Durham E-Theses

Aspects of the acid tolerance of algae from the Durham area

Pomfret, John, R.

How to cite:

Pomfret, John, R. (1973) Aspects of the acid tolerance of algae from the Durham area, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/9145/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details. ALGAE FROM THE DURHAM AREA

by
John R. Pomfret
B. Sc. (Dunelm).

Being a dissertation submitted as part of the requirements for the degree of

Master of Science
(Advanced Course in Ecology)
at the

University of Durham.

October 1973.

ABSTRACT

Algal samples were collected from a diverse range of aquatic habitats in the Durham area, with pH values ranging from $3.2-9.2$, and their acid tolerance in culture was investigated. The pH ranges of occurrence of species in the field were tabulated and their ability to survive in culture at pH 3.3 recorded. The results reveal that some species are restricted to low pH environments among the samples taken, whereas other acid tolerant species can also be found at normal or high pH sites.

Acid tolerance was found not to be specific to any particular algal division, the only common division not represented among acid tolerant species being the Cyanophyta. This is in agreement with results of investigations in America.

Comparison of species found to be acid tolerant from environments other than minewater drainages, with the flora of an acid minewater drainage at Brandon, suggests that $p H$ is probably the major factor determining the flora of the latter, rather than pH-independent factors characteristic of minewater.

Evidence was found showing that tolerance of low pH conditions is a characteristic of particular species to a considerable extent, and samples of these species taken from quite alkaline environments were found to survive at low pH in culture. However, there is also some evidence for the occurrence of adaptation within a species and this may be important.

No clear patterns emerged from a floral comparison of the Brandon Acid Streams catchment area and the surrounding countryside.

Some experiments on transport of algae by air were carried out, but limited data were collected. It appears that the Acid Stream species are not common among the algae in the air a short distance from the Stream.

CONTENTS

Fage

1 Introduction 1
1.1 Distribution and dispersal of algae 1
1.2 Extreme aquatic environments 2
1.3 Aims of study 3
2 Desoription of the area and site seleation 5
2.1 Diarham area study 5
2.2 Brandon Acia Strearns 7
2.3 Air-fiora study 11
3 Methods 13
3.1 Collection of samples 13
3.2 Culture methods 13
3.3 wH measurement 15
3.4 Microsoopioal examination 15
4 Results 16
4. 1 Details of sites 16
4.2 Culture dates and pH values 22
4.3 Floral analysis of cultures 24
5 Discussion 39
5.1 Discussion of experimental methods 39
5.2 Acia tolerance of algae 40
5.3 Relation between acid tolerance and field HH 43
5.4 Air-flora experiment 44
5.5 Recommendations for further resoarch 44
6 Sumary 46
Acknowleagements 47
Bibliography 48
Appendix 1 -Growth medium used 52
Appendix 2 - Taxonomic problems 53

INDEX TO MAFS

Page
Map 1 Durham area showing 'D' sites 6

* 2 Brandon Acid Streems showing ' S ' sites 9
" 3 Brandon Acid Streams showing 'W' and ' A' sites 12
INDEX TO TABLES
Table I Site description 18
" II Sites in order of pH 21
" III pH values of Cultures 22
" IV Sumnary of algae found in all cultures 26
" V Filoral resuliss for survival in cultures of mixed inoculum 31
* VI Association Table 32
" VII Survival of algae at a pH of 3.3 or below 33
" VIII 'F' values for comparison of pH distributions 35
" IX Floral analysis of cultures from air-flora experiment 38
1.1 Distribution and dismeral of algac.

The factors controlling the distribution of algae are many and complex and, although algal ecelogy has been studied for over fifty years, the difficulties involved in determining the relative importanoe of each of these factors have greatly impeded advanoment of understanding in this field.

In an early paper, STRdia (1924) reports that many algae are cosmopolitan in occurrence, although geographioal localization is noticeable in some cases, especially for some desmids. Since then, a great deal of research into the classification of particular floral communities typical of particular environments has been carried out (BUTCHER, 1933; BLUN, 1956). The field is reviewed by LUND (1965). More recent work, based mainly on laboratory oulture experiments, on the effects of many envirormental factors including calcium concentrations, nitrogen availability, pH and temperature, is aresented in a comprehensive review by MOSS (1972, 1973a, b, 0). He compares the effects of these factors on eutrophic and oligotrophic alge. Eluaidation of the toles of these diverse envirenmental factors is, and will be, of ever-increasing importance in the field of water management.

Although great steps forward have been made in the above field, very little research has been carried out into the factors influenoing and controlling the dispersal of algae. These dispersal mechanams may well be of great importanoe in explaining their distribution patterns, but often no obvious patterns emerge from studies of the colonisation of new water bodies (TALLING, 1951). Only over the last fifteen years has progress been made in this field.

A paper on the topic in general was published by MAGUIPE (1963) but most of the available data are concornod with the roles

Abstract

of specifio animals in the isporsal of algae. Studies on wherfowl have show these to be capable of carrying viable algae Internally for oonsiderable periods (PROCTOR, 1959; SCHLICHIING, 1960) although ATKIHSON (1970), in a specific stady of a planktonic diatom Asterionella formosa, finds no evidenoe for internal transpart of viable cells of this species.

A considerable amount of work done in Toxas and Nerth Carolina hess: shown that certain insects are apable of carrying viable algal cells for cansiderable distances (REVHL et al, 1967), and MILIIGER \& SCHLICHING (1968) demonstrate that transport of algae in the gut of an aquatic beetle may be exceedingly important. Ifttie research apears to have been carried out on the dispersal of algae solely by wind currents. SCELICHIING (1964) reviews the problem and JAFORSKI \& LUND (1970) studied Asterionella formosa to try to gain some information on dispersal of planktonio algae which have been notably absent from many of the studies. The field is still very young and many problems await solution.

1.2 Extreme aquatio enviremmonts.

BROCK (1969) defines an extreme envirorment as one from whioh thole taxonomic groups of organisms are absent. It is important to remember that enviraments which might be considered extreme by man are not necessarily extreme in this sense, e.g, the Arotio. In studying many natural environments florally, the carplexity of environmental facters mentioned above, and the diversity of the flora, make development of a soientific model of the system extremely difficult. Extreme enviromments oan often be florally described oompletely without too mon diffioulty, an their study can give information of use in elfordating the complex interaction atterns in more normal ecosystems. In adaition, an extreme aquatic enviroment provides a habitat in the field vastiy
different irom surrounding waters but usually similar to other such oxtreme habitats in other parts of the world. Comparis on of such systems can give valuable information on factors determining algal colenisation. The field is reviewed by wHITION (1972).

In addition to investigations of a general nature, extreme environments ofton fustify study where they cause particular polution problens. This is espocially true in the oase of acid streams oaused by strip mining in Americe (PARSONS, 1952). This thesis is particularly oonoerned with extreme aoid environments of this type. Detailed studies of the flora of such streams in Amerioe have been carried ont (LACKEY, 1938, 1939; BENNETM, 1969), although no data have as yet boen published ooncerning sinilar streams in Britain. Other scurces of moid water inolude peat mires where the pll oan appreach a value of 2.0 or less, and voloanio souroes such as acid thermal springs (which are often dominated by Cyanidium oaldarium), and voloanic lakes. Little data are available on the flore of the latter, although seme wark has been done in Japan (JENO, 1938) where lakes of aoidity of both volcanto and humic origin occur (UसNO, 1958).

Problems associated with studies of acid environments are that the se are often asseciated with high heevy metal levels, especially iron and aluminium in the oase of minewater.

About 12 photesynthetic organisms are commonly found growing at pEI $=3.0$ or below, as well as a large number of bactoria and fungi, some of which will survive at plitues as low as sere.
1.3 Aims of Stuay.
The main aim of this atudy is to investigate some aspeots
of the teloranoe of alge in the Durhan area to low pH cenditions,
and to relate the results to the flora af a very acid stream at
Branden, thas perhaps elucidating the major factors governing its
flora. Acid tolerances of algae in culture are compared with their observed distribution over the sampling sites used, in order to determine whether the results show any evidence for the formation of ecotypes adapted to low pl if conditions. Comparisons are made between the flora of the Acid Stream and that of its catchment.

Finally, the results of some investigations carried out into the aerial transport of acid tolerant alga are considered in an attempt to clarify further any patterns that engorge from the study.

2.1 Durham Area Study.

The area studied for this part of the project was a part of the River Wear eatchment between Witten-le-Wear and Durham, and contimuing nerth to Waldridge Fell, noar Chester-le-Street.

The River Wear is a relatively fast-flewing river subjeot to rapid rises and falls at any time of the year, and is medorately hard and entrophic by the time it reaches Durham. The area is mainly arable farmland or urban on a substratum of ceal measures, sandstones and shales, with seme peaty meorland arees. The upper part of the River Wear flews through old lead mining areas and thus receives a amall load of hoavy metals which may have some slight effects on the flora. Drainage from old ceal workings alse affects many of the wateroourses in the area. Several studies of the algal flora of the area bave been made in the mast (CRIFFITHS, 1936; DEWDNEY (Ed.) 1970) especially of the River Wear (BUTCHER, 1932; PEABODY \& WHITTON, 1968; FHITTON \& BUCKMASTER, 1970).

For the initial experiment to study the effeots of pH on the occurrence of algae in the area and their acid telerance, samples were colleoted from sites with a wide range of pH . 32 sites were selected, the main criterion being to achieve as wide a pH range as possible whilst alse including a wide range of conditions with respect to outrophy, physical conditions, substrate type, haraness etc., to reduce the influenoe of the se parameters on the overall results. Sites chosen ranged from a pool on bare peat at $\mathrm{pH}=3.2$ to a lake outflew stream in an old gravel pit area at $\mathrm{pH}=9.2$; from pools and small streams to the River Wear; and from unpolluted meorland waters te sewage works offluent. About balf of the sites were flowing, and half standing water. The sites were numbered D1-D32. Pesitions are show on May 1.

The number of sites that could be studied was limited by available time and culture space. For this reasen 21 sites were

seleoted from the original 32 after preliminary miorosoopical examination to give the widest range of floral types. Samplos were then wit into culture as described in seation 3.2 at low when site pH, and the ada tolerances of the varieus species investigated. Results from the aoid strear catohment survey (see next section) and floral lists for the Brandon Acia Streams (pors, comm. HARGREAVES, 1973) were alse included in the general results.

2.2 Brandon Aoia Streams.

(1) In the seopnd part of the experimental werk a sories of floral samples were taken in the catchment of two very acia streams near the site of Branden Pithouse Colliery (see Map for pesition in relation to Durham area). The valley of the acia streams loads dewn to Rea Purn and ultimately to the River Deerness. The whole area has been extensively mined for several centuries by means of mall adit mines into the various seams outcrepping dom the valley sides. Shaft mining in the area has been carried out since at least as long age as 1838 (DURHAM DIOCESAN FECORDS, 1838) se it is likely that most these drifts have been disused, except for drainage purposes, for over a century, ard most are not traceable on the ground.

The main shaft of the medern Pitheuse Celliery was sunk in 1926 down to Tllley Seam level, and the medern warkings weuld intercennect with the ald drifts in the Five Quarter and Main seams. The colliery was finally clesed in 1966 leaving a spoil heap 800 m . across (FOBINSON, 1971). The acde streams both spring from near the base of this tip and beth appear to run frem old drifts in the Main seam outorep - see Map 2. Aoid Stream 1 flews frem an earthenware pipe near the site of one of these drifts whereas Acid Stream 2 seops frem the base of. the tip as shom. Hewever, the latter appears to originate from the old drift now ocvered by the tip, rather than fren seopage thraugh
it, sinoe the tio has been hown to have no wator table of its own, and creep mevements consistent with seepage along its base have been recerded. Acid Stream 1 has been shown on approximately its present osurse on maps sinoe 1897.

Adid Stream 1 leaves its source with a pH (2.6 and a remarigably osnstant flow of around $0.31 . s^{-1}$, although this is drestically increaselduring rainy weather a fow metres downstream by drainage frem the til. Flowing along the present base of the tip, the strean passes through a reserveir (built early this oentury fer an unknown purpese) to its confluence with Acia Stream 2. It then contimes tewards the site of Dish Weod, a plantation of some antiquity, at whose boundary the pH is raised to 6.4 due to dilution by other streams. In 1970 contracters started levelling the tip and in 1971 dredged out the stream to prevent flooding of farmiand, thas the present flera of the stream is the result of 2 years' colonization and grewth. Since October 1972 regular sampling of the stream, both ohemaloal and fleral, has been oarried out at Durham (pers. comm. HAFGrEAVES, 1973) and the sites used have been marked on May 2. pil values cerrespending to these sites are shown in Table T (mamered S1-S43).

Acid Stream 2 has a source pH of around 3.0 and retains this until its confluence with a surface water stroarn, as show, where the sif rises and hydrated iren (III) exides are precipitated. It then passes through a pipe to join Stream 1. Two of the sampling sites listed are on Stream 2.

The cause of the acid contamination of the water is the oxidation of Iron pyrites (FeS_{2}) leading to production of soluble aciale compounde - minly sulphurio acid. Acid minewater appears to be specifically asseciated with coal seams centaining or adjacent te deposits of pyrites,

espeoially in oases where there has been a fire in the werinings. At Pithouse the Main seam has very low sulphur content so the pyrites is presumaly present in adjacont strata. Formation of acia oan ariae either by atmospheric oxiaation of pyrites or the action of sulphar oxidizing and iron oxidizing becteria. Idttle is knom concerning the relative impertance of these two mechanisms. Atmospheric oxidation oan basically be oonsidered as ocourring by the following steps (JOSEFH, 1953):

$$
\begin{aligned}
2 \mathrm{FeS}_{2}+3 \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} & \rightarrow 2 \mathrm{Fe} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \\
\text { also } 4 \mathrm{FeSO}_{4}+2 \mathrm{H}_{2} \mathrm{SO}_{4} & \rightarrow 2 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{H}_{2} \mathrm{O} \\
\text { and } \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{H}_{2} \mathrm{O} & \rightarrow 2 \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

although the actual mechanisms of reaction under the conditions may we complex and are little understood. The second two steps are depenient on concentrations and pH values. Most of the iren in the upper few metres of the acid streams will be in the iron (II) state. At higher pH the iron is precipitated - at pHifalues greater than about 3.3 in most stream waters.

Baterial oxidation appears to be mainly due to three organisms: Ferrobacillus ferrooxidans, Thiobadilus thiooxidans and Ferrobaot 17 us gulfooxidans (BAKER \& WILSHIRE, 1970). These are believed to be responsible for a considerable proportion of the acid sroduotion.
(ii) In order to try to determine whe ther any important patterns exist in the relation of the flora of the acid streams with thet of their aatohent, a detailed study of other flowing water in the catchment was carried out. Algal samples were taken from 20 sites in the area including all flowing water in the area as well as one or twe standing water and intermittently flowing sites. These sites were numbered 11 - Wif and are fully desoribed in Tables I and II. Their

Locations are shown on Map 3. Where several sites were chosen on the same stream all were given the same number with suffixes a, b, c..... etc. starting frem the lewer and. Samples wore put into culture as desaribed later and examined after 3 weeks. The whole survey was repeated 7 weoks later.

2.3 Air-flora study.

In studying factors controlling the distribution and spread of algae in an area it is obviously relevant to investigate the mechanims of dispersal of speoies. Although a certain amount of' work has been done (see Introduction), this field is atill littile understood. In an attempt to obtain some information as to the acid tolerant algae present in the air around the catchment, sets of plastic beakers oontaining acidified growth medium were left out at selected sites, 4 directly above the Aoid Stream, and 4 elsewhere in the area. The sites were numbered A1 - A8 and are marked on Map 3. Thus it was hoped that observation of growth in these beakers would give same information 28 to the mobility of species in the area. It would have been preferable to repeat the experiment at a large number of sites, but this was not possible che to lack of time.

3.1 Cellection of Sameles.
(i) Algal samples were collected using 20 ml . sterile plastic bleod-ample tubes. For reoky substrates grewth from an area of $1 \mathrm{~cm}^{2}$ woise soraped up and cellectod along with samples of any visible filamenters grewth in the vicinity and 10 ml . of water frem the site. For mud and clay substrates the top few millimetres of mud wore collected over the same area. In any ases where a large diversity in substrate or grewth was apparent at a aite, anmples from all types were taken. In repoating samples at a later date oare was taken te repeat the original sample in as mach detail as pessible. Samples were briefly examined and then cultured within 24 hours of celleotion.
(ii) Air-Mera samples were celleoted by leaving out aoia-washed plastic 250 ml . beakers oach containing about 30 ml . of moatfied Chu 10 D modiun for two-woek perieds. Six beakers were left at each site (site nos. A1 te A8). Two of each set contained growth medium at $p H=2,6$, twe at $\mathrm{pH}=5.5$ (adjustant of pil being carriod out by adeition of 2.5 M sulphuric acia), as well as two containing matrient agar at pHz5.5. One of oach pair of beakers was coverea by $1 \mathrm{ma}^{2}$ mesh black muslin. Where atlution ocourred Wue to the heavy rain experienoed during the 8 ampling period, mutrients and acid were aded inmediately after oplloction of the beakers to restore Chu 10 D mutrient ooncentratieas and eriginal pH values befere incubation in a 12% cultare roem for three weeks.

3.2 Oulture Methods.

The oulture mediun used througheut the rejeot was a medification of Chu's 10 D medium (CHJ, 1942) . This whs ohosen as experience of other workers has shem it to be a very suitable medium for mixed oultures, being hifh enough in matrient levels fer mest sweaies to survive but not se high as to enoourage over-rapid dovelopment of dominanoe by outrophic organisms. Soil extraot was aded te facilitate growth of metile organisms having been first rendorea free of viable algae by repeated beiling and oeling. Cultures
of ' D ' and 'tit samples were carried out in 20 ml . of modium in 25 ma. beiling tubes in a shake-tank at $15^{\circ} \mathrm{C}$ with a light intensity at the base of the tubes of 5.0 klux . Air-flera samples were cultured in 100 ml . conioal flasks in a $12^{\circ} \mathrm{C}$ roem on a white tray in a light intensity of 30 klux . All culture vessels, storage bottles and pipettes were washed with detergent fallowed by 2 M hyorochleric aoid, then rinsed in distilled water and dried at $110^{\circ} \mathrm{C}$ before use on every oocasion. Culture tubes were sealed with Morton Closures. For each batoh of medium made up, samples were kept in tubes, under the conditions described, as blanks to confirm the algal sterility of the medium and glassware. Examination after twe weeks showed only bacterial and a little fungal growth.

The ' D ' samples were cultured at $\mathrm{pH}=3.0$; $\mathrm{pH}=3.5$ and pH of the site af origin measured at the time of sampling. In addition, a mixed inoculum was prepared from all the samples and cultured at a range of pH values from 2.6-4.0. The "痈 samples were cultured in three aeries:-

Series $X-H=3.0$.
Series Y - pHe that of the acid atream 1) below confluence for 'W' samples on tributaries, 2) at the nearest point for other 'w" samples.
Sories $Z-p f=$ that of the sitw of origin at the time of sampling.
' A ' samples were cultured as already desoribed.
Samples were shaken and allowed to settle and filaments broken up where necessary. The inoculum was then taken by sterile drepper frem the surface of the sediment and the surface the liquid, care being taken to include fragments of any filamentous species present. The amount of liquid included in each inoculum was insufficient signifioantly to altor the pH of the prepared culture medium. Cultures were grewn for a peried of two to three weeks in each case, a fter whioh time they were examined mioroscepically and the pH measured. During the twe α three days taken to examine a set of cultures, the tubes were stored in a $5^{\circ} \mathrm{C}$ oulture roon whioh appeared to be effective at slowing down any changes in ph or floral compesition which were ecourring. Ono of the majer problems encountered in oulturing the samples was the change in pH brought about by growth of the organisms. Oultures at an initial pH of 3.5 and above were found to be fairly unstable with respoct

Abstract

to pII which usually rose to 6 or 7. Culturen at pH=3.0 and pH=2.6 were found to ve very stable. This is further diswasse in later sections.

\section*{3.3 measurement.}

Measwrements of site $p H$ were carried out in the field using a Pye Medel 293 pertable pil meter, with an $E_{0} 7$ clectrode. This was alse used for measurement of pH of culturos. The lattor were onrried out by withdrawing 2 ml . of medium for the measurement using a sterile pipette thas avoiding any ourry-over of organisms. In making up culture modia an SIL Medel 23A direct reading pH meter was used after cereful cleaning of the electrodes. Lack of algal growth in the blanks oenfirmed that no algal contamination had been intreduced frea this seurce.

3.4 Hicrosoopioal examination.

Examination of the cultures was carried out by preparing six $22 \times 50 \mathrm{~mm}$. slides from on culture using a sterile droping pipette. Care was taken to include material frem the tube walls and liquid aurface, as well as from centre and bottom of the tabe. Bach slide was then scanned three times longitudinally under a X 10 objective, followed wy five scans using a $\times 40$ objective. Lack of time available limited the ameunt of detailed investigation on diffioult speotes that could be oarried out using higher magnifioation and oil immersion techniques. Each living speaies present was recorded, as well as its oondition, if this was particularly unhealthy. Problems arose in seme oases in deciding whether an alga was living or not, especially in the oase of diatoms. These were recorded as living if any significant amount of cellular matter was present.

Iack of time wrecluded any growing up of unialgal cultares for identification purposes, thus it was not possible to identify some of the palmelloid green cells present. Some other small species were not identified, especially small aiatems. Taxonomic problems are further aiscussed in Aypendix II.

The data oollooted are set out in the following pages in tamulated ferm. Firstly sem details of the sites used are summerized te give an Indioation of the range of envirenaonts encompassed by the study. The results of the floral analyses of the cultures are then given and seme omparisons drawn. Finally results of the airmiora study are mentioned. 4.1 Details of sites.

Table I sumarizes details of the various sites used in the projeot. Of the " D " sitos, only the 21 soleoted for the study have been included. The exact lecatiens of the sites sre shown in maps $1-3$.

Notes te Table I.
Date:- For ' D ' samplos this is the date of cellection of the sample. 'W' samples were colleoted on 2 ecassions - 30.5 .73 and 20.7.73. Samples frem 'S' sites have been collected at regular intervals sinoe October 1972 (pers. comm. HARGREAVES). 'A' samples $A 1$ - A4 were colleoted on 2 coossions - 26.6 .73
and 3.8 .73.
A5 - A8 were celleoted on 13.8 .73.
plat Fer ' D ' samples value is pH at tino of cellection. Fer 'W' samples value is mean of values frem 2 maplings. For ' S ' samples value given is mean of all readings taken under nermal conditiens (i.e. net fleod or freezing conditions). Axcopt for W9 and $W 10$, p V values for 'W' and ' S ' sites show a high degree if constancy.

Flowing/ F-represents water always flowing. Sti.21:-

IF - represents water interaittentiy flowing. S - represents standing water.

Fiew:- 0 - represents no flew.
1 - represents an estimatea nermal flow of less than 0.01 cumec ${ }^{\left(10 \mathrm{I} . \mathrm{s}^{-1} .\right)}$
2 - represents an ostimated normal flow from 0.01-2.5 cumec.
3 - represents an estimated normal flew greater than 2.5 cumec.
$\begin{array}{ll}\text { Shadod } & S-r e p r e s e n t s ~ h e a v y ~ s h a d e . ~ \\ \text { Open:- } & L-r e p r e s e n t s ~ l i g h t ~ s h a d e . ~ \\ & 0-r e p r e s e n t s ~ u n s h a d e d, ~ e p e n . ~\end{array}$
"Yes" in the column maried "heavy algal grewth" represents roedily visible algal growth.
'W' Samples y the fellewing are tributaries of aoia strean 1 (1.0 . water
flews direotly frem the site inte the aoid stream) W1a, W11, W5a, W5, W50, W10, W12, W13, W14, W15, The following are tributaries of acid stream $2-W 7 a$, w7w. The fellowing were abandoned due to exoessive grewth of bracken by the second ampling - W2, W4.
'A"Sites:- Site A1 is direotly abeve aito 32.
Site A2 do. S3.
Site A3 do. reserveir.
Site A_{4} is inreotily above confluence of acid streams.
Sites A5 - A8 are not direotily above the maid stream.

	$\begin{array}{r} 8^{2} \\ 0 \\ 0 . e^{x} \end{array}$	$\frac{8}{8}^{8}$	T	$\left\|\begin{array}{l} \frac{\text { n }}{2} \\ \frac{5}{3} \\ \frac{0}{4} \end{array}\right\|$	3 0 4	1	$\left\|\begin{array}{ll} \overline{0} & c \\ 0 & 0 \\ 0 & 0 \\ 0 & 8 \\ \bar{u} & 8 \end{array}\right\|$	$\begin{gathered} 8 \\ 5 c^{2} \\ 5 x^{2} \end{gathered}$		$\varepsilon^{e^{e^{5}}}$
11	NZ297472	$11 / 5 / 73$	8.3	F	3	sandstone	L	open woods	Yes	R．Wear，Finchale．
D_{2}	W28984 57	$11 \sqrt{2} / 7$	7.6	S	0	mud	0	rough grass	No	Ditch at Brasside．
DS	12 2701．02	$18 / 5 / 73$	5.9	F	1	concrete	L	decid．woods	Yes	F．E．from S．D．V．
D7	C2 $27 \mathrm{C}+02$	$11 / 5 / 73$	7.2	F	1	mud．	L	＂＂	Yes	20m．bolow D6，stream
DS	cz 271403	$m / 5 / 73$	6.4	IF	$0-1$	peaty	S	conif crmood	No	Slow Voshaded stream
Dio	1iz 274403	$11 / 5 / 73$	－	－	0	soil	\underline{L}	prass．road	Yes	By strcan below SD：7．
D11	Wz 274403	4／5／73	7	－	0	stone	L	＂	＂	${ }^{\circ}$
D12	N2 2740	$11 / 5 / 73$	8.0	S	0	enamel	0	rassland	No	old bath in field．
D14	NZ 159315	h／5／5／73	2.2	F	4	gravel	0	grass，bush	Yes	Outflor from lake．
D15	＂	＂	\square	＂	1	＂	＂	＂	＂	＂\quad＂
D15	ivz 163313	11／5／73	8.9	S	0	gravel	0	grass，bush	Yes	Pool in old road．
DI7	W又 163313	17	＂	＂	＂	0	1	n	＂	$" \mathrm{n}$
D23	N2 255492	12／5／73	4.8	IF	0－1	grass	S	grass，bush	No	Pool on Waldridge Fol
D24．	NZ 254493	$12 / 5 / 73$	3.9	S	0	peat bog	0	grass，sedge	No	＂\quad－\quad \％
D25	N2 253494	$112 / 5 / 73$	3.2	S	0	bare seat	0	$\square \quad \mathrm{O}$	No	Peat poole＂
D26	WZ 275415	12／5／72	6.2	S	0	rood tub	0	none near	Yes	Tub near laboratory．
D27	，	－	6.3	${ }^{\prime \prime}$	＂	11	＂	＂	4	保
D29	＂	＂	6.5	n	＂	＂${ }^{\text {\％}}$	＂	＂	＂	＂＂＂
D30	＂	＂	6.6	＂	1	Ola sink	＂	n	＂	Sink ${ }^{\text {\％}}$
D31	Nz 213354	$11 / 5 / 73$	6.8	F	2	pebbies	0	grassland	Yes	Olä Fouse Beck
D32	N2 230355	$13 / 5 / 73$	7.3	F	2	pebbles	\bigcirc	grassland	Yes	Old Ho．Beck，PegeEn
			\pm							
Tia	NZ 210405		4.7	TF	$0-1$	clay	L	grasslend	No	Grassy ditcharinue 0
M13	䣅 211405		4.6	IT	0－1	clay	S	bushes	No	Same ditch 7 m，wospoc
13	Nz 212405		7.0	IF	0－1	clay	0	grass jedge	No	Strean at base of ti
\％5a	NZ 213405		17.5	F	1	clay	L	grass	No	Slom moving stream
W5b	NVZ 213405		7.5	F	1	clay	0	none	No	Fast section on tip．
\％5c	Hz 21314．05		7.5	IF	$0-1$	clay	0	none	Yes	－Source＇of pry stream
176	NX 214＋06		7.7	IF	$0-1$	clay	\underline{L}	moodland	Yes	Ruts in oid track．
172	Niz 216406		8.0	F	1	stony	0	rough grass	Yes	Trib．of acid str．
itro	hiz 2164，06		8.1	F？		clay	0	＂${ }^{\prime}$	Yes	Backwater of Wha．
W8	112216406		8.4	S	0	clay	0	rough grass	No	Pool near itl．
79	12217406		7.7	IF	0－1	－olay	I	grass，bondey	No	Ditch along field．
710	［2 216409		6.7	F	1	concrete	L	grassland	Yes	Pine 1 outiail．
171	Y 2 216410		7.2	S	0	sandstane	0	grassland	Yes	Stone trough．
\＃12	102 2164，10		7.2	F	1	peaty	L	cleared wood	No	Now Cat above coms．
173	［2 2164＋10		6.7	IF	0－1	concrete	L	grassland	No	Lined ditch．
7114	H2 216410		7.0	T	1	mud	0	grassy bog	No	Pipe 2 outfali．
315	122 216409		6.9	T13	0－1	clay	\underline{L}	riassisedge	No	Boggy strean．
Wi6	a 22134,03		6.5	S	0	clay	0	grassland	No	Pools in subsi

	$$	$\frac{x^{2}}{5^{2}}$	$\partial^{\gamma^{2}}$	$\frac{\tau}{\Omega}$	$\begin{aligned} & 0 \\ & 5 \\ & \frac{5}{3} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & \hline \end{aligned}$	$\underset{5^{5}}{5^{x^{2}}}$	$\begin{array}{\|c} \frac{c}{8} \\ \frac{0}{0} \\ \frac{0}{8} \\ \frac{\pi}{v} \end{array}$	$\begin{gathered} b^{\prime} \\ 5^{3} \\ 5 e^{2} \\ 5 x^{2} \end{gathered}$		$0^{0^{e^{5}}}$ 19
	81	N 2212405		2.6	F	1	clay	L	mrass, bush	Yes	Source of acid strcam
	S.2	:2 212405		2.6	F	1	clay	I	srass, bush	Yes	Bolovi M1a.
	83	N0, 213205		2.6	F	1	pebries	S	wood	No	
	54.	N2 214.06		2.6	F	1	iron rive	0	barley	Yes	Reservoir in flow
	55	W214106		2.6	F	1	conarete	0	barley	Yes	Reservoir outflow
	S6	Nz 2144.06		2.7	F	1	pebbles	I	grass	Yes	Whove conf.ciacid strom:
	S7a	214406		5.2	F	1	clay	L	grass	No	ncid stream 2
	570	122 214405		3.1	F	1	clay	0	rough grass	Yes	Acid stream 2
	68	AZ 214.06		3.8	F	1	pebbles	L	wood	Yes	Below con. of acid stram
	S9	Nz 215408		3.8	F	1	rocky	L	few trces	No	At road briage
	S10	N2. 215403		3.3	P	1	mua	Is	few trees	Yes	Near dead trec
	S11	N2 2164.10		3.8	F	1	mua	0	bogey grass	No	Esh Mood boundary
	S12	N2 216410		6.7	I	1	mud.	0	bogey grass	No	Pipe 3 outfoll
	S13	TE 216411		6.4	F	1	mud	0	cleareducoa.	Yes	Below New Cut
	4	NZ 2124.05						I	grass, bush		$\frac{1}{2}$ m. above stream
	A2	172213405						S	wood		do.
	A3	[82 214406						0	none near		$\frac{1}{2} \mathrm{~m}$. above reservoix
	A	INZ 214406						I	mood		$\frac{1}{2} \mathrm{~m}$, above stream
	15	NZ 212404						0	grass		near North Wocditary
	146	NZ 2124.05						0	rough grass		3 m . east of S 1
	17	NZ 213400_{2}						L	bushes		10 m . South of S 2
	48	N2 213405						0	none		3 m . south of w 50

Table II shows sites in order of pH. Samples D1O and D11, D14 and D15, D16 and D17, D26 and D27, D29 and D30, were cultured together, se gaving 16 sets of ' D ' cultures in addition to the mixed cultures at pH 2.6 - 4.0. 'S' sites 1 - 5 have been grouped together as flura, PH and most other chemical factors are fairly constant.

TABLE IT

Table of sites in order of pH

Site No.		2H
S1-5	Acid stream 1 dewn to reserveir	2.6
S6	Acia stream 1 abeve oenfluence of Acid Streams	2.7
S76	Acia stream 2 above main tributary	3.1
D25	Waldriage Fell	3.2
S10	Acia Stream 1	3.3
S8-9	Acid Stream 1	3.8
S11	Acid Stream 1 Esh Weod beundary	3.8
W1b	Ditoh, tributary of Acid Stream 1	4.6
W1e	Ditah, tributary af Acia Stream 1	$4 \cdot 7$
D23	maldridge Fell	4.8
S7a	Adid Stream 2 above confluence of Aoid Streams	5.2
D26/27	Tubs near laberatery	6.3
D8	Conifer woed stream	6.4
S13	Acta Stream 1 below New Out	6.4
W16	Poels in field near Nerth Wood	6.5
D29/30	Tubs near laberatery	6.6
W13	Lined ditoh near Esh Woed	6.7
S12	Plpe 3 outfall	6.7
W10	Pipo 1 outfall	6.76
D31	Old House Beok (A. 690 road bridge)	6.8
D6	High Sahoel Sewage Works final offluent	6.9
W15	Beggy atream, tributary of Acid Strean 1	6.9
W3	Stream at base of tip	7.0
W14	Pipe 2 cutfall	7.0
D10/11	Edge of stream below Hellingaide Lane S.D.W.	-
D7	Stream below D6 effluent	7.2
W11	Stone treugh near pipe 3	7.2
W12	New Out abeve cenfluence	7.2
D32	01d Heuse Beck, Page Bank	7.3
W5a, b \& 0	Stream frem tip	7.5
D3	Ditch, Brastide	7.6
W6	Futs near weed	7.7
W9	Ditoh along field	7.76
D12	Old bath in field	8.0
W7a	Main trimutary of Acid Stream 2	8.0
W76	Beckwater of min tributary of Acid Stream 2	8.1
D1	River Wear Finchale	8.3
W8	Poel near W7	8.4
D16/17	Pools in ola gravel read, Witton-le-Wear	8.9
D14/15	Outflew stream frem small lake, Witten-le-Wear	9.2
	pH values given are mean values as in Table 1	

6 W9 and W10 were feund to have very variable pH values.

4.2 Culture dates and pH values.

'D' cultures were set up individually at pH values of $\mathrm{pH}=3.0$, $\mathrm{PH}=3.5$ and $\mathrm{HH}=$ site H as listed in Table II, in addition to cultures of a mixed ineculum at pH values of $\mathrm{pH}=2.6,2.8,3.0,3.2,3.4,3.6$, 3.8, 4.0. These were incubated from 13.5 .73 to 2.6.73.
'W' cultures were set up as desoribed in 3 series. Initial $p H$ values of series Y and Z are given in Table III below.

TABLE III.

Site no.	pH value series Y	明 value Series 2. 31.5 .73 sample.	pH value Series Z. 21.7.73 sample.
W1a	2.6	4.8	4.6
W1b	2.6	4.8	4.4
W3	2.6	6.9	7.1
W5	2.6	7.2	7.8
W5	2.6	7.2	7.8
W0	2.6	7.2	7.8
W6	2.6	7.5	7.9
w 7 a	5.2	8.0	8.0
W7\%	5.2	8.0	8.2
พ8	3.8	8.3	8.5
\% 9	3.8	7.2	8.3
W10	3.8	7.1	6.2
W14	3.8	7.5	6.9
W12	3.8	7.1	7.3
W13	3.8	6.4	7.0
W14	3.8	6.8	6.9
W15	3.8	6.9	6.9
W16	2.6	6.3	6.7

Cultures were oxamined after approximately 3 weeks incubation starting on 21.6 .73 and 12.8 .73 respectively.

It was found that cultures at an initial of of 3.5 or greater tendod towards a pH value of around 7.0 , whereas pH values of oultures at $\mathrm{pH}=2.6$ remained constant, and values for cultures at initial $\mathrm{pH}=3.0 \mathrm{only}$ rese to a maximum of $\mathrm{pH}=3.3$.
4.3 Floral analysis of cultures.
(1) Algae found alive on examination of cultures are tabalated in Table IV. Results frem beth sets of 'w' samples have been ombined, as have results from sites $W 5 a$, W5b, W5. Algae surviving in any of the cultures are listed, as this indicates presence of the alga at the site in seme form, even if not aotively growing. Those surviving only in cultures at $p H=3.0$ or less are distinguished by asking their presence with a aircle rather than a oress.

Results for ' S ' sites are a combination of results from all fioral samples taken since Octeber, 1972 (pers. comm. HARGREAVES). All these species have been shown to be capable of survival in the medium used.

Metes to Table IV.

Chleremyoeae.

Many of the palmelleid green forms present could not be identified, as well as some of the smaller motile and non-motile forms. Therefore it is quite possible that some cells listed as non-metile greens may be of the same species as some of the motile forms. $(\mathbb{M}=$ motile, $N=$ non-motile $)$.

Measurements given for filamentous species are the mean widthe of the filaments. For nen-filamentous species, either measurements in twe directions are given or, for spherioal species, the diameter is listed. Fer Oedogonium sip the diameter of the oogenia is given prefixed by o- (in un).

The algae Listed under Hermidum/Ulothrix gam may belong to one or several speqies.

Mouzeotia has been listed under 3 different sizes but this may not correspond to 3 species. Lack of time prevented stady of the reproductive stages for identifiontion.

Chrysophyceae.
The Chrysephyte found in acid water on Waldridge Fell was provisionally identified as Chrysecansa sp (pers. comm. HIBBERD) and is very similar to
the organism found in Brandon Acid Stream, so these have been listed together although they may not be the same species.

Bacillariowhyocae.
Measurements given are mean cell lengtha along the largest axis. Musci.

At least twe different species of moss protonema were observed.
(11) Mixed inoculum cultures.

Results of the floral analysis of these cultures are given in Table V. The same notes agply as for Teble IV, and the results are soen to cerrelate well with those in the latter Iablo.
 fel 主

(ifi) 'Asseciation Table'.

From Table IV it can be seen that some spedes were only found in cultures from low wil sites, whereas other speaies, although found at low pH, appeared to occur ubiquitously. A few species are confined to the upper half of the pH sale. Representative speaies of these types have been selected from the results and arranged in the form of an 'Association Table' (SHIMWEII, 1971).

																										27	
$\begin{aligned} & D 141 \\ & 15 \end{aligned}$	9.2			\cdots					0		x		－				＜	\times	\times				＞			天	
［107	8.9		\times					\times	10	10			x				$x>$	\times	x			－				c \times	
W8	8.4				\times	x			x					\times	\times	x										\times	
D1．	8.3	$x>$	x	x				x					x			＜		\times					x				
W76	8.1			x				x	0				x								x						x
W7a	8．0												\times														
D12	8.01		x	x					x	C						x											
W9	7.7					\times	0	－\times	x	－ 0											－					x	
W6	7.7						x	－\times	x	$x>$																x	
D3	7.6		x		0		x	\times	x	－ 0																	
W5abc	7.5							\times	x	x																	
D32．	7.3		x				\times	x		\bigcirc	x			＜1x	$\times x$	x				x		＞$<$		x			
M12	7.2																										
W11	7.21					\times		x	x	$\times 10$			\times														
D7	7.2	$x \mid x$	x	－	0		x	x	$\times 1$	＜\times			x														
D10／11	－		x		x		\times	x	x	10			x				x		\times				－		x		
1 W 4	7.0							\times	1x	＜\times			x														
W3	7.0				x		0	0	$1 \times$	$\times 0$																	
W15 6	6.9							\times		\bigcirc			x														
D6 6	6.9		\times					x	－ 0					\underline{x}	x												
D31 6.	6.8						x	$\times 1 \times$	10	0				\times	x												
W10． 6	6.7						\times	＞$>$	x	x			x														
S12 6	6.7													\star	＜												
W13 6	6.7												\times			x											
D29306．	6.6										x									x							
W16	6.5							\times	x	$\times 0$																x	
5136	6.4													\times	\leq												
p8 6	6.4														x	＜											
D29276	5.3				0			x	0	0	－	x		$x \times$						x		x				x	
57a 5	5.21																										
D23	4.81							x						x	x											x	
Mra	4.7				10			x	x	x				\times	＜											x	
Wib	4.6				x		\times	x	\times	0				\bigcirc	\bigcirc											x	
S11 3	3.8							x																			
S8／9	3.8							x	x																		
S10	3.3							x																			
D25	3.2							x																			
578	3.1							x																			
56	2.7							x	x	x																	
S1－5	2.6							\times																			
	硅		$\begin{array}{\|c} \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 0 \end{array}$		rid 6 xTprmpumpuctar	$\begin{aligned} & 1 \\ & \frac{9}{9} \\ & \frac{9}{9} \\ & \frac{2}{9} \\ & \frac{9}{9} \\ & 8 \end{aligned}$				$\begin{gathered} 3 \\ \stackrel{3}{3} \\ \stackrel{3}{3} \\ \hline \end{gathered}$	2－cros ore $\$ 0.10-15 \mathrm{pm}$							$\begin{aligned} & 6 \\ & 6.9 \\ & 0 . \\ & 4 \\ & 4 \\ & 0 \\ & 0 \\ & 8 \\ & 8 \end{aligned}$	8 4 4 6 6 8 6 8 8 8 0	$\begin{gathered} = \\ = \\ =0 \\ = \end{gathered}$	$\begin{aligned} & 8 \\ & = \\ & = \\ & = \end{aligned}$	$\frac{\square}{2}$	$\begin{aligned} & \text { 变 } \\ & = \\ & = \end{aligned}$				${ }_{8}^{4}$

	$\begin{aligned} & 11.4 / \\ & 15 \end{aligned}$	9.21	$1 \times$	>					\times				x	x														>
		8.9	1×1	\times					x					<														
	W8	8.4			x																							
	D1	8.31							x				x									x			-	\times	x	\times
	1676	8.11							\cdots																-		>	
	W7a	8.0																										
	D12	8.01																										
	W9	7.7	>		x	\cdots			>	x											.							
	W6	7.7																										
	D3	7.6																										
	75abc	7.5																										
	D32	7.3																				\times						
	W12	7.2																										
	W1I	7.2																				,						
	D7	7.2			\bigcirc																							
	610/11	-			x																	-						
	\$14	7.0																										
	W3	7.0																										
	W15	6.9																	\bigcirc									
	p6	6.9																										
	D31	6.8																										
	W10	6.7							\times																			
	S12	6.7																										
	W13	6.7																										
	D2930	5.6								\times	x	\times										\times						
	W16	6.5			>	$>$																						
	Sl 3	6.4																										
	D8	6.4																										
	$\mathrm{D} 26,67$	6.3					x	\times	x									\bigcirc	$\frac{5}{8}$									
	S7a	5.2																										
	023	4.8						>										\times	\times									
	H2a	4.7						x											$\frac{8}{x}$									
	W1b	4.6			x	x		\times									>		\bigcirc									
	Sl1	3.8																>										
	58/9	3.8																\times										
	S10	3.3																>										
	025	3.2																\times										
	57 b	3.11																x										
	56	2.71																x										
	S]-5	2.61																>										
	$\left\lvert\, \begin{gathered}0 \\ 3 \\ -H \\ 0 \\ 0 \\ 0\end{gathered}\right.$										$\begin{gathered} 9 \\ 0 \\ 0 \\ 0 \\ 6 \\ 8 \\ 8 \\ 8 \\ 6 \\ 8 \\ 8 \end{gathered}$			$\begin{array}{r}8 \\ 6 \\ 68 \\ 68 \\ 20 \\ \hline 8\end{array}$		1 0 $\ddot{3}$ 0 3 c 0 0 7 2			$\begin{aligned} & 6 \\ & 2 \\ & 2 \\ & 0 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$						b b b b_{2} 0 0 0		$\begin{gathered} 9 \\ 6 \\ 5 \\ 8 \\ 9 \\ 9 \\ 9 \\ 9 \\ 8 \end{gathered}$	(

Floral results for survival in cultures of mixed inoculum.

Initial pH	2.6	2.8	3.0	3.2	3.4	3.6	3.8	4.0
pH after 3 weeks	2.6	2.8	3.1	3.3	3.5	4.2	5.0	5.7
Chrysocapsa sp./BAS sp.	X	X	X	x	X	X	X	X
Eunotia exigua	X	X	X	X	X	X	K	X
Wuatena mutabilis	X	X	X	X	X	X	X	X
Hormidium rivulare	X	X	X	X	X	X	X	
	X	X	X	X	x	X	X	X
Stichococcus bacillaris	X		X	X	X	K	X	X
6μ green - tight colony	X	X	X	X	x		X	X
6μ non-motile green	X	X	X	X		X	X	X
6μ chlamydomonas sp.(p)	x	X	X	X				X
Ulothrix moniliformis	X	X	X		X	,	x	
$6 \times 3 \mu$ green NM		X		X	X			
15-30 μ green spores	X						X	X
$6 \times 3 \mu$ Chlamydomonas sp.			X		X	X	X	X
Pinnularia sp. 20μ			X	X	X	X		
Ulothrix/Hormidium sp.			X.	X		X	X	
Microthamion stricticssmum			X		X	X		X
Cylindrocystis sp.				X	X	X		
Mougeotia sp. 9μ				K	X	X	X	X
Nitzschia palea					X	X	X	X
Characium sp. 7μ					X			X
Stigeoclonium tenue						X	X	X
Closterium acerosum						X	x	X
Oedogonium sp.4-5 (015						X	X	X
Oedagonium sp. 45μ						X	X	
Mougeotia sp. 21μ						x^{\prime}		7
Nitzschia sigmoideae						X		
Trachelomonas sp.							X	X
Cosmarium sp. 30μ							X	X
Closterium sp.							χ	又
Protococcus viridis							X	X
Oedoronium 3p. $30 \mu(045)$							X	X
Microspora sp. 12μ							X	X
Scenedesmus quadricaud							\bar{X}	X
Vaucheria sp.							X	
Oscillatoria spp.								X
Lyngbya spp.								$\dot{\mathrm{x}}$
Anabaena sp.								X
Pseudanabaena cateneta								X
Nostoc sp.								X
Calothrix sp.								X

W12 7.2

077.2
b10/12 -
$124 \quad 7.0$

173	7.0
W25	6.9

D6 6.9

| 163 |
| :--- | :--- |
| 10 |

$512 \quad 6.7$
123

'Association Table'.

Day306.6
$1016 \quad 5.5$

513	6.4
D8	5.4

$57 a$	5.2		
023	4.8	x	x
x	$x<1$		

M15 4.6
$5113.81 \quad x \times x$
S8/93.8 $\quad x|x| x|x| x|x| x \mid$
$5203.3 \quad x \times x \leq 1 \times x|x| x \mid x$
$025 \quad 3.2] \times 1 \times x$

56 2.7 $5|x| x|\quad| x|x| x|x|$
S1-52.
omidiun rivalare
tzschil ovelis Imydonio Fitaschia alea arothamion
Berjotiss
 ougeotis. s. 9-19par
 htt colnmal

$$
6 \mathrm{Silla}
$$

cillatoria
ostoc s.
nobaena spe. tigoolan un tonue rotocoucus vir Chemandevida more 52. 6
6
6
6

																					$\frac{1}{3}$
	［124／${ }^{15}$					\times	x				\times		x								x
	P18／8	8.9				$x \times$							$x \times$		x						
	W8 8	3.4				$\times \times$			x			$x \times$	$\times \times$								\times
	D1 8	8.3									x			\times							
	\％7b 8	8.1				$x \times$	\times	\times			${ }^{x}$										
	\＄7a 8	8.0								\times				$x \times$							
	0128	8.0				\times	\times		\times			$x \times$							\times		
		7.7							\times		\times	\times	\times		\times			$x \times$			
		7.7				$x \times$			x		x	\times	\times						$x \times$		
						$\times \times$	x				\times		$x \times$					\times	\times		
	MSabe 7				$x \times$	$\times \times$			$x \times$	$\times \times$	$\times \times$	$x \times$	x^{x}		\times						
	0327	7.3						\times				\times			\times				\times		
	4127	7.2							x		${ }^{x}$		\times								
	${ }_{412} 7$					x	x		$x \times$		\times		$x \times$	\times	\times			\times			
		．2				$\times \times$			${ }^{\text {x }}$	x	x				\times			\times	－		
	21011					$\times \times$			x				\times		\times		\times				
						\times			x		x		$\times \times$	$x \times$							
	W3 7	7．0				$x \times$	x	\times			\times		$\times \times$		\times		\times	\times	\times		
魿	V2 56	6.9			$x \times$			\times					$\times \times$								
	86	6.9				$\times \times$					\times										
	0316	． 8				$x \times$						x			\times				\times		
	m10．6．	6.7				${ }^{\times 1}$			x		x				\times			\times	\times		
	5126																				
㖃									x		\times		$x \times$								
	p29306．							x			\times			\times							
$\stackrel{\text { ¢ }}{ }$		． 5			x	$\times \times$		x	$x \times$				\times		\times						
\％	5236	． 4																			
	586	． 4									\times		x								
	1298276，					$x_{1} \times$						\times	\times		\times						
	223	． 8.	\times			\times					\times										
	12 a 4	． 7		\times		$x \times$			\times												x
	41 b 4.	． 6			$\times \times \times$	$\times \times$			\times	\times		\times	\times	$\times \times$	\times	\times			$x \times$		
	5213	3.8																			
	58／93																				
	3203	． 3			$x \times$	\times		x		\times											
	2253	． 2	\times			\times						x									
	5763	3.1	\times	\times		\times				\times											
		2.7	$\times \times$		$\times \times$	$\times \times$	$\times \times$	$x \times x$	$x \times$												
						$\times \times$	$\times \times$	$\times \times \times$	－												
$\begin{aligned} & \text { gid } \\ & \text { 畹 } \end{aligned}$	$\left\lvert\, \frac{0}{i s}\right.$	IC		B																	

(iv) Survivel at 1ow dif.

Algae which survived in individual site cultures at initial pH of 3.0 or less are tabulated in Table VII. Since the maxinum pH reached by any of these cultures was 3.3 these organisms oan survive in oulture at or below this value. Certain'S' aites are omitted as incumation of cultures of samples from these sites at low pH was not corriod out. The organisms are listod in wasically the same order as in Table VI.

The following ware also found but are not listed in the Table:
Whabe Pirmularia sp. 45 pm . W7a Coamarium sp. 30am.
S1-5 Pinnularis acoricela 15pm. D7 Cylindrocystis sp. W16 Buglen (viridis?)

In order to 4 iscover whether aoid tolerance of a speoies was related to the H of the site at which itwas found, the variances of the distributions of pH values of sites at which the spocies had heen shown to occur (Table IV), and of those from which the speotes survived at low pH (Table VII), were compared. The variance of the distribution of pH values was oalculated in each oaso from:
$\left.s^{2}=\sum_{n^{n}\left(\underline{n} H_{N}\right.}\right)^{2}-\left(\overline{p H}_{n}\right)^{2}$
where $N=$ mumber of sites

$$
\mathrm{pH}_{\mathrm{n}}=\mathrm{pH} \text { value of site } \mathrm{n} \text {. }
$$

For each species the larger varianoe was then divided by the smaller to give ' F '. the variance ratio.

The calculation was carried out for all species found to oocur in at least 6 oultures in both oases, and results are given belew. Algae of doubtful taxonomic pesition or unidentified have been omitted.

TABLE VIII

Species	N_{1}	N_{2}	$s_{1}{ }^{2}$	$\mathrm{s}_{2}{ }^{2}$	F
Dethrix moniliformis	7	10	1.029	0.734	1.401
Ferumdiun rivalare	27	28	3.323	3.354	1.009
Stioheceocus bactilaris	21	23	2.965	2.745	1.080
S. ninutue	15	17	0.768	0.704	1.091
Chrysocapse sy/BAS Chryweryte	7	7	1.565	1.565	1.000
Sumetia exigua	6	7	0.717	0.821	1.146
Nutzechia palea	6	12	3.903	2.943	1.326
Fuglene nutabilis	7	10	3.728	3.807	1.021

$\mathrm{N}_{1}=$ number of sites frem whioh species survived in oulture at $\mathrm{HH} \quad 3.3$
(omitting $\mathrm{S} 8 / 9, \mathrm{~S} 11, \mathrm{~S} 7 \mathrm{~S}, \mathrm{~S} 13, \mathrm{~S} 12$)
$N_{2}=$ number of sites from which species survived in oulture at any $p \mathrm{H}$ (omitting $\mathrm{S} 8 / 9, \mathrm{~S} 11, \mathrm{~S} 7 \mathrm{a}, \mathrm{S} 13, \mathrm{~S} 12$)
$s_{1}{ }^{2}=$ varianoe of distribution of $p H$ values of sites frem which specios survired in culture at pH 3.3 (omitting $\mathrm{S} 8 / 9, \mathrm{~S} 11, \mathrm{~S} 7, \mathrm{~S} 13, \mathrm{~S} 12$)
$\mathrm{s}_{2}{ }^{2}=$ varianoe of distribution of pH values of sites from which species survived in culture at any pH
(omitting $\mathrm{S} 8 / 9, \mathrm{~S} 11, \mathrm{~S} 7 \mathrm{a}, \mathrm{S} 13, \mathrm{~S} 12$)

The values of F obtained frem the data were compared with values fram a table of 25% points of the ' F ' distribution (MERRINGTON \& THOXPSON, 1943). This correspoizis to a robability level in this case of 50% since by dividing the larger variance by the smaller, differences in both directions have been considered (BAILEY, 1959). The results from the data were compared with the tabulated values of F corresponding to $f_{1}=N_{1}-1$ degrees of freedom in the numerator and $f_{2}=N_{2}-1$ degrees of fresdom in the denominator. Veriances were compared, rather than means, since most sites have pH values around the centre of the range.

Using this method, any significant differences in the a aid telerance of samples dependent on original site pH should show up as a difference in the varianoes of the distributions of the pH values. At the 50 level
none of the 'F' values obtained excoed the tabulated values, se showing no significant difference in the two distributions at thi. lovel. Thus, from the results obtained, there is no evidence of adantion of particular algal colls within a species to tolerate low pH conditions.
(∇) Maral Comparison of Aodd Stroan 1 and its Catohmont.
No species were found to aurvive in oultures of "w" samples at $\mathrm{PH}=2.6$ (W1a, W1b, W3, W5a, W5b, W5c, W6 cultures of series Y) that dial not also occur in Acid Strom 1 noarby. (Series Y cultures for -ther "W" sites could not be used for this comparison due to changes of aulture pH.) Most of the hoid Stream species were found in these cultures although the Chrysophyte and Cryptomonas sp. were notable by their absence.
(vi) Fleral Comparism of the Acid Stream Catchment and the 'Duxpham area'.

The ocourrence of same of the species omprising the flera of Aoid Stream 1 in the aatchment was compared with their occurrence in the ' D ' samples from Table IV. Few of the acta stream species were found to eccur in more than a small number of 'W' or ' D ' sites. Homidium rivulare was found to ocour in 11 out of 15 ' D ' sites and 13 out of 16 ' ${ }^{\prime \prime}$ ' sites listed, showing no apparent difference in distribution with respect to pll in the 2 areas. Similarly Stichococous bacillaris and Chlamydomonas sp. (p?) Gpm were present in mest sites of both series although absent from 'D' sites at $\mathrm{pH}=3.2$ and 4.8 . However, these differenoes can hardly be regarded as significant. This in divoussed in Seotion 5.3.
(vii) Flozal analysis of 'Air-Flore' study Gultures.

Speaies found alive in the floral analysis of the
'aimflare' cultures are shom in Table IX.
Semples from sites A1 - A4 were collected on two ocossions, 29.6.73 and 13.8.73, and the results have been combined. Samples from sites A5-A8 were collected on 13.8 .73 only, and results fer $A 5$ at $\mathrm{pH}=5.5$, and $A 7$, are missing, as the oolleoting vessels were damaged by animals or vandals in these cases.

Results for open beakers and those covered with muslin, were not significantly different, so the se have been combined in each case.

Floral Analysis of Cultures from Air-Flora Experiment.

O... S ite	5		$\bar{\square}$	-		$\underset{4}{ }$	2	m		*	\pm	ᄂ	10	0	${ }_{\sim}^{\infty}$	$\stackrel{\infty}{8}$
pH of medium	\sim		in	$\begin{aligned} & 0 \\ & \dot{N} \end{aligned}$			$\begin{aligned} & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & n \\ & i \\ & i \end{aligned}$		$\begin{aligned} & \hat{6} \\ & \stackrel{\rightharpoonup}{\sim} \end{aligned}$	$\left.\begin{aligned} & i n \\ & i n \end{aligned} \right\rvert\,$	$\begin{aligned} & 0 \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \hline \stackrel{ }{n} \\ & \dot{N} \end{aligned}$	$\left.\begin{aligned} & n \\ & n \\ & n \end{aligned} \right\rvert\,$	$\begin{aligned} & 0 \\ & \dot{N} \end{aligned}$	$\stackrel{1}{\sim}$
Ch7 anydomonas sp. (p) 6um	X		X			X					X					
green MM 6 m				X		X	X		X	X	X	x				
Chlamydomonas sp. 6×3 m	x		X	X		X	X		X	X	X	X	X			
green M $46 \times 3 \mathrm{ym}$ ¢	X		X	X		X	X	X	X						X,	X
Chlamydomonas sp.10xgym							X	X	X		X			X		
green M\&AM 10-15 mm			X	x		X	X		X	X	X	X			X	X
green MM 15-30 $\mu \mathrm{m}$	X		X	x					X							
green M 3 un				x								X				
green MM 3 mm						X	X	X	X	X		X		X		
				X		X	X	X	X	X	X				X	
Characium si.	X		X													
Ulothrix sp. 7-8 $\mu \mathrm{m}$			X				X									
U. moniliformis			X	X		X	X	X	x	X	X					
Hormidium rivulare			X	X		X	X	X	X	X	x					
Stichococcus becillaris	X		X	X		x	X	X	X	X	X					
S. minutus				X		X	X			x		X	X		X	X
Frotococcus viridis	X			X		X	X	X		X	X	X	X			X
Mougeotia sp. $10 \mu \mathrm{~m}$			X	X												
BAS Chrysomyte			X													
Eunotia exigua	X		X			X	X	x			X					
Nitzschia ovalis			X			X										
Pinnulariasp. $20 \mu \mathrm{~m}$						X		x								
Finmularia sp. 35 um			X			X								X		
P. acoricola			X													
Eugiena mutabilis	X		X	X		X	x		X		X					
Euglena sp. 10 m								X								
Moss protonema	X		X	X	x	x			x		X			X		X

DISCUSSION

Firstiy the IAmitations of the experimental methods used are disoussed and within the restrictions imposed by these limitations, the results are then considered and conolusions draw.

5.1 Discussion of Experimental Methods.

All the foregoing data are based on examination of organisms in oulture, so care must be taken in applying the results to algae in the field. In examination of cultures various factors prevented identification of all species present. Some smaller diatoms and green algae were disregarded, and many green speoies could not be identified although these are mostly listed desariptively. Further discussion of taxonomic problems is given in Appendix II.

A11 samples were oultused at ilield pH values under the same conditions as the acid cultures. Thus comparisans carried out between survival of a species at low 1 Hand at field $\begin{gathered}\text { w }\end{gathered}$ we based on the same conditions except for presence of sulphurio acid, and differences in composition of the algal population. Few organisms were found which did not survive in the medium used.

The major problem encountered in culturing organisms at low pHi was the change in H brought about by their growth in cultures at initial p_{H} values above $\mathrm{pH}=3.0$. Other workers have used buffers to stabilize $p H$ but it was thought that this would introduce other factors affecting growth, and for a comparison with the Brandon Acid Streams it was considered best to use only sulphuric acid. Cultures at lower pH were extremely atable. Fractical difficulties precluded regular adfustment of pil. Therefore, results from cultures at $a f=3.5$ or above were oombined with field pilesults.

Competition may also have occurred in cultures to some extent - evidenoe for this being that a few species were only recorded in culture at $\mathrm{pH}=3.0$ or below, but not in cultures at higher pH ,
although other evidence indiantes that these speodes are not obligate acidotrophs. (These are marked with a cirole on Table IV). However, this will be noticed not to be widespread except in the case of some unidentified green algae where the forms recorded at low pil may be non-motile stages of other species recorded at higher pH. Ulothix/Hormidium sp. and Stichocooons minutus appeared to fare particularly badly, ospecially whore large growths of blue-green alge or Stigeoclonium tenue oocurred. Oeservations from all cultures have therefore been included in Table IV to minimise errors. Formation of miorohabitats at different pH from the main body of a oulture is another possible source of error (YONGUE \& CAIPNS, 1971), and this wa minimised by growth in a sheke-tank.

Limitations are imposed on all the results in that the data were collected only at one time of one year, and site wh values were only neasured ance or twice. The oxperiments need to be repeated over several years to obtain reliable data. Also the data were based on presence and absence of living cells only.

5.2 Acid toloranoe of algae.

The results set out in Tables IV and VI indioate the pH ranges of occurrence of spocies from the sampling aites used. It Is interesting to note that few appear to be obligate acidotrophs on the basis of these data. Those that do appear to be limited to low pH sites only inolude Chrysooapea ay./ BAS Chrysophyte, Cryotomonas sp., Eunotia exigua and Roya obtusa, the Latter showing a very narrow range of oocurrenoe. Other species occur over a larger range of pH but are less oommon at higher pH., e.g. Euglena mutabilis. Many species, however, appear to be ubiquitous in occurrence, e.g Hormidium rivulare, Stichocoocus bacillaris, and Chlamydomonas $\mathrm{Bp} .(\mathrm{F})$, and able to tolerate very low conditions.

However, it mast be remembered that these data are based entirely on survival in culture and give no indioation of oover in the field, or of growth and competitive ability. For instance, although in the results Euglena mutabilis does not appear to be specifio to acid flowing waters, it is in fact one of the most reliable indioator organisms for this type of environment, often growing profusely and forming a green coating obscuring the stream bed. It has bean found in all acid streans so far studied in Britain (pers. oomm. HARGREAVIS, 1973) and is reparted to cocur similarly in the U.S.A. (IACKEY, 1938).

In general, studies orried out in the U.S.A. show similar results (LACKEY, 1939; BENNEIT, 1969) for adid tolerant spedes. MOSS (1973) investigating the effects of $p H$ on various specios in oulture gives results whichoorrelate well with those given above for most species appearing in most osses. He reports 䧲motia sp. and Euglena gracilis as being the most tolerant of acid conditions of the species he has studied. Under his classification, most acid tolerant species would be regarded as oligotrophs.

From the results it is obvious that a high degree of acid tolerance does not seem tobe specific to any particular division of algae. Nembers of the Chlorophyte, Ohrysophyta, Bacillariophyta, Cryptophyta and Muglenophyta have been found in the field at sitea of pH below 3.0. Divisions not represented are in general fairly rare or have relatively few freshwater representatives. The only Common freshwater division not reported from acid waters is the division Cyanophyta. In these results, Osoillatoria spp., Iyngeya sppe, Pseudanabaena catenata and Nostoc spp. are all absent from sites of pH below 6.3, and Anabaena spp. are absent from sites below $\mathrm{pH}=6.6$. All ocour widely at all pH values above these up to $\mathrm{pH}=8.3$.

This absence is discussed by Brock (1973) who asaribes the inability of members of this division to survive in add waters, to the fact of their being procaryotic algae and auggests that eale enviroments were possibly of great importance in allowing the evolution of eucaryotic organisms. It is interesting to consider why procaryotic algae are unable to survive while many species of bacteria are able to thrive in acid waters (JOSBPH, 1953). Brock suggests the possibility of using mila artificial aoidifioation of reservoirs in order to prevent Cyanophyocan blooms, and improvement of nitrogen fixation by liming to inorease soil water pif in the cultivation of certain orops. MOSS (1973) reports minimum pH values for grewth of between 6.2 and 6.9 for a Goeotrichia sp, and a Glooogasa sP. which is in agreement with the above observations.

From the results very high degree of correlation is apparent between species surviving at $\bar{z}=2.6$ in the cultures of a mixed inoculation mepared from the 'D' samples (Table V) and the flors of the Brandon Aoid Stream for sites $\mathrm{S} 1-5$ as represented in Table IV. None of the amples used in preparation of the mixed inoculum were from minewater drainages. Most of the positively identified species listed in Table VII as surviving at low pff ocour in the Adia Streams at the ame PH , and several of the unidentified organisms may also occur. Taking into acoount the result (Seotion 4.3 (v)) that all algae from the catchment of the Stream which survived in culture at $\mathrm{HH}=2.6$ are found in the upper part of the Stream, these results throughout suggest that pad and associated factors are the main controlling influences in detzenintag the flore of Brandon Aoid Streans, as opposed to non-pil-linked faotors characteristic of minewater.

If Table VII is examined it will be seen that many algae surviving in culture at $\mathrm{pH} \leqslant 3.5$ were found in samples from environments of normal pH in the field, although the number may fall off slightly towards the extreme upper and of the pH range. From F^{\prime} values listed in Table VIII, no significant differences between the two distributions compared are apparent even at 50 probability level, for the oight species considered. The only species surviving at low pif solely when taken from low H environments in the field are those whose occurrenoe is confined to these acid sites, i.e. Funotia exigua, Cryptomonas sp., Chrysocapsa sp./BAS Chrysomyte, and Roya obtusa. No cultures of these organisms at higher were attermpted. Thus there is no evidence here for the formation within a species of ecotypes adapted to tolerate soid conditions. However, these data are based simply on survival in oulture, and may not be remesentative of behaviour in the field.

If such adaptation did occur then it would be expected, assuming that the organisms are readily transported short distances, that members of an acid tolerant species within the vicinity of an acid stream, i.e. in its catchment, would be more aoid tolerant than the same species from elsewhere. Comparison of the number of ' from which algal spp. found in the Acid Stream survived, with the number of such 'D' sites, shows in most asses that the number of suoh 'Wig' sites is the larger, although in no cases is the difference significant. However, it is worth noting that Euglena mutabilis from the twe ' D ' sites at which it was found did not survive low pH , whereas cells of the same species did survive when taken from all 4 catoment sites at which it ocourred. Thas, al though no significant evidence for ecotype formation was obtained, further study is necessary.

The evidence presented above suggests that acid tolerance is typical of a species to a great extent, al though the behaviour of Euglena
matanilis suggests that adaptation to acid enviroments may also be a controlling factor.
5.4 Air-Flora Experiment.

Little can be concluded from the air-flora experiments conducted since only a limited number of colleoting velsels could be set out, and of these, a considerable proportion at sites away from the Acid Streams were damaged by animals or vandals. From the results collected it is seen that no algae were found in the cultures that did not occur in the catchment, except one Ulothrix sp. However, this is not surprising as the tchment does not appear to haveatishatantially different flora from that of the surrounding area. Very few Acid Stream species were found in the cultures at short distances awry ircm the Stream, although many of the se species appeared in the beakers 0.5 m . above the Stream - some possibly due to splashing during flood periods in the case of Site A1.

One can conclude from these data that the Acid Stream species are not very abundant in the air a few metres away from the Stream.

Remarkably little difference was observed between colleations at $\mathrm{HH}=2.6$ and those at $\mathrm{pH}=5.5$, but no blue-green algae were found in any samples, (ar expected result). The absenco of difference between results for beakers covered with muslin and those left open suggesta that contact between insects and the growth medium was not an important factor in the colonisation of the cultuces. Further investigations mould prove most interesting.
5.5 Recommendations for further research.

Further work of the type described above but on a quantitative basis is needed to elucidate the occurrence and extent of formation within a species of ecotypes especially tolerant to low pHiranments.

Repeating the experiments carried out but using oultures at a range of pH values below $p H=3.0$ might show ecotypio variation in the lower pHindit for survival within apeoies.

A great doal more mork using a large number of sampling sites to investigate fully the air-flora of the Acid Strean catahment, might yield some very enlightening results.

Algal samples were colleoted from habitats with a wide range of pil values and their tolerance to low pHir was investigated. The observed pH ranges of ocourrence of species in the field are taloulated, and the ability of the species to survive at low pH, recormed.

The results indicate that some species are apparently confined to sites of low pir enviromments, whereas other tolerant species also ocour in normal or high pH enviroments. It appears from the results that pHis is probably the major factor determining the flora of the Brandon Acid Streams. Evidence found suggests that tolerance of low $p H$ conditions is to some extent characteristic of the species concerned, irrespective of the environment from which it has been taken. However, there is also evidence suggesting the occurrence of adaptation within a species.

Some experiments on transport of algae by air were carriea out, but limited data were collected.

I would like to thank my Supervisor, Dr. B. A. Whitten, for his guddance and encouragement throughout the study.

I would also like to express my thanks to all the algolegy researah students at Durham for helpful advice and coments and use of their equiment, and espeoially to John Hargreaves, my demonstrater, for assistance and use of his data for the Branden Acid Stroams, to EA Lloyd for many belpful discussions, and to Nigel Holmes for identifying seme of the algae.

Thanks are also due to Dr. D. Ribberd of the Culture Centre for Algae and Protozoa for identification of Chrysophytes, Dr. P. R. Evans of the Zoology Demartment at Durham for advioe on statistics, to Derek Middlemass for technioal assistance, and finally to Mrs. K. Ponfret for typing this thesis.

BIBLIOGRAPHY

ATKINSON K. M .	(1970)	Dispersal of Phytoplankton by ducks. Wilafowl, 21, 110-111.
BAILEY N.T.J.	(1959)	Statistical methods in biology.
		English University Press, London. p. 50
BAKER R.A. \& MILSHIRM A.G.	(1970)	Microbiological factors in aoid mine drainage formation. A pilot plant study.
		Repr. Current Res. 4, no. 5.
BENETP H.D.	(1969)	Algae in relation to mine water.
		Castanea 34, 306.
BOURELIY P.	(1966)	Les Algues a'Eau Douce.
		N. Boubee \& Co. Paris.
		Tome I : Les Algues Vertes. p. 238
BLIM J.I.	(1956)	The Ecology of River Algae.
		Biol. Rev. 22, 291-341.
BROCK T. D.	(1969)	Microbial growth under Extreme Environments.
		Symp. Soc. gen. Miorobiol. 12, 15-41.
" "	(1973)	Lower pillimit for the existence of blue-green algae. Evolutionary and ecological implications.
		Science, 172,430.
BUTCEER R. M .	(1932)	Studies in the Ecology of Rivers. II The miaroflora of rivers with speoial reference to the algae on the river bod.
		Ann. Bot. 46, 813.818.
GHU S.E.	(1942)	The influence of the mineral cornposition of the medium on the growth of planktonic algae. I. Methods and culture media.
		J. Ecol. 30, 284-325.
DEMDNEY J.C. (Ed.)	(1970)	Durham County \& City with Teesside. British Association, Durham.
		Chap. VIII. Freshwater Biology. 153-159.
durham diocesan records (1838)		Tithe Plan, Brandon Byshottles. By J. Turner Jnr., Surveyor.
FOREST H.S.	(1954)	Discussion of a Fortion of the Ulotrichsceac. Castanea. 19, 61-75.
GRIFPTTHS B.	(1936)	A preliminary list of freshwater algae of Northumberland and Durham.
		Vasculum. 22, 89-95.
HARGREAVES J.	(1973)	Personal communication. Botany Department, Thiversity of Durham.

HIBBERD D .	(1973)	Personal comunication. Culture Centre for Algae \& Protozoa, Cambridge.
JAwORSKI G. \& LUND J. W.G.	(1970)	Drought resistance and dispersal of Asterionella formosa Hass.
		Beih - 2. Nova Hedwigia. 31, 37-48.
JOSEPI J.M.	(1953)	Microbiological stuad of aoid mine water. Freliminary Report.
		Ohio J. Soi. 53, 123-127.
LACKEY J.E.	(1938)	The Flora and Fauna of surface waters polluted by acid mine trainage. U.S.Public Health Rep. 53, 1499-1507.
"	(1939)	Aquatic life in waters polluted by aaid mine waste. U.S.Fublic Health Rop. 54, 742-746.
LUND J.W.G.	(1965)	The ecolozy of freshwater phytoplankton. Biol. Rev. 40, 231.
MAGUIRE B. Jr.	(1963)	The passive dispersal of small aquatio organisms and their colonization of isolated bodies of water.
		Ecol. monogr. 33, 161-185.
MERRINGTON M. : THOMPSON C.M.	(1943)	Tables of percentage points of the inverted Beta (F) distribution.
		Biometrika, 33, 73-88.
MILIJIGERL. E. \& SCHICHIING H.E	$\begin{aligned} & (1968) \\ & \mathrm{Jr} . \end{aligned}$	The passive dispersal of viable algae and protoze by an aquatic beetle.
		Trans.Aner.microsc.Soc. 87, 443-448.
moss B .		The influence of environmental faotors on the distribution of freshwater algae.
	(1972)	I. Introduction \& Influence of Calcium Cancentration.
		J.Ecol. 60, 917-932.
	(1973a)	II. Role of pil and the $0 \mathrm{CO}_{\mathrm{g}}$ - bicarbonate syster. J.ECOI. 61, 157-177.
	(1973b)	III. Effects of Temperature, Vitamin requirements, \& Inorganic Nitrogen Compounds on growth.
		J.Ecol. 61, 178-192.
	(1973c)	IV. Growth of test species in natural lake waters and conclusion. J.Eool. 61, 193-211.

Parsons J.w.	(1952)	A biological approach to the study and control of acid mine pollution. J.Tennessee Acad.Sci.27, 304-309.
PROCTOR P.	(1959)	Dispersal of fresh water algae by migrating birds. Science N.Y. $130,623-624$.
FTABCDY A.J. \& WHITTON B.A.	(1968)	Algae of the River wear. I. Diatoms. Naturalist. 89-96.
RAMANATHAN K. R .	(1964)	Ulotrichales. I.O.A.R. Monograph. New Delhi.
HEVITL DLI. SOELTCHITK H. B.	(1967) Jr.	Dispersal of viable algae \& protozea by horseflies and mesquitoes. Ann. Entomol. Soc. Amer. 60, 1077-1081.
ROBINSON C.	(1971)	A mreliminary study of the factors affecting the flora of an acid ooal mine drainage. M.Sc. Thesis. Durham University.
SCHICHPTNG H.E. Jr.	(1960)	The role of waterfowl in the dispersal of algae Trans. Amer, 位icrosc. Soc. $72,160-166 .$
SCHLICHTING H.E.	(1964)	The dispersal of viable species of algae and protezoa by air currents. Vortrag 10. Internat. Botan. Congress, Edinburgh.
STROSin K.M.	(1924)	Studies in the Eology \& Geographioal Distribution of Freshwater Algae \& Plankton. Revue algol. 1, 127-155.
TALIING J.F.	(1951)	The element of chance in pond populations. Naturalist, 157-170.
VENO M.	(1938)	The crater lakes of Mt. Kirisima. A limnological stady with special ref.to biocoenosis. Jay.J. Limnol. \& 348-360.
"	(1958)	The disharmonious lakes of Japan. Verh.int.Verein, theor, angew.Limnol 13,2177226
WITITON B.A. \& BUCRMASTER R.	(1970)	Wacrophytes of the River Wear. Naturalist 914, 97-116.

WHITMON B.A.	(1972)	Envirommental limits of plants in flowing waters. Symp. zool. Soo. Lond. 22, 3-19.
YONGUE W.H. Jr. \& CAIRNS J. Jr.	(1971)	Miorohabitat pH differences from those of the surrounding water. Hydrobiologia . 38, 453-461.
SHIMWELL D.W.	(1971)	The Description and Classification of Vegetation. Sidgwick and Jackson, London.

APPRMDIX 1

The meaium used throughout for cultures was basioally Chu's $10 D$ modium modified by the addition of microelements and soil extract. The medium contained the following in a litre of distilled water:

$\mathrm{KH}_{2} \mathrm{PO}_{4}$	7.80 mg .	$\mathrm{H}_{3} \mathrm{BO}_{3}$	$745 \mu \mathrm{~g}$.
$\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	25.0 mg .	$\mathrm{MnCl}_{2} .4 \mathrm{H}_{2} \mathrm{O}$	$45.0 \mu \mathrm{~g}$
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	40.0 mg .	$\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	$55.6 \mu \mathrm{~g}$
NaHCO_{3}	15.8 mg .	$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	$20.0 \mu \mathrm{~g}$.
$\mathrm{Na}_{2} \mathrm{SiO}_{3}$	10.9 mg .	$\mathrm{CoSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	$20.5 \mu \mathrm{~g}$
E.D.T.A. Na	salt 4.20 mg .	$\mathrm{Na}_{2} \mathrm{MOO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	68.5 阬
$\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	1.21 mg .		

This gives ooncentrations of the various elements of:

$\left(\mathrm{FO}_{4}\right) \mathrm{P}$	$1.80 \mathrm{mg}. \mathrm{I}^{1}$.	Po	250 Mga-1.
M88	$2.56 \mathrm{mg}. \mathrm{I}^{-1}$.	B	127 Mg. 1^{-1}.
Ca	$950 \mu \mathrm{~g} . \mathrm{I}^{-1}$.	Mn	$12.7 \mu \mathrm{~g} . \mathrm{I}^{-1}$
$\left(\mathrm{HO}_{3}\right) \mathrm{N}$	$6.85 \mathrm{mg}.{ }^{-1}$.	2 n	$12.5 \mu \mathrm{g}. \mathrm{I}^{-1}$.
C	$2.25 \mathrm{mg.1}{ }^{-1}$.	Cu	$51.2 \mu \mathrm{g}. \mathrm{I}^{-1}$.
Si	$2.46 \mathrm{mg.1}{ }^{-1}$.	co	$43.0 \mu \mathrm{g}. \mathrm{I}^{-1}$.
		M	$27.2 \mu \mathrm{g}. \mathrm{I}^{-1}$.

1 ml . of soil extraot was also added to every litre of medium. This was prepared by repeated boiling and cooling of $25 \mathrm{~cm}^{3}$. of soil with 100 ml . of water, fellewed by contrifuging to clear the liquid.

AFPERDIX 2

Taxonomic problems.

As mentioned, the detailed study of unialgal cultures in order to investigate reproductive mrocesses was not possible, so many speodes could not be identified, e.g. Mougeotia spp., Zygnema spp., Spirogyra spp., Oedogonium spp., Vaucheria spp.

However, the major area of difficulty was the identification of some green algae. Only motile forms of Chlamydomonas observed are listed under this generic name although many of the palmelloid green algae with pyrenoids may be of this genus. Eye spots were not apparent but often the adverse environment in the cultures caused excessive accumulation of storage products, masking many morphological characteristics. Thus it was not possible to assign such algae a generic name with any certainty. The $6 \mu \mathrm{~m}$ non-motile greens listed may be Comydomonas sp. (p) or Chlorella sp.(p) and the larger nanmotile greens may also include Chlorococoum 8 pp.

The smaller green algae observed may in some cases be forms of Stichococcus sp. affected by the adverse conditions, and the smaller motile biflagellate greens, perhaps including some algae listed as Chlamydomonas sp, may be Zoospores of Hormidium sp. Therefore it should be bome in mind that some of the descriptive alassifications may encompass more than one species, and conversely that several of these organisms may be of the ame species in some cases.

An ospecially interesting problem arises in the identification of Vlotrichales found, partioularly in acid cultures. This is complicated by the morphological changes caused by the a oid environment, added to whioh the generic classification of this order is under a certain amount of dispute. The minor nature of readily olsservable differences between the genera Hormidium and Ulothrix and
the wide range of morphology within each germs, makes assignnent to a gemus difficult. RAMANATHAN (1964) distinguishes them on the basis of differentiation of the base and apex of a filament which is present in Ulothrix but absent in Hormidium, as well as Hormidium having, in general, shorter filaments. BOURELL (1966) also points out that Eormidium produces mainly biflagellate zoospoces in ntrast to U1othrix. A certain amount of confusion also exists in distinguishing Hormidium and Stichooocous and FOREST (1954) includes Ulothrix, Hormidium and Stichooocous in the same gernas HLothrix. Most workers seem to distinguish between Hormidium and Stichocoocus by inaluding all spp. with a pyrenoid and motile spores in the genus Hormidiura. Also stiohococous is not usually found in the form of filaments of more than a few cells, although in the oultures observed here, filaments of up to 40 cells have been noted.

The ocnfusion is also added to by the fact that Hormidium Lindley is an orohia genus and Fott proposes the name Chlorhomaidium which is usea by Bourelly.

The species listed in these results have been identified using Ramanathan's keys, giving the acid tolerant Hormidium species found as Hormidium rivulare Kttz. (Syn. Ulothrix rivalare Kitz; Stichooocous rivilare (Ktitz.) Gay). The species is very similar to Hormidium fluitans but does not break up so easily.

The common Stichococous species observed was listed as Stichocooas bacillaris Naegli, although the long filaments fit the desoription for Hormidium seudostichococcus Heering. Stiohococous minutus listed is distinguished from the very similar Stionocooous chlorelloides by its slightly teminally shifted chloroplast.

