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GROUND VIBRATION DURING THE 

BENTONITE TUNNELLING PROCESS 

ABSTRACT 

The research was carried out during the bentonite shield tunnel 

drive for the Acton Grange trunk outfall sewer at Warrington, Cheshire. 

This tunnel is driven through cohesionless Drift deposits beneath a 

built-up urban environment, with a cover of less than 6m. The environ-

mental effects of the ground vibration caused by the excavation process 

are investigated with particular regard to ground settlement by compac­

tion. The geology of the area and the technical and commercial factors 

which led to the choice of the bentonite tunnelling system are 

described. 

Previous work on compaction by vibration is critically reviewed and 

methods to assess a soil's potential for compaction are given. The 

vibration instrumentation is described and relevant wave propagation 

theory is developed with emphasis on body waves from underground sources. 

Vibration data were recorded from transducers located in boreholes, 
•· 

on the pavement surface, on the tunnelling machine and on the concrete 

tunnel lining. These records were processed to characterise the 

vibrations in terms of peak particle velocities, frequency spectra and 

spatial attenuation. 

The maximum measured ground vibration (expressed in terms of 

resultant peak particle velocity) was 3.90 mm/s. The vibration was 

; 



characterised by r~n_dom hjgh velocity particle motions res~ul_tjng from 

impacts between the machine•s disc cutters and glacial boulders in the 

·tunnel face. Surface and subsurface settlement measurements were made 

along the tunnel line and structural damage to property above the 

tunnel was observed. 

Laboratory tests and other field data showed that the ground in 

this area was likely to settle at levels of vibration lower than those 

measured from the tunnelling machine. 

The vibration caused by the excavation process caused ground 

compaction which contributed to ground settlement and the ensuing 

damage to the overlying structures. The vibration was not likely to 

have damaged these properties directly but did cause considerable nuisance 

to the residents. 
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CHAPTER 1 

GROUND VIBRATION IN TUNNELLING 

1.1 The significance of ground vibration in civil engineering 

The viability of civil engineering construction techniques will 

often depend upon their effects on existing structures, and recently 

increasing importance has been given to the preservation of 

•environmental amenity• both during and subsequent to completion of 

the works. A major contributor to structural and environmental damage 

may be vibrational energy transmitted either through the ground or, in 

the form of sound, through the air. Steffens (1974), Whiffin and 

Leonard (1971) and Roberts (1969) have produced useful documents 

reviewing vibration and its effects. Each work contains an extensive 

range of references. 

Engineers must consider two basic sources of vibration. The first, 

and potentially most severe in character, is natural ground movement 

resulting from seismic activity. This problem is present in various 

degrees of severity throughout the world. Certain areas around the 

great faults in the earth's crust, &nd associated with plate margins, 

are particularly subject to devastating earthquakes, whilst here in the 

British Isles very little consideration need generally be given to 

seismic activity. The second group comprises man-made vibrations which, 

when referred to civil engineering, may usefully be sub-divided into 

'operational • and 'constructional • sections. 

Ground movement and noise from road, rai1 and air traffic (Steffens 

1974) have caused VJidespread concern to large groups of the community 

1 



and illustrate 'operational' Rroblem area_s which conc~rn_ c!vil 

engineers. 

Vibration and noise from •constructional' sources will generally 

be of a transient nature as few constructions actually go on indefinitely. 

The disturbance caused, however, may result in permanent damage to 

property, and substantial nuisance to the surrounding population (Koch 

1953; Bender 1972). Both these factors may prevent the works from 

continuing efficiently, so resulting in additional costs or even curtail­

ment of activity. Pakes (1976) reports restrictions imposed on the 

construction of a tunnel due to disturbance of the local population. 

Explosive blasting (Snodgrass and Siskind 1974; Duvall and 

Fogelson 1962; Taylor 1975) and piling operations (Wiss 1967; Sior 1961; 

Luna 1967) have in the past been the cause of greatest concern, but in 

recent years the scale of construction has become larger and the plant 

utilised has grown even more rapidly as economic pressures force greater 

emphasis on mechanised rather than labour intensive techniques. These 

developments have resulted in the use of plant which is larger, heavier, 

noisier and which dissipates large amounts of energy into the ground. 
' 

Examples of damage and nuisance have been attributed to even relatively 

small amplitude vibrations and cons~quently almost any source may be 

regarded with suspicion. The work of Jackson (1967) is widely quoted in 

the literature and points out the difficulties in assessing the true 

effects of vibrations and the response of humans to them. Claims of 

damage derive from many sources and whi 1st it may be stra i ghtfon1ard 

to prove some claims, others are sometimes difficult to deal with and an 

effective numerate capability to relate 'cause and effect' would be 

highly desirable. 

2 



l. 2 Soft ground tunnel lj ng 

1.2.1 The need and technique 

As the urban areas of this country expand, their needs in terms of 

transport, water supply, sewerage and the provision of other utilities, 

demand the construction of tunnels {BRE/TRRL 1974). These tunnels must 

be driven through a variety of geological strata but as the majority of 

the conurbations within the British Isles are underlain with weak sedimen­

tary formations some emphasis has been placed on developing soft ground 

tunnelling techniques. A comprehensive background to these techniques 

may be obtained from the works of Peck {1969), Bartlett and King {1975), 

Donovan {1968) and Szechy (1973). Any construction technique employed 

to tunnel beneath existing structures should cause the minimum of dis­

turbance to the inhabitants above. A system that caused structural 

damage or other substantial disturbances would not be acceptable. 

The extent of mechanisation in tunnelling has increased in recent 

years and in suitable ground conditions it is now usual for tunnel drives 

of over 1 km to be driven by mechanical digger shields or tunnelling 

machines. Driving tunnels through non-cohesive materials, such as sand 

and gravel, was originally carried out by miners skilled in techniques 

which involved the close timbering of the tunnel face within a shield. 

Progress by this method was often slow and a run-in of ground could cause 

considerable damage to surface buildings. If the tunnel level was below 

the water table it was necessary to use compressed air, which added 

considerably to the hazard and cost of underground workings. 

Recently other approaches to the problem have been made, most of 

which involve some alteration to the properties of the ground. Treatment 

3 



of the groun_d t>y chemical ilnd_~~l@_ntj_tiQ!lS_ gr9_uts,_ ground freezing 

and ground water lowering, have all been used with varying degrees of 

success. All these techniques tend to be time consuming and expensive, 

and whenever possible tunnel lines have been chosen to avoid non­

cohesive ground. It is problems of this type that led to the construc­

tion of London's underground in the London Clay rather than the over­

lying Thames gravels. Cut and cover systems are rarely viable in densely 

populated areas as their con~truction will often result in unacceptable 

levels of disruption. 

The requirement is for a tunnelling machine which may be used in 

non-cohesive ground above or below the water table without disturbing 

overlying property, preferably without the use of compressed air. 

Various types of machine have been designed to meet this need, 

and the bentonite tunnelling machine described in Chapter 2 is currently 

employed on the first commercial works using such a technique in this 

country. 

1.2.2 Surface disturbance 

Any method of tunnel construction will dissipate energy into the 

surrounding ground in the form of vibration. This energy may cause 

disturbance at the surface either directly by shaking the overlying 

property, or indirectly by causing settlement which may undermine it. 

In certain types of construction, ground heave may also occur but 

vibration is not likely to be responsible. Tunnelling operations are 

often based on shift working, and if the tunnel has little cover then 

the noise created may disturb the local population, particularly at night. 

4 



Lit'tle, if any, work has been undertaken t~_in_y~_sti~ate the effects 

of vibration from the tunnelling process, although information is 

available on vibrations produced when the tunnel is operational (Bean 

and Page 1976; Anon 1974). Many studies have reported the settlements 

(Peck 1969) caused by tunnel and mining excavations, but again little 

work is available which directly relates these settlements to vibration. 

Information on earthquake induced settlements and damage (Terzaghi and 

Peck 1967; Holmes 1965) is widely reported but unfortunately this is 

not easily related to tunnelling as the amplitude, frequency and duration 

of energy from such tremors is not similar to that produced by tunnelling 

machines. 

1.2. 3 The opportunity for research 

The construction of a trunk outfall sewer at Warrington provided 

an excellent opportunity to study the effects of vibration on an 

environment likely to be adversely affected. The construction contract 

was awarded to Edmund Nuttall Ltd by the Warrington New Town Development 

Corporation, with certain financial support to be provided by the 

National Research and Development Corporation (for full details see 
' 

Chapter 2). Agreement was obtained from the parties concerned for 

Tunnels Division of the Transport apd Road Research Laboratory to under­

take a programme of geotechnical research during the construction of the 

tunnel. In view of their expertise in the field of ground vibration, the 

Engineering Geology Laboratories of Durham University were contracted to 

set up and carry out the vibration measurement programme. The co-operation 

of both contractor and customer proved most important in the conduct of the 

research, particularly where access to the tunnel and engineer•s log 

sheets \-Jere required. 

5 



_ The tunneJ_is driven beneath an urban area in Drift sand d~p.QAJ t~ 

with a cover of less than six metres. Such a construction might be 

expected to cause considerable ground settlement, a proportion of which 

might be attributed to compaction caused by vibration. A pr~ncipal aim 

of the bentonite tunnelling process chosen to complete the work is to 

reduce settlements caused by the flow of material into the tunnel, to a 

minimum. If this objective is achieved, then settlements caused by 
A compaction may assume a dominant role. Also, as the cutting head of 

the bentonite tunnelling machine is well coupled to the ground mass by a 

thixotropic slurry, the transmission of energy into the ground might be 

increased, so accentuating any tendency to cause compaction of the ground. 

An early impression was that the shallow overburden would offer a 

low attenuation facility to the vibration caused by the tunnelling, and 

so investigation of the direct effect to the surface environment was also 

desirable. 

1.3 Thesis structure 

This thesis presents work which falls into three principal areas of 

study: 

a) The geology at Warrington and the choice of the bentonite 

tunnelling process. 

b) The collection and processing of vibration records on, and in 

the ground surrounding the bentonite tunnelling machine. A 

chapter on the vibration instrumentation is included and 

wave propagation theory is developed with particular emphasis 

on body waves from underground sources. 

6 



c)- The effects of the vibrations. 

Where appropriate the research is disc11ssed within the relevant 

section of the text and Chapter 7 provides the overall conclusions and 

recommendations in a concise form. 
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CHAPTER 2 

THE BENTONITE TUNNELLING PROCESS AND SITE GEOLOGY 

AT WARRINGTON 

2.1 The Acton Grange trunk outfall sewer (AGTOS) 

2.1. 1 The social and civil engineering requirement 

The present population of \~arrington is expected to almost double 

in the next fifteen years, rising to around 220,000 by 1991. The 

Warrington New Town Development Corporation, set up under the 1965 

New Towns Act, was faced with the immediate problem of improving and 

expanding the sewerage system of the town. New development was not 

possible until the sewerage capacity had been increased. The AGTOS 

contract provides replacement of the existing overloaded trunk sewer, 

and will avoid the need to discharge crude sewage into the Manchester 

Ship Canal. The full scheme comprises several works, the principal of 

which is the construction of 1350 m of 2440 mm internal diameter main 

tunnel. The tunnel is lined with strengthened bolted concrete segments, 

and is shown in Plate 2.1. The dry weather flow channel is installed 

subsequent to the main drive and the erection of the primary lining. 

It is necessary that the tunnel passes beneath a densely built-up 

urban area and the design bt'ief laid down certain broad requirements: 

. 
i The optimisation of the relief given to the existing 

sewerage network. 
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PLATE 2.1 VIEW OF TUNNEL SHOWING PLACEMENT 

OF DRY WEATHER FLOW CHANNEL 
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i i The avoidance of working dtrectly beneath houses_. 

iii The minimisation of disruption to road traffic. 

iv The minimisation of environmental disturbance. 

2.1.2 The contract 

The 'cut and cover' technique for the construction of shallow 

tunnels was not considered as the disruption caused by such work would 

have been substantial and unacceptable. The sewer had, therefore, to 

be constructed as a bored tunnel. The site investigation indicated 

that the Drift deposits could not be excavated with a conventional 

tunnelling machine, and that a hand driven tunnel in compressed air 

would be the appropriate solution. Other methods, mentioned in 

Chapter 1, were considered but discarded on economic or technical grounds. 

The compressed air technique had certain elements of risk due to the 

shallow depth of the tunnel and its proximity to old property, services, 

and the Manchester Ship Canal. It is the author's view that these risks 

may have proved greater even than expected. Experience from another 

site in the same locality reveals difficulties that were encountered in 

maintaining even low air pressures with a cover of more th~n double that 

of the AGTOS tunnel. The possibility of huge air losses and blow-outs 

may have made the system impracticable and dangerous. 

The new bentonite tunnelling process appeared to present a solution 

to the problems mentioned above, the contractor having developed the 

machine on an experimental contract at New Cross in South London 

(Boden and McCaul 1974). The experiment had shown that the process was 

technically viable and had given certain costing information. Before 
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-the process could be used widely on a commercial scale_ the contractor 

needed to obtain a suitable contract founded on a sound commercial 

basis. 

Contract documents were prepared so as to allow the bentonite 

tunnelling process to be proposed as a method. A conventional tender 

based on compressed air working was also submitted by the contractor. 

At a figure of £1,098,000 the' bentonite process tender was some £79,000 

in excess of the lowest bid received. However, it was decided to proceed 

with this tender on the following grounds: 

i Ground. movements and other detrimental effects were 

likely to be reduced. 

ii Health risks due to the use of compressed air were 

greatly reduced. 

iii The possibility of large air losses and their effect 

on the environment was removed. 

iv The diameter of tunnel offered by the contractor was 

larger than that required and may have future 

advantages. 

v The financial risk to the client was quantified. 

vi The commercial application of the process could help to 

advance national technology. 

11 



Wi_t_h hind_s_ight _some of these advantages may not have been 

fulfilled whilst others manifested themselves as disadvantages in a 

different form. 

It should be noted that owing to the circumstances (particularly 

the novelty of the tunnelling system) the contractor submitted his 

proposal with the bentonite tunnelling machine at cost. 

A • cost reimbursab 1 e contract • was formula ted betv1een the client 

and contractor, and was based on the following safeguards and incentives: 

i A 'target estimate' based on the 'conventional tender' was 

produced to give the contractor a financial incentive to 

minimise the cost of the scheme. 

ii If the final account is less than the 'target estimate' the 

difference between the actual 'cost of the works' and the 

'target estimate' will be shared qually between contractor 

and client. 

iii If the final account exceeds the 'target estimate' the 

contractor wi 11 receive th~ actual • cost of the works' up to 

the 'maximum cost'. 

iv A 'maximum cost' based on the bentonite tender was placed in 

the contract; the contractor having to absorb any excess. 

The form of contract assisted the contractor with financing the work, 

particularly in its early stages, but retained the penalty of possible 

financial loss. The National Research and Development Corporation helped 

12 



the contractor financially in three ways: 

i Contribution to Head Office overheads. 

ii Sharing of development costs. 

iii The underwriting of 50 per cent of any expenditure 

over and above the maximum cost of \'/Orks payab 1 e by 

the client. 

2.2 The slurry shield system 

A full description of the bentonite tunnelling system has been 

published by Bartlett, Biggart and Triggs (1973). The following brings 

out its most-important aspects which may be seen diagrammetically in 

Figure 2.1. 

The system is intended as an alternative to the use of other systems 

described earlier for tunnelling in cohesionless soils. The machine can 

be used without bentonite where ground conditions permit, spoil being 

removed either directly from the face hopper by conveyor or as a pumped 

slurry. The machine was invented by British civil engineering consultants 

Matt~ Hay and Anderson and developed under a research contract from NRDC 

in association with Robert Priestly Ltd. Edmund Nuttall Ltd are the 

contractors using the system. 

The cutter head, fitted either with disc or pick cutters depending 

on ground conditions, rotates within a sealed plenum chamber which is 

filled with a thixotropic bentonite slurry (see Appendix A) under pressure. 

When the soil is of a suitable permeability this slurry penetrates into 
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the ground sealing and stabilising the face. The pressure surcharge 

provided also assists face support. Rotation of the cutting head removes 

spoil from the face and discharges it through the hopper into the 

extraction feedwheel which allows discharge to a sump at atmospheric 

pressure without loss of plenum chamber pressure. The material is passed 

through a 50 mm grid before entry to the sump to remove any large pieces 

of spoil. Plate 2.2 shows the front of the tunnelling machine with the 

1 i ni ng erector in the foregro.und. The s 1 urry is pumped from the face to 

a surface separation plant {shown in Plate 2.3), which consists of a 

vibrating screen followed by a series of hydrocyclones. The cleaned 

bentonite slurry is returned to a storage silo for re-use. 

The British bentonite system was first used on an experimental basis 

at a site in New Cross, South London {Boden and McCaul 1974). The tunnel 

was sited such that it may be incorporated as a running tunnel for the 

proposed Fleet Line underground extension in due course. A description 

of the works involved may be found in Bartlett, Biggart and Triggs 1973. 

These trials showed the potential qualities of the system and formed the 

practical background which allowed the tender for the AGTOS tunnel to be 

formulated. 

Other slurry shield systems have been used in Japan and Germany. 

Japanese engineers are credited with having introduced the idea of liquid-

supported tunnel faces as early as 1961. Many systems of this type have 

been tried in Japan but most seem to use sea water under pressure to 

support the ground rather than bentonite. 

The German company, Wayss and Freytag, have developed the Hydroschild 

bentonite system which also relies on the stabilising properties of 
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bentonite. Tha pressure of. the supporting liquid, however, is controlled 

by the insertion of an air cushion located behind a partial diaphragm 

~all in the plenum chamber. This technique is claimed to be more 

·effective and simpler than the British system where the face. pressure is 

maintained by pressure regulating valve located in the shield crown. A 

fuller description of the German and Japanese systems has been reported 

by Jacob ( 19 76) . 

2.3 Site location and geology 

2.3.1 The geology of the area 

Warrington is in North East Cheshire (see Figure 2.2) and the tunnel 

is located approximately 2 km south of the town centre. The tunnel line 

runs for 1.4 km parallel to and about 20m south of the Manchester Ship 

Canal. 

The local geology is consistent with that of the plains of West 

and South Lancashire and Cheshire, and is floored with red rocks of 

Triassic age. The Triassic system comprises three series, the Upper, 

Middle and Lower. This system was originated in Germany and in this 

count1·y the marine t~iddle Series, the Muschelkalk, is absent. The Upper 

beds comprise Keuper Marl and Keuper Sandstone and are present within 

1 km to the south of the tunnel line. The Lower series is referred to 

as Bunter Sandstone generally, and the Upper Mottled Sandstone in 

particular is the bed through and above which the tunnel is driven. A 

stratigraphy is given in Figur·e 2.3. It should be noted that this fine­

grained rock may vary ·in coherence from a moderately firm stone to a 

soft sand which may be readily excavated and used as a building sand. 

Unfortunately, 6-inch series geological maps do not exist for this area. 
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DESCRIPTION OF STRATA 

The strata shown In these !l.lccessions show Pleistocene and Recent blown sands 
and fluvio-glacial gravels resting uncomformably on Triassic Sandstone of Eluf1ter 9 

DESCRIPTION OF LITHOLOGIES 

1 Brown medium to fine SAND with occasional fine to mectium grl!l'ltel 
and clinker fragment1 

Brown medium to coarse SAND arod fine to coarse GRAVEL 

Brown medium to coarse SAND with much fine to medium gravel 

4 Red-brown slightly si_hy _fine to cOarse SAND with much fine to coarse; gravel 
and red sandstone chtppmgs 

Htyh\y wcat!.l!red •ed-brown ftne to medium grained SANDSTONE 

6 Brown ft11e to coarse SAND with occasional fi~ gravel and ash fragments 
and a layer of medium to coar$e grave\ at the base 

Brown mtKiium to coa1se SAND with much medium to coarse gravel and 
11 layer of block ash material mtersper..OO with reddish-brown clay layen 

8 Aed-broiiWn silty fine SAND 

Aed·biUwrt comp!etl!ly weathered SANDSTONE 

10 Fine to coarse SAND 

1 t Brown fine to coarse SAND and romP. !ine to medium gravel with occ2sional 
ash fragrnl'll!i, incre<.~sing 9ravc\ content towards b.Jse becoming slightlY silty 
with occasional red·brown clay bails 

12 Red-brown completely weathered slightly silty SANDSTONE 

13 Fine SAND 

14. Grey-brown slightly silty fine to co<~tse SAND with occasional grave: and 
red· brown clay balls increasing fino to medium gravel content towards :the base 

15 Red-brown completely weathered SANDSTONE 
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The Downall Green fault passes close to the tunnel portal and its 

influence is clearly visible in the exposed rock at this point. To the 

east of the fault the Upper 1'1ottl ed Sandstone is shown dipping at about 

5o to the SSE which is closely normal to the direction of the tunnel. 

This sandstone is overlain with Blown Sands (Shirdley Hill Sand) and 

fluvio-glacial gravels. The Shirdley Hill Sands extend some ten or 

twelve miles inland from Liverpool and form a horizontal sheet obscuring 

minor features of the country and only rarely appear as moundy dunes. 

Undifferentiated marine alluvium is also present in this area of the 

Mersey valley. A full description of the area geology may be found in 

the British Regional Geology series (Wray 1948). 

From this existing geological data it was predicted that the 

deposits along the line of the sewer might vary between moderately firm 

sandstone and recent sands of aeolian origin with some Pleistocene deposits 

between them. The varied and difficult nature of this geology had great 

influence on the choice of the tunnelling system chosen for the contract. 

2.3.2 The site 

The initial site investigations depended almost entirely on 

information derived from boreholes along the proposed line of the tunnel . . 
These boreholes confirmed broadly the lithologies shown by the Geological 

Survey data but for reasons explained later in this chapter did not reveal 

certain features which led to serious tunnelling problems. It was on 

the basis of this geological data that the contractor decided to use 

the bentonite tunnelling system. Because of the nature of the lithologies, 

the tunnelling operations v1ere divided into thr·ee distinct categories: 
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1. The first 230 metres were to be driven in fairly 

coherent sandstone and the machine was to be fitted 

with disc cutters and operated as a conventional full 

face shield machine. 

2. The next 150 metres comprised a mixed face of sandstone 

and non-cohesive Drift sands. These deposits were 

cementiciously and cGemically consolidated, and again the 

machine was to be used in a conventional manner. 

3. From just beyond shaft 6 (see Figure 2.4) the tunnel was 

in the Drift deposits entirely and the machine was to be 

converted to its slurry shield r61e to deal with the 

non-cohesive soils. It was this part of the tunnel drive 

that is the subject of the research described in this 

thesis. 

It was decided to carry out the research programme of vibration and 

settlement studies at the two sections designated A and B shown on the 

site map Figure 2.4. Larger scale plans, Figures 2.5 and 2.6, give 

fuller details of the borehole locations and other measuring points. 

Transducers were installed in boreholes at each section and, during the 

sinking of these,stratigraphical logs were taken. A stratigraphy and 

descriptions of the lithologies found in these boreholes are given in 

Figure 2.3. The first 1 m of the ground was excavated as a pit to reveal 

any services, and each borehole log in Figure 2.3 was overlain by about 

~ m of fill material in the form of tarmac, sand and sandstone boulders. 

The boreholes were sunk by a l ton Pilcon Wayfarer percussion rig 

operated by a two-man crew. The work was carried out by Nuttall 
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Geotechni-cal Services. It immediately became clear-that- the- boundary 

between the sandstone and the overlying non-cohesive deposits was 

poorly delineated. 

Figure 2.7 shows an 'envelope of suitable ground" for the bentonite 

system (after Walsh and Biggart 1976) together with a typical graqing 

curve for the sands at Warrington and New Cross. Figures 2.8 and 2.9 

show the extremities in grading found at sections A and B respectively. 

Another borehole log (not given here) some 60 metres east of Section B 

revealed an even coarser grading; this curve was designated C2 depth 7 m. 

The grading in A2 at 6 m and C2 at 7 m, together with comments on the 

log sheets referring to 'cobbles', might have given at least an idea 

that the coarseness of the ground might subsequently lead to problems 

with the machine. It should be noted that the presence of erratic 

boulders of igneous rock derived from the Southern Uplands of Scotland 

and the Lake District is common everywhere in the Lancashire and Cheshire 

plains (see Wray 1948 page 70). 

Standard Penetration Tests(SPTXBS 1377: 1975) were carried out 

during the boring of borehole A6 an~ the results shown in Table 2.1. 

Table 2.1 
Standard penetration tests in Borehole A6 

Depth m SPT Relative Density 
from to b 1 0\'JS/ft (after Terzaghi and Peck 1967) 

2.00 2.45 16 medium dense 
3.00 3.45 15 medium dense 
4.00 4.45 10 loose-medium dense 
7.75 8.20 51 very dense 
8.75 8.89 (a) very dense 

-
(a) 62 blows for 300 mm penetration, then no further penetration. 
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- -Of the 12 boreholes- at sections -A and-B,-Sf!-Lvalues_were taken 

only at A6, although the contractor had access to other SPT values 

from boreholes on the other side of Ellesmere Read. It is understood 

that these borehole results were similar to those at A6. 

The level of the water table derived from borehole logs at sections 

A and B was approximately 5-6 m below the road surface. It seems 

unlikely however that the water table was standing significantly above 

the tunnel invert (about 7 m down) when the tunnel face passed Sections 

A and B owing to the drought of the previous summer (1976). It should 

be noted that the water surface in the adjacent ship canal is at about 

tunnel invert level and there was no indication of ground water seepage 

on the banks at this time. 

2.4 Tunnelling problems associated with the site geology 

2.4.1 Introduction 

During the tunnel drive from portal to section B there \'/ere two 

major difficulties involving the si~e geology which were not predicted 

by either client or contractor. The first was the presence of boulders 

in the lower levels of the Drift deposits and the second the occurrence 

of very loose ground at chainage 744 m. 

Two other minor problems were encountered early in the machine 

drive: 

(a) The contractor claimed that the quality of the rock was 

harder and more abrasive than had been expected and had 
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caused excessive wear to the disc cutters. This 

problem was overcome by the use of special discs with 

hard rims. 

(b) The combination of water and the small debris size of 

the excavated rock caused slurry problems with the 

conveyor. It was, therefore, decided to convert to 

hydraulic disposal early on in the rock drive. 

2.4.2 The presence of boulders 

The following is a direct quotation from a paper written jointly 

by representatives of the client and the contractor. 'Unexpectedly at 

ring 457 the tunnelling machine encountered boulders at the face. The 

boulders were up to 500 mm in size and caused great difficulty in 

excavating and steering of the machine'. It should be noted that at 

approximately ring 457 the Drift deposits began to occur in the tunnel 

crown, increasing steadily until a full face of Drift occurred at about 

chainage 350 m. Besides general damage to the cutting head the boulders 

caused blockages in the chute and the slurry disposal system which 

could not, of course, deal with such material. The tunnelling was enabled 

to continue to shaft 6 by the manua} removal from the face of the large 

debris. Plate 2.4 shows some of the granite and dolerite boulders removed 

in this way. At shaft 6 the machine was fitted with a new head of the 

fully plated type and disc cutters with tungsten carbide tyres. 

This remedy was immediately successful. It seems that the close 

plating and disc array binds the boulders into a matrix in the face until 

they are smashed into pieces small enough to pass through the 100 mm 
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slots in __ thehead. Lt is also_p_os_sib_le_ that some_boulders are thr_ust 

aside by the rotary action and the conical shape of the machine head. 

During the bentonite drive the large debris was removed by hand from 

the 50 mm grid between the feedwheel and slurry sump. This system 

proved successful although occasional blockages still occurred when 

elongated fragments penetrated the grid and fouled the pumps or pipes. 

The method of breaking down the boulders at the face during the 

excavation process had a crucial effect on the vibrational energy put 

into the ground by the machine. 

2.4.3 Loose ground 

During the night shift on 6 October 1976, at ring 1180 (chainage 

720-730) a 'loss• of some 12,000-15,000 gallons {55,000-68,000 litres) 

of bentonite from the face occurred in a short space of time. Tunnelling 

proceeded for one week, during which time it became apparent that 

structural damage was occurring to the houses close to the tunnel line; 

. large settlements also took place above the tunnel. It was decided that 

owing to the presence of loose ground it would be necessary to stop the 

tunnel drive until further ground information was obtained. It was 

generally agreed that in these very,loose conditions the settlements 

were likely to be due to compaction caused by vibration rather than ground 

loss at the face. It should be noted that up to this time little damage 

had occurred to houses close to the tunnel line and the measured settle­

ments were small {Barratt 1976). A further point of interest is that, 

for several metres before the large loss of bentonite, very few boulder 

fragments or cobbles had been found on the slurry sump grid. 
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____ The presence of _chan_ged_ ground_ conditions stimul ated __ a search __ of 

documents held in the town library. This investigation revealed that 

this area had once been used to obtain sand and that several sand pits 

were probably worked close to the tunnel line. The Ordnance. Survey map 

also revealed the presence of the, now buried, Old Quay Canal. The 

Cheshire Mid-Division sheet, surveyed in 1877, shows clearly the canal 

and areas of sand excavation. Figure 2.4 shows the position of the 

filled Old Quay Canal superimposed on the recent map. The intersection 

point between the tunnel and the filled canal occurs almost exactly where 

the loss of bentonite took place, and the houses indicated were the 

first to be structurally damaged by settlement (No 40A at corner of 

Algernon Street). From this evidence it was accepted that the presence 

of the filled canal was in a large part responsible for the problems. 

After further research, the present author is not convinced that 

the filled canal is definitely the cause of the loose ground. Figure 2.10 

shows the proposed route of the Manchester Ship Canal (circa 1883) and 

Plate 2.5 shows the construction of this part of the Canal in 1890. 

This photograph was taken from the point marked P in Figure 2.4 looking 

in an easterly direction. It should be noted that it was proposed that 

the Old Quay Canal would fall in its entirety inside the boundaries of 

the ne\oJ Ship Canal. It is possible~to recognise and accurately locate 
/-, 

several important features on Plate(2.3 by using the tower of St Thomas•s 
' "--

Church (on extreme right) and the roof and chimney of the Old Greenalls 

Brewery (still lovely beer!) on the left skyline as sighting points. 

The plate is dated 1888-90 by the author as the first houses (seen under 

constl~uction) in Ellesmere Road were built at this time. Other informa-

tion (Leech 1895) reveals that it was not until 4 July 1887 that 

BridgewaterUndertakings,\oJhich included the Old Quay Canal, was purchased 

by the Manchester Ship Canal Company. It also appears that it was not 
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until August 1888 that the Old Quay Canal was closed below Twenty Steps 

Lock. 

Plate 2.3 shows no sign that the Old Quay Canal was located beneath 

the newly constructed Ellesmere Road. It does not seem likely that within 

a period of 1-2 years the canal was closed, drained, filled, a road built 

and vegetation established as shown by the photograph. It seems more 

likely that the railway line which appears to follow a curve from Twenty 

Steps Bridge (centre-right background) away to and probably beneath Tom 

Paines Bridge (extreme left) was located at the start of the main Ship 

Canal excavations in the floor of the then existing Old Quay Canal. It 

is possible that the position of the Canal was not mapped very accurately 

in the 1877 survey. Indeed, the shape of the canal shown in the Ordnance 

Survey map bears very close resemblance to a freehand sketchmap (circa 

1820) showing the canal running across Arpley meadows. 

As a result of encountering loose fill, further SPT values were 

obtained in boreholes along the line of the tunnel for some 150 m ahead 

of the tunnel face. These tests confirmed that the ground at and around 

the tunnel level was very loose indeed, SPT values of between 1 and 10 

being very common. As a result of these 'real time• site investigation 

results it was decided to treat the loose ground with cementitious and . . 

chemical grout before any further tunnelling took place. In practical 

terms the cause of the loose ground was of little or no consequence, 

but the lessons learned from the encounter may influence future thinking 

on the use of tunnelling machines in non-cohesive materials. The 

incident also emphasises the need to anticipate disturbed ground conditions 

in urban and industrial areas. 
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CHAPTER 3 

GROUND VIBRATION: ITS TRANSMISSION AND EFFECT 

3.1 Introduction 

The theory of wave propagation in solids was developed during the 

19th century and since that time theoretical mechanisms for most types of 

wave behaviour have been postulated. The bulk of manageable theory has 

in common some combination of assumptions regarding fundamental material 

properties. These are that the material is: 

1. homogeneous 

2. isotropic 

3. linearly elastic 

4. spatially infinite or corresponding to a true half-

space or having some clearly defined boundary conditions. 

When related to some types of materials (for example, most metals) 

the assumptions are often almost wh?lly valid and lead to accurate 

theoretical analysis of static and dynamic material behaviour. 

Unfortunately, rocks and soils are rarely either homogeneous or isotropic, 

and the limit of their linear elasticity \'Jill often be difficult to 

specify reliably in dynamic terms. Attempts to analyse the dynamic 

behaviour of geological materials are often frustrated because simplify­

ing assumptions are not allowable and the resulting theory becomes 

unmanageable and/or unusable in a civil engineering context. Such 

difficulties, hm·1ever, rarely deter the diligent geophysicist. However, 
/\ 

wave theory may have a role to play in the context of the problems 

presented in this thesis in two well defined areas: 
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(a) The interpretation of field measurements. 

(b) To supplement and extend the value of field measurements 

in order to develop a quantitative model which may be 

used for predictive purposes beyond the immediate 

vicinity of the measurements. 

This thesis is concerned \'lith soil particle and wave dynamics in 

varied materials in their natural state with superposition of man-made 

inhomogeneities and boundary conditions. 

If used in isolation,in a predictive role to determine the effect of 

vibration on the Warrington environment, theoretical approaches alone 

would have proved to be inadequate. However, when used in a qualified 

manner the theory developed belmv provides for fuller understanding and 

rationalisation of the field measurements than \vould otherwise have been 

possible. 

Valiant but often fruitless attempts have been made to quantify the 

effects of vibration on structures and the human senses. Human beings 

and structures both exhibit extremely varied thresholds of distress, 

rendering any attempt to quantify the physical levels at which problems 

begin a difficult task. Nevertheless, it is recognised that some 

general guidance must be given and this type of research may provide 

important case-history information which will allow reasonable limits to 

be set in future. Section 3.4 reviews some previous work in this area 

where relevant to the problems of the Warrington environment. 
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3.2 The transmission of wave energy 

The theory covering the propagation of waves is thoroughly covered 

by several excellent texts (Jaeger and Cook 1976; Timoshenko and Goodier 

1970; Kolsky 1963; and Volterra and Zachmanoglou 1965). However, there 

is, to the author•s knowledge, no single text which developes from first 

principles a united theory covering all the aspects of wave propagation 

required by this thesis. Appendices B and C have, therefore, been 

included as supplementary references to the standard texts and form an 

important part of this work. A book written specifically for engineers 

by Timoshenko, Young and Weaver (1974) may also be found useful in under-

standing the fundamentals of wave motion. 

Making the assumptions given in 3.1 it may be shovm that a matel'ial 

may support two types of body \vave motion: 

1. A wave of dilatation which will propagate with a velocity 
1 

C = (A+ 2G/p) 2
• (These waves are often described as compress­p 

ional and have a particle motion in the direction of wave 

propagation. ) 

where G is modulus of rigjdity 

A is Lame•s constant 

and p is bulk density 

2. A wave of distortion \'Jhich propagates with a velocity 
1 

Cs = (G/p)~. These waves are often described as shear waves 

and have a particle motion in a plane normal to the direction 

of wave propagation. 
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If a surface is intr~~~~~d creating an elastic half space the 

material may support two further types of wave, namely Rayleigh and 

Love waves (Bullen 1963; Kolsky 1963). These waves are guided by the 

surface and are characterised by an exponential decrease in particle 
. . 

amplitude with increasing distance from the boundary. Miller and 

Purdsey (1954) studied theoretically the distribution of waves in a 

homogeneous, isotropic, elastic half-space. Their investigation dealt 

with the generation of small stress waves in a bed of soil by the use 

of a circular disc oscillating vertically on the surface. Except in 

the region close to the source (a distance of about 2 or 3 disc diameters) 

the body waves were found to be unimportant compared with the Rayleigh 

waves in regard to surface effects. They confirmed that the body waves 

decayed in proportion to the square of the distance from the source, 

while the Rayleigh waves decayed in proportion to the square root of the 

distance. Calculations of the partition of energy between the various 

elastic waves gave 67 per cent for the Rayleigh waves,26 per cent for 

shear waves and 7 per ceni for compressional waves. Surface waves play 

an important role in the study of earthquakes, where, diverging parallel 

to the surface only, they acquire dominating importance with increasing 

distance from the source. 

This thesis is concerned with~ source (a tunnelling machine) wholly 

contained within a geologic material and the wave energy of interest is 

that close to the source,where the disturbance to the structure of the 

material will be greatest. The theory developed in the Appendices is 

largely common to all types of wave motion but in certain instances is 

specifically concerned with body waves which are most relevant to the 

site measurements. 
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App~ndi x _ B deve 1 ops the equ~~i ons_ for free~ damped_ and force­

damped harmonic vibrationi, and Appendix C develops and extends this 

theory to travelling waves within a solid. Expressions are derived 

from first principles describing particle motion, material strain, 

attenuation and energy propagation due to travelling waves. 

It is important to emphasise that wave velocities are dependent 

on the elastic properties of the material and upon its density. Therefore 

we may use measured changes in wave velocity to reveal changes in the 

condition or composition of a soil. It has been shown (Whitman 1970) 

that the principal factors affecting the velocity in a soil are the 

confining pressure (usually from the overburden} and the water content. 

White and Sengbush (1953) used theory developed by Gassmann (1951) to 

predict the wave velocity in sand with varying overburdens. Figure 3.1 

gives the theoretical curves which have been closely confirmed by field 

measurements with overburdens of between 10 and 100 ft. Note the 

predicted rapid increase in velocity with depth especially within the 

first few meters and the steep increase in compressional \'/ave velocity 

below the water table. Gassmann's theory (based on assemblies of spheres) 

predicts that the vertical velocity will be different from the horizontal 

as the vertical stress from an overburden is greater than the horizontal 

stress. Duffy and Mindlin (1957) provide the most comprehensive treatment 

of this problem because they include tangential contact pressures in 

addition to the normal contact pressures considered in earlier work. 

On a small scale, however, Figure 3.2 (after Fountain and Owen) 

shows that field variation of velocity with depth is not necessarily at 

a 11 uniform in sand and Gassmann • s theory should be vie\•Jed with some 

caution, particularly when low overburden stresses are involved. 
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-~ardin and Richart (1963) have c~rried ou~ laboratory tests, usi_ng _ 

the resonant column method, to evaluate compressional and shear wave 

velocities in sand and crushed quartz silt. (This work contains a 

useful review of previous experimental and theoretical studi~s). The 

variables considered were the confining pressure, void ratio, and grain 

characteristics of the materials and the results may be summarised as 

follows: 

(a) The wave velocities for the sands varied with approximately 

the ! power of the confining pressure. 

(b) For a given confining pressure the void ratio was the most 

significant variable. 

(c) The wave velocity varied almost linearly with the void 

ratio. 

{d) The effects of relative density, grain size, and gradation 

entered only through their effects on void ratio. 

An excellent critical review of existing knowledge of the dynamic 

behaviour of soils and foundations has been published by Jones et aZ 

( 1966). 

Terzaghi and Peck (1967) reproduce Figure 3.3 (after Scheidig 1931) 

which describes the initial tangent modulus E. for loose and dense sand 
1 

against variation of 'consolidation pressure', Pc· It is clear from these 

relations that seismic velocity will increase far more sharply with 

increasing overburden in dense sands than loose material. 
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Biot {1956) considered the three-dimensional propagation of waves 

in porous sa~urated solids and concludes that two compressional waves 

with differing velocities may be present. Winter (1972) asserts that 

{for body waves) there is no velocity dispersion below 50k Hz but that 

the velocity of both shear and compressional waves decreases slightly 

with increasing amplitude. 

The mechanism by which \'laves are attenuated in geological .materials 

is one of the most poorly understood aspects of rock and soil dynamics. 

The causes for the reduction in amplitude of a wave, other than that due 

to geometrical spreading, are often collectively described as internal 

friction. Kolsky (1963) states that •at present there is no satisfactory 

theory of internal friction in solids, and more experimental data are 

required•. Measurements available at the present time indicate that 

attenuation constants are largely dependent on frequency so that high 

frequencies are attenuated more rapidly than low frequencies. Attewell 

and Ramana (1966) conducted a review of published data on sedimentary 

rocks and concluded that the spatial attenuation coefficient a was 

approximately proportional to the frequency for P & S waves where 

10° < f < 107 • Winter (1972) gives typical •absorption coefficients• 

(in dB/ft) of 0.00012f for shale and 1.2 + 0.002f in dry silty clay. 

Internal friction ultimately results in heating of the material 

but it is not fully understood whether this is caused by scattering, 

frictional, viscous or other phenomena. A concise review on internal 

friction in rocks is given by Bradley and Fort (1966) and it concludes 

that frictional losses account for most of the energy lost by elastic 

waves travelling through a solid. 
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3.3 __ Settlement due to vibration in sands 

3.3.1 Introduction 

During the excavation of a tunnel in a cohesionless material, ground 

settlements will almost inevitably occur. This section is concerned 

with that part of the settlement that might be caused by energy input 

from the construction process, so re-ordering the grain structure to a 

more compact form with the consequent loss of bulk volume. 

3.3.2 Saturated sands 

At the Warrington site we are principally concerned with an 

unsaturated material and any loss of bulk volume caused by vibrations 

will be referred to as compaction. However, as the bentonite tunnelling 

process is also suited for use in saturated materials it is relevant 

to consider liquefaction effects. Liquefaction occurs when the pore 

water pressure increases to the point where it is equal to the total 

normal stress. At this threshold the shear strength falls to zero and 

the material behaves as a fluid. Liquefaction usually results from 

dynamic changes of stress or strain within a material that is poorly 

drained and relatively loose. During the liquefaction process the grains 

may be totally supported by the fluid and the combined effects of dynamic 

and gravitational forces will re-order the grains to a denser form. 

This may occur in almost any cohesionless material but obviously is most 

prevalent in loose sands and gravels. 

Bodies of loose saturated sands are particularly subject to 

liquefaction d1wing earthquakes with durations long enough for the 

occurrence of a 1 arge number of asci 11 ati ons i nvo 1 vi ng repeated rever sa 1 s 
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of shearing strains of large amplitude. The process of vibroflotation 

{Terzaghi and Peck 1967; Basore and Boitano 1969) is based on liquefaction 

effects and is frequently used to increase the density of loose ground 

to reduce settlements subsequent to construction. In dense sands rapid 

deformations may have the reverse effect of liquefaction. When such a 

dense saturated sand is deformed the void ratio is increased and if there 

is no time for seepage into the sand the water can no longer fill 'the 

voids. As a result the pore water is put in tension (negative pore 

water pressure) thereby increasing the pressure between the grains and 

causing a temporary increase in strength (Seed and Lundgrenl954). 

3.3.3 Compaction 

The term 'compaction' is generally understood to mean the increase 

in the dry density of a soil by a dynamic load. It should not be confused 

with 'consolidation' which is the gradual decrease in void volume caused 

by the action of a continuous static load over a period of time. In 

cohesive saturated soils consolidation is accompanied by the gradual 

expulsion of water and air out of the soil voids with a consequent 

decrease in soil volume. A great deal has been written on compaction 

and its relation to other soil parameters such as dry density, porosity, 

void ratio, relative compaction and relative density (Attewell and Farmer 

1976; Jumikis 1967; Terzaghi and Peck 1967). 

Most laboratory and field investigations have been directed at 

either the settlements caused by large ground movements, usually earth­

quakes (Lee and Albaisa 1974; Silver and Seed 1971), or the deliberate 

compaction of ground for civil engineering purposes (RRL 1952, Basore and 

Boitano 1969; Forssblad 1965). Very little, if any, work has been done 

to investigate the compaction effects of relatively high frequency seismic 
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_energy genera_ted below the ground surface. Eventhe extensiy~ l_ab~!"atory 

studies are difficult to interpret in this context as the frequency and 

duration of the wave energy is not similar to that ft'om the tunnelling 

machine. Papers by D'Appolonia {1970) and Brumund and Leonar~s {1972) 

both contain useful bibliographies related to settlements caused by 

dynamic loadings from blasting, earthquakes, surface compaction machinery 

and laboratory sources. 

3.3.4 Measuring soil compaction 

Although it is difficult to gain specific information from previous 

work there are several general points which are helpful when considering 

the potential compaction of a soil. It is the degree of looseness of a 

cohesionless soil which determines its ultimate settlement potential. 

This factor is often very difficult to measure in the field, and may be 

specified in several ways (see Appendix D for definitions of soil 

properties). RRL (1952) defines 'relative compaction' as the ratio of 

the field dry density to the maximum dry density obtained in the BS 

compaction test (test 12 or 13 of BS 1377: 1975) expressed as a percentage. 

This work goes on to say that a better scale on which to compare the 

efficiency of compaction plant may be obtained by a ratio including the 

'loose density• of the soil. 

Field dry density - Loose dry density x 100 per cent 

r~ax·imum dry density- Loose dry density 

{from BS compaction test) 

Kolbuszewski (1965) suggests that the relative porosity NR is the best 

way of expressing the state of sand in the field where 
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n nf max -
"max 0min 

where 

0max = maximum porosity 

n . m1n = minimum porosity 

"f = field porosity 

However, the most usual method is to use relative density RD which is 

defined by the equation: 

RD e = max - ef 
e max - e . m1n 

where 

emax = maximum void ratio 

e . m1n = minimum void ratio 

ef = field void ratio 

Attewell and Farmer (1976) extend this to give 

where 

Ydmax (Ydf - Ydmin) Ro= --
r df Y dmax Y dmin 

y 
drnax = maximum 

Ydm. = minimum 1n 

= (n n) (l- n . ) max-·· m1n 
("max- nmin)(l - n) 

dry density 

dry density 

"( df = field dry density 

From the above equations it is clear that two sands of identical 

field void ratio, pores ity or bulk dry density are not necessarily in 
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the same state of compaction. Variations in the particle size, shape, 
- - -- ---

grading and specific gravity will all result in changes in the possible 

stacking geometry and/or bulk density. 

The values obtained from the formulae above will also be to some 

extent dependent on the methods used to obtain the 'loose' and 'dense' 

states. These conditions are usually obtained by some form of fast dry 

pouring and wet redding or vibrating respectively. Under such conditions 

typical void ratios range between 0.2 to 1.2, porosities vary from 

20 per cent to 50 per cent, and dry densities vary from 1.2 to 2.2 Mg/m3 

for granular soils. 

The factors affecting the accurate measurement of relative density 

were exhaustively dealt with at a conference (Selig and Ladd 1973), where 

papers on almost every aspect of relative density were presented. t~any 

of the papers presented to this conference expressed considerable 

reservations and cast grave doubts on the usefulness of the relative 

density approach. A complete study by Tavenas et al (1973) concludes 

that 'the concept of relative compaction is significantly better than 

the relative density, in terms of accuracy and practicability of the 

result. It is often considered that a major advantage of the relative 

density over the relative compaction is that the relative density 

magnifies small variations of the in situ density, thus allowing a better 
' 

control of such variations, particularly on compaction works. From the 

present findings, this supposed major advantage appears to be a major 

disadvantage, since the relative density also magnifies the errors on 

the unit weights to such an extent that the computed result is barely 

better than that obtained by a pure guess. Therefore, the use of relative 

compaction can only be encouraged, not only in compaction specifications 

but also in the analysis of natural deposits'. 
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Poulos and_ Hed (1973) conclude that per cen:t compactiofl_(r_g1ative 

compaction} is related to the potential settlements of a fill and that 

per cent compaction is a considerably more useful parameter than is 

relative density for measuring degree of denseness. 

The present author concludes that owing to difficulties discussed in 

the references above, and in particular due to the errors introduced by 

the 'loose density' measurement, that relative compaction should be used 

to assess the settlement potential of a soil. 

It should be noted that relative compaction gives an indication of 

the maximum possible settlement as it involves the ratio of field dry 

density (at field moisture content) with maximum dry density at optimum 

moisture content. 

If we wish to assess the maximum compaction settlement possible with­

out variation of field moisture content, then the ratio of field dry 

density (ydf) to maximum dry density at field moisture content (Yfmax} 

will give a better indication of likely settlements. 

where RCf is termed the relative compaction at field moisture content. 

This relative compaction value at field moisture content reflects the 

difference in objective between a tunnelling engineer who knows closely 

when dynamic compaction forces will be imposed on a soil, and the road 

engineer who must design his subgrade to be suitable at any moisture 

content. \~hi 1st the tunnelling engineer must be aware of the maximum 

possible settlement, it is the maximum likely under a given set of 

circumstances \'lhich will be of pdmary importance. 

52 



For sjte invf:!sti_gation purposes t~~_statg __ ~f ~OI!Ipact_ion of a granular 

soil is often derived from Standard Penetration Test (SPT) values (see 

test 19 BS 1377). Figure 3.4 is derived from several sources in an 

attempt to correlate SPT values with relative compaction. The relation 

beb1een relative compaction (RC) and relative density (RD) was derived 

from the work of Lee and Singh (1971) who reviewed data from some 47 

different soils and concluded that RC = 80 + 0.2 RD. Further confirmation 

of this formulation was obtained from work on granular fill materials by 

Poulos and Hed (1973). Their Fill II material was similar to the 

Warrington sand in size and grading and their conclusions regarding the 

linearity of the relations between relative compaction and relative 

density are interpreted numerically. 

The qualitative description applied to relative density is attributed 

to Terzaghi and Peck ( 1967). Unfortunately many authors seem to over-

look the fact that SPT values are heavily dependent on vertical effective 

stress whereas relative density is not. It is, therefore, unwise to 

relate SPT values to relative densities unless the confining stress is 

defined. 

The correlation between SPT value, relative density and vertical 

effective stress was derived from the work of Gibbs and Holtz (1957). 

This qualitative link between differing numerical indices may be found 

useful when interpreting site investigation data. 

3.3.5 The effect of frequency and direction of vibration on 

settlement 

It is known that an infinite and uniform mass of soil has no natural 

or preferred frequency of vibration (Whiffin and Leonard 1971). However, 
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it has been suggested by -Barkan ( 1962) and others that soil has a 

natural frequency and that vibrations at this frequency are likely to 

occur when the material is loaded by a sudden impulse. This idea stems 

from Lorenz (1938) and others who measured the frequency at which a 

vibrator placed on the soil surface generated the greatest vertical 

amplitude. However, the frequency corresponding to maximum amplitude 

is not a characteristic of the soil alone because it depends on the mass 

of the vibrator and its mechanical properties, the distribution of the 

load over its base, the coupling between the vibrator and the soil as 

well as the stiffness and density of the soil. The boundary conditions 

will also have an important rale in determining the nature of the 

vibrations. 

Table 3.1 (after Terzaghi and Peck 1967) gives a list of 'resonant 

frequencies' of vibrators on various materials. From these results it 

would appear likely that the interaction of the tunnelling machine with 

the soil-boulder material may give rise to resonances at about 20-30 Hz. 

Important \'/ork has been carried out by Pyke et a l ( 1975) to 

investigate the difference between uni- and multi-directional shaking of 

sands. Their work was concerned with earthquake type vibrations and 

concludes that 'tests on samples of dry sand subjected to shaking in 

one, two and three dimensions have shown that the settlements caused by 

combined hor·izontal motions are about equal to the sum of the settlements 

caused by the components acting separately. While vertical accelerations 

less than 1 g cause no settlement if acting alone, vertical accelerations 

superimposed on horizontal accelerations also cause a marked increase in 

the settlements! This work provided useful guidance in the design and 

interpretation of laboratory studies reported in Chapter 6 (Section 6.2). 
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Table 3.1 
Resonant frequency of vibrator on various 

types of soil (after Terzaghi and Peck 1967, 
page 129) 

Supporting soil or rock Frequency 

Loose fill 19.1 
Dense arti fi cia 1 cinder fi 11 21.3 
Fairly dense medium sand 24.1 
Very dense mixed grained sand 26.7 
Dense pea grave 1 28.1 
Soft limestone 30.0 
Sandstone 34.0 

3.4 The thresholds of tolerance to ground vibration 

3.4.1 Urban structures 

Hz 

Vibrational energy may be transmitted from the ground into a 

structure through its foundations. The possibility or degree of damage 

resulting from such vibrations will depend on the natural frequencies, 

the damping characteristics and the inherent strength of the structure 

as well as on the amplitude and frequency of the forcing vibrations. 

Steffens (1974) gives a comprehensive account relating damage criteria 

from many sources to structural vibrations. Roberts (1969) has made a 

survey of information on vibrations produced by civil engineering processes 

and Whiffin and Leonard (1971) have produced a similar but more complete 

work on traffic induced vibrations. The three papers above each contain 

useful bibliographies on this subject. 

National and international standardising authorities throughout the 

world have been reluctant to issue any firm standards related to vibration 

damage thresholds owing to the extreme complexity and independence of the 
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many factors involved for almost any example. However, the German 

provisional standard Vornorm DIN 4150 dated September 1975, is now 

available and gives a positive guide for those seeking recommendations 

regarding maximum vibration levels acceptable under various conditions. 

It is, as might be expected, a very conservative document and many may 

question the low thresholds given. 

Figure 3.5 shm'is damage thresholds given by Whiffin and Leonard which 

relate to traffic induced vibrations and by DIN 4150 which apply parti­

cularly to blasting vibrations. 

3.4.2 Human perception 

Often the fears expressed concerning vibration damage are a result 

of the extreme sensitivity of the human body to vibration especially in 

the low frequency range of 1 to 100 Hz~ The direct action of vibrations 

on people is to produce physiological effects on the body and psychological 

reactions, and, although the two often go together, the extreme 

sensitivity of the human senses may provoke varied and sometimes irrational 

behaviour patterns. Pyschological differences between people often lead 

to diverse interpretations but these are even more difficult to assess as 

it is almost impossible to predict emotional reactions. Human reaction 

is more likely to be influenced by previous experience and understanding 

than by the actual level of vibration itself; a person's state of health, 

temperament and age will all contribute to this reaction. Soliman (1968) 

and Guignard and Guignard (1970) have written useful surveys of published 

work on human response to vibration. Figure 3.5 shm'ls the curves (heavy 

solid lines) with subjective description (in capitals) produced by Reiher 

and Meister (1931) and which are still regarded as a useful basis for 

interpreting levels from most sources of vibration. More recently 

Dieckmann (1958) showed the importance of exposure time on tolerance in 
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the series of curves shown in Figure 3.5 {fine dashed lines with 

K values) for exposure to vertical sinusoidal vibrations. The K values 

were obtained from: 

0-5 Hz K = 0.001 Af2 (proportional to acceleration) 

5-40 Hz K = 0.005 Af (proportional to velocity) 

40-200 Hz K = 0.2 A (proportional to displacement) 

where A= Amplitude in microns and f = frequency in hertz. The 

tolerances for various values of K were defined by: 

K = 0.1 

K = 1.0 

K = 10 

K = 100 

the lower limit of perception 

vibrations permitted in industry for any period of time 

allm11able in industry for a short time 

the upper limit of strain for man 

It should be noted that the threshold of perception is slightly 

lower than that of Reiher and t~eister. Dieckmann also produced tolerance 

curves for exposure to vibrations in a horizontal direction. These show 

a greater sensitivity by people to lateral vibrations at frequencies 

below 4 Hz than to vertical motion. 

The recent provisional standard DIN 4150 uses a classification based 

as fa 11 mvs: 

where v = maximum velocity mm/s 

f = frequency 

fo = reference frequency of 5.6 Hz 

and B = 0.13 
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This German standard gives a table of acceptable values related to the 

particular environment. For areas described as 'general residential' the 

KB guide values are as follows: 

Day 

Night 

Vibration continuous or 
repeated with intervals 

0.2 

0.15 

Infrequently occurring 
vibration 

4 

0.15 

Two other standards in this area are worthy of mention; the I.S.O. 

Standard 2631-1974 (currently subject to amendment), and the BSI 'draft 

for development DD 32 : 1974'. 

Apart from helping to define thresholds of perception and annoyance, 

tolerance scales alone do not provide sufficient information for 

defining limits for tunnelling generated vibrations as they are only 

applicable to situations where vibration is an accepted part of the 

environment. A different type of criterion has to be considered in areas 

where vibration does not normally occur or is at a very low level. 

Vibration may then be considered as intrusive. It is the unpredictability 

and unusual nature of a source rather than the level itself which is likely 

to provoke complaint. The effect of intrusion tends to be psychological 

rather than physiological and is more of a problem at night when occupants 

of buildings expect no unusual disturbance from external sources. 

A second type of involvement of people with vibrations is in 

interpreting the effect on buildings or their contents. Not surprisingly, 

this is particularly true where the person concerned is the owner. Even 

the slightest disturbances from an unusual source may excite anxiety and 

draw attention to minor cracking of plaster or similar effects which 
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were pre-existing ormay hav~E~herwise gone un-noticed. The provision 

of information, education, and reassurance seem to be the main 

requirements in these difficult circumstances. 
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CHAPTER 4 

THE MEASUREMENT, RECORDING AND PROCESSING Of THE VIBRATION DATA 

4. 1 Transducers 

4.1.1 Measured variables 

It was decided at an early stage that the vibrations to be measured 

would be expressed in terms of their frequency and peak particle velocity. 

A review of current literature revealed that this is the most usual 

approach, although acceleration-frequency and displacement-frequency 

descriptions are also found. In the context of structural damage 

vibrations are generally expressed in terms of particle velocity although 

the relevant parameter to human perception is related to the frequency 

range involved. At frequencies below 10 Hz acceleration seems to be the 

dominant factor, whilst at frequencies between 10 and 50 Hz velocity 

criteria are appropriate. At frequencies above 50 Hz displacement is the 

more important factor. Studies on the effect of vibration on settlements 

of sands commonly use acceleration as a criterion. These studies are, 

however, usually at the low frequencies which are associated with earth­

quakes. Sinusoidal vibrations are uniquely defined (for zero phase) when 

any two of the four parameters maximum acceleration, velocity, displace­

ment and frequency are specified. Use of velocity-frequency parameters 

allows single process derivation of acceleration, by differentiation, 

and of displacement by integration. 

Most measurements were made with arrays of three mutually perpendi­

cular transducers to enable maximum particle velocities to be calculated 
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if required by vector summation as follows: 

V (V2 + y2 + v2 )i 
res = vert n-s e-w 

where Vres = Maximum resultant velocity 

V vert = Maximum vertical velocity 

vn-s = Maximum velocity in a north-south direction 

v = Maximum velocity in an east-west direction e-w 

It should be noted that if all component velocities are equal in magnitude 

and in phase then 

Vres = Vvert 

13 

= v n-s = ve-w 

Calculation of resultant velocity in this way provides an inherent factor 

of safety as it is unlikely that maximum velocities recorded individually 

from the three transducers will occur simultaneously. By measuring in 

all three directions it was possible to observe the direction of maximum 

vector amplitude. Provided that analysis is performed on the vector 

component in the direction of maximum particle velocity the error can 

never be greater than 42.3 per cent of the maximum possible resultant. 

In practice, owing to the random phase and lower amplitudes of the sub-

dominant vibrations, any error incurred by considering only this vector 

is likely to be significantly less than 42.3 per cent. 

4.1.2 Geophones 

Velocity type geophones were used for all surface and borehole 

measurements. These transducers were manufactured by Walker-Hall-Sears 
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__ Inc of Houston, Texas, ~n_d supplieg by Fenning Envitonrnental Products _of 

Luton. The •horizontal• and •vertical• type geophones were of WHS 

type Z-2CA and had the following principal specifications: 

Natural frequency 

Intrinsic voltage sensitivity 

Field shunt resistance 

Field damping ratio 

Field sensitivity 

14 Hz 

0.62 V/in/sec (24.41 mV/mm/sec) 

560 n 

0.61 

14.89 mV/mm/sec 

The geophones were checked in the Engineering Geology Laboratories at 

Durham University before installation (Handsley 1975) and all were found to 

be of closely similar sensitivity. At the conclusion of the field work 

some geophones were recovered from the site and their sensitivities were 

confirmed at about 15 mV/mm/sec. This value is in close agreement with 

that expected for these geophones and is used for all par-ticle velocity 

calculations. It should be noted that the recovered geophones were in a 

poor condition having been in the ground for some two years. The geophone 

cases were opened and their type number (Z-2CA) positively confirmed. 

Low frequency ground motion (below 10Hz) was monitored by Bell and 

Howell accelerometers and was found to be negligible during the periods 

of interest. 

The choice of the geophone type of transducer proved to be particularly 

satisfactory, their relative simplicity contributing to the field 

reliability, a feature so important in this type of application. Although 

peizoelectric accelerometers have certain advantages of specification (in 

particular better low and high frequency response) they would have proved 
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more expensive, and they are also subject to temperature drift problems. 

Further, they are not completely self-generating like the geophones and 

they require a stable power supply which is not always conveniently 

available in the field. 

4. 1.3 Geophone location 

Arrays of three mutually perpendicular geophones were placed at 

four levels in boreholes at sections A and B. These boreholes were 

directly above the tunnel crown and were designated A7 and 87 respectively 

(See Figures 2.5 and 2.6). Each group of three geophones was mounted and 

potted in an epoxy resin compound by the technical staff at the 

Engineering Geology Laboratories in Durham University. Special measures 

were taken to dissipate the high temperatures generated during the process 

of resin curing. Care was also taken during cable coupling to ensure, as 

far as possible, that water ingress was inhibited and that differential 

ground movements along the cable lengths would not cause breakage. When 

assembled the geophone packages were carefully lowered into the prepared 

boreholes, taking care that the correct orientation about both vertical 

and horizontal axes was rigorously preserved. The borehole was then 

backfilled with the excavated material and tamped to restore the ground 

to as near its original condition as possible. This procedure was 

repeated until all four arrays had been installed in each borehole. The 

colour coded wiring was then terminated in a diecast box situated in a 

12" cast iron road box, as shown in Plate 4.1. Connection to the process­

ing and recording equipment was then simply a matter of removing the 

road cover and plugging directly into the Plessey type socket on the 

terminal box as shown. 
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The 1 evel of ~ach transducer a.r_r_~y_ ~x_pressed as depth be 1 ow the 

road surface is as follows: 

Leve 1 1 

Level 2 

Level 3 

Level 4 

Borehole A7 

0.20 m 

1.00 m 

2.25 m 

3.67 m 

Borehole B7 

0.20 m 

1.00 m 

2.25 m 

3.69 m 

Some measurements were made with a three geophone array mounted on the 

pavement above the tunnel axis (as shown in Plate 4.2). These geophones 

were screwed to an alloy block \'lhich was 'fixed' to the pavement with 

Plasticene. Various other methods were tried but this proved to be the 

simplest and most effective. This system was also used when taking a 

series of measurements on the floor of the basement at No 54 Ellesmere 

Road (see Section 5.3). 

4.1.4 In-tunnel measurements 

A different approach from that used on the surface had to be taken 

when making vibration measurements in the tunnel. The equipment used 

had to be fully portable and suitable for use in difficult environmental 

conditions. The equipment chosen was a model 2100 portable vibration 

analyser produced by Environmental Equipments Ltd of Wokingham, Berkshire. 

Plate 6.1 shmvs the equipment (centre left}. This equipment employs a 

piezoelectric accelerometer with magnetic mounting and provides meter 

read-out in terms of acceleration, velocity or displacement. It also 

incorporates a narrow-band tuneable filter, which allcws measurement of 

each variable at any particular frequency. T\'10 tuned filter bandwidths 

are available at ±5 per cent and ±2~ per cent of the centre frequency. 

67 



68 

w 
z 
0 
I 
(L 

0 
w 
<.9 

0 
w 
f­
z 
:::::> 
0 
2: 

f­
z 
w 
2: 
w 
> 
<t: 
a.. 
N 

-...3' 

w 
f­
<t: 
__.J 
(L 



This facility was most useful whe_D isolating the predominant frequencies 

at various locations within the tunnel and on the tunnelling machine. 

The actual locations at which vibration measurements were obtained 

are listed in Table 5.5, together with the vibration data. 

4.2 Signal conditioning, monitoring and recording 

4.2.1 Conditioning and monitoring 

Conditioning and monitoring equipment was housed in a mobile 

laboratory parked close to the borehole and was supplied with mains 

electrical power from a nearby lamp-post. The importance of this 

arrangement should not be overlooked, since a reliable, relatively noise­

free source of ample power was vital when using relatively sensitive 

electronic equipment. Plate 4.3 gives a general view in the mobile 

laboratory and Plate 4.4 shows a close-up of some of the equipment 

within. A diagrammatic layout of the equipment is given in Figure 4.1. 

From the borehole terminal box a single 25 way Plessey connector and 

cable assembly carried the geophone signals into the van and terminated 

in a 12 channel patch panel, each channel relating to geophone as shown 

in the diagram. The geophone output was fed into an amplifier type 

1-190 made by Bell and Howell. This differential amplifier is designed 

specifically for use with instrumentation magnetic tape and ultra-violet 

chart recorders. The amplifiers are designed for multi-channel 

operation and being separately mains energised with isolation of signal 

earth, allovJ complete system flexibility. Twelve channels of amplifica­

tion were required and their specification is as follows: 
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Gain (vo'ltag_e) switched x 20, 50, lQQ, 200, 500, 1000 

accuracy ±1 per cent maximum 

linearity < 0.1 per cent deviation from 
best straight line 

stability better than .02 per cent 
better than .1 per cent 
long term 

The above ranges may be attenuated by a factor of 100:1 

Input impedance > 2 Mn balanced differential 

Output voltage ± 8 volts maximum 

current ± 10 rnA 

Common mode rejection > 100 dB 

Bandwidth DC to 20 kHz 

The signal was monitored on an oscilloscope at inputs and outputs of the 

amplifiers to ensure that whilst using the full dynamic range no clipping 

or other waveform distortion was occurring. A headset was available for 

listening to the seismic noise and proved a valuable asset. With 

experience it was possible to recognise, by ear, almost all forms of 

seismic noise from the tunnel and environmental sources. Viewing the 

signal on the oscilloscope was not so useful for this purpose. 

4.2.2 Recording 

All twelve amplifier outputs were fed to a Bell and Howell model 

5-139 ultra violet chart recorder fitted with type 7-316 fluid damped 

galvanometers. This combination has a frequency response flat to 5 per 

cent for a bandwidth 0-1200 Hz. It was, therefore, possible to produce 

hard copy in real time of all the geophone outputs from any one borehole. 

This facility \oJas particularly useful when deciding \'lhich were the most 
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appropriate-channels to record on magnetic tape for subsequent_spectral 

analysis. In order to resolve frequencies of up to 500 Hz it was 

necessary to run the paper at fairly high speeds and this meant that 

only relatively short bursts of data could sensibly be recorQed. 

A four-channel instrumentation cassette recorder made by Teac was 

used to record data from selected geophone channels. This recorder has 

a high input impedance (100 k~) and in its frequency modulated mode an 

effective bandwidth from DC to 625 Hz. An input voltage of lv peak to 

peak gives full tape modulation and on replay results in a 2.3v peak to 

peak output. This form of data storage allowed a tape library containing 

many complete 'mucks' {the excavation for one lining ring, 0.615m) to be 

recorded in a form suitable for direct input to the spectrum analyser or 

ultra-violet chart recorder. 

It was usual to record either all three geophone outputs at one 

level or one geophone output from each level (all four having a common 

direction of sensitivity). The raw data \'Jet·e stored on high quality C90 

magnetic tape casettes and catalogued with reference to the tape code 

letter and the three digit tape counter built into the recorder. For 

example, 0187, is the code for position 187 on tape D. To make best use 

of the dynamic range of the recorder it was desirable to set the gain 

of the amplifiers to provide as near to full tape modulation as possible. 

This was achieved by careful monitoring of the signal on the oscilloscope. 

If, however·, the channel \'lith the maximum signal was not correctly pre­

dicted overmodulation of the tape could occur. This problem occurred 

infrequently and was easily detected because all the tape records were 

checked during processing. 
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4.3 Processing 

4.3.1 Objectives and system choice 

The principal objectives of the processing were: 

a) to determine the maximum soil particle velocities, 

and 

b) to characterise the seismic energy in terms of its 

frequency spectrum. 

Objective a) was achieved by replaying the data held on cassette and 

recording on the UV recorder the period of maximum observed particle 

velocities. From this trace and a knowledge of the overall system 

calibration the peak particle velocities were determined. Further manual 

analysis was performed on the twelve channels of UV data recorded directly 

from the boreholes. These records, however, only covered a very small 

proportion of the 'mucking' period and were unlikely to detect the 

important particle velocity maxima. 

Two different appt·oaches were considered to perform spectrum analysis 

of the data. Firstly, the preparation of appropriate software for use 

with the Laboratm·y' s on-1 i ne computer system and, second, the use of a 

real time spectrum analyser of the type manufactured by Honeywell-Saicor. 

The latter was chosen for the following reasons: 

i. No suitable software packages were available to perform 

the calculations required and the preparation of new or 

substantially modified programmes would have been 

expensive in terms of man hours. 
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ii. The Honeywell-Saicor analyser performed exactly the 

processes required and could be used in a real-time 

mode on-site if required. 

iii. The analyser was capable of accepting analogue signals 

directly, whereas a software-based system would required 

digitised data. 

iv. All processing could be carried out without the delays 

which seem inevitable with any on-line system. 

v. The analyser is extremely flexible and any changes in 

bandwidth, integrating times or other parameters may 

be made at the flick of a switch. 

In use, all these advantages were apparent and the system chosen was both 

technically efficient and cost effective. 

Spectrum analysis provides a frequency domain characteristic for the 

applied signal. This characteristic yields the energy or power distribu­

tion as a function of frequency. It must be remembered that the relative 

phase of the individual Fourier components is lost, and as the maximum 

value of the signal (in this case velocity) may be of interest, this 

information must be obtained from time domain processing, that is simple 

direct measurements of particle velocity as described at the beginning 

of this section. 

The information derived from the spectrum analysis allows the 

principal frequencies to be identified and characterised in terms of the 

source and the nature of the propagating medium. It also provides a clear 

indication as to the deployment of the seismic energy over the frequency 

range. 
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The Honeywell-Saicor model SAI-52B spectrum an~l_y~er is essentially 

a hard wired computer using a swept filter combined with time compression 

system which allows a complete 400 point spectrum analysis to be 

accomplished in 160 msec. A full description of these complex processes, 

together with detaiied specifications and operating instructions, may be 

found in the handbook supplied by the manufacturers. 

The data length required is dependent on the frequency scale selected. 

As theoretically required, the minimum record length is equal to the 

reciprocal of the desired resolution, the resolution of this 400 point 

analyser being l/400th of the chosen frequency range. Therefore, if the 

analysis is accomplished on the 500Hz scale the resolution is ~~g = 1.25 Hz 

and the processed record length is -r.k = 800 msec. 

It is often desirable to produce a spectrum which is characteristic 

of a long record length. This is accomplished through the digital integra­

tor section of the SAI52B, which accepts the output from the analyser 

and averages by adding and dividing by a prescribed and selectable number 

of spectra. The so called •number of sums' may be 8, 16, 32, 64, .. and the 

total data length is calculated by multiplying the number of sums chosen 

by the individual processed recorded length. For example, the processed 

record length for 32 sums on the 500 Hz bandwidth scale is 32 x 800 msec = 

25.6 sec. A particularly useful feature of this analyser~ is its •peak 

hold• facility which, during the processing of data, captures and holds 

the peak value occurring in each bin. This is particularly useful when 

the signal ccn1prises a low background noise with high amplitude oscilla-

tions occurring \'lith frequent but random period·icity. 
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_4_.3.!_2 The spectrum analysis of field data. 

It was decided to simplify the comparison of the frequency spectra 

by standardising on a single bandwidth for all the pt·ocessed ~ata. This 

bandwidth was determined by analysing data when the source (the tunnelling 

machine) was at its closest to a geophone array. Since high frequencies 

are selectively attenuated to a higher degree than low frequencies these 

conditions indicated that the maximum bandwidth required was 500 Hz. The 

input/ouput gain factors in the processor were also fixed and the relative 

amplitude of each spectra obtained from the original amplification applied 

to the geophone signal at the time of recording. 

The vertical scale of the spectra is output from analyser in 

Volts/bin and is proportional to the voltage output from the geophone 

which, in turn, is proportional to velocity. Owing to the non-stationary 

nature of the spectra, the unrelated phase distribution of Fourier 

components, and the finite window size of the processed data, it is not 

permissible or appropriate to scale the spectra in terms of particle 

velocity. In this thesis the relative amplitude of the spectra are scaled 

in terms of a common and arbitrary unit, and when required, the particle 

velocity should be derived directly from the time domain records as 

previously stated. As all the records are from a common source, and 

are processed in the same manner, each spectrum is directly correlated 

by its common scale with any other, so allm·ling conclusions to be dra\'m 

based on comparative measurements. Owing to the non-linear response of 

the geophones and the effect of low frequency speed variation of the 

recorders the part of the spectrum below 10 Hz should be disregarded. A few 

records \-Jere obtained giving high amplitudes at frequencies below 10Hz; 

these were invariably found to be the result of over-modulation of the 

magnetic tape and were discarded as unreliable. It has been noted earlier 
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that ·lndependenc mcCJ.suretiK::nt:j u~;ing pie::zoele_ctric..__ac_cel_eromctel~s indicated 

no signif-icant :;igna.l al1lpl-itL:c\e belov1 a.bout 10Hz. 

The raw d2t~ were fed directly in ~nalogue fonn from the tape 

recorck:r to the: anc;lyser input. The continuous and averagt~d spectra 

v1erc~ displayed throughout the~ processi119 per·iod. Headset mon-itoring \·!as 

also found to b'~ rrost us2ful 2.t th·is t:ime for idditifying pzwt·icLdar 

events notr~d ·iri th:- casst:ttc iog book., and to en:;ur·e that spurious events 

did not inf"iuence the processed data. 

H:=:ving ·idenhfi::~d the per·iod of seism·ic no·ise to be pt'ocessed, an 

aver·aqe vnd pct':d< hold spectrum was produced together' vvith a UV recordin~ 

pet··iod). The r:::cords were c.:~talo0uect and stored for· future manual 

ana·lysis. 

P.l ate 11.5 shO\iS the spectrum ana ly~~eY' \·/i th input from th2 cass!~tt.e 

rec·::rd2r· and r::.~it.put to a Br_yans X-Y plotter·. 
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CllAP'l'E n 5-

V I8Ri~TION CI\USED BY THE TUim[LLING PROCESS 

5. ·1 IntroducU Dn 

Delta wen~ collE:cted during tviO per·iods as tht~ n:achine approached 

and passed U1e instrumt:nted boreholes. The bulk of data at borehole A7 

were collected between 15 September 1976 and 23 September 1976, and at 

lior::;hole G7 bel\·;een 5 October -1976 and 8 October 1976. t<luch supplementary 

dato. 'dt~re also collected betv:een ~1ay 1975 and r~ay 1977. The vo·lume 

nf data was considerable and was held in magnetic tape and UV chart 

n~corcl form. 

To reducr::: th':' clata to a foi~n,at suitab.le fer anillysis the follovling 

procedure was adopted. Each magnetic tape was replayed and significant 

evt--:rrts reproduced on UV char-ts and a ful-l spectrun1 analys·is perforrnNl 

(as described in Section 4.3). In all, well over two hundred p2ak hold 

and mEan speclTa v;ere produced. In order to quantify and tabulate the 

cmplitudes shown by the spectra the 500Hz bandwidth was divided into 

ten equal parts. An average value was then measured for each 50 Hz 

bandwidth and tobulated. The relative amplitude and frequency of the 

principal peaks were also noted. The peak particle velocity was measured 

from the UV charts and wherever possible the dominant frequency was also 

noted. 

Figure 5.1 shows a typical peok hold and mean spectrum, and illustrates 

to tr~at shc\·m ·in Fiqure 5.~ \·Jas (lttached to each spectrum. F·igLwe 5.3 

sho•JS a shod_ extr.::cct fn1rn the UV chart recorcl associated \'lith the 
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l;ppendices E, _F and G fit_~~scnt all the relevant data produced in 

this 1·1ay and data are abstract(~d from th!::se tab.les for gt·aphica·l and 

tabuliit pt'e::;entati(:;n. Information det·ivec from data held in othet 

forms (that is, 12 cho.nnf:1 UV chart or measutemcnts of rwak partic.le 

velocity froill the p<Jrtable vibrat·ion analys(:Ol') is reproduced in the text 

as requi n~d. Figure 5. 4 is a typi ca 1 eli rect record UV chart taken 

dur·ing the muck for ring 1063 (the l E--\IJ geophone ·is not working). A 

large quantity of data of this type vJere recorded and v1ere useful ·in 

assessinq pattents ·in the data. Hov1ever, the mux·imum values \vhich ar-e cf 

particul2r interest were always to be found and processed from the 

complete magnetic tape records. 

Pilot laboratory experiments, briefly described ·:n the next chapter, 

had confirmed the findins1s of other workers (Pyke et al -197:)) th<tt ·it Iva::; 

the peak levels of vibration rathel~ than their duration \·thich \·:ere of 

1nost importance 1·1hen considering compaction. That is, fOl' a g·ivcn p~ak 

level of vibration, settlement will occur within a relatively short 

period of time, and until a higher level of vibration is applied no 

futther s·ignificant sett-lements v;ill occur. Th(~ emphasis of the 

experimental effort was, therefore, placed on the detennination of peak 

particle velocities and the majority of the data were recorded in the 

·inm1ediatr.: vicin-ity of the machine. 

5.2 Borehole measurem(:>nts of machhte induced vibration 

5.2. ·1 The type of vibration and peak particle veloc-ities 

by periods of law particle velocities with random periods of rGlative1y 

higl: v<.~lc<itic:s. Ti1is is shcJ\·irt in Fiqure S.5 dutinq 1.8 seconds of a 
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t~ecor-dirrg typical of -the great major·Hy of data- c-ollected. The per-·iods 

of high velocities (in Figur-e 5.5 between 1.3 and 1.6 sees) were rarely 

n1otc than 0. 1
) secollCls in clurat·ion whereas 'quiet' pet'iocls (betv1een 0.42 

and 0.88 sees in Figure 5.5) were often as long as 1 or 2 seconds. This 

cutting action is explained by considering the sandy ground with randomly 

distributed granite and dolerite boulders. The periods of high particle 

velocities occur when a boulder is exposed, then pushed into the sand 

and finally smashed by a disc cutter or by a milling action against other 

boulders in the face. This cutting action could be heard clearly on the 

headphones which provided a rather better 1 feel 1 for the mechanis~ than 

visual analysis of the UV chart records or oscilloscope trace. A 

noticeable change in this pattern occurred after the face has passed 

borehole B?. Although the peak particle velocities remained similar at 

this time~ the per·iods of high ve·locities became less frequent than 

befor·e, g·iving periods descr·ibed in the cassette ·log book as 1 quiet 

cutting I. \·!hen stand-Ing on the pavement above the tunnel ·face the 

vibrations cr)t(ld be felt and heard quite distinctly, and 'clearly 

perceptible 1 l·tas considered an appropr·ic1te subjective descr·ipt"ion by siU; 

personnel. 

Figure 5.4 shows a disc-boulder or boulder-boulder impact during the 

excavation for ring 1063, viith the machine some 5 metres from the bol'ehole. 

Note the inueasl~ of particle ve-loc-ity v1ith depth. This is typical of 

most recm~ds obtc!ined Vihen the tunnel face approached close to the bore­

holes. Consequently, the tape records that were made concentrate on the 

bottom (level 4) geophone arr-ay in order to record maximum ground particle 

vc~locities. 
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Fi~Jures c;.s, 5.7_<'tnd r5.8 shovJ the peak padicle velocit-ies recorded 

'in th<:_' N-·S, E-\.! a.nd Ver-t·ical direct-icnls respectively, and demonstrate 

the iilCi'ease in p2l'tic.lc• ve'iocity 1·1ith tunnel face proximity. The 

Tabh's 5.1 and G.2 ~1ive the Vi:llue plott::~d in the i...-·igui'es together with a 

value of the resultant peak pRrticle velocity calculated as described in 

Section ff. ·: .. , . 

TABLE 5. 'I 

Peak particle velocities at borehole A? 

,---------------,------------ ~ --~] 

I 
Tunnel face ·- j' Peak p(trhcle velocities mm/s 

1 

borehole distance 

4 N-S 4- E-\·J·-~~iv 
---j 

Resulto.nt 

o.o9 o.~6 I 0.10 

0.46 o.~lo I 0.29 

4.3 2.07 2.07 0.83 

' I I - 0.6 I 2.48 2.74 1.34 

- L2 I 2.69 1.19 

1

, 1.67 

-· 2.5 I l.ll 0.78 0.44 1.43 I 
! _______ ----=----~~~-----__]-~. s_5 _ __:___o_. 4 9 __ o_. _4 ~---!_,__o_. s~ __ j 

0.15 

0.74 
3. OLJ. 

3.93 

3.38 

TABLE S.2 

Peak particle velocities at borehole B7 

------------------------,----- -- • I 

Tunnel face ·· t . . . ~ 
t1 

•. r-r -
1

,, 1:.-t~ (- Peak part·Icle veloc1t1es mrn/s 
. C!l e. 1-J ~- Ct I.) cdLe 

----··-----n-, ------- --4~~-=-s~-r·--4 E-w- ctv Resultant 

-----~--c·--l---0·-:;-2 --[--n-r:-5 0 5!l·-+---CJ-~-3~ 
;,) ,,) I _,:J •. , .o, I 

0.6 I 1.13 I 1.09 l. '16 1.95 

o 1.ss 1 2.48 1.85 3.Go 

I 
(3 N-S) ! (3 E-W) (3\1) 

5.5 C.34 I 0.45 0.53 0.77 

- 6.-i 0.31 II 0.48 0.54 0.79 II 

10.5 0.12 0.15 0.10 0.22 

···----~---~---~~-'-·_1_ . ___________ ! --~.:2~ __ 1 -----~~--~~----c._-~_,!_1 ___ ~ 34 ___ _j 
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The si:ni-i<Jr·ity behJt::cn the resu.its fromboreholes /'..7 and G7 

1::; ·irwr:cchately ''PPucent ancl the mann~um particle velocities record~d 

-in t'ZcCh u·itcc'CtiOli c!re closely the S3!11C. The f·irst of these points 

may have bc:·en ~:~><pect.ed iL:~ v1c: are der1liWJ \vith tt!t' same sour·ce in the 

same: type of 9nund. The sr.concl observuti on is also to be e;~pected 

-jf' tl1c mot-ions r;::mitored cTe c!t.!t"! to body \·laves excited in random 

el-i r'ecti ons thrc-".!gh the process of srnushi r.g of boulders by the disc 

cutters on the rotating rnachine head. 

The level of particle velocity is approximately symmetrically 

distributed on either side of the 'zero' tunnel face/borehole distance 

axis. This may suggest that the precise point of impact betv-1een disc 

and boulder is not the exclusive point of energy input to the ground, 

and that the complete rotating head of the machine is also vibrating 

on these impacts and exciting the surrounding ground as well. 

5.2.2 The spectral distribution of particle velocity 

Over 200 detailed sp2ctra similar to that shown in Figure 5.1 

\,tere produced, <md ana lys ·is of these processed records yie ·1 ds much 

infotn:c::tion not dirt.xtly relevant to th·is thesis. The simplified 

preseritation and discussion which follows here will serve to indicate 

~!encr.::t I trends observed~ and br·i ng out the significance of the data 

i!l the: context of this wor-k. 

r·igurr~s 5.9 anci 5.10 shm1 the spectral distribution of part-icle 

vclocitie:,; and lire reprr~::r::rtJtive of the trends shovm by other data 

plotted u.t th·~: ::riclpcint of the bar>dv:iclth. /\s exp\':cted, the 
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eli str·i but·i on of enc~rgy vat i es \•li th distance from the sourc2; the c·l oser· 

to the source the greater the proportion of energy at higher frequencies. 

fi~Jc~in, the siin"i"larity bc:h!f.:'en the results ftoill both borehoh•s and the 

s·imi"lar level<::. of n'!·lat·ivc amplitude b<-::t\·leen co:11ponent ve·locit·ies, should 

be noted. 

Records llLFi:ber 92 and 93 (sec=~ Appendix G) were taken to confirm that 

the relative amplitude of the spectra beyond 500Hz was not significant. 

Spectra were obta·ined of o.mbient noise v1hile the rnach·ine \•/as idle and 

there were no other obvious sources (road traffic etc) present. The 

relative amplitude of these spectra never exceeded 0.01, so indicating 

that ambient noise levGls would not be significant with respect to machine 

vibration levels. 

Table 5.3 is illustrated by Figure 5.11 and shows the variation of 

relative amplitude in five bandwidths against source distance. The 

values plotted (in Figure 5.11) are average values of relative amplitude 

in 100Hz bandv.'·idths. In order to obtuin vah1es for~ the attenuation 

coeff'ic·ient o. the slope of a line beh1een the values at 18.4 rn and 

4.3 m is considered for each bandwidth. Similar values fur a are also 

obtained between values of relative amplitude at 7.4 and 4.3 metres from 

the tunnel face. Table 5.3 gives the calculated a. values. The effect 

of geometr·ica1 spr-eading is not allo\'Jed for ·in the calculation of a m-:ing 

to the comp 1 ex and 1 arge l y unknovm geometry of the source and the 

refra.ctive and gu-iding effects of the free' ground sutface and underly-ing 

bedrock. This 2pproach to the calculat-ion of G from field data serves 

only to describe empiricail_y the order of attenuation as the effects of 

the sHe geolo~JY and gt:·ometry and the deployment of enctgy into surface 

waves rendelAS lar~:eiy ·inval·id the assumptions rnade in tl1e development C!f 

tht~ theory. It. is unl·if:-~·ly that the va·lues obta·ined for the attenuuticn 
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Tub!;:: 5.3 

Values of relJtive amplitude in 100Hz bandwidths 

derived fr-om avera9t: spectra at bol"ehole A7 

~unnel I BANDWIDTH -·-r·--------~--~----
Record race - I 
Number I [l.,~rehole Ji0-'100~ 10o-2~j0zoo--3oo r 300··400 

dlsti.lnce I 
---1 0---r 18. 4 o. 50 o. 31 -c;.-,4 ---0~-05 

16 & 19 . 7. 4 2. 1 2. 36 1 . 65 0. 7 

22 ~:~ II ~:~5 
- 1.2 3.75 

?r:. 
~-'-' 

29 

6.25 4.75 
7 71- 5.75 • I J 

6.0 4. !) 

2.5 

3.0 

1 r: 
• J 

i 
------~ 
400·-SOG ! 

I ------, 

o. oz I 

~: ~5 I 
! 

1. 25 

1

. 

0.75 

-2.5 13.1 
! l 8.0 ! 1.6 

I 32 I 43 

I 
1.4 0.65 I 

I o , o ? i I . ~+ "· i 

3.9 3.0 

l. 35 0.85 
--~----------·-----·-

log (rel. amp. rec. 22 -:­e 
rel. amp. rec. lCI) 

112 pe rs 

'a' nepets/ 
Ill 

-----·--
log (rel .amp.rec.22 + e 

! 
i 2. 01 3.00 
! 
! 

0.14 0. 2-1 

r-o-.-5~-/ -+-----0.-98 

3.52 
-------------~ 

3.91 4.14 I 
! 

I I 

I I 
-~~-s_l ~~~- I __ ~ 2~ 

1.06 1.27 l.lt} 

1 
re 1 . amp . r-c c . 16 & 1 9) 

I I 

I nepers 

!•a• nepers/ 0.181 0.31 
'--------~----------~ --------------

0.34 0.41 0.37J 
_.c.. ____________ _ 
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coefficient ure an accurcite n"flection of thr true vulue. It should 

be noted that for surface me2surements made at distances in excess of a 

fc~\'-1 tens of metres from the ::.curer:', the effects of surface \'Jil ves become 

predominant and the attenuations of the wave energy will be significantly 

less than that associated 1·1i th body wave mot·ion. 

5. 2. 3 Other boreho: e 11k'asurc:nc~ncs 

The process of tunnel constl'uct-ion produced little s-ignificant 

ground vibration other than thilt directly associated with excavation. 

·rhe only exception to this was the 1 dropping• of the tunnel lining segments 

into the ·invert during building of a ring. Figure 5.12 shows a segment-

invert impact when the tunnel face was approximately 3 rings past the 

borehole. As the lowest level (4) geophone ~rr0y is just above the crown 

of the tunnel, the source to a geophone d·istc:,nce vws approximately 3 metres. 

The maximum particle velocity produced by this i1npact was about 0.33 mm/sec 

but velocities of up to 0.6 1mn/sec \·Jere occasionally observed during riny 

cons truct·i en. 

Vibrations produced by traffic at the Warrington site have been 

reported by Handsley (1975). He found that the vibrations produced by 

heavy lonies v1ere lar9est at the shallov:est geophone array and \·iel'e 

predorninantly vertical in direction. The maximum resultant patticle 

velocity he n~corded \'las 0.25 rmn/sec. i'lUiliC:rous recordings of road traffic 

were collected between periods of tunnel excavation and the results were 

similar to those of Hanclsley quoted above. ;\ max·imurn resultant velocity 

of 0.18 rnm/sec \·las recorded from a heavi"ly 1Cl.den articulated lon~y 

travellin9 at abou"c: 3S mph. The f:··cquency of this ve-locity maxima ',•Jas 

approximately 20Hz and the vib1·at-ions froin the lorry \•Jere mecsur-Jble 

for a petiod of about ~; seconds. Pass-ing C?t!~s produced resultant vc~·locities 
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\·JeH be-10\11 0.1 mm/sec. Most of the larg(~ motions from passing traffic 

occurred close to th~~ surface i:tnd showed the gener·al character·istics of 

a retxocFadc~ ellips::: 1·1ith a principal axis close to vertical. This 

ind·icates the predominance of sudace waves over body v1aves from surface 

sources between approximately 10 and 50 metres distant. 

5.3 Surfuce vibr'ation measurc:ments 

5. 3. l Vibration measurements in Numbel~ 5Ct Ellesmere Road 

At the invitiation of the householder. vibration measurements were 

made on the cellar floor at 54 Ellesmere Road during the excavation for 

the build of ring 1039. At this point the tunnel face is directly 

beneath th:~ front gardon wall and at its closest to tllis property. The 

geophone array (shown in Plate 4.2) was placed on the cellar floor about 

150 mm from the front \--10.11 at some 2 metres belovv pavement level. 

Plate 5.1 shows a general view of site A and number 54. Borehole A7 is 

im~ediately in front of the parked car and number 54 is the third house 

from the junct·ion \'lith Francis Roo.d. Figul'e 2.5 gives a plan of this 

site and the line x-x 1 shows the position of the tunnel face during the 

acquisition of this data. Table 5.4 is derived from records 4-9 and 

gives the peak particle velocities caused by the two largest impacts 

clur·in~~ the e:><cc.vat"ion for ring 1039. These vibrations were similal~ in 

charactu· (as shovm by their frequency spectra) to those n;corded by the 

bol'ehol2 g<:~ophone arrays and had a maximu:n peak particle velocity of 

0.5 mm/s. 

l!ll 

C
~'lfil?lt--.· 

13mt:wt · ~· 

1 2 t,?f: !9/i.J 
f1f!lT!i'}'1 I 

.... ...., __ L 



102 

z 
0 

1-­
u 
w 
(/) 

1-­
<! 

~ 
w 
> 

....J 
<! 
0::: 
w 
z 
w 
~ 

L[) 

w 
1-­
<! 
__J 

0... 



Peak particle velocities in cellar of 

No 54 E 11 esmete l~oad 

r-·-------··-.-·-·---------------. ---------~ I Pe0k particle velocities mm/s 

~---~~--~ --~ __ [_~~vJ _]-____ v __ j=-~~~~1 tan~~-
~ I ' I i 0.20 o.u I 0.37 - 0.45 

I 0.24 0.24 I 0.37 I 0.50 I [ ___________________ j 

5.3.2 Pavement vibrat·ion measurements 

This sub-section mentions data which were obtained to allow the 

detelnmination of seismic \\1ave ve·loc~ty by e1 cross--correlc::tion t~chn·ique 

and the evaluation of body wave attenuation over the entire b~ndwidth of 

energy produ::ec! by the tunnell·ing rnachine. ,l\ithough th·is infonr:Jt-ion is 

not padicu·lar·ly relevant to this \vor·k, it does provide sorns conf·irmation 

of other results quoted earl·ier in this Cl:aptel'. 

Vibrations measured on the pavement were found to be similar in 

chilracter and magnitude to those recorded at level 1 in each borehole and 

recot·ds 50-·SJ (see Appendix G) arc typical of those obtained fl~om geopiwnes 

mounted eli l't"~ct iy on the pavement. These recorJs comprise tv/G pa·i l'S of 

simultaneously recorded data sets designated numbers 50, 51 and 52, 53. 

Numb0rs 50 ancJ 52 \\'ere tuken d·i rt:'ctly above the tunnel face, v;hil st. 

numbers 51 and ~)3 1·1c~re deri vcd from geophones soine H) metn::s ahead of the 

fac~. This arrangement allow2d direct comparison of vibrations from 

identical iinpact events at a geophune-source distances of about 6 and 18 

metres respecl:iv~::iy. !he V<t.iurc:-s for the attenuat-irJn cocr·r·icient 'a' 
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vo~hich were dcr·ived from-the geophones in bon:;hole A7 I·Ji th vary·ing source 

distances. Ho\-JE:Vel', thf:; resuHs 2.re subject to sirni"lo.r limitat-ions to 

those described in Section 5.2.2 and should only be used in an ernpirical 

manner; and correlation with any theoretical models is not likely to be 

very meanin~!ful. The rnaximurn vert·ical particle velocity recorded Vit:.ts 

0.5 mm/sec and is i11 agreement with the subjective description of 

'just perceptible' given by site personnel during this period of 

excavation. 

5.3.3 Disturbance by noise 

Vibration from the tunnen ing machine v:as transmitted through the 

ground anrl resulted ·in noise in the houses a 1 ong Ell es:nere Roacl. The 

sound was similar to distant thunder and was estimated by the author to 

be less than 40dBA. The sound appeared to result from resonances of 

floors and ceilings within the houses and the direction of the source was 

not at all apparent. Occasionally, windows! doors and household items were 

caused to rattle. The sound was clearly audible in houses for ~orne 20 m 

beh-ind and in fr'ont of the tunnel face and 1·1as at its loudest 1·1hen the 

face \vas r.Jt its closest to the property. Few if any cornplaints vie1·e made 

during th~ day shift working; however, many complaints were made between 

22.00 and 24.00 hours. Due to the reduced level of ambient noise, and 

tiH~ fnct that they l'tere trying to sleep, the noise seemed, to the re~,·idents, 

to be n:on~ sevEre <:;t night. The vibration from the tunnelling maclrine 

v;as more noticeable indoors than ·it v1as standin~") on the pavement above th2 

maclri r.e. 

The t•:::sidents presented theil' complaint.:; to the Resident Engineer 

or his Clerk of Works ~ho explained the causos Gf the noise and performed 



____ the_p_ublic _ _rc>.lations exercise so important to this type of contract. 

To the author's knowledge no tunnelling 'down-time' resulted from noise 

compla1nts. 

Several rather obvious conclusions were drawn from the author's 

experience on site: 

u) A tuctfu·l and good humoured approach by the man dealing VJith 

the residents was vital. A surly or officious attitude 

v-muld clearly have provoked res·idents to further' action. 

b) The no·ise upset residents because of its unusual source and 

type but its 1 eve 1 v1as so l ov-; that serious ptob·l ems only 

occurred at night. 

c) \•lith un·impeded tunnel face advance, the no·ise p1~oblem vws 

only present in a given house for about one week. Good 

dt'iving rcttc~s reduc(~d the duration of the noise and hence 

t~e disturbance to the residents. 

· 5.4 In-tunnel vibrotion 

The portable vibration analyser described in Section 4.1 .4 was used 

to cletei'mine Uw lE:'ve: of v·ibrat.ion on the tunnening shh:lcl, on valnious 

parts of th2 machine, and on the tunnel lining during the excavation 

process. Table the values found and the locations of the points 

of measurernr.:nt. 
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resonated at high peak particle velocith.:s. There:! 1vere few vibrations 

of the shield or the lhling that v.Jere clhectly attributable to any 

·indiv·idual source, althouqh there vias consiclerab·lr ev·icJence that the 

area of the machine around c:a.ch mJin motor vJas excited at about 12-13Hz. 

It should be noted in th·is context that the ma·in motors rotate at 720 

revs pet· minute (12Hz). 

As the data from borehole and surface geophones became available it 

quickly became clear that it was the random impacts between the disc­

cutters and boulders that were the major source of energy transmitted 

through the ground, and that other machine induced vibrations were not 

particularly significant. It is of interest to note, however, that the 

spectra of borehole and surface recordings taken when the main motors were 

l~unning, but excavation \'Jas not taking rl ace, shov: peaks at approximlltely 

., 3 Hz and hi uher modes. These peaks, of course, ha vo a vet~y 1 o·.v re 1 a ti ve 

amp-litudr: in rc·lat·i:::m to those obtained ftom data recm·ded during 

excc.vati on. 

105 



Table 5.5 

In--tunnel vibt·at-ions 

-P rob a bi·~----··------------ ---- ···-------------~--------~:·:·k·--·--r--r---~------~ 

,. , . , . f I , . ., .Jonn nant i 
source or L.CJCin:!on o· parried:: "~ ,· "'~ i 
v·ibr··ation . m<;asul"ernent velocity ilC~Lk:tlL.y 1 
energy I mm/s , z. I 

- -·-··--------·-······ -- ~• .. -----·---·------.. ---· ·-- ------------------- _______________ ___] 

--Excavatic:P I Shie.id tailskin 0.1 15-50 j 

I (para'llel to (v:ith other 1 

Excavution 

Exc2vation 

No 2 main 
mot en' 

!io 2 main 
motor 

Erector 
pump 

Excavation 
? 

Exca va t"i on 
? 

t<li.l in motors 

l~a in motors 

1

1 tunnel l·ine) peaks I,· 

betv:een 
i 150·-900) 1 

I Shield tailslcin 0.08 20-40 I 
I (normal to (viith other I 

I
, tunnel line) peaks 1 

betv-;een 
200-·800) 

I
I Rear bulkhead of 0.12 15-100 

shield 

La s t ·1 i n i n g r i n g 0 . 0 8 l 0 . 3 5 
erected 

On motor' 

Rail adjacent to 
motor 

Rail adjacent to 
pump 

Erectol' 
(par-a l ·1 e ·1 to 
tunne 1 ·1 i ne) 

Et~2ctor (normal 
to tunne i ·1 i ne) 

Lining ring by 
rna in moto t'S 

( pa l'a 11 e ·1 to 
tunnel line) 

Lining l'ing by 
main motors (nor­
mal to tunnel 
'line) 

27 '12. 3 

4.0 12.4 

0.25 24.5 

2.7 15 

0.7 15-50 

Bel ov1 0. 05 

BelcM 0.05 

-- ~~·~~l _________ } __ ~~~~~~~Y-~'OU-t~----l-~el:w ~~.0~1 ___ , __ J 
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CHAPTER G 

GROUND SETTLEMENT 

Standard penetration tests (SPT) values obtained during the site 

·investigation had indicated that the soil at the vJarrington sHe varied 

betv1een 'laos,:_:' and 'very dense' (s(-:e Section 2.3.2). Penetration tests 

can·ied out by the conttactors rnore r·ecently~ hmvever, have revealed that 

the soil in the vicinity of the tunne·l at Sections A and B might be more 

accurately described as 'very loose' to 'medium dense' (see Figure 3.4). 

SPT values of below 10 were often found, and values of 1 to 5 were not 

uncommon. This ind·icates a~'eas of very loose ~Jtound v1ith considr.:rab.le 

potential for settlement due to compaction. 

During the excavat-ion of a trench fOI' a feeder se1·1t:r to the ma·in 

tunnel the opportunity arose to measure the in situ density of the soil 

on the proposed tunnel line at a depth of 4.5 n£tres. The author 

in'!t:iated a ser'··ies of tests carried out and repol~ted by f1 S tlagarkatti 

(1977). Tvienty tv1o 1:n sU;u density determinations v1ere made using a sand 

rep'lacerr:ent method (J tests) and modified core cutter method (15 tests). 

No s ·; s1n i f·i cant difference was found betv1een the results g·i ven by the t'""o 

methods, but the COl'e cuttet method v1as preferred because of its 

relative simplicity. This was important because of the difficult site 

conditions and the limited access periods. Table 6.1 gives the 

su~nar1sed results, and the standard deviations shown reveal the extremely 

var-ied natdr(~ of the so·iL The dey ciensHy, moisture content and air 

content varied considerably, even over distances of less than 1 metre, and 

reflected not only clliHlges in the ~.i_~(u~king 9eo:net1·y of the particles but 
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also variations in the material itself. For instance) bands of silty 

clay were often clearly vis·ible ·in thC:! trench floor. 

Tabh~ G.l 

Re~.ults of h'l sib .. density measurements 

----·--·---.---------,---------, --------:-:~~----:·--r------
1 D d . ' r~o 1 .) L. u r E: ~ • t c . . I ~~~y ens1 cy content 1-11 r con ern. j 

lype of Ht). of 1 M 1 3 t per cent 
test t2sts t' ··ig ill per cen ----i 

r-:[;;;~1 stu~-;~ ~1~an j-s-td. Dev ~Tr.1eanTst~~ D<:v. 1 

------ ---------- ---·--- -· --·-··---··------------~~-----1·--------··-·-'---· 
Sand re­
placement 1 !1. 59 o. os v. 71 2. 4 n . 3 I 3.4 

F·igtwe 6 .. , givf:S the laboratory compaction CUl'Ve using a 4.5 k~l l'iJ.rm:er 

(test number 13 of 13S 1377:1975) and shov1s the individual dry density 

dett~tnrinat-ions summarised ·in Table 6.1. Note th2 maximum dry density of 

1.80 f·1g/In 3 occurs at a moisture content of about l1 per cent. The mean 

'relative compactior1' for the soil is the ratio of the field dry density 

and the maximum dry density found in the BS compaction test. 

Relative compaction ::: ~ :~t x 100 - 87.2 per cent 

This is subjectively described as l oose/med·i um and corresponds to the SPT 

Vctlut~s of 10 and uncier) 1:ihich \'Iere found at s·imilrJ.r levels in the vicinity 

of sections A and G (see Figure 3.4). 

r~rom the v::llues in Table 6.1 t!1l~ mean void r-atio 1·10.s found to be 
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val'ious fast pouring techniques v1ere cz;rtied out to find the nrinimum 

possib-le dry clensity. These tests proved diff·icult to repl·icate and 

tile minimum vc:lur::' found of -1.31 t·1g/m 3 v:as not considered an accurate 

n~flcction of the 'held' rn-inirlium dry density. The resultin9 value of 

l'e.lative dens·ity \HlS 46 per cent v1hich, desp·ite the inadequacies of thc 

method (see Sectio;-1 3.3.3), is in reasondb1e a~Jreement \vith that found 

for r(;'!iJtive con;paction (if the rc~lat·ion shov:n in F·igure 3.4 is used). 

These clensHy measurements confirm thct there is scope for an 

increase ·in the-(..,., situ density of the son at \·!arrington and, 

consequently, settlements at the ground surface. 

Thro' vlicle variat·ion of density values indicates the inhomogeneous 

nature of the lensed Drift deposits, although the spread may in part 

r·eflect the v:ell knovm difficulties in obtaining 2-.n accul'ate meilsure of 

in D-z:tu density. 

In order to obtain some feel for the level of vibration at which 

settlement may begin to occur, a brief serir~s of exper·iments \'lo.s carried 

out on the rig shcwm in Plate 6.1. Samples of the soil from the Harrington 

site \•Jere prepared at dry densities and moisture contents similar to those 

found on the tunnel l'ine. These samples v1ere contained in a steel mould 

150 mm ·in d·iarnetE:r and 125 n:m h·igh. The moulci \vas clar11ped to a vibrating 

table v:h·ich had a fixed freq~1ency of 100Hz vnd i'lhose amp-litude of motion 

could be control'lcd. The motion of the mould VlilS me<:1sured by an acce1er·­

Oill\~tor mot1nt:ed clitcctly on ti!:::: mould and output on the vibn.tion anctlyse•­

shovm on the exiT::,rne left of P'l.:1te 6.1. /\plaster disc v~as placed on top 

of the sarnp.ie tn provide a small :;urchu.trF-' 1-1hich prevented loosening of 

the sur'face sand. The sett 1 c::m'nt c_;f the:: sa111ple v:os rneasur'ed us1ng a 
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lineal~ potent"iomet.et which rested on the centl"P of till~ pli:.ster surcharge 

The sarr:ple \·Jas subjected to ·increasing levels of vibl~ation until 

the first sign of settler11ent \vas observed. The vibrations v1ere held 

at this h:vel for· 2 minutes and til\~ total sel:t'lement \·;as then measured. 

The level of vibrat-ion Vlt!S then ra·ised in stages to a peak level of 

2 to 3g and settlements again recorded after periods of 2 minutes at 

each level. 

Tab ·1 e 6. 2 

Laboratory vibration induced settlements 

~-~---t- ! Dry density..., t~ . 
1 

Direction ! Peak coL~~-,-... ---t j' 
: c:s _ 1 ,,o, s :ure F 

1 

1 .h L ~.- e"'en 

__ Nurnbe_i~j_ __ r·:g,lrn~-----~~nten_t __ ;_·~ -+--v_,_· b-~-c~-t~o_r_l ~-a-c-~e-·-~--.. -% _____ j 
1 a I 1 . 52 I 12. 0 Vert 1 . 4 0. 20 I 
1b 1 LS2 I 12.0 Vert 2.8 3.84 j 

I -~ . 79 6. 7 Hor·i z. 0. 1 0. 04 

1

, 

Hor~z. 3.0 4.26 

2a 

2b 1 ./9 6.7 

I 
3a l. 59 9.6 

3b l. 59 9.6 

0.2 0.22 Horiz. 

Hor·i z. 2.0 7.50 

f}a 1. 50 ll. 7 Horiz. 0.2 0.22 

4b 1. 50 11. 7 Horiz. 2.0 5.45 

5a l. 37 9.2 Horiz. 0.05 0.44 

5b 1. 37 9.2 
-------------------------------

Horiz. 2.0 23.24 . ________ I 

Tab.le 6.;? ~:~:in:J3Y·isrs the l'esults for· 5 samples. The tests sufficed 'a' 

~_rivE the thJ·(:sho-ld levels at \·Jhich the f·irst settlen1ents v1ere observed 

r:md those suffi;:.ed 'b' ·ind·icat.e tiH~ ~:;ettlements after the maximum accelet--

ations hcd b~en applied. 
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It was not pos~ible to apply a substantial surchat·ge stress_to the 

samp-le to sin1ulate true field c:onrlitions. Hov1ever, th2se experiments 

were useful and allow the following observations to be made: 

i. Samples 3 and 4 had very similar clry densities and moistUt~e 

contents to the soi·l at \;Jarrington and under horizontal 

unidirection shaking at 100 Hz began to compact at a peak 

acce-leration level of 0.2 g. Tit·is corresponds to a peak 

particle velocity of 3mm/sec. 

ii. Surnples 2 and 4, 1·1hich are s·imilar to the extremes of dry 

density found on the site, began to settle at 0.1 and 

0.05 g (1.6 and 0.8 mm/sec) r-espectively. 

iii. P..s expected, the higher the initic::·: dl'Y ciens·ity of the 

sample, the lm·iel' \'laS the fin<<l settlement. 

iv. T~1e samples v1ere far less affected by unidirect·ional 

ve1~t"ical shaking than by hor·izontc:l shaking. 

v. It v;as noted that the sett"iem~;nt due to a given level of 

vibration occurred within a few seconds of the start of 

shaking and thereafter no significant settlements occurred 

until the vibration level was increased. 

The r-c::;ults of this brief series of h:sts ctre similo.r to the results of 

otlwr \'.'Ol"I:Oi'S and confor-m to the i:::,l'oad pr·i nci p l cs of c;;mpacti on by 

vibl~a~_-ion discussed in Sect·ion 3.3.3. 



Vibratio11 thresholcb of 0.8, 1.6 and 3.0 llHiJ/sec Ci:iljSed the samp.les 

to settle. ;"!..s the ·1 evt-: l of v·i brat ll)n in the gn)lmd due to the tunne 11 i n<J 

pr-ocesc:. v,;as often in C\c~:s;s of these vah1es, it is possible that 

It ~;hould b;.:~ notH~l that ·in t.he f-ield t•fio fc1ctors not s·imuluted in 

the lubor·atori:··s 11ill IE\'/e an important influence on the vibration induced 

sett"lernents. 

a) The effective str~ss in the soil due to the cover will 

incn?ase the strength of the so·i 1 and increase the 

ener·gy levels required to re-onler the particle 

t • (' J. > ~r\ (. •:• .• \ . ~. 3 ? •. s n1.. L.dl e see 1 1 g.Jrc: . -.) J • 

b) The mult'i-direct·ional slw.king present in the fie.id \•Jill 

tend to l'educe the vibrat·ion thre:;hold ·ievels ob::.et·ved for 

unidirectional mot-ions. 

Th~se effects are opposite in character and will be~ to some extent, self 

CCI.ncelling. 

6.3 Ground settlements at Sections A and B 

6. 3. ·1 Introduction 

P,n important part of the TRRL \'C:S~'2rcl1 pro~~rarnrr:e at \·!an~ington vias 

the n::::asu\"\::n;er;t of surfac2 and subsurL;ce S"Jl'Ound movements due to tunnel 

IJ-ivi:;·ion :-Jork-ir:~ Po.per iio. 3 (B~IiTi:itt. '1976) and adequately summarises 

sur·f;H::e subsidencE: measu!'en!c~nt.s made prior to vtork c1t the main ·instnlmentr::d 

sections .l\ c1n·:l B: 
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'Se-ttlemr~nts above the sandstone and above the start of the 

chemically consolidated ground hQve been reported in TRRL 

Inte:-nal Hote II~ Ol23/7G. The--: maximum and nrinimum values measured 

\'!en., {~.3 0nd 1.3 mrn in the ~andstonl? and 2,2 and 1.4111111 in the 

chemically consolidJted ground. The umount of chemical treatment 

·in the ::-:Or!t: v1here these settlements \vere measured \'Jas up to 

qo per cent of the area of the face. Measurements reported in 

this Paper show that towards the end of the ~hemically treated 

ground the settlement measured was between 2.5 and 4.8 n~, with 

an area of treated face of up to 65 per cent. This shows an 

increase in settlement as the extent of the tt~euted ground incre2,~;2s. 

The surface settlements measured abovG the tunnel excavated using 

the benton·ite system gave values of 19.9 and 14.2 mm on the 

centreline and 10.2 and 8.6 mm at the shoulders, values considerably 

higher~ th<Hl in all prev-ious ca.ses at \·Ja1--ri ngton: the corresponding 

s·lope va·lues \·Jere 1/210 and l/360. If "it is assumed that the 

subsidence profile at the surface can be approximated by a normal 

distribut·ion curve, the cross--sectional al~eas of the subsidence 

troughs developed at the two survey locations are 0.086m2 and 

0. 07ln/ 1
• 

The data given in Sections 6.3.2 and 6.3.3, were derived from measure-

ment~; given to the author by D Barratt in th€ for111 of personal communica-

ti ons v.nd v-ti 11 bE: published -; n due course. 

6.3.2 Surface settlement 

/-it sections I\ Rnci l\ a sel'ies of six studs \>!C:'re fixed into the road 

surface on a 1ine norma·! to t.he tunnel i:l>:is as shm_.,;n in the site plans 

( F -· r• II ·rr:> C" ') h :-> r· cl r; 6 ) I ::J•.• LJ <- ._) u,l\. L. • The upper- parts of Fi qurc:s 6. 2 and 6. 3 shov1 the 
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settlement of the 'o' l'oad stud (ditectly above the centre line of the 

tunnel) as the tunnel face passed beneath. These data with their date 

<Hid time (v1here rf~levant) of acquisition, ore also given in Table 6.3. 

The lcMer patts of F·igures 6.2 and 6.3 give the settlement profiles of 

the ground when the face was more than 20 metres beyond the measuring 

points. By this time the great majority of the setUernent had occulTed 

and for our purposes the ground level had stabilised. 

The setUen1ents at both sections A and B shov;ed very sim·ilar 

chal'ac:teri sti cs which v1ere as fo 11 O\vs: 

a) At both sect·ions over 95 per cent of the total settlew:!nt 

occurred during the excavation of material from 

approximately 5 m before the road studs to 15 111 beyond 

the roud studs. 

b) The maximum settlement at section A VJas 18.7 mm and at 

section B, 25.3 rnm. 

c) The settlement profiles at A and B were distinctly 

assymmetrical. Settlements 2m north of the tunnel centre 

line \·let'e appreciably 1 0\·lel~ than those 2 111 to the south. 

This effect may be due to the greater degree of initial 

cornpc1ction of the ground beneath the main road (Ellesmere 

Road) or some other difference in ground conditions. 

Preferential 't;}ke' of material related to the dir'ect·ion 

of rot::ttion of the cutt·ing he3.d offers another possible 



d) At sccti ons A and [3_ th_e _\'O]tJme of ground 1
-, ost 1 expressed 

as a pcl~centage of the volume of gr-ound excavated v;as 1. l 

per cent and I. 5 peY' cent l''i.':~;!Jecti ve 1 y. 

e) The ground slopes, calculated on a stud to stud basis, are 

given in Table 6.4. 

6.3.3 Sub-surface settlements 

Sub-surface ground settlements at sections A and B wer·e measured by 

direct ground anchors and by magnetic rings placed on the outside of the 

inclinometer tubes. (see Figures 2.5 and 2.6). The equipment is 

deso'i bed and the full results of the ground movement sur·vey are 9i ven by 

Barr·att (1977). Th·is section summar·ises the ground movem2nts only \1/here 

relevant to the objectives of the thesis. 

Figure 6.4 shows the settlements of magnetic rings at tunnel invert 

level offset about 1a metres south of the tunnel centre line at sections 

A and B (boreholes A2 and B2). The Figure also shows the settlen~nts of 

mag~etic rings some 2 m below invert level which were thought to be on 

fairly competent rock at the bottom of each borehole. As expected, the 

lower magnetic rings show no significant movement, however the invert 

level rings settled by some 7 mrn at section A and 10 mm at section B. 

It is considered that this settlement was caused by compaction. Settlements 

at these points due to the redistribution of effective stresses during 

excavation were not considered likely owing to the non-cohesive, granular - -

nc:;ture of thG gl'OLmd and the consi:'.ant support given to the tunnel cover. 

The direct ground anchors above the tunnel crown (shown in Figure 6.4) 

s~;ttled by close.ly simi1ar i::u:Junts. At section A they both settled ;.25 mm 
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Tab.le 6.3 

Surface settlement above tunnel axis 

·---·--··-- ~--------------r- ... , . ---~ 
I r I 

n·st~ ,_ 3 to Settlement 
~ 1 u!oCe t I I 

Section· Date 1 Tirne 

1 

tunnel face a 1 °td~ ! m roa 1~lll1 s u 

-.------· I ·-· ·-·-----------·----~----
A 21.9.76 10.30 I 5.5 0 

A 21.9.76 17.50 1.8 1.8 

A 

A 

A 

A 

A 

A 

A 

22.9.76 

23.9.76 

23.9.76 

24.9.76 

24.9.76 

25.9.76 

27.9.76 

B -- .. ·,,-S-.10. 76 

8 6.10.76 

B 

B 

B 

I I 7.10.76 

I
I 8.10.76 

18.10. 76 

09.30 

11.00 

16.30 

09.07 

15.00 

10.30 

3. 1 

9.8 

11. l 

14.8 

16.6 

20.3 

20.9 

13.45 4.3 

14.10 3.1 

iO.OO 6.2 

10.15 13.6 

16.6 

Table 6.4 

11.9 

17.3 

l7 .6 

17.5 

17.8 

17.9 

18.7 

0 

10.8 

2'1. 3 

24. l 

25.2 

Surface slopes of settlement profiles 

Section Slope betv1een road studs 
- .. ·-·-- ·-:T--2-0 o .. z 2··4 4-6 6-8 

A 1 :125 1:220 1:250 1 : ., 000 1 : 1 000 

B 1:90 1 : 145 1:200 1:1000 I l: 1000 
l _j 
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and at sect·ion B, 34 mm. It is common in ground of this type fol~ the 

material close to the tunnel crm•m to settle rather mol~e than that 

toward the surface. This dilation is due in part to the broadening of 

the settlement trough in the upper resrions of the cover. 

The absence of this dilation may be partially due to some re-

compaction of the soil. Howeve1~, the movements above the crmvn v;ere 

complex and no firm conclusions r'egarding compaction, should or need, 

be drawn from data obtained in this area. 

The inclinometer results from boreholes A2 and 82 showed that the 

ground in the vicinity of the tunnel belov; shoulder level moved av;ay 

from the approaching tunnel face. Bearing in mind the stresses imposed 

by the bentonite this ground movement is also consistent with a 

compaction process. 

6.3.4 Structu1~l damage due to settlement 

The lower parts of Figures 6.2 and 6.3 also show 'best fit' 

theoretical subsidence profiles based on the assumption that such profiles 

can be approximated by a normal distribution curve (Peck 1969). The 

settlement S developing at a lateral distance y from the centre line of the 
A - 2j2i2 A 

tunnel is defined by S = S e Y · where S is the subsidence above the 

tunnel cro~1 and i is the lateral distance to the point of inflexion of the 

normal distribution curve. It follows that the slope of the ground is 

given by: 

A -y2j2i2 
dS == __ Sy e 
"dy 

and the rate of change of slope is: 

::: 

,, -y1!2P 
S e 

·F 
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- -Atthe point of "inflex-ion-(whete y = i)-t.hcis-expr-es-s-ion--i-s--equal to-

zero. This is the point of maximum slope. Ho~t;ever, it may be expected 

that damage will be greatest where the rate of change of slope is a 
d 3S maximum, that is v1hen:: = 0 
dy3 

= -·--- ( y3) 
3y- -~ 

3 
this expression equa·ls zero \'Jhen 3y = L that is, VJhen y = /3i. 

i2 
The value of i was found by itenttion to be 1./5 m for the sern·i··profile 

at section A and 1.6 mat section B. 

The shapes of the theoretical curves show good agreement with the 

measured settlements confirming the validity of the theory in this case. 

The distance from the tunnel centre line to the points of maximum 

rates of change of slope (/3-i) v1ere 3.03 mat section A and 2.77 mat 

section B. At section A only very minor d&mage to property occurred due 

to settlement. This principally took the form of cracked garden walls 

and paths. HoVJever, at section B the first structura·l damage to a house 

occurred at No. 40A Ellesmere Road (see Figure 2.6). Plate 6.2 is taken 

from a position some 3m south of the tunnel looking west. Note the 

cracked pavement and bay window and the tilt of the gatepost away from 

the gate. It is understood that the damage v·isible inside the house was 

considerable. The contractor erected the temporary supports shown to 

prevent any further moven~nt of the bay window. It is of particular 

·intei"·est to note that the Cl'acks in the fc·otpath and the ft'ont footings 

for the bay windows lay within ~ m of the calculated point of maximum 

~~ate of change of slope. Although it is not possible to accurately 
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~---Pl':_ed_i_c_t__tbe_~s_et_t_t~ITle_nt_profile at the tunnel planning stag_~,_ the s·iting 

of this tunnel seems particularly unfortunate. 

As a result of the problems which arose between chainages 725 m 

and 740 m (see section 2.4.2 and 6.3.4) the tunnel drive was ten1porarily 

halted. It was decided to treat the 1 loose 1 ground ahead of the machine 

for about 150 metl'es with cementi ti ous and chemica 1 grouts to reduce 

the possibility of settlement and further damage to property. These 

works are generally beyond the scop~ of this thesis but it is relevant 

to quote the gi~ound settlements caused by the drilling of the 4-"inch 

diameter holes necessary for the injection of the grouts. Groups of five 

holes up to 9 metres deep, were drilled beneath the pavement at 4 foot 

centres along the tunnel line. The 75hp air flushed drill rig (see 

Plate 6.3) advanced a steel casing with the drill bit. Unfortunately, 

m2asurements of gro~nd vibration caused by the drilling were not obtained 

as the drill rig had left site before it was made known to the author that 

this process was causing substantial settlements. Hm'lever, it was the 

opinion of the site engineer that any ground vibration caused by the drill 

rig was considerably less than that associated with the tunnelling machine. 

At various stages during the treatment process the contractor 

measured the settlement at each end of the garden parting wall between eacl1 

hGUSE'. 

Table 6.5 gives the settlements measured after the holes had been 

drilled but before-: the injection of grout. The majority of these 

substantial settlements must have been caused by compaction of the soil 

as excessive take of material could and did not occur. 
-_, 
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On. gr-outing the ~9LO_und .heaved~ r_i_si ng ·in many p lC!ces py over 

25 mm. Plate 6.4 shows the footpath above the tunnel during grout 

injection. The grout tubes are visible in the path and along the kerb 

line. 

The four houses (Numbe1·s 29-32) shovm ·in the left foreground of 

Plate 6.4 are shown again in Plate 6.5 with the scaffold shoring erected 

to prevent fur-ther· stl~uctul~al damage. The ~wound settlement and 

subsequent heave had caused some damage to the front wall of the terrace 

at its junctions with the party walls. Plates 6.3, 6.4 and 6.5 clearly 

illustrate the severe nuisance caused to householders and road users 

due to the ground treatment operation. 
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Plate 6 .4 Nos 29-32 ELLESMERE Rd DURING GROUND 

TREATMENT 
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Settlements due to drilling gl'out ho-les 
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CHAP'I'EH 7 

COfKL.USIONS MlD RECOi·HENDATIONS 

7 . 1 I n lT o cl u ct- ·j on 

This thesis ho.s clescr·ibcd the construct·ion of the /\GTOS tunnel and, 

in particu"lcJr, has discuc.;secl the factors dffecting v·ibration indi!Ct:d 

ground settlement, The exper·imental results have been analysed and 

commented upon in the text and the object-ive of this Chapter is to 

summar·ise i:1ncl correlate the most important aspects of the tesearch and 

to provide concise conclus·ions and recommendations. 

The tunnel exci.lvution precess resulted in maximum ground vibrations 

(expressf~ci in terms of t'esultant peak particle velocity) of 3.90 mn:/s 

and 3.60 mm/s J.t btweholes Jl.7 ond B7 respectively. Close to thP. tunnel 

face the majority of the v·ibrational energy lay ·in thP. bandv;idth 50 Hz-

3SO Hz. The vibration was characterised by random heavy •·impacts• 

separated by periods of low amplitude vibration. The large amplitude 

motions shov:ecl no preferred clit'ec:t-ion of particle motion and wet~e due to 

a combination of: 

a) the impacts between the cutting discs and the granite 

and dolerite boulders; 

b) Thr ii~1pac:ts betv,'een boulders in the face; and poss·ibly, 

c) th:.:: imp<:::cts bct\-Jeen the cutting c!·iscs and the v;eak 

sanclstonc oc;_:as·ionany present in the (.unnel inver·t. 



It v1as the inV::,action betvlt.:>c'n the cuttir:g head and the ground v1hich 

V/JS the nw,ior '>ource of ground vibration, Jnd other sources of periodic 

type (SJt::ner.:;tedJ fm·· exJmpll",by the rna·in motors) 'dere small by co!npa:"·ison. 

It follows thJt the spectra produced were of a non-stationary nature 

\l'i th c'\ co:np-iex Jnd V<.lried frequency and arnp·! i tude content. These body 

wave ;:i'oLmd vib:-<~t~ons \vere quickly atte:nuated \·.'ith spat·ial progress and 

were reduced to less than l mn/s (resultant peak particle velocity) when 

the tc:11ne:l f2Cl' 1/ClS n:ore than 5 metres distant from the recordlng point. 

Rcc~use of the complex nature of the site geology and geometry, and 

the d•=:ployment of body v~<:lve energy into surface v:aves, no di rect1y useful 

conclw;ions are di'e>\m regarding the attenuation of the vibration energy 

over '.:l'istJnces in excess of 20 metres. Hov1ever, the r~-~sults given in 

Chapter' ~i do indicate that h·iqh frt:quencies are attenuated mo;'E: than lov1 

frequ~~ncies and may be used e;:1pirically to predict maximum peak particle 

velocities at distances up to 20 m from the tunnel face. 

Structural damage to a house occurred due to ground seLt1em~nt at 

section 8, and ev-idence of minor damage (crac:k·ing of ~Ji:1rclen walls, p0ths 

and road surface) was present at section A. The surface settlement was 

·18 rnm and 25 rnrn at sections I\ and 8 respectively. A-lso, sub-surface 

ground SE:ttlernents of betv;een 7 and 10 nlin occurred at tunnel invert level 

some (~ m from the t unne 1 centre l i ne. 

It is an important feature of the bentonite tunnc:'lling process that 

an cbsolute minimum of excess take of materiu1 occurs, The pressure in 

the ph'nU!li chamb:~r \'.'as Cc<pctblc: of suppOl"ting the cover and the immediate 

grout-ing of the-~ l·ining to the' l'\-'i3r of the shield should have ensun:cl 

cGnlp·l~tr~ ground su;-1port. It Vit1S thought that compact·ion of tile· ground, 

cau~;E:d by vibration from the e>(C.'l.VG.t·ion proc2ss, in the vicinity of tl;e 
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tunnel face: \•ia.s the most l·ikely cause of thc~se ground settlements. 

This h~;pothesis \'Ia~. further suprorted by results from dr'il-ling Jnd 

laboratol"Y settlement tests descr··ibeci in Chapter 6. The cJri'lling of 

holes for ground tre~tment prior to tunnelling caused settlements 

sinrilar to those \'/hich resulted fro1n the tunnelling in untreated ground. 

The majol"ity of these dr"in·ing incluc:~?cl set1.Jemsnts must have been ·caused 

by compaction of the soil us excessive take of 1naterial d·id not occur. 

This confirms that the ground has considerable potential for settlement 

as indicated by the measurement of relative compaction and Standard 

Penetration Tests. The laboratory vibrat·ion tests on samples of the 

Warrington sand (at similar dry density and moisture content to that 

id c1:tu) shm·;ed that settlement could occlw at vibration levels of less 

than the peak values measured in the field. 

This v:ork has shovm that only the ground close to the tunnel face 

was subjected to vibration levels likely to produce compaction, and it 

is therefore difficult to assess the relative contributions of compaction 

and exc2ss material take to the total ground settlem2nt. Hov.Jever, bearing 

in mind the nature of the bentonite process we may infer that the 

vibration from the tunnelling process caused ground compaction which 

contributed substantially to the settlement produced ar1d the ensuring 

damage to the overlying structures. It is recommended that: 

a) I·Jh2n tunnelling in non-cohesive ground,co111paction (that is, 

clensHication through vibl"ation) must be considered as an 

important potential source of ground settlement. 

b) Some rel·iuble measure of the initial density of the ground in 

the vicinity of any proposc:d tunnel should be obtained during 



the site investigation in order to assess the degree of 

possible settlement. Ti12 'relativi:> con:paction' of the 

1nater·ial ·z.,vt EJd.u seems -::o be the best measure of settlement 

pob::ntial. HrMever, Standard Pen;~tration Tests may be a 

t!l()\~e pract:·ic(1.1 mectns of assessment in the field (Figure 3.4 

may be of use ·in this context). 

c) Broader and more rigorously controlled laboratory investiga-

tions should bF:' carr·ied out to detonnine the effect of 

v·ibr,'lt·ion~:> s·imilar· in magnitude and frequency to those 

produced by excavation IJracesses, on the densification and 

settlement of sands. 

7.3 The direct effect of vibrations 

7.3. l Damage to sttuctures 

Measurements of vibration in the cellar of a house when the tunnel 

face was only some ~ m away revealed a maximum resultant peak particle 

velocity of 0.5 rnm/s. The results from the borehole measur,ements indicate 

that the ped: particle velocity of the ground at foundation level for houses 

5 m or more from the tunne 1 \"laS not 1 ike ly to exceed ·1 mm/s. These l eve·l s 

are \vell b~:.lo\·1 the established thresholds cited ·in Section 3.4, for 

either architectural or structural damage. It v;ould, therefore, seem to 

be extJ~emoly unlikely that the tunnel"ling process caused any damil.ge to the 

property in this area by dynamic stressing of the structures. 

/.3.2 Nuisance to res·idents 

The vibration fro1:1 the tunneJ"i·in~J n,aclrine ce:cusect lov: level noise and 

minor vibrations within the houses si ::.uated clos2 to the tumwl. The 



noise \'/as less them that caused by some ~assing rood traff·ic, but vias 

of an unusua ·1 na tunc and ~vas often present for periods throughout the 

night. The sound appeared to result from resonances of floors and 

ceilings, and was similar to that of distant thunder. The nuisance was 

at its worst when the tunnel face was at its closest and gave rise to 

l"itt.le complc.tint. v:hen more than 20 ITI fro1n the houses. The react·ion of 

the householders to the same stimulus was extremely varied, some 

compla·ining bitterly v1hilst others found no cause to visit the sHe 

offices Jnd object. 

r~ost of the noise complaints that viere received \•/ere related to the 

disturbance at night. Owing to the reduced level of ambient noise and 

the fact that they were trying to sleep, the noise seemed to the residents 

to be more severe. This reaction from the local population is fairly 

typ·ical nnd similar to that found by other workers (see Chapt~Cer· 1). 

The unusual noise from the tunnel construction worried ard caused 

actual nuisance to residents even though its level v1as lo;ver th0n that 

associated viith familial~ ambient sources. A tactful and good humoLTed 

approach by the man dealing with the residents (in this case the Resident 

Engineer or Clerk of Works) was of vital importance. A surly or officious 

attitude would clearly have p1~voked the residents to further action 

vth·ich rn2y have mater·ially hindered the progress of the \IJOrks. 

It is recommended that considerable effort is made to achieve good 

public relat-ions and that the nuisance to residents is minimised by 

achieving unimpeded tunnel advance to reduce the overall period of the 

disturbances. 
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APPENDIX A 

BENTONITE 

Bentonite is a clay mineral comprising principally montmorillonite with 

sman ill110L!i1::.s of otheJ" minerals. It is formed by the alter·a.t-ion in :c:·U;z~ 

of volcanic 21::h or· ~:cor·ia and usua·lly occLws in seams and beds from a 

fev-; inches to a fev.r feet thick in clays. It has a soapy feel, is h·igh.ly 

p.lctst·ic and i~; smooth and free frc:n grit. The best knovm deposits are 

found at Fort 13enton, viyonri ng, USA. 

l3entonHe is chemically described as hydrous a1urrrinium silicate 

(Al~ 03 5 Si 0:-~ 5··7 H2 o). The cr~yst.als structure is fonned of mica-like 

layers, built up from sheets of silica and gibbsite as shown below: 

Silica 

Gibbsite 

Silica 

Silica 

Gibbsite 

Silica 

The adsorbed ·ions are pr·incipally sodium and give a very gn~at sv;elling 

capacity. Water may be taken in between the layers until they are 

complete-ly di~:c;oci<:lteci fornting a thixotropic g<2l. 

In SoL!th East England, ·import<J.nt beds occut in the Lm1er Greensand 

v1hich (lTe mincrdls rich ·in nlontrnorillonite and aTe knovm as Ful"lers Eatth. 
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The ad:-;otbed ions are, hm·:ever, mostly calcium and the matel'ial is 

descr·i bed as sub···ben ton ·j te. The calc ·j um may be exchanged for sod·i um to 

g·ive bentonite. 

Bentonite has a 1 iquid ·1 imit of about 400 pc~r- cent and forms a 

stable suspension in \•later at very lo\v solids concentrations. This 

suspension acts as a Bingham plastic and as sucl1 requin::s a clefiwite 

shear stress to be applied before the fluid will flow. 

[3entonite is dried and ~1rotmd to a fine po\·/dor for commercial supr·ly 

as pellets, po\•Jder or a suspension. Various manufactLwing processes 

are employed to produce a range of grades for different purposes. 

In civil engineering, bentonite has been used since~ the late 1920s 

when it was used as a drilling fluid. It is used principally for soil 

stabil-isation and as a lubricant (e.g. for sink·ing ca·issons). However, 

it has a number of other important uses. A review of the 1 Uses of 

Dentonite in Civil Engineering~ has been published by Boyes (1972). 
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.!I.J?PEND I X 13 

HARMONIC PARl.lCLE MOTION 

Consider the motion of a particle (of v/eight H, mass rn) clue to a strain 

v:ave passing through an elastic so.lid. Let the r-estor·ing force on the 

part·icle be r)roport:ion•~~-1 to its displacement and the diss·if]ation of 

enel'9Y be rwoportional to its ve-locity. These bre the fundcHnental 

assumptions of linear elasticity and viscous damping. This approach is 

tliP one used most commonly to model internal friction ·in so·l·ids. The 

terms v·iscous used in this context does not ·imp.ly that viscous processes 

are necessar·"i"ly causing attenuation but that the result is s·imilar. 

The forces acting upon the particle are:-

\·J. the particle vJeight and 

- (W+ky), the elastic restoring force, 

where k is an elastic cor1stant andy is the particle's displacement from 

the position of equilibrium. 

- ( c )) is the viscous force 

where c is a coefficient of viscous damping andy dy 
= dt , the particle 

velocity. 

If P is an impressed fol't.e, 

then force on particle W - (W+ky) - c~ + P 
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Th·is mociel is analogous to that used to describe mechanical vibr-ations 

of a spr·ing-dashpot·-mass system as shO\'m in the diagr'C\Ill belov-1. 

~~--------- ---~---- ------- -------- ----------~.:·~···---·----~·~·------~--. _.,..;~- ---'1---~ 

- {\V+ ky) 

y 

From Newtons 2nd law this applied force will accelerate the mass m ~, (\'' \ 

my - - ky - cy + p 

.. ~J2y 1--1her·e y - the p<Jrticle acceleration. 
dt 2 

r my + cy + ky 

Considering only free vibrations (P = 0) 

my + cy + ky - 0 

to simplify let p2 k and 2n c 
= - -- ·-

m m 

. .. 
y + 2ny + P"-Y ·- 0 

This is a second order linear differential equation v;ith constant 

coefficients and may be solved in the usual manner 

Assume a solution where. 

~ I 
I 

( 1 ) 

(2) 

( 3) 

(4) 

(5) 

and Vihere r is a constant thllt ailov:s E"flUAtion (5) to satisfy equ3.tio~l (4) 



Putting (5) into (4) we obtain 

rt rt r rt Br 2 e + 2nl3re + pLBe -- 0 

0 . . . . . . . ( 6) 

By quadratic solution 

....... (7) 

Equation (7) allows three types of solution which define the character 

of the clamping 

a) \Jhere n2 < p2 periodic motion 

b) v~here n2 = p2 critical clamping 

\'Jhich l'epresents the level of clamping \'Jhel'e the mcotion first loses 

its vi brCi tory character. 

and c) \'ihere n2 > p2 overdamped 

In this latter case the viscous resistance is so large that when the 

part·icle is disp-laced from its equal-;briurn position it does not vibrate 

but o!ll.Y creep~; gl~ncJually back to that [)Os-ition. The aperiodic motions 

band care not relevant to this work and we shall consider only a). 



Now, as n2 < p2, the quantity p0 = p2 - n2 is positive and we obtain 

two complex roots for r 

r 1 - -n + i p and cl 

substituting these roots into equation (5) we obtain 

(-n+ipd)t 
y' = 8 e and y" 

The sum or the difference of these two solutions multiplied by any 

constant wil 1 also be a solution of equation (4) 

= y 
-nt. 
e after simplification 

-nt 
y1 = B1 e cos pdt ....... (8) 

and similarly 

1 -nt (eipdt ~ipdt) y' - y" ·- Y2 = 2T 13 e -2 

-nt 
Therefot'e Y2 :: 82 e sin pdt ....... (9) 

By adding these two solutions we obtain the general solution of 

equation (4) 

y = ....... (10) 

B1 and 82 rnust be detennined froin the ·initial conditions (of pal'ticle 
-nt 

displacen1~nt and velocity) and the facto!' e decreases \-J-lth time,damp-ing 
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y as a negat·ivc~ exponc:~nt·ial. To deter-·mine B1 and B2 assume that at the 

initial instant (time t ) the particle is displaced from its equilibrium 
0 

position by u distance y
0 

and has a velocity y
0 

Substituting t - 0 into equation (10) 

Yo - Gl ....... ( 11) 

-nt ( pdt) Therefore, y - e y cos p ,t + 82. sin 
() (.1 

dy -nt -nt 
cmd y == dt ·- - Yo e pd sin pdt - Yo n e cos pdt 

-·nt -nt 
+ 82. e pd cos pdt B2 n e sin pdt (12) ....... 

Substituting t = 0 into equation (12) 

= 

Therefore (B) 

Substituting for B1 and B2 in equation (10) we obtain 

( 14) 

NotP that the first term depends only on the initial displacement y \·Jhilst 
0 

the second term depends both on the initial displacement and velocity y_ 
l' 
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The oscinations may be considered as a cosine v1avc of amplitude y 
0 

w·ith another \·lave of arnp.l"itude (.y
0 

+ n y
0

)/pd (with a 90°phase lag) 

superimposed. 

To cletr:~rmine the resuitant amplitude 1\ and the phase angle ¢d 

consider the vector d·ia~FJill ·in fi~Jl!l"e B.l. Note that the rotating vector 

OQ lags OP by 90° and the resultant vector OR (A) lags OP by the phase 

By Pythagorus A" [Y:i + (Yo + nyo)/pd]! 

y 

l --- tan-l a so~~ -
~ + n 
Yc 

a -----
pd 

Thus, equation (14) becomes 

-nt 
y = A e cos (pdt - ¢d) 

-nt 
We have a motion with an exponentially 

2n 

decreasing amplitude A e 

angle <Pd and a period T d = --
pd 

( 15) 

( 16) 

( 17) 

, a phase 

Note that for free undamped vibrations, n = 0, pd ~ p and ¢d ~ ¢ giving 

y = A cos (pt - ¢) 

From equation (17), the ratio of two successive amplitude maxima ymi 

and y (. 1-l) is • ITI 1· 

= 
.. -nt./ -n(t.+T ) 

Ae l f\e , cl 

v;here o is the l oga ri thmi c ci(~C remen t 
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Yo 

Fig. 8.1 VECTOF< DIAGF~Aivl FOR H/)J<!viONIC lv1QTION 

w/p 

F 1 g . B . 2 . F 0 F< C ED -- D ;:J... M F') ED f\:1 0 T i 0 ~~ M A C N I F i C !\ T I 0 i\~ r-:-/:, C T 0 H . 
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It follov>~s that 

o = ·1 n ( v . I y ( . 1 \ \vll1l m l+ )j 

As the frPquency f -- 1 -- P - f --- -2n 
n 

0 = f 

Nmv the elas·t-ic enei'9Y stor·ed in the particle is proportional to the 

square of the amplitude (as is the kinetic energy). 

Therefore if \'!e define the specific energy 1 oss as t,\J/\~, then 

v.'hen this is sma 11 compared to un'ity we have 

6\1/vi o::.o 2 {y.- v . - ) 1 /y. ~ 2ln(y ./y . )= 2o -\ m1 .~m(HI) f nn 1111 m(Hl) 

Forced vibrut·ions vlith viscous clamping 

Consider E~quation (2) and let P = Q cos 

then y + 2 ny + p2y - q cos uJt 

l•Jt and q = Q m 

(20) 

( 2 '! ) 

(22) 

((~3) 

(24) 

The solution of this equnt.ion is now the sum of t.v;o terms, a co!llp1ementary 

funct-ion and c. pari.3cular integral. The comp1ementary function is given 

by equation (10) and dies away as t increases. The particular integral 

corresponds to the steady state solution 0nd ·is 



y -- fv1 cos (1)t + N sin (ut 

which, when expressed 1n terms of its amplitude and phase angle, 

becomes (as before) 

y ·- {\ cos (tJ!t - 8) 

and 8 ' -1 
= -can 

=tan_., ~ntJJ/p2 __ 

1 - w2jp2 

Let the damp-ing r·atio D -
n c - ... 

ccr p 

( 2 ~)) 

(26) 

(27) 

(28) 

(29) 

\~hen:~ Cc 1~ is defined us criticul damping 1·1hen n ·- p c.nd the motion just 

becomes aperiodic 

Suhsituting equation (27) into (26) 

Y = -~ S COS ( (ut ·· 8) (30) 

\'ihere B is the magnification factor, 

( 31 ) 

and eq'..lc t'i on ( 28) becomes 

( 32) 
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From equJtion (30) the amplitude of the steady state forced vibration 

. b. db 1'1' th t' ., d'' ., .Q 1s o ttJ.lne. y mu t1p y1ng : e sta 1c oi3 C11sp acernenr k by fL This 

· factol~ depends on D and the frequency ratio uJ/p. Figure 82 shm·1s the 

inter-related effects of the magnification Factors and the frequency and 

damping ratios. Note that:-

I'Jhen (!) ·is sman comparet.l to p, B is close to unity; 

v1hen w is 1 arge cornpa red to p' f3 tends to zero re~1ardl ess of damping; 

when (Jj is close to p the clmp·l·i tude is vel"Y sensitive both to f3 

and p. Large amplitude particle motions are therefore to be expected. 

Note also that the maximum value of 8 occurs v1hen w/p ·is sl·ightly less 

than unity. 

(' tt. . d 8 ..>e 1 r1n. ---- .. 
~· d!tl/p 

0 we find that the maximum occurs when w/p - ( l .. 
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APPENDIX C 

TRAVELLING WAVE MOTION 

Consider a solid through which a strain wave is travelling. At some 

time;, say t = 0 tile shape of the v1ave can be represented by y ::: f(x), 

t = 0 where y is the displacement at the position x. 

Let this wave propagate to the right with a constant velocity C. 

At some time t later the wave will have travelled a distance Ct. The 

wave equation at this time (t) is therefore 

y - f(x - Ct) t - t 

This is the same vmvefonn about the point x = Ct at t·ime t as 1·1e had 

about x = 0 at time t = 0. 

Equation (34) is the general equation for any wave travelling to 

(34) 

the right. It follows that y = f(x + Ct) represents a wave travelling tc 

the ·left. 

It we wish to determine the progress of a particular part (or phasG) 

of the vra ve vlt:: must fix y and examine the effect of i ncreas i n~j t. No1·1 

if y is fixGd then as t increases so must x ·increase such that 

x - Ct = constant 

and 

x - constant + Ct 

~~- - c 
dt 



Thus the v2lccity C is the phase velocity in the x direction. 

Note that fm~ any fixed value of time equation (34) gives y as a 

function of distance x (from t = 0, x = 0). Also if we choose to 

investigate the motion of a particle at a fixed distance x then the 

equation gives the variation of amplitude with time. 

Nov1 consider the p.:n··ticular Vla.ve motion v;hose amp-iitude at time 

t 0 is given by 

y - A s·in 2rrx/L (35) 

Note Uwt the d·isplacement y is the same at x i1S it is at x + l., x + ?L. ..• 

ie L is the wavelength. 

Let this \'Jetve tl~avel to the right \'lith a phase velocity C. 

Then y - A sin 2~ ( x - Ct) ( 36) 

The period T is the time required for the ~ave to travel one wavelength 

so L = CT 

Substituting into equation (36) 

y - A sin 2rr(x/L - t/T) (37) 

This cquat·ion is often expressed in terms of the uKWe 1w.mb:.?l' I< c.nd 

vngular frequency w where 

K -- 2;,/L and 

y - A sin (Kx - wt) ( 
~.n) 
.){)I 



This analysis has assumed the displacement y to be zero at x 0, t ::: 0. 

This need not be the case and the general expression for a wave travelling 

to thr~ right is 

(39) 

\'!here q, ·is the phase ang 1 l'~. 

This equation is similar to equation (18), the additional term Kx 

al"lm·:ing for the spatial dimensions l~equired for a travelling \·Jave. rather 

than stationary simple harmonic motion. 

Different·iating equation (36) vrith respect to time we find that the 

particle velocity of the wave is 

dy -2nAC 2n 
--- = ·-·-L- cos -L (X - Ct) cit 

The strain due to the wave (the rate of change of displacen~nt with 

respect to distance) is 

dy = 2nA crx -T-- 2n ( cos T X - Ct) 

The energy prora~1ated by a v:ave is rart potential and part kinetic. 

(40) 

( 41 ) 

Con:.-ider an element, dx, of a filament of unit cross-section extend·ing in 

the direction of wave propagation. The kinetic energy of the element is 
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Now the strain enet·gy in the sal!llc: e·lement depends upon Vihether the 'dave 

is one of distortion or dilatation. The strain energy for a wave of 

di-latation is 

H A + 2 G) ( ~f-Y d X :: -~ 2 
A 2 (A + 2 G ) c 0 s 2 'L -t~- ( X - c t )] d)( .. • • • • • ( 4 3 ) 

\ i L2 

C , (! ; 2G y 
constants. 

the velocity of a wave dilatation and A and G are 

/' 

Lames 

~--.{_ch;\
2 

2n2 2 2 2 !2" ( l 
Therefore~ * p v\cfx) dx = ·· L

2 
A C p cos L-c x ·· Ct)J dx ( .. \ 

Lt.'t. J 
'.I 

( 

\? 

as C2 = ~-~ f equation (44) becomes ·ider1tical to equation (42) 
(H. I 

The strain energy for a wave of distortion is 

1 G (~)' dx " 
2:~2 G A~ cos2 [t" (x - Ct) J dx 

r., 2 

( )

l. 

where C = ~ the velocity of a wave of distortion 

( 4 5} 

Substituting for G in equation (45) again yields an equation identical 

to eCJuation (42). 

These results show that for a wave of dilatation or distortion the kinetic 

and potent-ial ener'gies at any instant al~e equal. It follov1s that the 

energy propagated by a wave is divided equally between its kinetic and 

potential energies. This rc:sult is quite different from that obtairied 

h·om a s·imple vibr·oting spring-ml'lss s_>rste:m VJhere the energy oscillates 

betvteen pure ~~train energy 1·1hen the 111uss is r.t test and pure kinet·ic 

ont'?rgy 1·.rhen the mu.ss is at its max~n1um velocity. 

lGl 



Consider the energy flux passing through unit area perpendicular to 

the direction of propagation. For a single harmonic co1nponent, the 

enetogy passing tiH'OU~Jh such an ared "ir1 un·it t·ime is found by integrating 

the encrsJY in a fil<l!I1E'nt of ·lenSJth C. 

E 2 r.~~r 2 (2pl?p) cos 2 r~-IT ()Z - Ct) l dx 
\L2 LL .J 

(4G) 

For a spherical wave the total flux E' passing in unit time through an 

envelope of large radius r is 

ConsidPr equation (17) and putting the phase angle - -90°, 
-nt 

then y ,~ f1 e 

-nt 
-- A e 

where fd is the frequency. 

(47) 

(48) 

Now consider this wave propagating through a solid with a phase velocity C 

(t = -t-) 

Then, spatially, equation (48) becomes 

-nx/C 
y P. c sin 21rf (I ·· t) 

or· y 
-nx 

A e sin 2nf (~ - t) 

whC:;re: a (the spatial aU(-:>11Ui:l.tion coefficient) 
1 -a 

= n/C (unit m ) 

and n ·is the tompor'C!i attenuation ccefficiont (unit ~-.- 1 ). 
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Nm'l considering only amplitude:: 1naxima 

y 
-ax 

A f: 

and the rat·io of t1.·w successive max·inJa at 

x. 
1 

X. I 

l+L 

I 

U:/• • "·'' ".: -_ ... '.' I _,.., ( >· -1-l ) 
Ae 1 f..e 1 

I 

= 
--al 
e 

-cY.C/f 
"' e 

where, again, 6 is the logarithmic decrement. 

Consider the attenuation of se·ismic \.'laves from a po·int source. The \.'lave-

front will be spherical, and, if there is no damping, the energy in unit 

solid angle will remain constant and the energy passing unit area will 

vary as l/r2 (where r is the radius of the wavefront). Now the energy 

is proportional to y2 Therefore the amp-litude of the mot-ion vrill decrease 

as 1/r. Thus for D.ttenuation of a111plitude due to geornctrica.Z spx'cxzdz:ng 

y is proportional to 1/r. Consider, for example, two distances r 1 and 

r 2 from a po'ir1t SOUl'Ce, then 1vith damping 

Therefore, Y-:!_ 
-ar2;-ar1 

=y 1r 1 e e r 2 = 

whel'e A is the amplitude at the source 

YJ is the amp l·i tude at rl 

YL. i 5 the ztmp l i t.ude at )'',-, 
L 
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/\PPENDIX D 

PdYSICJl1 PROPERTIES OF fl. GF;,\I~UU\R SOIL 

Consider a volume, Vf' of son weight Hf. Convc:ntional"ly o. soil may 

~e regarded as a three-phase system comprising solids, liquid (usually 

water) and gas (usually air). 

Using subscripts to weight Wand volume Vas follows g - gas, w- water, 

v - voids, s - solids. 

• . • • . . . \·! 
l: .. . . \ s . "· .. . . () 

. a .. 
... 

l 
. •, . 

• • ..... ~ Q \. 

~...:......-- .. ·----· 

Saturation S = V /V = W I V \'/ v \•/ '(\•: v 

where y ~s the density of water 
VI 

Moisture content m - W /W w s 

Bulk clens·ity 

Dry bulk dens ·i ty 

Speci f·i c grct v·i ty 

Hence G Ill -· Se -s 

y 
d = 

( "0, i r' c- ' -' I .. 1., } 

V IV 
\•J' s 

W /V 
f f 

\<! /V s f 

G s = 

and 

Hence 

= y/(l+m) 

Y/\v 

16'4 

The poros ·i ty n - V/Vf 

void ratio f~ -- V/Vs 

n -· e /1 +c and e = n/(1-n) 



Considering lee of in situ material 

m \·1 It·! 
\v S 

\·J -- rn \·J ·- 13. l x l . 571100 0. ;:o6 gm 
1>1 s 

v .. 0.206 cc 
\'! 

Now Vs - YdiGs = 1 .5712.64 - 0.595cc 

Void 

v g 

ratio 

Poros ·i ty 

e = 

n ::: 

~- v ) ·- 0. '199 cc 
\'! 

V IV v s (V +V )IV 
'vi 9. s 

V IV - 0.405 v f 
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APPENDIX E 

Processed data from borehole A7 (continued) 

! :.);:.l-.J..l'·;:::. -r·-vl..:~.,j:> :'1!1'1 f·"C"•qu--ncy o" i , ,,~ 1 dl. -.. c ... 1J. , L ... t. _,, G 1 ~;..:. e.. ' 1 

i Record 
I :·~v. L----.--- principal peak~ . I -,--- __ 
'-----~ -~':_ _ _L Hz Amp Hz \ limp l '~--~ o-so J 50-1 oOflC0-150 
I 
I 

lQ ) 3.2 ! ~1G 
-~ t: 2r-5. 2 ' c.-: 
~~ 9 
22 
2G 
29 
')') 

-~ 
L~ ·:-

i'"! 

; 7 
20 
23 
27 
30 
~3 
-I"~ 

c: 
') ,, 
1 

24 
22 
2"! 
'i~ 

3S 
35 
3G 
J7 

:2 
3j 

co 
41 

.::.-:,. C: 
39 
75 
LJ 

:::.'1 

~.0 
i 2{J 

2i. 9 
::;o 
90 
rLJ 
?S 
l;. 2 

.7 
·-=· . ~.' 
l. J 
9 

8 
6.2 
:!.C 

1-LO 
.2 
.S 

9C 
18·J 
1 :; ·~! 
20:. 
123 
13D 

.u 
2.SO 
2JO 
!60 
lSO 
·-, 
J. 

·:o 
9 

i ;) 

D 
2: C\ 
l •IC: 
.! 3~; 

6[1 
(:5 

2.~ 

l3C 
l.)C 

. 130 

2 

.J. l 
9.o 
~~ . 2 
'3 
0 ...,,, 

h 
?r 
.:J 

12. :i 

1.8 
/0.3 
!3.2 
64 
70 
40 
.~ ') 
Lv 

l o. :' 
' c '.-

16. I 
•) ~ 
~ J • ,) 

2~ 
+~ 
/] = 
~J 

14.4 
l;. 9 

7. 
ll. 
I Q . 

12 

25 
2·:'fCI 
240 
lt:O 
~30 

215 
130 
93 

ss 
220 
·: ~'] 

2l:J 
207 
~ 35-

.ss 
112 

~-) ~; 

IOD 
191J 
180 
t 3~) 
:~:> 
35 
7G 

135 
so 

!60 
210 

0 
l ::J 
120 
?F 
-·~ 

15.3 

-17 
53 
55 
23.4 
11 ,, 
• j,.) 

18.8 
17.0 
61 
45 
40 
22.6 
~Q.O 

1. 26 
IL.5 

23 
28 

14.0 
., 'J. l 

'10. 6 

4.5 
7. l 
9.5 

150 

230 
2; :) 
172 
85 
75 

180 
i20 
'!80 
2),0 
2!]5 
~70 
127 

110 
i'C 

DO 
185 

140 
liC. 
~~u 

'60 

i. 20 
. 'l 

.4 

.5 
9.0 
7.5 
8.0 
4.9 

0.62 
4.2 
2 

,. . ~ 
4.5 
8.0 
·1.0 
~-4 
? ~ 
t..~ • ~l 

0.53 
~ r 
~.:J 

2.0 
3.0 
5.0 
1.5 
4.4 
.).[_ 

3.8 
3. il 
J.E 
s.o 

0 ! 3.4 
.. ) I . ., r u 1 .) • J 

- :..:) 2 I ~-~ 
------·---'----'---'----'---_l_.--'---'-

l. 14 
9.2 

11.0 
ll. 5 
21.0 
13.0 
15.6 
7.1 

l. 10 
7.3 
8.2 

14.0 
19.0 
9.5 

12.6 
5.7 

i. 02 
8.4 
7.3 
7.5 

10.0 
9.0 

10.6 
6.7 

3.3 
7.8 
3.0 
5.2 

2.4 
6.0 
5.5 
7.0 

l. 26 
9.5 
9.0 

12.5 
39.0 
2·1. 0 
19.2 
7.4 

0.74 
8.4 

10.5 
22.5 
44.0 
25.0 
13.2 
6.2 

0 . .'12 
5.6 
r: 'J ~.~ 

14.0 
30.0 
Zii.O 
8.0 
S.2 

5.2 
7.2 

16.5 
7.2 

2.6 
4.8 
6. 7 
5.9 

150-200 

0.66 
0 t, 
U • 'T 

5.3 
47.0 
35.0 
33.0 
14.0 

3.8 

0.72 
ll. 7 
7.6 

45.0 
50.0 
2'1. 0 
13.6 

11,6 

0.64 
li. 0 

c ' ··-14.5 
19.5 
17.0 
8.2 
., '1 
--'-~ 

4.8 
G.2 

11.8 
7_0 

1.7 
' 0 -,,J 

6. l 
6.4 

Peak relative amplitude I 

zoo-2-~5-o-Joo ! 300~ Js0::400T4DC-4-sor4so:4 
I L I 

0.52 
10.4 
9.8 

30.0 
33.0 
39.0 
13.2 
~ ? 
._j ' I~ 

0.70 
!4. 5 
10.0 
33.0 
30.0 
23.0 

c• n 
u.~ 

3.6 

0. ·10 
4.3 
3.3 

13.0 
10.5 
10.0 
8. l 
2.0 

2.9 
5.6 
3.2 
7.3 

1.6 
2. 5 
6. l 
7. 7 

0.24 
6.5 
4.7 

19.0 
l G . ~5 
10.0 
9.4 
2.1 

0 .~6 
10.5 
5.6 

13.0 
15.0 
ll. 5 
8.3 
') 0 
c..,,l, 

0.20 
., c 
~.:J 

2.5 
9 ~ 
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5.0 
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0.~ 

2.7 
-~. 8 
5.8 
3.8 

1. 2 
2.3 
7.5 
5.0 

0.16 
4.' 
3.0 

12.5 
9.5 
4.0 
7.0 
i. 6 

0.20 
3.5 
2 .ro 
9.0 
9.5 
4.5 
5.3 
1.2 

D. 14 
2. 7 
I. 9 
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3.0 
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0. ,<) 

2.5 
~.2 
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0 ') 
J.~ 

1 ri 
·:.t. 

2. 7 
3_6 
1; II .,,., 

0.12 
·,. 6 
',. 9 
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l . ·+ 

0. l 0 
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3.0 
O.B 
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0 -
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5. 0 4. 0 

. ~-. 0 ·1. 0 
4. 0 3. 5 
2. 6 2. 0 
l. 1 0. 9 

0.06 
1.7 
1 .. ~ 
3.5 
8.5 
3.5 
l .S 
0.7 

0. (if, 
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0.8 
:'. D 
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2. 
i. 
C. 

2 .l 
.j. 2 
2. 3 
1.4 
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i .0 
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. 5 

.o 

.6 

C.OG 
o.n 
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2.0 
~.5 
? " 
-. :J 
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1. 

1. 
l. 

G. 
0. 
2. 
0. 
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APPENDIX F 
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APPENDIX H 

SI:·iPLlFIED M~P,LYSIS OF SH1PLE Hf\Ri10i'liC i·iOTION 

Consider a line 03, ~ength r·, rotating about point 0 at w rads/sec. 

[~C i~; the vertical p!'Oj2ct·ion of the poi11t 8 \'1hich intersects 0/\ (\t C. 

8 
'\'-'-W /1 

;/"I 

,,,( I 
______ _. ____ ·---·---~--------·--~---~---------

0 (' 
.J 

Let the ci·isp.lacement OC ,~ y 

At the initial instant, t
0

, let point 8 be coincident with A then 

after t seconds 

d·isplacement 

velocity 

and acceleration 

dy 
dt 

-~~!'. 
dt?. 

= r cos wt 

.. wr sin uJt 

\'/here f 

MaximU!!l displacement (amplibde) - r 

Maximum velocity = -wr 2 ~~ fr' 

Maximum acceleration = w2r 

frequency 


