0-0268) =2892 | +321 |-2571 604K
(80,) 5,90 (10300, |00283| 2945 | +348  |-2597 595K

Energy units are kcals/mole

Results of the analysis of the bulk modulus and lattice parameter

data for the zirconia-yttria solid solutions on the basis of the

Born equation.

constant data is also included.

The Debye temperature calculated from elastic
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energy with respect to ionic separation; thus it is the repulsive
term which d¢minates the mechanical properties of ionic crystals.
The total cohesive energy of the solid solutions becomes
available when the repulsive exponent is known. One way of
calculating the repulsive exponent is via the bulk modulus as
follows. Within the region where Hookes law is obeyed, the ratio
of the applied hydrostatic pressure to the volume strain defines

the bulk modulus K and is written as

dp

K = -V. == (6.16)

where P is the applied hydrostatic pressure and V is the volume
of a mole. The pressure applied to the crystal is related to the

total energy E of the crystal by the thermodynamic equation.

p = (28 .+ (e (6.17)
@% Lo <’cﬁ)T

At OOK, E is equal to U if the zero point energy is negligible in
comparison with the total potential energy. Assuming this to be

so, then

P=<gﬁ =8 & & (6.18)

On differentiating P with respect to V

2 2
@& (@), & o (6.19
dr
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When the crystal is in equilibrium with the applied pressure,

(du/dr) is zero and

ap a%y /ar\ °
W - = (3 (6.20)
dr r=2=5%
o
When equation (6.20) is substituted into (6.16), the bulk modulus
is given by
- 2
K = -v{izg <g§-> } (6.21)
dr r = 60
The volume V of a mole is Nr3 and so
2
(“) 1 6
ar = .22)
av/ r=6 4
° 9N26°

Since the total energy per mole is

<2 2 N Ag & e N A &on'1
g = '—————r o 4 _—_—nrn (6-23)
ar“/ r = &, °

Finally by substituting (6.24) and (6.22) into (6.20) and
rearranging, the expression for the repulsive exponent is found

to be
9 60 b K
n = 1 + —2——'— (6.25)
3 ea Ab
0
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The bulk modulus value required by this equation is in fact, as
shown in the derivation (6.17) and (6.18), the isothermal bulk
modulus at 0°K. The value available here is the adiabatic bulk
modulus extrapolated to 0% from ?7°K. The conversion of adiabatic
to isothermal elastic moduli requires knowledge of the thermal
expansion and constant pressure specific heat (See Chapter 2,
Section 3.1), neither of which are available for zirconia-yttria
solid solutions. But the difference between the isothermal and
adiabatiq moduli is generally less than one per cent; the
temperature dependence of the measured bulk modulus is slight.

The value of n, calculated using the extrapolated value of K, is
not expected to be significantly in error; for (Zr02)0.88 (T, 03) 0e12
the repulsive exponent is found to be 9+1 and that for

(2r0,) 4.9 (¥, 03) o8 to be 8:5.

For crystals in which the binding is largely ionic the
repulsive exponent, calculated in a similar manner as above,
is usually of the order of 9. Presented in Table (6.3) are
values of repulsive exponents of many ionic crystals for comparison
with the results obtained here. Thus by inference the attractive
forces in yttria-stabilised zirconia are consistent with the

hypothesis of coulombic attractive forces.

The agreement between experimental values of the cohesive
energy and those calculated on the basis of the Born equation for

the materials listed in Table (6.3) could accrue from insensitivity
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to changes in the repulsive component which accounts for only
about 10% of the total. For example, a change of * 1 in the
repulsive exponent leads to a change of only about % 1% in the
total cohesive energy.

In the majority of crystals, the Cauchy relation 012 = Ch4,
is not obeyed. Ionic crystals are materials in which interatomic
forces can be most nearly approximated to central forces, which the
Cauchy relation requires. Table (6.3) shows that for none of the
jonic crystals listed is the relation exactly obeyed. In fact for
the zirconia-yttria solutions the departure is not éxcessively
large. Expressions for the elastic moduli derived on the basis
of the Born potential (Kellerman 1940; Krisham and Roy 1952)
necessarily predict the Cauchy relation to hold since the model
involves only central forces in a centrosymmetric lattice. The
origin of the experimental departure from the Cauchy relation was
first pointed out by LBwdin (1947), in a quantum mechanical
treatment of the lattice energy, who attributed it to the importance
of certain integralgs:which are the origin of multibody forces and
which cannot be replaced by equivalent two body central forces.
LBwdin's theory predicts the correct sign for the deviation from
the Cauchy relation but not quite the actual magnitude.

Thus the interionic central force model is not strictly

applicable to the zirconia-yttria solid solutions, as indeed to
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any other ionic crystal. But, as mentioned previously, the
insensitivity of the cohesive energy to the relatively short
range, non-central force components leads to a realistic value

of cohesive energy.



CHAPTER 7/

Elastic wave propagation in

the group VB semimetals
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71 Introduction

The aim of the work presented in this chapter is to compile
and discuss the orientation dependence of elastic wave
propagation in the group VB semimetals, By virtue of their
unusual rhombohedral A7 crystal structure of space group ng
(R3m), the elements arsenic, antimony and bismuth constitute a
unique series. VWhile the crystal symmetries are identical, the
antimony and bismuth lattices are much less distorted than that
of arsenic, which in fact tends towards a layer-like structure.
Thus it is interesting to contrast the elastic behaviour of
arsenic with that of antimony and bismuth,

Elastic wave velocities in arsenic were measured and the
elastic constants thus obtained were found to show distinctive
differences from those of antimony (Epstein and deBretteville
1965) and bismuth (Eckstein, Lawson and Reneker 1960)., These
differences are discussed in terms of the layer-like nature and
thus the highly anisotropic binding forces which are present in

arsenic but not in the other two elements.

7.1.1 Crystallography of arsenic

Arsenic crystallises in a rhombohedral structure of space
group ng (R3m). Two interpenetrating face~centred rhombohedral

lattices form the crystal lattice. Figure (?,1) shows the unit




Figure (7.1) The primitive rhombohedral cell sited inside the large face-
centred rhombohedron for the A7 structure. '
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cell and primitive translation vectors. Any unit cell contains
two atoms, each pertaining to a different rhombohedral sub-lattice.
The two face-centred rhombohedrons are separated along the body
diagonal by a fraction 2u of this diagonal (Falicov and Golin
1965). A value of u equal to Oe¢25 corresponds to that primitive
rhombohedron constructed in the closely related structure

composed of two interpenetrating face-centred cubes. This
displacement parameter u is 0.226 for arsenic, 0¢2336 for antimony
and 0423407 for bismuth, emphasising that arsenic is considerably
more distorted than bismuth or antimony; while the latter two
have almost cubic ecrystal structures, arsenic is far from being
S0, Indeed, arsenic tends towards a layer-like crystal structure.
Any particular atom is sited on one of the (111) planes and has
three nearest neighbours on the adjacent parallel plane: three
next nearest neighbours lie on another (111) plane on the other
side of the given atom but much further away, The nearest
neighbour and next nearest neighbour distances are 2-513 and
3-152 respectively., Thus planes normal to the trigonal [111]
direction occur in pairs in which the atoms are comparatively
close together while the double layers are more widely spaced.
Three different arrangements of atoms on the planar networks are

extant. A projection onto the (111) plane (Figure 7.2)) shows



Double loyel; 2
Double layer 3
Double layer |

Double layer |
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} Double layer 3

I it | i, e

<D VU DV<LD VL

B
C

? z-axis
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(9)

Pigure (7.2) (a2) The arrangement of the three types of atomic network -
A, B and C for arsenic shown projected onto the xy plane.
(b) The seqguential nature of the planes normad to the
Z-aXis in arsenic,
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the relationship between these networks, labelled A, B, C, which
follow sequentially along the z-axis and are separated by the
short and long interplanar spacings in turn, The crystal
structure is described by the sequence, shown in Figure (7.2)
123123123 of three types of double layer network.

A right-handed orthogonal set of coordinate axes may be
defined following the normelly accepted convention for trigonal
crystals (Cady 1964). The z-axis (trigonal direction) formed
by the intersection of three mirror planes mutually oriented
at £120° lies along the long body diagonal of the primitive
rhombohedral unit cell defined from the lattice translation
vectors a., a, and a; (see Figure (7.1)). The y-axis (bisectrix)
for which there are three options, is defined by projecting an
a

i
outwards from the origin O of the a,. A positive x-axis (binary)

onto the trigonal plane: the positive y direction is taken

completes the right-handed set.

The symmetry elements for arsenic are shown in Figure (7.3).
The z-axis exhibits threefold rotatory inversion symmetry while
the three possible x and y axes show twofold and mirror symmetry
respectively. Axes of pseudo-symmetry are described later with

reference to crystal orientation, (see (7.3.1)).
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7.2 The characteristics of elastic wave propagation in

trigonal crystals

Although elastic constant determinations of trigonal crystals
is similar to the tetragonal class (see chapter 5), there are
several points peculiar to the trigonal system which warrant
complete elucidation,

The Em point group of arsenic places it in the RI Laue group

which involves six independent elastic moduli as detailed below,

€11 %2 Gz Gy O 0

2 %1 %3 . O °

¢3 Gz G O © © @.1)
Ci,  =Cqy O C, O 0

o 0 0 o n C.y

) 0 0 0 Cas %(01 4=C12)

where the Cij's connect the stress components to the strain
components in the right-handed orthogonal Cartesian coordinate
system previously defined (7.1.1).
The form of the determinantel equation (2.23) giving
conditions for wave equation (2.22) solutions to exist, is determined

by the form of the equations (2.24). For arsenic these are
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2 2 2
Lyq = 00Cqq + 305(C,0=Ch0) + 150, + 20,0.C,,
Lyp = 2n50,Cyy + 3290, (C 440, 5)
L13 = 151, (c +044) +2nn

Lo

2%

%n1(c c ) +n c + nBC -2n.n c1,+ (7.2)

2.2
L23 = (n,l-na)C1 +nn (044 13)
Ly = (34300, + 5505,

The most straightforward direction for analysis is the [001]
threefold symmetry direction., Solution of (2.23) for this
direction yields the velocities of a degenerate pure transverse
and a pure longitudinal wave as (Chh/b)% and (CBB/p)% respectively.
The only other major crystallographic directions which are
pure directions are any one of the three x-axes directions, which
are indistinguishable from one another and are perpendicular to
mirror planes (see Figure (7.3)). But although the modes in
the [100] direction are pure, the particle displacement vectors
for the two transverse waves is not known without a priori
knowledge of the elastic moduli, This is overcome in practice
by a rotation of the Y-cut transducer until two distinguishable
transverse wave velocities are recorded. The scolutions for the

[100] direction wave velocities are for the pure longitudinal
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and for the two pure transverse waves

- 2 ’
pv‘2 = 1}(01 1'C12+2044)%W12’20M) +16c§4 (7.4)

The angle ¢ which the particle displacement vector makes with
the %=y plane is given by

tamp = o2 o M (7.5)
02 CM-pVE
obtained by substitution of (7.4) into (2.22)., The angle ¢
has two values corresponding to the two transverse wave velocities
and differing by '/2 demonstrating that the particle displacement
vectors for the three solutions are mutually orthogonal as
required, (The eigenvectors corresponding to the three
eigenvalues of an equation such as (2,22) in which the
coefficients of the eigenvector components form a symmetric
matrix, are mutually orthogonal. For the particular case of
elastic wave propagation, fhis orthogonaliity of wave
polarisations was first pointed out by Lord Kelvin (190k)).

Thus by measurement of the five wave velocities obtainable

along the [001] and [100] directions of propagation, all the
elastic constants except C,., are calculable, But it must be

13
emphasised that in the case of C14 only its magnitude is obtained;
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the sign of 014 is found from propagation in a mirror plane as
discussed below, It should be noted that the sign of C,“+ is
dependent upon the definition of axes (7.3).

Inspection of equation (7.2) shows that 013 is available

from velocity measurements in directions for which both n, and n,
are not zero and n3 is not zero. The most straightforward
directions which embrace these direction cosine requirements are
those which lie in the yz plane at any angle to the y-~axis except
0° and 90°., Solutions of equation (2.23) show that a pure
transverse wave can propagate at all angles in the yz plane with

a velocity given by
2
pvz = n2(c66-c44) + Cpy + 2:12113011+ (7.6)

The velocities of the remaining two modes are

pV2 = ng(c 2n.n.C )+C

oo 2
497C33)4C ) #C53-20,05C, T (0 (€, 4=C55)+C55-2n 0 014)

33
(o (0 -5 20 2 0,) (2(C,Cip)e0s) T
(7.7)
For all directions in the yz plane except the z~axis and one
other direction, these velocities correspond to that of a quasi-

longitudinal mode (positive sign) and that of a quasi-transverse

mode (negative sign). The one direction in the yz plane in
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addition to the z-axis which can support three pure modes occurs

when
2 2
b,  ©5C,#n5C, -2n.n.C, —pV"
tan 1(1_12) _ 2 ;1 LTz 4l (7.8)

where V is the velocity of the pure longitudinal mode along this
direction,

Propagation in the yz plane has two advantages over use of
directions in the x2z plane (which also satisfy the direction

cosine requirements for inclusion of C,, into the velocity

13
eXpressions). .Firstly the yz plane directions are, except for
the z-axis and one other direction, all quasi-pure directions;
all directions in the xz plane except for the x-axis which is

pure, are impure directions. Secondly the sign of 014 is not

available from velocity measurements in the xz plane.

73 Experimental details and results

The crystals used here were those grown by Jeavons and
Saunders (1968) by the vapour phase method from 99.9995 per cent
purity arsenic for low temperature galvanomagnetic measurements
(Jeavons and Saunders, 1969). The perfection of the crystals was

high as evidenced by the low dislocation etch pit demsity (10h cm'z)
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on the cleaved trigonal plane,

As mentioned previously (7.2.1) for the R3m structure, the
tensor component signs can depend upon the definition of a right-
handed (+x, +y, +z) axial set in the particular crystal under
investigation, In the present instance this is so far 014. The

method for assignment of axes to samples used here is now described.

7¢3+1 Orientation of samples: etch pit studies

(Work performed in this section was a joint effort by
Mr. Z. Sumengen and myself).

The x-axis may be identified from Laue back reflection
photographs by reference to the relatiomnship between the large
rhombohedron and a distorted cube; the [100]‘ directions show
pseudo~fourfold symmetry and the body diagonal directions (except
[111] show pseudo-threefold symmetry., The quadrant in the mirror
plane formed by the +y and +z axes contains a pseudo-threefold
axis and that formed by the -y and +z axes a pseudo-fourfold axis.,
One practical approach to assignment of such a right-handed system
in a particular sample is to inspect etch pits on the (111)

cleaved surfaces,

* In this section, direction indices are referred to the large

face-centred rhombohedron shown in Figure (7.1).



-~ 159 -

Crystals were cleaved to expose the (111) planes and etched
with an etch composed of two parts hydrofluoric acid, one part
nitric acid and one part glacial acetic acid (Jeavons and Saunders
1968),  Straight slip lines, mutually oriented at 120° are
observed on the (111) plane along the [101] directions, that is
parallel to the three binary directions, Etch pits (see Figure
(7.,4)) on a given plane all have the same orientation and are
almost triangular in shape, the sides of the 'triangle' being
somewhat rounded, The tangents to the centre of the pit sides
are parallel to the slip lines, With the +z-axis defined as the
outward normal to the exposed (111) plane, the orientation of the
etch pits with respect to the +x+y+z axial set was determined
from back reflection Laue photographs, reference being made to the
above mentioned pseudo-symmetry axes. It was found that a
vector drawn from a pit centre, normal to a pit side, points along
the +y-axis; see Figure (7.4). A cleavage plane may be exposed
on opposite sides of a given sample thus allowing two possible
definitions of the +z-axis as outward normals to these faces.,

For this etch pit orientation rule to be consistent, the etch pits
must point in opposite directions on these two faces: this was

confirmed experimentally.
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Brown et al (1968) suggest for bismuth that a unique
assignment of +x+y+z axes can be made using a twinning plane,
If the (111) plane is intersected by a twinning plane such that
a z-axis intercepts the twinning plane below the (111) surface,
then the +y-axis points from the binary line, defined as the
intersection of the two planes, to an origin where the Z=-axis
cuts the surface (see Figure 2 of their paper). This rule is
correct, if, as described in the literature (Hall 1954) the
twinning planes are (110) planes, To test this, a large
(approximately 2 cm x 1 ¢m x 1 cm) twinned crystal of arsenic
was examined by use of back reflection Laue photographs. The
twin plane was found to be (110), within the accuracy of 0.5°,
The (111) planes on either side of the twin plane were exposed by
cleaving and the etch pit orientations examined. The results,
illustrated in Figure (7.5), verify experimentally that the rule

proposed by Brown et al (1968) for bismuth also holds for arsenic.

7¢3.2 Elastic wave velocities and elastic moduli in arsenic

Samples for ultrasonic measurements were oriented by the
X-ray back reflection Laue technique and by reference to the etch
pit orientation on the (111) cleaved surface (7.3.1). Parallel
surfaces normal to the desired propagation direction were obtained

by spark cutting and planing as described in (3.5). The
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ultrasound was excited using the appropriate cut transducers (3.4)
bonded to the sample. Difficulties in bonding the transducer to
the samples were encountered. A large number of bonding agents
were tried (see (3.6.3)) without success. The ultrasound was
finally injected by coupling the transducers to the samples with
tensol cement. The measurements of ultrasound wave velocities
were limited by the bond behaviour to those obtained at room
temperature, In the directions used for wave velocity measurements
the ultrasound suffered attenuations in the range 3 to 4 db per
psec. In fact for the direction at 14+5° to the positive y-axis
in the yz plane in the +y+z quadrant, no echoes were observed for
the quasi~-longitudinal or quasi-transverse modes; velocity
measurements in this direction were limited to the pure transverse
mode.,

Initial measurements of the velocities of waves propagating
in arsenic were jointly undertaken by Mr. Z. Sumengen and myself,
The elastic moduli calculated from these velocities were presented
in a paper (Pace, Saunders and Sumengen 1970) a copy of which is
bound at the back of this thesis.

To improve the accuracy of a set of elastic constant
measurements a valuable procedure is to use a predetermined set
to estimate the wave velocity surface and the behaviour of the

energy flux associated with the elastic waves., Then this




TABLE (7.1)

Equation Equations relating the elastic Propagation Polarisation Experimental
number stiffnesses to the wave velocities direction direction velocities
(x 105 cm.sec-1)
79 /oV§=C11 100 100 4-?9
- 2 2427
710 | pVoeR(0ggr0,)+ (04 -Cgp) “440,, )] 100 oot 2+99
2 2\%
7.1 ‘pV§=%[(066+C4u)-((044-066) +4C, 5] 100 010 1489
7.12 fNﬁ=033 001 001 320
- in .
713 _/)V?-CM+ 001 xy plane 205
25V2=1(C, +C._)4C, ,~C
gow | ST T oy | o |0 i he32
+((%C11'%C33'C14) +(C13+CM-C14) )
2 v2=%(c +C,)+C, ,~C
75 T g# " 2.3 o iz e |0 k2 2 1+38
V2=cosa(14-5)c +sin2(14-5)C
+2sin(14-5)cos(14-5)C14

Elastic stiffness constant equations and room temperature experimental velocities in arsenic crystals.

- 29 -
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information allows determination of a more accurate set, This
procedure has been followed here, The previously determined
(Pace, Saunders and Sumengen 1970) elastic constant set was used
to establish the overall features of the phase velocities, the
directions of energy flux and particle displacement vectors, On
this basis further velocity measurements were founded. In
particular to minimise the effects of the quasi~pure mode
propagation in the yz plasne, the aim was to get closer to the
pure mode direction in the yz plane (which was found to be 14.5°
from the +y-axis in the +y+z quadrant from the initial data (Pace,
Saunders and Sumengen 1970)).

Table (7.1) presents a summary of the relationship between
the measured velocities and the elastic moduli for the various

propagation and polarisation directions used.

7e3¢3 Least-mean squares determination of the elastic moduli

The computer programme for the least-mean square fit of r
variables to q (g@> r) equations has been described in connection
with the elastic moduli determination of the tetragonal indium-
thallium alloy (chapter 5).

Table (7.2) presents the room temperature values of the six
elastic moduli of arsenic obtained from a least-mean squares

computer fit to nine velocities, Data for antimony and bismuth



TABLE (7.2)

C11 €12 13 C %33 Cu Co6
As | 13002310  30e332¢1  6h4e3¥1e1 =307120.52  58+7%1.0  22.5%0.5  50.0%1.6
Sb 99«4 309 266kt 2146 44-5- 395 3he2
Bi 63.22 2ol 2le?7 7420 38411 11430 19440
514 512 513 Say 833 Syl Se6
As 3063 20¢2 =552 1467 1378 45.0 20e2
Sb 1602 ~6e1 =59 -1242 a9§5 3846 o6
Bi 25474 -8.01 -11435 -21#5 40#77 115.9 67451

Elastic stiffness and compliance constants of arsenic (this work), antimony (Epstein

v’
and deBretteville 1965) and bismuth (Eckstein, Lawson and Reneker 1960).

Units are 1010 dynes cm_2 for the stiffness and 10-13 cm2 dyne-1 for the compliance

constants,
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is also included fof purposes of comparison.

The nature of the equations (7.9%) to (7.5;) is such that
the errors in some of the elastic moduli is likely to be larger
than that in others. The moduli which are expected to be subject
to the least errors are those which are related directly to a
velocity measurement,

An extensive survey of the effect of experimental errors in
the velocities on the elastic moduli was carried out: the moduli
were calculated by the least~mean squares methods using
combinations of velocity errors. A maximum error of 1% in
measured wave velocities was teken throughout. The moduli
obtained in this way are given in Table (7.3). Many more
combinations of experimental velocities each changed by 1% could
have been used for further least-mean squares determinatién of the
moduli. But, as Table (7.3) shows, a good assessment of the
effect of the unavoidable (see (3.7.4)) experimental error in velocity
measurement on individual moduli is obtained. The error quoted
for each elastic stiffness constant in Table (7.2) was obtained
from the scatter in its value in Table (7.3): moduli most affected

by velocity errors are C P and C14. In particular the error in 014,

1
much the smallest modulus, is substantial but by no means large
enough to change its sign; this is significant because the sign

of 014 in arsenic is opposite to that in bismuth and antimony.
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TABLE (7.3)

Velocities which Resultant moduli

have been changed

:zp:;fmzthfei;lue €11 S22 Gz Sy ®33 Oy

13002 3003  6Le27 ~3.716 58.73 22.52

v, 13202 32.48  64e9L  -34539 58+65 22447
v, 130.0 28+83 63«94 ~he2h  58.62 22.61
V3 13042 30455 64e33  -3.574 58.72  22.77
v, 130e1 30019 65¢03 =3¢623 59+78 22.50
v 13002 30427 64e13  -3.998 58+66 22.75
Ve 13063 29¢65 6Le33 =3.687 58+73 22.50
v, 130e4  30.45 63481 =3735 58e7h 22453
Vg 130e7  31.08 64e86 -2.753 58¢84 22.401|
Vg 1312 310k 6L4e67 =3.971 58.91 22.61
vV, 132¢1  31+27 6heblh 4051 58.58 22.56
V1V2V3 132¢0 31.35 64e58 =3930 58.49 22.80
IAAAN 13148  31+35 65440 -3.848 59.60 22.78
IAAAAD 1315 3089 65+17 =4e127 5953 23.01
IAAARAS 132¢0 29¢9 65420 <Le130 59.50 23.00

Estimation of the errors in individual moduli of arsenic resulting
from an experimental velocity error of 1%. Each row represents the
results of a least-mean squares computer calculation of the Cij using
the velocity data as given in Table (7.1) except that those velocities

indicated in column one are changed by +1%.
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Another important feature is that 013 and 033 do not have large

errors; because of the layer like nature of arsenic these two

moduli dominate the components of the Gruneisen tensor (see 7.5).

7.4 Compilation of elastic wave propagation characteristics

for arsenic, antimony and bismuth

Knowledge of the elastic moduli allows evaluation of the
propagation characteristics of elastic waves in any direction of a
crystal, The wave velocity surface is a three dimensional entity.
Here, xy, yz and xz cross sections of the wave velocity surfaces
are presented for the three elements arsenic, antimony and bismuth,
A computer programme (see appendix ( 2 )) was written to calculate
the velocities for directions at every degree interval in the
three planes. Velocities along directions in the yz plane were
obtained from solutions of equations (7.6) and (7.7), while
velocities along directions in the Xy plane were obtained from

solutions of the cubic equation

03 4 al Wt s B 4 C =0 (7.17)

where

A= =Ly + Iy, + Igg)
2 12

B = (Lyqlpp + Lyqlag + Ly lys-L 23 LyomLg3)

2 .2
C = (Lyglyz + Loglss + L1 22~ Lqq o0 33720l 2lo3)
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The L's are given by equation (7.2) with n_, = O.

3
Similarly the velocities for propagation directions in the xz plane
were obtained from solutions of equation (7.17) with n, = 0.

The Xy, y2 and zx cross sections of each of these three A7
structure crystals are presented in Figures (7.6) and (7.7). Each

cross section will now be discussed in turn.

(i) xy cross section

In crystals of the Rgm point group the xy plane is the plane
normal to thé threefold inversion symmetry axis. Because sound
velocities are independent of the sense of direction, the Xy
velocity sections (Figure (7.6)) exhibit sixfold rotational
symmetry about the z-axis, For the purpose of direct comparison,
the sections (Figure (7.6) a, c, d) of all three elements are
drawn to the same scale, although the origins differ. On this
scale the three velocities in arsenic are apparently independent
of direction. However, expansion of the scale (Figure (7.6) b)
shows that arsenic also obeys the symmetry requirements,

Plausibly the lack of sensitivity in the xy plane of the
velocities in arsenic in contrast to that in antimony and bismuth
arises from the relatively small control exercised over the atomic

motion in the xy plane by the forces between the double layers.
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x-z and y-z velocity sections for : (a) and (d) arsenic ;
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(ii) 2x cross section

The zx plane is normal to the yz mirror plame and includes
both the binary (x) axis and the z-axis. In consequence these
velocity cross sections show 2m symmetry (see Figure (7.7) a,b,c).
The intersection at the z-axis of the two gquasi-transverse wave
sections occurs because two degenerate pure shear waves can be
propagated down the z-axis, The relative softness of arsenic
along the z-axis is manifested in the elongation of the section

(Figure (7.7) a) along the x-directian.

(iii) y=z cross section

Cross sections in the yz plane reflect the twofold rotational
symmetry about the x-axis (Figure (7.7) d,e,f). The importance
of an unambiguous assignment of the right-handed, orthogonal
(+x, +y, +z) axial set to the particular sample under investigation
is well demonstrated by these sections: velocities in the +y+z
quadrant differ markedly from those in the -y+z quadrant, especially
in antimony and bismumth. The arrow labelled A in each section
indicates the pure mode direction in the yz plane in addition to
the z-axis itself., For such a direction the particle displacement
vectors are either parallel or perpendicular to the propagation
direction, In the former case the wave is pure longitudinal and

consequently the energy flux vector is also parallel to the
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propagation direction,
We now turn to a detailed discussion of wave propagation in

the yz plane,

7.4.1 Energy flux vectors for directions in the yz plane

of arsenic, antimony and bismuth

Of considerable interest both experimentally and theoretically
are the energy fluﬁ vectors® associated with elastic wave motion in
anisotropic crystals. ForAexample, in the pulse echo ultrasonic
experiments deviation of energy flow from the propagation direction
can result in the wave impinging on the specimen sidewalls giving
rise to mode conversion and echo train deterioration,

The ith Cartesian component Pi of the energy flux vector is

given by equation (2.33) as
(_p__) %5 iaR o Ro 7 (7.18)

For propagation in the yz plane of trigonal gm crystals it is
found that P1, that is the energy flux component along the x-axis,
is zero for all three modes. Thus, the direction of energy flow
is always in the yz plane for any mode propagation along any

direction in that plane. Becsuse of this, the direction of energy

*
The energy flux is the rate of meximum flow of energy across a

unit cross sectional area normal to the wave vector per unit time,
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flow for modes propagating in the yz plane may be described by
the angle B the energy flux vector makes with the positive y-axis.,

(A positive angle is measured from the +y to the +z-axis).
B = tan” (Py/P,) (7.19)

For the pure transverse mode which can propagate along any

direction in the yz plane

Ly * 25O
Bn = tan ( (7.20)
T4 L6 * n3c1u

In the case of the quasi-modes in the yz plane

P, = (00,250, u)RZ +(=2n,C ) 4n5 C 4G 5 IR R 40, C443§3
(7.21)

Py = (=n,Cqp 40 Cuu)Rz 0, (Cp < 13)R02Ro3+n3033R§3

Thus the angle BL which the energy flux associated with the quasi-

longitudinal mode makes with the positive y-axis is

_q BCquF Ch4+n2(chh+c13)tan¢ +n3 2¢
B, = tan

2
n, 11-n3014+(n3(044+013)-2n C,y)tand +n L tan ¢

where ¢ (= tan (ROB/Roz)) is the angle the particle displacement
vector makes with the positive y-axis, For clarity, all the

angles used here are shown in the coordinate system in Figure (7.8)d.
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The angle BTa which the energy flux associated with the quasi-
transverse mode makes with the positive y-axis is obtained from
equation (?.21) by replacing ¢ by ¢+§ because of the orthogonality
of the particle displacement vectors.

A computer programme (see appendix ( 2 )) was written to
calculate the energy flux and particle displacement directions
for the three modes which can propagate along any direction in
the yz plane. The results are plotted for arsenic, antimony and
bismuth in Figure (7.8) a,b,c, as angular deviations from the
propagation direction versus propagation directicn. The particle
displacement vector for the pure and quasi-pure transverse modes
are not shown; the former is always perpendicular to the plane of
the diagram and the latter always differs by /2 from that for the
quasi-longitudinal mode,

Examination of Figure (7.8) a,b,c, shows that in all three
elements the condition for pure longitudinal mode propagation
nAR =0 (that is that the propagation direction n and particle
dispI;;ement vectors Ro are parallel) is obeyed twice in the yz
plane, One pure mod;-;xis is the z-axis itself, The other
direction is given in Table (7.4). It is interesting to note
that for antimony and bismuth this pure mode direction is much

the same; but that for arsenic is in a different quadrant than

the other two. Since one of the transverse waves with propagation




Figure (7.8) Deviation of the energy flux associated with the
quasi-longitudinal (-~ ), quasi-shear (— —-—') and pure
shear(——) waves from the propagation direction in the
Y 2. plane of (2) arsenic, (b) antimony and (c) bismuth.
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TABLE (7.4)
Arsenic Antimony  Bismuth

Pure mode direction 10° 153° 163°
Energy flux deviation
from propagation direction

Fast shear -9.5° +29° +30°
Pure mode
direction Slow shear -22° +25° +6°

Fast shear -23° +2° -10°
45° to +y o o °
axis Slow shear ~10 =44 -25

Longitudinal -17° -3° -8.5°

o
Fast shear =12
o

145" 10 +Y | 510w shear -27°
axis

Longitudinal =2°
Semi-angle of the cone of o o) o
internal conical refraction 2 28:5 3245

The pure mode direction in the yz plane, in addition to the
z-axis, is given for arsenic, antimony and bismuth. (The angle is
defined by an anticlockwise rotation about the +x-axis from the
+y-axis). Also, the extent to which the energy flux associated with
various elastic waves deviates from propagation directions of

special interest is collected.
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vector in the yz plane is always a pure mode, the propagation
direction which supports the pure longitudinal mode must by
orthogonality carry another pure transverse mode. Whereas the
energy flux associated with a pure longitudinal wave is always
parallel to the propagation direction, this is not true for pure
transverse waves unless the mode axis has twofold, fourfold or
sixfold rotational symmetry or is perpendicular to a plane of
reflection symmetry (Waterman 1959). This is not so here,
therefore, the energy flux deviates from this pure mode axis,

The angle of deviation for all elements is collected in Table (7.4).
A1l ultrasonic measurements of the elastic wave velocities in

these three elements have included either or both of the directions
at 245° to the z-axis in the yz plane so that a complete set of
elastic constants is made available. The deviations of the energy
flux from these propagation directions for all three modes for

the three materials are also given in Table (7.4); in some cases
this deviation is substantial.

An interesting result of the deviation of the energy flux
vector from the propagation vector is the phenomenon of internal
conical refraction, Waterman (1959) has discussed this in some
detail. In the present instance, the degenerate pure transverse

wave which can be propagated along the z-axis exhibits internal
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conical refraction with a cone semi angle given by tan-1(C1h/C#4).
This angle is much smaller in arsenic than in either antimony
or bismuth (see Table (7.4)). The phenomenon is manifested in
Figure (7.8) a,b,c, as an equal and opposite deviation at 90° of
the energy flux vectors associated with the two transverse waves,
Wave propagation in the xy and zx planes cannot be treated
in this straightforward way: examination of equation (7.18) for
these planes shows that, x and z axes excepted, there are three

non-zero components of the energy flow (P1, P, and P, # O).

2 3

7.5 Discussion of results

The discussion of the crystallography of arsenic (7.1.1)
introduced the idea that arsenic tended towards a double layer-like
structure, Binding between successive double layers is weak -
as evidenced by the ease of cleavage to expose (111) planes -
while on the other hand within each double layer atoms are bound
tightly., The crystal chemistry of the group VB semimetals has
been discussed in some detail in relation to band structure (Cohen
and Falicov 1964). Plausibly the deeper lying outer shell s>
electrons participate less in the interatomic binding than do the
three p electrons: a valency of three commonly occurs for these

elements, For arsenic in particular, bonding within the double
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3

layer planes would arise essentially from overlap of the p
orbitals, resulting in three bonds almost at right angles. The
interbond angle in the layer planes is actually 97012': some Sp
hybridisation probably occurs. On this basis the grbss features
of the band structure become understandable (Cohen, Falicov and
Golin 196L4): two bands, essentially s-bonding and s-antibonding,
are completely occupied while three nearly full predominately
p~bonding bands overlap slightly with nearly empty p-antibonding
bands to give the characteristic semimetallic behaviour.
Antimony and bismuth do not exhibit such pronounced layer-like
structure and cannot have bonds localised within the double layers
to the same extent as in arsenic.

Mechanical and thermal properties characteristic of layer-like
structures are anticipated for arsenic. Thus an attempt is made
to correlate the elastic constant data obtained here with the

double layer-like structure of arsenic.

7.5.,1 The Gruneisen tensor of arsenic

The thermal expansion of solids is a direct consequence of
the anharmonicity of the lattice vibrations or rather of the
interatomic potential energy function and has been studied using
various approximation techniques. In the quasi-harmonic

approximation (Collins and White 1964), the atoms in the crystal



- 177 ~

lattice are considered to execute harmonic vibrations but the
frequencies of the vibrations are volume dependent.

The Gruneisen relation

S0 = YC¥k/V (7022)

where 3a is the volume expansion coefficient, Cv is the constant
volume specific heat and k is the bulk modulus, is a consequence
of the quasi-harmonic approximation (Collins and White 1964) if

the Gruneisen constant Y is given by

3N 3N
Ty
i= i=1

9lnw,
- _ i . . .
where Y = (STE;—)T and w, is the frequency of the ith lattice

mode,

The thermal expansion of a crystal can be specified completely
in terms of the linear expansion coefficients @ uy, «, measured
along three mutually perpendicular axes. For uniaxial crystals
the thermal expansion is specified by a33 the expansion coefficient

parallel to and a., that perpendicular to the principal axis, in

11

the case of arsenic the z-axis. Knowledge of and a,,y the
%33 1

1
elastic moduli and the specific heat allows evaluation of the

Gruneisen tensor, which may be written (Key 1967)

T
Yij = cijmnamn/pcv (7.24)
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where C?. are the isothermal elastic comnstants, a«  are the
ijmn mn

linear thermal expamnsion coefficient components and pCv is the

constant volume heat capacity per unit volume.

The isothermal constants are available from equation (2.1k)

and the constant volume heat capacity from

C =¢C.- % C (7.25)

R T 1
v 3] ij s'ij s

but it is more convenient to use values obtained directly from
experiment i.e, constant pressure heat capacity and adiabatic
elastic constants, Equation (7.22) may (Barron and Munn 1967)

be written
Yis = cijmnamn/bcp (7.26)

For crystals with RSm symmetry the Gruneisen tensor has the form

Y119 Y12 Y13 AO0O

Y21 Yoo Y23 = ;%— 0B O (7.27)
P

Y34 Y35 Y33 oocC

where A=B=(C11+C12)a11+013a33 and C = 2C13a11+033a33.
Calculated Gruneisen tensor components for arsenic are compared

with those of antimony and bismuth in Table (7.5).
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TABLE (7.5)
Arsenlc Antimony Bismuth
Thermal Expansion %11 03 ) 0-768(2) 1.211(2)
x 1072 %1 - Lo (1) 1-619(2) 14685(2)
Yiq 1.71(3) 120 (2) 1032 (2)
Gruneisen Tensor :
33 153 o.gn @) 1010 @
B 17923 258 B 0.3 O
Compfigsibility y 3 -k-75(3) beq ($) 638 (5)
T em e 142(3) (&) -y (5)
P14 27-42 175 18.07

(1) Childs (1953)

(2) Bunton and Weintroub (1968)

(3) This work

(4) Epstein and deBretteville (1965)

(5) Eckstein et al (1960)

The thermal expansion, Gruneisen tensor and compressibilities

of arsenic, antimony and bismuth.
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Recently Munn (1969) has discussed the Gruniesen tensor of
antimony and bismuth and has predicted a greater anisotropy for
arsenic at high temperatures than for the other two elements.
Because the crystal lattice of arsenic is much more distorted
than thaf of bismuth or antimony, its properties in general are
the most anisotropic of the three elements as exemplified by the
linear compressibilities and thermal expansion (see Table (7.5)),
but this is not so for the Gruneisen tensor at room temperature.

The linear compressibilities, defined as the relative
decrease in length of a line when the crystal is subject to unit

hydrostatic pressure, has two components for rhombohedral materials

?1 = 8,1%8,5%5,5 (7.28)

and

for length changes perpendicular and parallel to the trigonal

axis respectively. The bulk compressibility is

B = 2(s11+s (7.30)

1284304553

Calculated values of B, B1, 511 are collected in Table (7.5) for
arsenic, antimony and bismuth., Along the trigonal axis arsenic

is much the most compressible of the three elements, ILike
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certain other highly anisotropic crystals (such as graphite and
tellurium), when subjected to hydrostatic pressure, the arsenic
1atticé actually enlarges along the layer planes, as shown by the
negative sign of B1. This property is discussed later (7.4.2)
on the basis of a ;;del of weak interlayer binding and strong
binding within each double layer. Lattice vibrations will be
excited preferentially in the direction of greater linear
compressibility on account of the lower vibrational frequencies,
thus the thermal expansion along this direction will be much the
greater, Gruneisen and Goens (1924) have provided quantitative

relationships for the thermal expansion in anisotropic crystals,

% = g = (SqqSip)ay, + 5458, (7.31)

o, = Oy = 2513qx + SBqu (7.32)

where 9, and q, are thermal pressure coefficients derivable from
lattice theory. The elastic stiffness within the layers is much
greater than that along the z-axis resulting in a33 being much

larger than a In arsenic § .48, (= 50.4 cmadyne:s-1 x 10-13)

11° 11
is close in magnitude but opposite in sign to 513 (= =55+19 cm2
dynes™? x 10°1%) and hence a,, is small. But S35 (= 13748 x 10”13

11
cmzdynes-1) is substantially larger than 2513 (= 110.38 x 10712
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cmzdynes-1), hence u33 turns out to be much larger than ®qq°

Therefore as a result of the highly anisotropic elasticity

of arsenic the Gruneisen tensor components become to a good

approximation
C
_ 2213
p
C
_ 35733

Thus, since 013 (= 6Le27 x 1010 dynes cm-a) and 033 (= 58-74 X 1010

dynes cm-a) are almost equal, the anisotropy of the Gruneisen
tensor components for arsenic at room temperature is not large.
Table (7.5) gives the values obtained for the Gruneisen tensor
components of arsenic and in addition the high temperature
limiting values of the tensor components for antimony and bismuth,
These are substantially smaller than those of arsenic. For
antimony and bismuth the Yii are close to unity and so the normal
mede lattice frequencies are effectively inversely proportional
to the volume, while for arsenic these frequencies have a more

marked volume dependence,

7+5.2 The linear compressibility of arsenic

Arsenic is the least compressible of the three elements

arsenic, antimony and bismuth as far as bulk dilation is concerned,
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but as mentioned previously, along the trigonal axis it is by
far the most compressible. The large change in the spacing
between the layer planes and the resultant enhanced repulsive
forces direct atoms outwards in the xy plane. As in the case
of the thermal expansion components, the negative cross compliance
term 813 being so much larger for arsenic than for antimony or
bismuth controls the anisotropy of the linear compressibilities.

Because the binding forces between the double layer planes
is so weak it has often been suggested in text books that the
double layer planes are held together largely by Van der Waal's
forces. Such a model cannot be used for rigorous computations:
the high z-axis electrical conductivity (Jeavons and Saunders 1969)
and the known Fermi surface point to some degree of orbital
overlap between the double layer planes. However it is
particularly suited to calculation because to a first
approximation interlayer cohesion only need be considered, The
exact nature of the interatomic binding within each double layer
is not of paramount importance, provided it is tight and the
double layers can be taken as rigid.

A joint effort by Mr. Z. Sumengen, Dr. G.A. Saunders and
myself produced an expression for the lattice potential energy

function of arsenic on the basis of the above model assuming a




- 184 -

Lennard-Jones 6-n potential along the z-direction, The detailed
computations are presented in '"The elastic constants and
interatomic binding in arsenic'' a copy of which is bound at the
back of this thesis. The elastic constant data used in that
paper are those obtained from the initiel measurements performed
by Mr. 2. Sumengen and myself,

To assess the validity of the model, linear thermal expansion
and compressibility components along the z~axis were calculated
and compared with experimental values, Good agreement obtained

when the repulsive exponent n was chosen as 8, (see Table 7.6)).

7.6 Conclusion

The distortion of the crystal lattice of arsenic (rhombohedral
angle a = 54010') and its resultant layer-like nature in comparison
with antimony (a = 57°141) and bismuth (o = 57°19') leads to marked
differences in its lattice dynamics; mechanical and thermal
properties characteristic of layer structures obtained for arsenic
but not for bismuth and antimony. Along the trigonal axis
arsenic is much the most compressible of the three elements; and
the linear compressibility associated with the xy plane is
negative in sign: application of hydrostatic pressure would result

in a large decrease in the separation between double layer planes




TABLE (7.6)

Linear compressibility Linear thermal Interlayer
Repulsive -13 -1 =2 expansion coefficient cohesive energy
Exponent B11 x 10 dynes ‘cm 05 o, =1 -
a33 x 1 K ergs cm
measured calculated measured | calculated L
N}
x
8 27.k2 21474 he3 5.87 515 '
10 10«92 3+90 746
12 739 127 875

* Childs (1953)
Measured and calculated values of the z-axis linear compressibility, thermal expansion

coefficient and interlayer cohesive energy for three values of repulsive exponent in the

van der Waals model for arsenic.
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while the xy plane would actually enlarge. This has been discussed
on the basis of a model of weak interlayer binding forces but tight
binding within each double layer.

For all three elements the compliance constant S,, is negative

13

but it is much larger for arsenic than for antimony and bismuth;

at the same time S__, is positive in all cases but is much the

33

largest for arsenic. If a simple compressional stress g, is

33
applied (that is on the xy plane in the z-direction), the strains

611 = +S13033, 622 = +S13033 and €33 = +333033 thus each

material will contract along the 2z~axis and expand in the xy plane.

are

For arsenic the response to this applied stress is greater than
for antimony and bismuth.
A more striking difference in the behaviour of arsenic ensues

on a simple compression o,, applied along the x-axis (the y-axis

11

behaviour is similar), Now the resultant strains are 511 = +S11011,

€op = 8950090 €33 = #5430 0 €55 = 45,0, and €5, = +5,,0,..

As S11 is positive, each element will contract along the x-axis

but S,. is positive only for arsenic so while arsenic contracts

12
also along the y-axis, antimony and bismuth will expand; all three
will expand along the z-axis, The large magnitude of 513 for
arsenic is further manifested in the negative sign of the linear

compressibility (= S11+S ) along directions in the Xy plane

12%543
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and in the very small thermal expansion a., (= 0:3 x 1072 T
in the xy plane as compared with that oz (= 43 x 1072 &~
along the z-axis,

These differences between relative magnitudes and signs of
the elastic constants of arsenic also reflect in the elastic wave
propagation characteristics which differ from those of antimony
and bismuth not only in degree but also in kind,

In general in a layer type crystal lattice, vibrations will be
excited preferentially in the direction of greater linear
compressibility on account of the lower vibrational frequencies.,
Velocities of elastic waves transmitted within the tightly bound
layers will be much greater than those of waves transmitted along
the direction of weak binding. Thus for arsenic wave propagation
velocities are higher in the xy plane than in the z-direction
(see Figures (7.6) and (7.7)). Strong interatomic binding forces
within each double layer control the wave propagation within the
Xy plane: these waves have velocities which are essentially
independent of direction, Hence the close similarity between the

xz and yz velocity cross sections (Figure (7.7)) for arsenic,




CHAPTER 8



- 188 -

Summarz

The propagation of ultrasonic waves has been studied in
several materials in which weak binding exists or develops as the
physical conditions are changed; certain basic similarities in
the behaviour have emerged. In particular the resemblance of the
ultrasonic attenuation and velocity anomalies in the vicinity of
the martensitic transformations in TiNi and an indium~-thsllium
alloy suggest that in both these materials a soft phonon mode plays
a dominant role in the transition mechanism. The reduced resistance
to shear deformation in the vicinity of a phase change is a
phenomenon manifested in both TiNi and the indium~thallium alloys
and also in the zirconia-yttria solid solutions., In fact in the
latter two, the shear constant which most strongly reflects the
decrease in lattice stability is the same, namely (C11-C12)/2.

In 211 three phase changes which have been studied, the elastic
anisotropy has been shown to increase markedly as the transition
is approached whether by temperature or compositional variations:
free carrier concentration changes may account for this effect in
the metal alloys. The difference between the bulk modulus of the
high and low temperature phases of TiNi has in fact been shown to
accrue largely from changes in the free carrier concentration and

thus the alteration in the binding energy from one phase to the other
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to come primarily from that in the Fermi energy contribution,
Knowledge of the compressibilities of crystals has provided a
sensitive indication of the presence of relative weakness in
binding forces, In particular the linear compressibilities of
indium=-10.% thallium evidences that this alloy has a greater
inclinatioﬁ to collapse into a cubic structure under hydrostatic
pressure than has indium itself, In a somewhat similar way a
striking manifestation of the double layer-~like structure of
arsenic has been found in the differences between its linear
compressibilities normal and parallel to the layer planes: while the
former is large, evidencing the weak interlayer binding forces,
the latter is small and actually negative.

The types of weak binding which have been investigated tend to
show a marked dependence upon crystallographic direction. To
manifest this, orientation dependence of elastic wave propagation
characteristics in tetragonal, rhombohedral and cubic¢ crystals has
been presented in detail, Thus the presence of relative weaknesses
in binding forces between crystals of the same structure has been
graphically displayed by various sections of the wave velocity
surfaces, These are particularly striking between indium and the
indium-10 at.% thallium alloy in the tetragonal crystals and between

arsenic and the elements antimony and bismuth in the rhombohedral

crystals,
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APPENDICES

The computer programmes which were written in Fortran IV to
calculate the elastic wave propagation characteristics in
tetragonal (4/mmm) and rhombohedral (3m) crystals are given;
the programmes for the tetragomnal crystals may be readily adapted
for all classes of cubic crystals. The notation used is explained
when necessary by comment cards in the programme print outs, In
all cases the only input data are the elastic moduli and the density

of the crystal,

Appendix (1) Tetragonal and cubic crystals.
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Computer programmes for calculating the elastic wave
propagation in the Z - Y, X - Y and X - Z planes of
R >m crystals,

MAIN CATE = 702035

C WAVES PROPOGATION IN THE Z-Y PLANE
GONAL (RDAR3M) CRYSTALS
0N AL{400)4A2{4001,A3(400} ”’400)~ V2 {400,404
Y, 0400} ;{400 51400),251400),A%(4000,R14001,
) P (400),Q{400),6{40801,V3{400 )gV%(4073;Ab(QDO)
)L AG{4G00) 5 VS {400 4VH6(400)7T1(4003,51(400),Q1{4
A1G(400) ,A11(400)
51y C11,C12,C13,01%,044,C35.066
{TF9.4)
IS Trz CAYSTAL DENSITY
30
1y IS THE PROPAGATION DIRECTION MEASURED IN AN
I-CLOCKWISE SENSE FRUOM THE +Y AXIS IN THEZ

Z-Y PLANE
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Zirconia (ZrO,) can be forced into a cubic fluorite structure by the addition of more than
7 mol %, yttria (Y,0,). The elastic stiffness constants of cubic zirconia single crystals
containing 8 and 12 mol 9, yttria have been determined between 77 and 300° K by an
ultrasonic pulse echo technique. Elastic constants are almost temperature-independent
and at 77° K are for the 8 and 12 mol 9% respectively: C,, = 2.04, C,, = 0.87, C,, = 1.58;
C, =223,C,,=0.973, C,. = 1.54 (units: 10"* dynes cm—2). Compressibilities and elastic
compliances are also presented. The data provide a basis for discussion of crystalline
stability and the nature of the interatomic forces. The decreasing cubic lattice stability as
the yttria content is reduced is demonstrated quantitatively. An ionic model closely
characterises the binding forces. The repulsive energy is about 129, of the Madelung
attractive energy. Debye temperatures calculated from the elastic constant data extrapolated
to 0° K are 595 and 604° K for the 8 and 12 mol %, respectively.

1. Introduction

Zirconium oxide, ZrO,, is of great importance as
a refractory. However, it is polymorphic [1]. The
normal monoclinic modification (space group
P2,/C) [2] transforms at about 1000° C into a
tetragonal form; a considerable volume contrac-
tion of about 99/ ensues: zirconia itself cannot
be fired into a strong, stable, sintered ceramic.
But when certain cubic oxides, including yttria
(Y;0,), form solid solutions with zirconia, a
stabilised cubic structure with a fluorite type of
lattice is assumed. Such materials can be fired;
no transformations at elevated temperatures
take place in the stabilised alloys. Valency
requirements indicate that oxygen vacancies are
now present, due to the replacement of tetraval-
ent Zr*+ jons by trivalent Y®* ions; in conse-
quence, electrical conductivity is enhanced.
Zirconia-yttria solid solutions are of technical
importance as refractory conductors, especially
in connection with high temperature electrodes
in magneto-hydrodynamic generators and for
fuel cell applications. One unfortunate result of
high temperature current passage through the
stabilised zirconia is a marked tendency for
fragmentation of both sintered, polycrystalline
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electrodes and single crystal specimens. Studies
of the way in which electrical currents alter the
bulk properties of single crystals are in progress
in an attempt to solve this problem. To back up
this work, detailed knowledge of the mechanical
properties and the nature of the bonding is
required.

The elastic constants of single crystals furnish
basic mechanical and lattice thermodynamic
information. The present concern is to report
elastic constant measurements, made using the
ultrasonic pulse-echo technique, for ° yttria-
stabilised zirconia. Data are used as a basis for
discussion of the stability of the crystals and the
nature of the interatomic forces in them.

2. Experimental Details

Two compositions of the solid solutions of yttria
with zirconia have been studied, one of 8 mol %,
Y,0; and the other 12 mol %] Y,O;, the former
because it is close to the stability edge (~ 7 mol
% Y,0,) [3] of the cubic phase. Single crystals
were grown by electrofusion from pure powdered
zirconia and yttria. Samples were cut from the
crystallised melts and oriented from back-
reflection Laue photographs. X-ray examina-

© 1969 Chapman and Hall Ltd.
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tions showed high crystal perfection, there being
no evidence for mosaic imperfections, and that
the material was in the cubic phase. The chemical
purity was high. Optical spectrographic analysis
showed that the only impurities, present at trace
level, were silicon, hafnium, magnesium and tin.
This result was substantiated by the absence of
observable electron spin resonance spectra
(sought at 9 GHz and 4.2° K), which also
indicated freedom from other paramagnetic
impurities.

Crystals were aligned to within 1° of the pre-
requisite [110] crystallographic axis, then two
(110) faces were cut by a diamond wheel and
lapped flat and parallel to each other to better
than 0.001 cm to avoid ultrasonic diffraction
and phase sensitivity effects. Ultrasonic wave
transit times along the crystal were measured to
an accuracy of + 1% by the single-ended,
pulse-echo technique at carrier frequencies
between 10 MHz and 50 MHz. Velocities were
independent of frequency over this range. Ident-
ical results, within experimental error, were ob-
tained from different crystals of the same
composition. Resonant, gold-plated quartz
transducers, X-cut for longitudinal and Y-cut
for shear waves, were used to excite the ultra-
sound. For Y-cut transducers, the bonding
material used (10° cs silicone fluid) was unsatis-
factory above 200° K, limiting the range of
experiment. However, the velocities were not
very temperature-dependent. Further experi-
mental details may be found elsewhere [4].

As the strains induced by ultrasonic waves are
only of the order of 10-7, Hooke’s law is valid
and each stress component 77;; can be considered
as a linear homogeneous function of the strain
components €,,:

Ti; = Cijx € (i, J, k,1=1,2, 3) s (1)

where the connecting components are the elastic
stiffnesses or moduli C;;;;. The usual matrix
notation giving these constants as C,; is achieved
by replacing 11 by 1, 22 by 2, 33 by 3, 23 by 4,
13 by 5 and 12 by 6. Symmetry in cubic crystals
reduces the 6 x 6 array for C,;;; in equation 1 so
that only three independent elastic constants
remain.

1n the present work, velocities v, of longitudi-
nal and slow and fast shear waves propagated
along the [110] direction were measured. In this
case

pri® = pt 1ong = (Cpy + Cpz + 2C4)2 = G, ;
q along [110];
pvs® = pv? snear ) = Caq; g along [001];
pVs* = p¥? gnear @ = (Cy; — Cpp)/2 = C';
qalong [170], )
where ¢ is the polarisation vector and p is the
sample density. Al three elastic constants Cj,,
C;; and C,, are obtainable from this set of
measurements. However, the three elastic con-
stants C,, C,4 and C’ can also be used to define
the three independent stiffnesses and have direct
physical significance. For the [110] direction a
normal stress 7,,, as applied through the longitudi-
nal sound wave inserted onto the (110) face,
produces a strain S, parallel to [110] and
T./S, 1s C,. For shear waves propagating down
and with atomic motion perpendicular to the
[1 10]direction, two physical situations occur, as
shown by equation 2; first, for atoms vibrating
in the [001] direction, the ratio of the shear
stress to shear strain is C,,, second, for tractions
parallel to [110] the ratio is (Cy; — Cp)/2.
Ultrasonic wave velocities at 77 and 196° K
are given in table I, together with sample
densities (measured by Archimedes’ principle)
and lattice spacings (obtained from Debye-
Scherrer powder photographs taken with Cu K«
radiation applying the Nelson-Riley extra-
polation formula).

3. Results and Discussion

The linear combinations of the elastic constants
C., C4; and C' derived from the velocity data,
using equation 2, are given as a function of
temperature in fig. 1. Calculated values of C,,
C,; and C,, at 77 and 196° K are presented in
table II. Another simple deformation is a pure
volume dilation without shear, expressed as the
bulk modulus K, the measure of stiffness to
volume dilation.

dPp Cy, + 2C
== V _— = 11—12 .
K av 3 3
The bulk modulus data are also given in table II.
In addition to the stiffnesses Cj;z;, tabulations
usually include the elastic compliances defined
by
€; = Syt T - 4)
S;;m 1s the reciprocal tensor of C. The
compliances of cubic crystals are given by
1107
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TABLE | Velocities of ultrasonic waves propagating down the [110] axis in zirconia-yttria solid solutions, the meas-

ured density and the lattice spacing

Ultrasonic wave velocity Density at room Lattice spacing at room
cm/sec x 10° temperature temperature
Longitudinal Shear gm cm-3 A
Fast Slow
(Zr0s)o-52 (YsOs)o -0 6.036 & 0.001 5.1276 + 0.0001
77° K 7.09 5.12 3.11
196° K 7.09 5.12 3.11
(ZrO2)o.88 (Y2O03)o-12 5.894 4+ 0.001 5.1401 4 0.0001
77° K 7.30 5.78 3.26
196° K 7.30 5.78 3.24
The three independent compliances for cubic
el —o ~ . crystals can also be defined as the two reciprocal
~ shear moduli S,, and 2(S,; — S;») and the
3 compres51b1'11ty .3(Su + 281,). ‘
Q' 3or The elastic stiffnesses and compliances for the
* two compositions of crystals are close: the
oy mechanical properties are similar. Some insight
+ 304 . . ops
g can be gained into the degree of crystal stability:
= o o o for a crystal lattice to be stable, certain relation-
302" 4 ships must hold between the elastic constants so
6O - that the energy density is positive [5]. Both

" —80—0 9

¢ (86
Is2-- J
osd
00—
o~ °\°\°_
—
~ 060
v o
L -
3
~ 056 " L s 1
50 150 250

TEMPERATURE °k

Figure 1 The temperature-dependence of the measured
iinear combinations of the elastic constants of (ZrO,),.s,
(Y.0)0.12 (0pen circles) and (Zr0O,),.q; (Y,0;),.05 (closed
circles). The units are 10'2 dynes cm-2.

¢ _ _—(Cu+Cy
B (€ 4 2Cp)(C, — Cy)
S = Cu ’
(Cry + 2C)(Cre — Cyy)

1
Su= G e

Calculated values of S;; are collected in table II.
1108

3(Cy; — Cyp) and (Cyy + 2Cy,)/3 must be posi-
tive in cubic crystals. The greatest difference
(~8%) between the elastic constants of
(ZrO3)o.85 (Y203)p.12 and (ZrOs)g.0 (Y203)0. 080
lies in (Cy; — Cy5)/2. And this is significant. A
negative value for (Cy; — C},)/2 would lead to a
spontaneous collapse of the lattice; the composi-
tion at which (C;; — Cy,)/2 becomes zero,
represents the absolute stability limit of the
fluorite phase. The decrease of 89 in
(C1; — C1p)/2 found between (ZrOg)o.g5 (Y205)0.12
and (ZrO,)g.92 (Y203)e.0s indicates a reduction in
lattice stability.

The absence of a substantial temperature-
dependence of (Cy; — Cy,)/2 for these crystals is
consistent with the vertical phase boundary line
at about 7 mol ¢ Y,0; in ZrO, in the phase
diagram [3]: if the composition at which the
phase change occurs did vary with temperature
then (C,; — Cyp)/2 in compositions near the
limit would be temperature-sensitive. A further
criterion for stability is that C;,;2 — Cp,2 > 0.
The parameter (C;,2 — C,,?) decreases by 189
from the 12 mol 9, to the 8 mol 9, solution,
again confirming the decreasing lattice stability
as the yttria content is reduced.

For an isotropic substance (C;; — Cy,) equals
2C,,. The extent to which this relation holds
good is an indication of the isotropy of a cubic
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TABLE |l The elastic stiffness and compliance constants of zirconia-yttria solid solutions

Elastic constants

(ZrOz)p.92 (Y203)0.08

(ZrOa)s.5s (Y:03)0.22

102 dynes cm—2 77° K 196° K 77°K 196° K

(Cyy + Cpy + 2C,,)/2 3.03 3.03 3.14 3.14

(Cy; — C0)/2 0.585 0.585 0.627 0.617
Cy4 1.58 1.58 1.54 1.54
Cy, 2.04 2.04 2.23 2.22
Cy. 0.870 0.870 0.973 0.983
C 2C

Cn T 26 J; 1) ik modulus 1.26 1.26 1.39 1.40

2C,, . .

(m anisotropy ratio 2.70 2.70 2.46 2.50
C

C—ij Cauchy relation 0.55 0.55 0.63 0.64
Cy2 — Cypt 3.305 3.305 4.032 4.052
Elastic compliances

1012 cm? dyne—!

Su 0.658 0.658 0.610 0.619

S12 — 0.197 —0.197 — 0.185 — 0.190
Sae 0.633 0.633 0.649 0.649

crystal. Values of 2C,,/(C,; — C}p), quoted in
table II, for the alloys, are not close to unity: a
shear on a {100} cube face is resisted rather more
than one on a diagonal {110} face. If the inter-
atomic lattice forces are central, so that every
atom is sited at an inversion point, the Cauchy
relation (C,, = C,,) should hold. In the present
case the experimental value of C;5/C,, 18 ~ 0.6.
This is close to that found in MgO but different
from the ratios found in the alkali halides in
which the Cauchy relations-hold quite well. In an
alloy consisting of three atomic species and
containing vacancies, the central forces model
will not hold rigidly.

Knowledge of the bulk modulus can be used to
develop an understanding of the type of binding
between the atoms in the crystals. One approach
is to assume ionic binding in spite of the non-
central forces. Then we can write for the
potential energy per unit cell

—a%?ud B
0, — —Xd B, ©

where o is the largest common factor in the
valencies of the ions (2 in the present case), u is
the number of molecules per unit cell, 4 is the
Madelung constant and » is the repulsive
exponent, which can be determined from the
bulk modulus. The constant B in the repulsive
term can be found in the usual way from the
condition that d®/dr = 0, when r takes the

equilibrium distance R, . Then

— a?e®uAd

Oy = — 5

(1-5) =00 +o0-

Now writing the lattice energy per mole U, as
(— N®,y/p) we have

a’e?NA 1
—3 1 - - -
Go R, ( n )

®)

The effect of the presence of oxygen vacancies in
the crystals can be taken into account to a first
approximation by choosing for R, the cube root
0, of the molecular volume. The corresponding
Madelung constant is then given by

g =2 ©

R, 3,
Then substituting 9 into 8 and introducing
numerical values for Avogadro’s number N and
the electronic charge e, we have

Uy =280.6 a2 (p/ M) A gy ( 1 — ’11) . (10)

where M is the gram molecular weight. 4 4, for the
fluorite lattice is 7.33058 [ 6, 7]. Calculated values
for the Madelung energy, 280.6 o2 (p/M)1 " Ay,
are collected in table III. The attractive energy
in the solid solutions is rather greater than that
of pure zirconia.

1109
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TABLE |1l Thermodynamic parameters of the zirconia-yttria solid solutions

P Madelung Repulsive Total binding Debye
M attractive energy energy temperature
energy Un Un Upy=Un + Un 8,
Zr0O, 0.0430 — 2889 — — —
(Zr0s).55 (Y303).12 0.0435 — 2892 + 321 — 2571 604° K
(ZrO0)o.02 (Y2Os)o08 0.0459 — 2945 + 348 — 2597 595° K
Energy units: kcal/mol
The relationship between the bulk modulus of the parameters
P 1dp U (BU)([dx): s G Cu o G G
=~pvav- " TamT TV EeE)\ar Ciz + Cas Cua

(1
and the repulsive exponent can be obtained by
differentiating the potential energy expression
twice with respect to internuclear distance and
substituting into 11. For the fluorite lattice the
nearest neighbour distance ry is (3 a¢/4) and the
volume V of a gram molecule is 16/(3 {/3) Nry3.
The exponent n can be shown to be
93,4 K

(XZeZA 50 -

9at K

a2e?A4 ag

n=1-+ 1+ (12)
Taking the measured lattice spacing (see table I},
the appropriate Madelung constant (4, = 11.63
for the fluorite lattice) [6, 71, and the measured
bulk modulus, # is calculated as 9.1 for (ZrO,),.ss
(Y303)0.12 and 8.5 for (ZrOy)y.92 (Y3035)¢.0s. FOr
many ionic crystals, » is approximately equal to
9: the binding in these solid solutions appears to
be largely ionic. By putting the values of » into
equation 10, the total lattice energy per mole
can be calculated (see table III). Repulsive
energies are about 129/ of the attractive energies.
From the values of U,, many thermochemical
parameters become available.

One useful parameter, the Debye temperature
f,, may be calculated readily from elastic
constant data. Here the method of de Launay,
based on the Born-von Karman model, has been

used [8].
9N 173 C44 1/2 9 113
m) <7> i

Then
0o
where values of f are tabulated in [6] in terms

i
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Elastic constant data have been extrapolated to
0° K. The values of 8, derived in this way are
604° K for (ZrOy)g.¢5 (Y203)0.12 and 595° K for
(ZrOy) .95 (Y303)0.0s- Knowledge of the Debye
temperature is important in the interpretation of
spin-lattice relaxation behaviour [9] particularly
in assessing whether direct or Raman processes
should dominate the relaxation at a given
temperature and in determining the influence of
defect sites. In the studies of the effects of current
passageinyttria-stabilised zirconia single crystals,
it has been shown that, in electrically reduced
samples, electron spin resonance spectra are
observable at 77 and 4.2° K (9 GHz); these
results will be discussed more fully elsewhere.
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BINDING FORCES IN ARSENIC
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(Received 28 October 1969)

Abstract—The elastic constants of arsenic single crystals measured by the ultrasonic pulse echo
technique at room temperature are presented (C,, = 123-6, C,, = 19-70, C,; = 62-30, C,, = —4-16,
Cys = 59-11, C,, = 22-57, units are 10" dyn cm~2). To fix the sign of C,,, a right handed axial (+x, +y,
+z) set must be unambiguously determined in the sample. To assist this assignment, the relationships
have been found between the etch pit orientation on the (111) cleavage plane, the twin plane and the
accepted (+x,+y, +z) axial set. In the literature it has often been stated that arsenic crystals consist of
double layer planes bound by van der Waals forces. The potential energy function for this model is
calculated and the model tested by comparison between theoretical and experimental values of the
linear compressibility and thermal expansion. Good agreement obtains. This simple model provides
useful physical insight into the lattice properties of arsenic which can be interpreted on the basis of a

large component of van der Waals bonding between the double layers.

1. INTRODUCTION

THE ELASTIC constants of solids relate directly
to the total crystal energy. The binding forces
and thus the characteristic properties of the
group VB semimetallic elements arsenic, anti-
mony and bismuth are inextricably linked[1]
to their unique rhombohedral, A7 crystal
structure of space group D3,(R3m). Two
interpenetrating face-centred rhombohedral
lattices with an angle of 54°10’ for arsenic,
57°14’ for antimony and 57°19' for bismuth
form the crystal lattice. Figure 1 shows the
unit cell and primitive translation vectors.
Any unit cell contains two atoms, each per-
taining to a different rhombohedral sublattice.
The two face-centred rhombohedrons are
separated along the body diagonal by a frac-
tion 2u of this diagonal[2]. A value of « equal
to 0-25 corresponds to that primitive rhom-
bohedron constructed in the closely related
structure composed of two interpenetrating
face-centred cubes. This displacement para-
meter u is 0-226 for arsenic, 0-2336 for anti-
mony and 0-23407 for-bismuth, emphasising
that arsenic is considerably more distorted
than bismuth or antimony: while the latter two
have almost cubic crystal structures, that of

24

Fig. 1. The primitive thombohedral cell sited inside the

large face-centred rhombohedron for the A7 structure.

The primitive translation vectors are denoted by a;

(i=1,2.3). The standard co-ordinate system is used, in

which the y axis is chosen by projecting one of the a; onto

the (111) plane and taking the positive direction outwards
from the origin O of the a;.
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arsenic is far from being so. Indeed arsenic
tends towards a layer-like crystal structure.
Any particular atom is sited on one of the
(111) planes and has three nearest neighbours
on the adjacent parallel plane; three next
nearest neighbours lie on another (111) plane
on the other side of the given atom but much
further away. The nearest neighbour (A,) and
next nearest neighbour (A,) distances are
2-51 A and 3-15 A respectively. Thus planes
normal to the trigonal [111] direction occur in
pairs in which the atoms are comparatively
close together, while these double layers are
more widely spaced. Three different arrange-
ments of the atoms on the planar networks are
extant. A projection on to the xy plane (Fig.
2(a)) shows the relationship between these
networks, labelled A, B, C, which follow
sequentially along the z-axis and are separated
by the short and long interplanar spacings in
turn. The crystal structure is described by the
sequence, shown in Fig. 2(b), 123123123 of
three types of double layer network.

Binding between successive double layers
is weak —as evidenced by the ease of cleavage
to expose (111) planes—while on the other

(0)

Fig. 2(a). The arrangement of the three types of atomic
networks A, B and C for arsenic shown projected onto the
xy plane.
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z2-axis

t

g} Double layer |

:S Double layer 2

2; Double layer 3

A
B; Double layer |

g] Double layer 2

g} Double layer 3

(b)

Fig. 2(b). The sequential nature of the planes normal to

the z-axis in arsenic. Single planes are separated alter-

natively by v,(=2-2531 A) and we(=1-2529 A) and are

arranged in sequence A BCABC. The double layer planes
follow the order 123123123.

hand within the double layers atoms are bound
tightly. The crystal chemistry of the group VB
semimetals has been discussed in some detail
in relation to the band structure[1]. Plausibly
the deeper lying, outer shell s? electrons
participate less in the interatomic binding than
do the three p electrons; a valency of three
commonly occurs for these elements. For
arsenic in “particular, bonding within the
double layer planes would arise essentially
from overlap of the p?® orbitals, resulting in
three bonds almost at right angles. The inter-
bond angle in the layer planes is actually
97°12', some sp hybridisation probably occurs.
On this basis the gross features of the band
structure become understandable[1]: two
bands, essentially s-bonding and s-antibond-
ing, are completely occupied, while three
nearly full, predominantly p-bonding bands
overlap slightly with nearly empty, p-anti-
bonding bands to give the characteristic
semimetallic behaviour. Antimony and bis-
muth do not exhibit such pronounced layer
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structure and cannot have bonds localized
within the double layers to the same extent as
in arsenic.

The present concern is to report and inter-
pret the elastic constants of arsenic. Com-
parison between the data and that for bismuth
[3] and antimony [4] point to a marked differ-
ence between -the interatomic binding in
arsenic on the one hand and in bismuth and
antimony on the other. Mechanical and ther-
mal properties characteristic of layer-like
structures would be anticipated for arsenic
and the elastic constants attest to this. In
particular the linear compressibility is much
greater across the cleavage planes than along
them, where in fact it is negative. Direct
evidence is put forward that the atomic planes
are loosely connected along the trigonal
direction; this is suggestive of the model for
arsenic, much quoted in textbooks, that the
double layer planes are held together largely
by van der Waals forces. This model is tested
here. No previous quantitative assessments
are available. Such a model cannot be used
for rigorous computations: the high z-axis
electrical conductivity[5] and the known
Fermi surface point to some degree of orbital
overlap between the double layer planes.
However it is particularly suited to calcula-
tion because to a first approximation inter-
layer cohesion only need be considered. The
exact nature of the interatomic binding within
each double layer is not of paramount impor-
tance, provided that it is tight and the double
layers can be taken as being rigid. The lattice
sums of the potential energy are computed
assuming a Lennard-Jones 6-n potential along
the trigonal direction. Hence the energy of
cohesion between the double layer planes is
calculated. To assess the validity of the model,
calculated linear thermal expansion and com-
pressibility are compared with experimental
data.

2. EXPERIMENTAL DETAILS AND RESULTS
The elastic constants were obtained from
ultrasound velocity measurements on single

crystals grown by the vapour phase method
[6] from 99-9995 per cent purity arsenic.
Crystal perfection was good; back reflection
Laue X-ray photographs showed the pinpoint
spots which evidence unstrained material.
Dislocation etch pit density was of the order
of 10*cm—2 on the (111) cleaved surfaces.
Further indications of the state of perfection
of these crystals can be gleaned from carnier
mobilities and densities obtained from the low
field magnetoresistivity tensor{5]. For the A7
structure, the tensor component signs can
depend upon the definition of a right-handed
(+x,+y,+2z) axial set in the particular crystal
under investigation[3,7]. In the present
instance, this is so for unambiguous determina-
tion of the sign of C,,.The co-ordinate system
used here is illustrated in Fig. 1. The trigonal
(2) axis, formed by the intersection of three
mirror planes mutually orientated at =120°,
lies along the long body diagonal of the primi-
tive rhombohedral unit cell defined from the
lattice translation vectors a;, a,, a;. The bi-
sectrix (y) axis, for which there are three
options, is defined by projecting an a; on to the
trigonal plane; the positive y direction is taken
outwards from the origin 0 of the a;. A positive
binary (x) axis completes the right-handed
set. The axis can be identified from Laue back-
reflection photographs by reference to the
relationship between the A7 crystal structure
and a distorted cubic structure; the [100]
directions show pseudo-fourfold symmetry
and the body diagonal directions (except
[111}) show pseudo-threefold symmetry. The
quadrant in the mirror plane formed by the
+y and +z axes contains a pseudo-threefold
axis and that formed by the —y and +z axes a
pseudo-fourfold axis. One practical approach
to assignment of such a right-handed system in
a particular crystal is to inspect etch pits on
the (111) cleaved surfaces. We have found the
unique orientation of these etch pits in arsenic
crystals. This has proved useful for crystal
orientation for the elastic constant measure-
ments among others. For the sake of comple-
tion the etch pit orientation on antimony
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crystals -grown from the melt[8] has been
looked at. :

Crystals were cleaved to expose the (111)
planes and etched. Pits on antimony, produced
by Dash 1[9], are almost triangular, while
those for arsenic, produced by an etch com-
posed of two parts hydrofluoric acid, 1 part
nitric acid and 1 part glacial acetic acid[6],
have somewhat rounded sides. Straight slip
lines, mutually oriented at 120°, are observed
on the (111) plane for both antimony and
arsenic along ‘the [101] directions, that is
parallel to the three binary axes. Etch pits on a
given plane all have the same orientation and
each side of any pit, or rather in arsenic the
tangent to the side centre, is parallel to the
slip lines. The task remaining is to determine
how the etch pits are orientated with respect
to the +x and +y axes, when the +z axis is
defined as the outward normal from the
cleaved surface. Etch pits in arsenic and
antimony show the same orientation: a vector
drawn from the centre normal to a pit side
points along +y axis. A cleavage plane can be
exposed on opposite sides of a crystal; there
are thus two possible definitions of the+z axis
as outward normals to these faces. For con-
sistency of the orientation rule, the etch pits
must point in opposite directions on these two
faces. This has been confirmed.

Brown et al.[7] suggest for bismuth that a
unique assignment of +x, +y and +z axes can
be made using a twinning plane. If the (111)
plane is intersected by a twinning plane such
that a —z axis intercepts the twinning plane
below the (111) surface, then the +y axis
points from the binary line, defined as the
intersection of the two planes, to an origin
where the z-axis cuts the surface (see Fig. 2 of
their paper). This rule is correct, if, as de-
scribed in the literature[10], the twinning
planes are (110) in Miller indices referred to
the large face centred rhombohedron or (211)
referred to the primitive rhombohedral cell.
We have examined, by use of Laue back-
reflection X-ray photographs, the crystallo-
graphy of a large (2 cm X 1 cm X 1 ¢cm) twinned

N. G. PACE, G. A. SAUNDERS and Z. SUMENGEN

crystal of arsenic. The twin plane, which is
somewhat broadened, has been shown to be
the (110). The (111) planes on either side of
the twin plane have been exposed by cleaving
and the etch pit orientation examined. The
results, illustrated in Fig. 3, verify experi-
mentally that the rule proposed{7] holds for
arsenic. Further, the relationship between this
(110) plane and the right-handed +x, +y, +z
set has been proved geometrically.

Crystals, aligned to -within *=1° of the pre-
requisite directions, were planed to have faces
flat and parallel to within 0-0002 cm and about
1 cm apart. Ultrasonic wave transit times were
measured by the single-ended pulse-echo
technique at a carrier frequency of 10 MHz.
Further details of the technique and experi-

‘mental apparatus may be found elsewhere

[3,11,12]). Resonant, gold plated, quartz
transducers, X-cut for longitudinal and Y-cut
for transverse, were used to excite the ultra-
sound. The transducers were bonded to the
crystal surfaces most satisfactorily with tensol
cement. Room temperature ultrasonic wave
velocities, determined as the statistical mean
from the results of many experiments on
several different crystals, are presented in
Table 1. There are six Voigt elastic stiffness
constants for R3m crystals; these are best
represented by the matrix [3]

Cu Ci Cys Cs O 0
Cr Cy C3 —Ciu O 0
_ C13 C13 C33 0 0 0
CH_ C14 _C14 0 C44 0 0 (9)
0 0 0 0 Cy4 Cy
0 0 0 0 Ci Cgl-

Ultrasonic wave velocities are related[3] to
the elastic stiffness constants Cj; by the set of
equations (1-8) in Table 1. Eight velocities
have been measured experimentally to allow
two redundant checks for the six stiffness con-
stants. To obtain the C;, a computer pro-
gramme has been devised, producing a least-
mean-squares fit to all eight velocities. The
method is described in detail elsewhere[5].
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(1) PLANE

Fig. 3. Schematic of the orientation found for a twinned
arsenic crystal. Etch pit orientation on the (111) cleaved
surfaces and one of the three sets of slip lines (each
parallel to a possible binary x direction) are illustrated.
The intersection of the (111) planes on either side lies
parallel to a binary direction; the twin plane, which is the
(110), contains a binary direction. The relationship be-
tween etch pits and the Cartesian (+x,+y,+z) co-
ordinate system on either side of the twin plane is shown.

Each of the velocities is calculated, by insert-
ing an arbitrary set of parameters into the
equations (1-8), then divided by the corre-

(1) PLANE
—
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sponding experimental value and then com-
pared to unity to compute a parameter
SUMSQ which is minimized.

8

2
SUMSQ = 2 calculated pv;
i=1

2
—1-0] .
measured pv;?

(10)

The density of arsenic is taken as 5-766 g cm~2.
Calculated values for the Cy for arsenic, to-

.gether with those of bismuth and antimony are

presented in Table 2(a). In addition, Table
2(b) includes the elastic compliances S,
where S, is the reciprocal tensor of C,y; (the
usual matrix notation giving constants C;; and
S is used, replacing 11 by 1,22 by 2,33 by 3,
23 by 4, 13 by 5, and 12 by 6). The trans-
formation is affected by

Sy = (—=1)"IAg/Ac (11
where A° is the determinant of the C;; terms
and A{, is the minor of the element Cy;.

For lattice stability, the crystal strain energy
3Ce;; must be positive. To ensure this, the
principal minor determinants of successive
orders of the matrix C;; (equation (9)) must all
be greater than zero[13]. For R3m crystals,
the principal minors are

Cesr CuaCos— Cy, Ci3C 44 (CuyCos— Ciy),
(CasCo— C1) [(C11Cay — CE3) Cag — CHCis],
(CusCo— C34) [Cyy(Cyy — Cyy) (—2C%+ Cy
X {Cy; +Cy2}) +2C3,(2C5; — C12C33)].

For all three elements, these requirements are
satisfied, serving as an additional check on the
experimental data.

The Debye temperature has been calculated
from the elastic constant data using the har-
monic series expansion method[14]. Accurate
assessment requires low temperature elastic
constants, but the value obtained (8, = 250°K)
from the room temperature data compares
favourably with that (282°K) derived from
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Table 1. Elastic stiffness constant equations and room temperature experimental
velocities in arsenic crystals

Experimental
Equation Propagation  Polarisation velocity
No. Elastic stiffness constant equations direction direction (X 10-5cm/sec)
1 pv2=Cyy 100 100 479
2 p0,® = $[(Ceg+ Cyq) + {(Cuy— Cog) 2+ 4C2,}112] 100 001 2-99
3 P32 =4[ (Cgs+ Cyz) — { (Cys— Cge) 2 + 4C2,}172) 100 010 1-89
4 pv2=Cgy, 001 001 3-20
5 pvs2 =C,y 001 100 or 010 2-05
6  2pv2=31(Cy+Cyy) +Coy—Cy, 0,1/V2,1/V2  0.1V2.1)V2 432
+{ (QCU —écs.'; - Cu)z + (Cxa + C44 - Cu)z}m
7 2pv2=H#C,;+Cy) +Cuy—Cyq 0,1/V2, 1/V2 0,-1/V2,1/V2 138
—{(icn—écas_cu)z"‘ (C13+C44_C14)2}UZ
8 pvg? = #(Ces+ Cas) + Cua 0, 1/V2, 1/V2 100 2:43

Table 2(a). Elastic stiffness constants in units of 10'° cm~2 dyn
at room temperature

Cu Ci. Cg Cy C,; Cu Cee SUMSQ Source
As 123-6 197 623 —4-16 591 22:6 519 0-:010  This work
Sb 994 309 264 216 44-5 395 342 0-019 [4]
Bi 6322 24-42 244 720 38-11 11-30 1940  0-000 [3]

Table 2(b). Elastic compliance constants in units of
10~ cm? dyn~! at room temperature

- S Sz S Sie Sss Siu Ses Source
As 466 368 —88-0 1-8 202-4 449 19-6 This work
Sb 162 —6-1 -59 —12:2 295 386 446 [4]

Bi 2574 —8-01 —11-35 —21-50 40-77 1159 67-51 [31

specific heat measurements[15]. The energy
change most easily computed from theoretical
models is that associated with the com-
pressibility, the measure of dilatation without
shear under hydrostatic pressure. The volume
compressibility in terms of the compliance
constants is

Bs = S11+Ses+ S5+ 2(S12+ S5+ S31). (12)
The linear compressibility, defined as the
relative decrease in length of a line when the

crystal is subjected to unit hydrostatic pres-
sure, has two components for rhombohedral
materials, these are

Bt=su+slz+513 (13)
B.= (511+ S12+Sls)
- (Sn + SIZ_ Sla_ Sas) (14)

for length changes perpendicular and parallel
to the trigonal axis respectively. Calculated
compressibilities for arsenic, antimony and
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bismuth are collected in Table 3. Arsenic is
the least compressible, so far as bulk dilatation
is concerned. But along the trigonal axis, it is
the most compressible: of the three elements,
arsenic is the most weakly bound along this
direction. Most striking -and significant is the
difference in sign of the two linear compres-
sibilities B, and B, for arsenic. When the
crystal is subjected to a hydrostatic pressure,
it enlarges on the xy plane. A similar effect is
shown by graphite[16] and by tellurium[17],
crystals also having highly anisotropic struc-
tures. In arsenic, in particular, this property
is understandable on the basis of weak inter-
layer binding. The resultant large compres-
sibility produces a big change in the spacing
between the double layers and the enhanced
repulsive forces direct atoms outwards in the
xy plane.

Table 3. Linear and volume
compressibilities in units of
10~ cm?/dyn

Bt Bz Bl‘ SOUI‘CC
As —46 264 172  This work
Sb 41 175 258 [4]
Bi 6-38 1807 30-83 [31]

3. LATTICE SUMMATIONS IN THE VAN DER
WAALS MODEL FOR ARSENIC

Lattice properties can be computed from
appropriate summations of the potential
energy interactions of the atoms in the crystal.
The layer-like structure of arsenic, the ready
cleavage and the great anisotropy of the linear
compressibilities 8, and 3, suggest that certain
properties will be dominated by the interlayer
cohesion. Certainly this is so[18] for the
related semimetal graphite, which also has a
layer structure. The purpose now is to cal-
culate the lattice summations of the potential
energy along the trigonal direction only in a
model of rigid double layer planes interacting
with each other by van der Waals forces. To
probe this model for arsenic the results will be
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used to calculate z-axis compressibility and
thermal expansion and the energy of-cohesion.
Then the theoretical assessments will be com-
pared with experiment. The potential energy
& between two interacting arsenic atoms
located on unpaired trigonal planes is written
as the sum of a van der Waals attractive term
and a repulsive overlap term.

<I>=A<b 1

F_F>’ n > 6.

(15)

Here r is the atomic separation and A and b
are positive constants. Physically the London
dispersion effect arises from interaction be-
tween momentarily induced atomic dipoles:
to obtain the van der Waals attractive potential
between the atoms, the atomic polarizability o
is required[19-22]. Taking the first atomic
ionization potential of arsenic as 10-05eV, we
estimate 4-9 X 1072*cm? for a. Buckingham
[23] using self consistent ficld, wave functions
and including electron exchange, has given
general relationships between the van der
Waals constant 4 and the polarizability «. For
two identical atoms with N electrons in the
outer shell, his expressions take the form

4=3 2t (16)
4V (a/N)
which gives 4 as 230x 10-%ergs cm® for
arsenic. Once A is known, a quantitative
expression for the lattice potential energy
can be obtained from appropriate summations
of ®. The approach follows that used for
graphite[18], although the detailed summation
procedures for the A7 structure are more
complex. :
The potential energy function ¢(Z,) for
interaction between an atom at the origin O
with all the atoms on the p'* plane at a distance
Z, along the normal to the (111) planes is

W(Z,)=A I [b(Z2+d,2) "2

—_— (Zp2+dm2)—6/2]. (17)
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Figure 4 shows the definition of d,; it .s at
this point that the three different types of
atomic arrangement (Fig. 2(a)) are taken into
account. The values of d, for one type of
plane are different from those of the other two.
All three types of planes have an identical
number o of atoms per unit area. To simplify,
it is convenient to replace direct sums

sUZp) = 3 (Z+dp?) ™ (18)
by integrals of the form
SMZ,) = 27r0'f (Z2+v2) 2y . dy
[
_ 270 P
= Z,2 (19)

Extensive machine computations have
shown that the difference between s"(Z,) and
S"(Z,) is negligible and this replacement is
permissable. We can now write

¥(Z,) =A[bS™(Z,) —S5(Z,)]. (20)
Next the potential energy per unit area for
interaction between two semi-infinite arsenic
crystals can be obtained by summing ¥(Z,)
over all values of Z, and multiplying by the
number of atoms per cm? on each plane

Fig. 4. A schematic diagram of the double layer planes.

d,, is the distance of the mth atom on the pth plane from

O’', the point at which the normal from the origin O inter-
sects that pth plane sited Z, and O.

Su(Z,) = aA[b S $(2,) -3 $42Z,) | @)

To describe the full range of Z, it is con-

venient to use three series expressions e,, fp
and g,, where

Wo

ep= D(%—Fp), fo= D(l +5 +p),

gp:D(l"'p)’ p=0,],2...

v and wy are respectively the distances be-
tween and within the double layers (see Fig. 4)
and D is equal to v+ w,. Hence

o= 2 D2-n = v 2—-n
5 50 =225 (£)7
p=0

p=0

This summation may be written in terms of the
polygamma function ¢®

2naD*" (n—3)
(n—2)! ¢(u/D)

3 St(e,) = (1)

p=0

(23)

where

SN = (=KL S (rm)=sD,

m=0

When the same substitution is made for the

other terms, the potential energy function is
obtained as

(n—3) (n—3) i
x(6(alD) + 61 % wuiD) +2(7}

~Z 60Dy + 01+ wup)

+24(1 ))] (24)

The constant b is determined from the equi-

librium condition (dy/dv),_,, = 0. Expressions
for the derivatives of {(v) with respect to v
are obtained by noting that
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d¢(n) . M (n+1)
dvd;(v/D) = Dz¢)(v/D (25)
and
do™ ‘ _ Wo G
dv¢(1+wo/D) = D2¢>(1+w0/1)). (26)

These derivatives are required for calcula-
tion of the compressibility and thermal
expansion. Numerical values of the poly-
gamma functions were obtained for the first
thousand terms by use of a computer. The
potential energy functions ¢(v) are plotted
for three values (n=28,10,12) of the
repulsive exponent in Fig. 5.

Y T T

+780 s

Jor225% 4

20 30

Distance A

40

Fig. 5. The potential energy function (v) for interaction

between two semi-infinite arsenic crystals. The results for

the repulsive exponent n = 8, 10, 12 are shown, with the
curve for n = 8 drawn in the thicker line.

4. DISCUSSION

Now that the experimental data for com-
pressibility is available, it becomes possible
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to see how well the van der Waals model
accounts for the measured lattice properties.
A reasonable approximation is to replace the
total volume change under hydrostatic com-
pression with that due to the interplanar con-
traction, when the total energy change is equal
to that in the lattice potential energy ¥(v)
alone. Then the z-axis linear compressibility
may be expressed by

L ()

= oS5 @7

B-:

Calculated values of 8,, taking the repul-
sive exponent # as 8, 10 and 12 in equation
(24), are compared in Table 4 with the experi-
mental result. Best agreement obtains when n
is 8.

An independent assessment of the model
can be obtained by recourse to thermal ex-
pansion data. The thermal expansion is a
symmetric tensor of second rank with two
independent components for rhombohedral
crystals, one (8,;) describing expansion along
the z-axis and the other (8,;) in the xy plane.
In layer-type crystals anisotropy is enhanced
and the thermal expansion coefficient 8;; of
arsenic is much the greater, again relating
to the weak interlayer binding. The linear
expansion coeflicient 8,, can be estimated from
the potential energy function y(v) following
Zhdanov [24] whence

Gk

%5 = ¥ wa)B

(28)

where k is Boltzmann’s constant and B and G
are respectively the harmonic and anharmonic
restoring force constants for a linear chain of
coupled oscillators in a potential ¥(v) and are
given by

B = (v+wo)/B:
6 =300

The values of 83; calculated in this way are

(29)
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Table 4. Measured and calculated values of linear compressibility,
thermal expansion and interlayer cohesive energy for three values
of repulsive exponent

Interlayer
Repulsive Linear compressibility Linear thermal expansion cohesive
exponent (B, x 10 cm?dyn~1) 833 X 10° deg™! energy
(n) AMeasured* Calculated* Measuredt Calculated* (ergcm™?)
8 26-4 21-74 50 5-87 515
10 10-92 -390 746
12 7-39 1-27 875
*This work.
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ABSTRACT

Pulse-echo measurements have been made of the effect of the martensitic
transformation, which occurs athermally in TiNi, on the propagation of
ultrasound waves both in the vicinity of and away from the transition region.
Considerable differences found between the elastic moduli of the two phases
are shown to arise mainly fromn a variation in the free carrier density: the
alteration in the binding energy from one phase to the other comes primarily
from that in the Fermi energy contribution. The attenuation of the ultra-
sound, measured in the frequency range 10 Muz to 25 MHz, shows, in
addition to the damping losses attributable to the specimen polycrystallinity,
a rapid increase as the temperature approaches that of the transition. This
is discussed in terms of a temperature dependent relaxation time associated
with large amplitude, low frequency phonon modes.

§ 1. INTRODUCTION

Nrrrvor (TiNi) undergoes a martensitic transition now recognized as the
archetype of the shape memory effect (de Lange and Zijderveld 1968).
The present concern is to report measurements of the ultrasonic wave
propagation in the vicinity of this phase change. The elastic and anelastic
properties obtained furnish basic mechanical and thermodynamic informa-
tion and provide physical insight into the nature of the transition.

At elevated temperatures the structure of the intermetallic compound
TiNiis B2 (CsCl) with a lattice spacing of 3-00A. On cooling, the material
undergoes the diffusionless transition to two slightly different but distinct
base centred monoclinic martensites (@,®=5-194, by =4-96 4, c,®=4-254,
y"=99°%; a™ =5194, by" =5524, ¢, =4-254, y™' =116°; where m and
m’' refer to the two martensites) (Marcinkowski, Sastri and Koskimaki
1968). If atom types are not considered, the martensite lattices have
distorted hexagonal structures. The transition is accomplished by a
simple shear on the (112) planes of the original B2 structure, in either the
[111] or the [T11] direction, thus creating the two martensites. When
equal amounts of the two martensites are present, there is no net shear
strain. This martensitic transformation is unique in that, although it
involves distortion, there is no associated volume change (Wang, Buehler
and Pickart 1965). Itisathermal. The transformation takes place overa
temperature range which is extremely composition sensitive, and is not
usually complete at room temperature. Further transformation can be
induced by plastic deformation. If, after such plastic deformation, the
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sample temperature is raised above the transition point, the original shape
is regained because the reverse transformation annihilates the deformation
(de Lange and Zijderveld 1968). This phenomenon has been termed the
shape memory effect and has engineering potential in stored energy devices.
Associated with the transition are many anomalous property changes. An
extensive investigation of such changes in the electrical resistance, Hall
effect, magnetic susceptibility and differential thermal analysis has been
made (Wang, de Savage and Buehler 1968). The elastic and anelastic
properties of TiNi have been looked at in the kilocycle frequency range
(Wasilewski 1965, Spinner and Rozner 1966) and demonstrate a large
damping capacity below the transition, another property which could
find important engineering applications.

Previously, the only data available on ultrasonic wave propagation in
TiNi was the longitudinal sound velocity measured at 5MHuz (Bradley
1965). In this paper we report anomalies in both longitudinal and shear
ultrasonic wave velocities and also in the ultrasound attenuation in the
vicinity of the transition. The elastic data are discussed in terms of
changes in the interatomic binding energy which result from differences in
the free carrier concentrations above and below the transition. Previous
studies (Wang et al. 1968) have suggested that the transition is electronic
in origin and that the instabilities exhibited by the lattice result from rather
than being the cause of the changing number of free carriers. The elastic
constant data presented here provide direct evidence for this interpretation.

§ 2. EXPERIMENTAL PROCEDURES AND RESULTS

Samples of arc cast TiNi alloy with a composition close to 50at. %, Ni
were kindly supplied by Dr. B. F. deSavage (U.S. Naval Ordnance
Laboratory). The transition temperature was 59°c which indicates a
nickel content of 50-8 +0-lat. % (Wang et al. 1965). A twenty hour,
650°c anneal was used to remove effects of prior working (deSavage,
private communication). Ultrasonic samples, cut from the rod by spark
erosion, were about 0-4 cm in length and had opposite faces spark planed
flat and parallel to within 0-0001in. Ultrasonic wave velocities and
attenuation were measured at carrier frequencies between 10MBz and
25 MHz by the single-ended pulse-echo method of which details may be
found elsewhere (Alper and Saunders 1967, 1969). The ultrasound was
excited using gold-plates, quartz transducers, X-cut for longitudinal and
Y-cut for shear waves. X-cut transducers bonded successfully to the
sample at all temperatures in the range 100°c to —196°c with mannitol
(melting point 179°c; measured velocity of longitudinal sound
21 x 105cmsec™). Bond quality for Y-cut transducers deteriorated in
the vicinity of the transition temperature, due to the shears associated
with the phase change. This difficulty was compounded by the high
shear wave attenuation, thus subjecting measurements of shear wave
velocities near the transition temperature to considerably larger errors
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than those for the longitudinal wave. Improved bond quality for shear
wave injection was achieved by using benzophenone (melting point 47°¢c)
below the transition. The importance of the thermal history on the
physical properties of TiNi has been stressed (Wang et al. 1968). Experi-
ments carried out as a preliminary to the present work showed that
incomplete thermal cycling greatly affects the ultrasonic propagation
characteristics of the sample. To ensure an identical thermal history
for each set of measurements, samples were always cycled completely
between 200°c and —196°. Once heating or cooling commenced, the
sense of the temperature change was not altered. This procedure gave
reproducible results. Because the transition is athermal, the measure-
ments were always made during either continuous slow heating or cooling
in an oil bath. Most of the measurements were done during slow cooling
(0-05°c per minute) and the temperature, measured with a copper/
constantan thermocouple, was effectively constant ( + 0-02°¢) for the time
taken over a reading. Results for the heating half of the cycle showed
qualitatively the same temperature dependence except that the transition
was displaced by about 20°c upwards in temperature. All data quoted
here are on the cooling cycle, the correct way to drive the martensitic
transition. Throughout the temperature range studied, the velocity
showed no dispersion between 10 MHz and 25 MHz to within the experi-
mental accuracy of +19%, Under a stress of 108dynesem—2 applied
perpendicularly to the velocity propagation direction at room temperature
there was no measurable change in the longitudinal sound velocity.

The elastic moduli characteristic of an isotropic solid are related to the
sound velocities (v, and vg) by the equations:

K = (3pv; 2 — 4pv?)3, (1)
w=pvsd, .. .. (2)
E = pvg*(3pv* — 4pvs?) [ (pvy,* — prs?), (3)
o =0-5(pv 2~ 2pv?)/(pv1,? — prs?), (4)

where K is the bulk modulus, p is the shear modulus, F is Young’s modulus,
o is Poisson’s ratio and p is the density (6:39gem=3). The measured
velocities in TiNi, converted to the elastic moduli, are shown in figs. 1 and
2 as a function of temperature. At —196°c the longitudinal and shear
elastic moduli are 1-90x 102 and 039 x 10?dynecm~2 respectively.
Errors in the velocities due to thermal expansion (Al/l=9-1x 10-¢°¢c—1;
Spinner and Rozner 1966) were small enough to be neglected.

The ultrasonic attenuation is shown in fig. 3 as a function of temperature
in the frequency range 10 MHz to 25 Muz. In the vicinity of the transition
the attenuation increases markedly. The main errors in these attenuation
measurements arise from diffraction effects and transducer coupling losses
and constitute a temperature independent, apparent background damping
upon which the intrinsic material effects are superimposed. The diffraction
loss has been shown to be 1-0de per a?/A (where a is the transducer radius)
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and is readily subtracted (Granato and Truell 1956). Coupling losses
were found to be 4:2ds.

The major component of the intrinsic background loss is that associated
with ultrasound wave scattering due to the polycrystalline nature of the
samples. Each grain is elastically anisotropic and has its crystallographic
axes misoriented with respect to those of its neighbours, thus giving rise
to elastic gradients which cause an ultrasonic energy loss. In general
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the frequency dependence of the attenuation due to this scattering varies
between the fourth and second power, depending upon whether the wave-
length of the ultrasound is greater or less than 2=, where D is an average
grain diameter (Papadakis 1968). In the samples used here the grains
were equiaxed and had an average diameter of 26 +4microns. Thus
Rayleigh (A > 27D) scattering is expected. The attenuation separates at
90°c into a constant term and one varying as the fourth power of the
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frequency. For longitudinal waves propagating in an elastically isotropic,
polycrystalline material with single phase, equiaxed grains, the attenuation
a due to Rayleigh scattering is given by (Papadakis 1968):

a=TS8f*dBpercm. N )
Here f is the frequency. The scattering coefficient is:
S =y%8-686. 87%/375p20 3)(2/v 5+ 3fvg%). . . . . (6)

y is the anisotropy factor (C}, —C,,—~2C,,) and is estimated for TiNi as
(—2:3+0-5)x 10" dynesem=2 and S as 830+ 350dBem—4Muz—%. These
may be compared with those for nickel (y= —14-7 x 1031 dynes cm~2 and
S=2896dBcm~*Muz—*; Papadakis 1968).

Fig. 2
. ———
// - P
L]
I-SOF
Ve t44r *
o
Jo45
g o
c
>
-
o
2 38 Ho44
=
H]
3
3 Jo43
2 2
x 132 K
2
@ Q1042
5
w
K
26 Jo41 &
4040
1 L '

40 60 80

Temperatere C

Temperature dependence of the bulk modulus K and Poisson’s ratio.

Losses due to heat flow between adjacent grains (Zener loss) and viscous
grain boundary losses will be present but do not contribute substantially
in TiNi; these losses are estimated to be of the order of 10-3dB/em. When
the losses due to transducer coupling, diffraction and that due to scattering
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The measured attenuation of both longitudinal and shear ultrasonic waves as
a function of temperature in the vicinity of the transition is shown.
The results for the longitudinal waves are presented at 10 Muz (O),
12 Muz (x ), 15 Muz ( &) and 25 Muz (®). The shear wave attenuation
is given at 12 Muz ( A).
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are subtracted from the measured longitudinal attenuation, the remaining
attenuation, characteristic of the phase change, is shown in fig. 4 as a
funection of frequency at various temperatures: the decrement

A(=8-686a(dB/cm) . v; (cm/sec)/f(sec™))
is also plotted. The physical significance of the attenuation results will
be discussed after the elastic constants to which we now turn.
Fig. 4
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§ 3. Discussion

The transition in TiNi has no apparent associated volume change and
has been shown to be second order from measurements of the specific heat
anomaly (Berman and West 1967). It has been suggested (Wang et al.
1968) that the instabilities associated with the transition are largely
electronic in origin and that the anomalous specific heat can be accounted
for by carrier density changes. A two-band model has been put forward
for the high temperature, CsCl phase (Allgaier 1967); in a reduced zone
scheme the Fermi surface is essentially a hole octahedron (the s band)
located near the zone corners and an electron jack at the zone centre. In
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the high temperature phase both the number of holes and the electrical
resistance are larger than in the low temperature phase, results considered
by Wang, deSavage and Buehler on the basis of a ‘conduction’ to
‘covalent’ electronic transformation. However, the electrical behaviour
on either side of the transition can be interpreted as follows by recourse to
the usual features exhibited by transition metals and their alloys. Above
the transition the Fermi level location is such that the octahedral pockets
of the Fermi surface contain a large number of holes and the overlapping
d band a smaller number of heavy holes. Holes in the broad s band carry
the current and vacant sites in the narrow, low mobility d band result in a
high s-d scattering probability, which reduces the relaxation time for
carriers in the s band : the carrier Hall mobility is only 0-6 cm2volt—!sec!,
8o the resistance in this phase is high. Below the transition the Fermi
level is above the d band edge, so that the d band is full, and the reduced
number of carriers in the s band are more mobile (uy = 3-7 cm?® volt—1sec?)
with longer lifetimes thus enhancing the conductivity, although the free
carrier density (0-35x 102 c¢m~—3) is lower in this phase than in the other
(1-56 x 1023 cm—3),

The large change in the number of free carriers will be reflected in the
binding forces and thus in the elastic properties. The temperature
variations of the elastic moduli (figs. 1 and 2) exhibit both pronounecd
changes at the transition point and the considerable difference between
the elastic properties of the two phases of TiNi. The total energy of a
system, the second derivative of which with respect to strains gives the
elastic constants, may be expressed in the Wigner—Seitz cellular method
as the sum of terms which can be calculated separately. These include
the Fermi energy, the energy of the lowest electron state and the exchange
and correlation terms. A reasonable hypothesis is that the difference
between the total energy of the two phases in TiNi can be attributed
largely to the change in the Fermi energy. The elastic constant data
attest to this. The contributions to the bulk modulus due to the Fermi
energy alone is given by (Jones 1949):

(7)

where r is the radius of the atomic sphere defined so that (4/3)773 equals Q.
Assuming a free-electron model, that is that the s-band hole octahedra are
spheres, the Fermi energy Ky is given by :

3/3 2/3 77,27;2 2/3

where n is the number of free carriers per atom. The radius of the atomic
sphere is found from the unit cell dimensions to be the same above (1-4772 4)
and below (1-4774 &) the transition, as expected for a second-order phase
change. Differentiation of the Fermi energy twice with respect to r gives
the bulk modulus from (7). Therefore, the change in the bulk modulus
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between the two phases due to the change in the volume of the Fermi

sphere is:
B2 7 O \ 28 /p. 23 _ g 23
AKp= —{-— N ¢
P 20m (4772) ( rs ) ®)

where 1 and 2 refer to the high and low temperature phases respectively.
From Hall effect measurements (Wang et al. 1968) the number of free
carriers per atom in the high and low temperature phases is found to be
n,=2-11 and n,=0-47 respectively. These give a value of AK equal to
3:16 x 10" dynescm~2 which compares with the experimental value of
2:3x 1011dynesem~2 (fig. 2). Thus a most important contribution to
the change in those binding forces responsible for resistance to bulk
deformation comes directly from the change in the free carrier concentra-
tion. Further, this suggests that the magnitudes of the binding energy
contributions arising from the energy of the lowest electron state and the
exchange and correlation energies are not very different on either side of
the transition. The calculated contributions K from the Fermi energy to
the total bulk modulus K are about 309, of the experimental value above
the transition and only 149, below the transition (for 7'> 7T, measured
compressibility =15-6, Kp=4-99; for T <T, measured compressibility
=134, Kz=1-83; wunits are 10dynescm~2). Thus while the total
bulk modulus accrues from the large contributions other than that due
to the Fermi energy, the difference in the bulk modulus between the two
phases can be largely accounted for by the free carrier component.

The main feature exhibited by the shear modulus shown in fig. 1 is
that the low temperature phase is the more resilient against shears. This
is demonstrated strikingly by the difference between the Poisson ratios
of the two phases away from the transition region (see fig. 2). The
larger the Poissonratio is (the maximum possible vealu is 0-5), the lessstable
the material is to shears. No contribution is made by the Fermi energy
to the shear modulus unless the Fermi surface is in contact with, or intersects
as it does in TiNi, the Brillouin zone boundaries. For example, the stability
of B-brass with respect to shears across the (110) plane in the [110] direction
arises minly from the change in the Fermi energy as a result of shearing
the Brillouin zone (Jones 1952). Similarly in TiNi, since the number of
holes is less in the low temperature phase, the area of the Brillouin zone
boundary which the hole octahedron cuts is smaller than that in the high
temperature phase, thus giving an increase in the shear stability below the
transition, as demonstrated by the shear modulus and the Poisson ratio.

The difference in elastic properties of TiNi between the two phases away
from the transition point thus arises mainly from changes in the free
carrier concentration.

Another feature to consider is the appearance of pronounced changes
in the moduli and an anomalous increase in the ultrasound attenuation
near the phase transition (fig. 3). In particular the instability of the
phases to a shear is clearly demonstrated by the Poisson ratio (fig. 2),
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which rises sharply towards its maximum possible value of 0-5 at the
transition.

A system undergoing a second-order phase change passes through a
critical region in which the parent phase exhibits incipient instability
(Callen 1961). This implies that some branch of the phonon dispersion
curve in the parent phase approaches zero frequency. It is known
(Cochran 1960) that the temperature dependences of dispersion relation-
ships of particular normal modes are closely associated with displacive
phase transitions. In particular it has been shown that a transverse
‘optic mode of long wavelength in strontium titanate (Barker and Tinkham
1962) and potassium tantalate (Perry and McNelly 1967) has an anomalous
temperature dependence: the square of its frequency is proportional to
the temperature measured from the transition temperature. At this
temperature the crystal is unstable and consequently the displacive
ferroelectric transition occurs due to an instability against this mode of
vibration.

In a similar way the transition in TiNiseems to be linked with an unstable
phonon mode. The decrement, shown in fig. 4, exhibits a maximum at
progressively lower frequencies as the temperature approaches that of the
transition, indicative of a relaxation process whose relaxation time is
strongly temperature dependent. The origin of this relaxation process
may be found in the anomalously large temperature dependent amplitudes
of the unstable modes. The ultrasound will be influenced by these large
amplitude modes through phonon—phonon interactions: a large ultrasonic
attenuation results with a consequent rapid change in the elastic moduli
in the vicinity of the transition.
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probably not beyond current technique in suitable materials. Particularly interesting is the
production of good quality ultrathin crystals of materials with ‘layer structure’, such. as
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that QSE conditions prevailed in their films.
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The Griineisen tensor of arsenic

Abstract. The components of the Griineisen tensor of arsenic are presented and
discussed in terms of the layer-like nature of the crystal structure. Strong elastic
crosslinkage results in a lJower anisotropy of the tensor components than might be
anticipated.

The Griineisen constant is an important parameter in the study of the equation of state
and in the theory of anharmonic effects in solids. The present concern is to report and
interpret values of the components of the Griineisen tensor for arsenic. The characteristic
properties of the group VB semimetallic elements arsenic, antimony and bismuth are
closely linked to their unique rhombohedral A7 crystal structure of space group D3, (R3m).
The crystal lattice of arsenic is considerably more distorted than that of bismuth and
antimony; indeed arsenic tends towards a layer-like structure; planes normal to the tri-
gonal (z) direction occur in pairs. Binding between these successive double layers is weak.
Mechanical and thermal properties characteristic of layer-like structures obtain for arsenic
(Pace et al. 1970) but not for antimony and bismuth.

The Griineisen tensor can be evaluated from (Keys 1967)

viy = Cyrt ax1/pCp @)

where pCjy is the specific heat per unit volume at constant pressure and the Cyy; are the
adiabatic elastic stiffness constants. For uniaxial crystals the thermal expansion tensor ax;
has two independent components a3 and ags. Thus for trigonal (3m) crystals the Griineisen
tensor is

Y11 Y12 Yis A 0 O
1
=—1{0 A4 0 2
Y21 Ysz a8 pron )
Y31 Y82 ¥s3 0 0 B

where
A = Cuan + Cizann + Cigass @
B = 2C13011 + Cssass
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and the elastic stiffnesses are expressed in matrix notation. Calculated Griineisen tensor
components for arsenic are compared with those for antimony and bismuth in the table,
The elastic constant data used was obtained by the ultrasonic pulse echo technique (Pace
et al. 1970, Pace and Saunders to be published) on vapour grown single crystals (Jeavons
and Saunders 1968). The constant pressure specific heat (Cp = 1-898 x 107 erg deg-1 cm—3)
was taken from Nogteva et al. (1966).

Recently Munn (1969) has discussed the Griineisen tensor of antimony and bismuth and
has predicted a greater anisotropy of its components at higher temperatures for arsenic
than for the other two elements. However, while the layer-like nature of arsenic is attested
to by the linear compressibility and the thermal expansion components (see the table), the
anisotropy of the Griineisen tensor is not so pronounced as might have been anticipated.
This result is understandable on the basis of a strong elastic crosslinkage between the
thermal expansions along the z axis and in the xy plane The linear compressnblhtxes parallel
(8y) and perpendicular (8,) to the trigonal axis are given by

By = 2813+ Sss B, = Su + S12 + S1s ' “@

where the S;; are the compliance constants. When subjected to hydrostatic pressure, the
arsenic lattice actually enlarges in the xy plane. Along the trigonal axis arsenic is much the
most compressible of the three elements. This has been discussed elsewhere (Pace et al.
1970) on the basis of a model of weak interlayer binding forces but strong bonds within each
double layer. For all three elements the compliance constant Sys is negative but its magni-
tude is much larger for arsenic (—55-19 x 10-13 cm? dyn!) than for bismuth (—11-35 X
10-18 cm2 dyn-?) or antimony (—5-9 X 10-13 cm® dyn-1); in the case of arsenic this results
- in a negative sign for B '
Lattice vibrations will be excited preferentially in the direction of greater linear com-
pressibility on account of the lower vibrational frequencies; thus the thermal expansion
along this direction will be much the greater. Griineisen and Goens (1924) have provided
qualitative relationships for the thermal expansion in anisotropic crystals.

az = a11 = (Su + S12)gz -+ S139.

ay = ags = 2S1sqz + Ssﬂz
where ¢ and ¢, are thermal pressure coefficients derivable from lattice theory. In arsenic
S11 + S13 (=504 x 1028 cm? dyn-1) is close in magnitude but opposite in sign to
Sis (= —5519 x 10-13 cm? dyn-1): aj; is small. But the magnitude of Szs (=137-8 X
10-13 cm? dyn-1) is substantially larger than that of 2S33 (=110-4 X 10-18 cm? dyn—1)

Arsenic Antimony Bismuth

Thermal an 0-3s 0-768» 1-211v
expansion asg 4-3s 1-619® 1-685P
(105K S

Griineisen 11 1-71e 1-200 1-32v
parameter v3s 1-53¢ 0-94v 1-100
Compressibility B 17-924 25-8e 30-83t
(1013 cm® dyn-1) BL —4-754 4-1e 6-38t

a, Childs 1953; b, Bunton and Weintroub 1968; c, this work;
d, Pace et al. 1970, Pace and Saunders, to be published; e, Epstein and
de Bretteville 1965; f, Eckstein ef al. 1960.
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hence ags turns out to be larger than ay1. This is reflected in the Griineisen tensor com-
ponents because, for arsenic alone, to a good approximation

A = a33Cis B = agsCss. ®

And, since Ci13 (=64-27 x 101° dyn cm~2) and Css (=58-74 x 1019 dyn cm~?) are close,
the anisotropy of the Griineisen tensor components for arsenic at room temperature is not
large. The table gives the high temperature limiting values of the Griineisen tensor coefficients
for antimony and bismuth. These are substantially smaller than those of arsenic. For
antimony and bismuth the y4; are close to unity and so the normal mode lattice frequencies
are effectively inversely proportional to the volume; while for arsenic these frequencies have
a more marked volume dependence.
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Orientation kinetics of Gd**-F- interstitial pairs in CaF,

Abstract. The esr spectrum from substitutional Gd3+ ions with adjacent trapped F—
interstitials broadens significantly above about 100°C. The temperature-dependent
part of the relaxation time associated with this broadening is compatible with the
relaxation time derived by dielectric relaxation measurements on identically treated
crystals. These results are interpreted in terms of the orientational diffusion of the
trapped F- interstitial ion around the immobile Gd3+ ion in a cation site. The relax-
ation time is given by 7 = 7¢ exp (Q/kT), with 7o = 8.2 X 10145 and Q = 0.38 eV.

Several authors (principally Chen and McDonough 1964, 1966, 1969 and Caffyn et al.

.. 1967) have reported observation of dielectric relaxation in CaF: containing trivalent

impurities. They have attributed this relaxation to dipoles, each composed of a trivalent
ion on a cation site associated with a fluorine ion on the nearest interstitial sites.
These relaxations occur, at temperatures from 100 to 300°C, in the frequency range from
102 to 105 Hz.

On the other hand, Rewaj (1968) has observed that the esr spectrum from the same com-
plex (tetragonal centre) in GdFs-doped CaFs disappears at about 150°C. Rewaj has
attributed this disappearance to thermal dissociation of the complex into isolated Gd3+ ions
and free F- interstitials. Franklin and Marzullo (1970), repeating the Rewaj experiment,
found that the dissociated state could not be captured even by as drastic a quench as a
direct plunge of the hot crystal into a dry-ice-acetone mixture. Since the disappearance of
the esr spectrum from the tetragonal centres is accompanied by marked line broadening,



L172 Letters to the Editor

they adopted the explanation put forth by Watkins (1959) to account for a similar phenome-
non occurring in NaCl containing MnCls, namely that at the temperature of disappearance
the lifetime of the F- interstitial in any given site is comparable to the period of the micro- '
wave signal used to observe the esr spectrum.

The dielectric and esr results quoted above should give information about essentially the
same process, but, in fact, they are quite incompatible. The esr relaxation time at 150°C
is of the order of 10-9 s, while that from the dielectric experiments of Chen and McDonough
is greater than 10-5 s at the same temperature. :

We have now found a Debye-type relaxation in the dielectric spectrum of CaFs containing
0-08 mol. %, GdFs, annealed in He-HF at 800°C. This relaxation is compatible with the
esr linebroadening data from similar crystals containing either 0-08 mol. % or 0-01 mol. %
GdFs. Figure 1 shows a plot of the logarithm of the relaxation times against inverse tem-
perature from both measurements.

T T

10°4- C0F2+ 0-08 mole % (;(‘]F3 ) N
800 °C anneal

1075} Dielectric T
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Figure 1. Temperature dependence of the esr and dielectric relaxation times arising from
reorientation of Gd8+-F- interstitial pairs in CaF,.

The dielectric relaxation time is wm™1, where wn is the circular frequency at which the
imaginary part of the dielectric constant rises to a maximum. The esr time was calculated
from the line-breadth

1_1_1 o

Tear Tp TI
H,
where T= Vﬁﬂ )

with vg the microwave frequency (9:1 GHz), Hp the magnetic field at the centre of the
(derivative absorption) line, AH the peak to peak breadth of the line on the magnetic field
axis, and 1 the temperature independent relaxation time obtained by minimizing the error



