Durham E-Theses

> Microprocessor-based on-load valve sequencing for a turbo-alternator

Ozgur, M. R.

How to cite:

Ozgur, M. R. (1979) Microprocessor-based on-load valve sequencing for a turbo-alternator, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/9131/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

VIICROPROCESSOR-BISED ON-LOAD VALVE

SERUENCING FOR A TURBO-ALITERNA'TOR

by

M. R. OZGUR, B.Sc.

Thesis submitted for the Degree of laster of Science in the Faculty of Science, University of Durham.

The copyright of this thesis rests with the author.
No quotation from it should be published without April, 1979. his prior written consent and information derived
from it should be acknowledged.

ABS'RRACR

Abstract

An analog on-loud valve sequencing system that is used to test the performances of the valves on a turbo-al.ternator can be replaced by a microconputer testing system. On the way to the full-scal.e comuterisinc of turbo-generator control systems, this lype of testing system may be used under the control of a full-size supervisory conluter. This microprocessor-based testing system provides test sequencing of the valves of an Electro-Hydraulic Governor. The hardivare for the interfacing and scaling, and the fimware for the microprocessor are developed for one valve. The extension of the technique to the task of testing multiple valves in sequence is also discussed.

The author would like to express his sincere irratitude to the following:

Dr. C. Proece, tily supervisor, for his overall supervision on this project and his encourafement throughout ti:is work.

The inectrical Laboratory technicians, and in particular, hir. T. Nancarrow, Electronics technician, for his advice and help in buildine the circuits.

Special appreciation is siven to ithelaine Patorson for her assistance in tyning this thesis.
C. A. Pursons 3 Co. Itd., Newcustle Upon I'yne, is actrowledced for providing the author with technical knowledge of their sovernor model.

SUMMARY
Steam inlet valves on the turbine of ${ }^{\wedge}$ turbe-alternator control the mechanical input power of the alternator. In turn, this input power effects the electrical output power of a generater. Fast valving control of the output power impreves the system stability during the transient disturbances. For this reason, the inlet valves must operate efficiently and reliably.

In time, steam inlet valves get worn or overlapped secause of the mechanical and chemical effects and their efficiency decreases. The valves are tested remotely from the central control rooms and the permanent records of the valves performance provided by ${ }^{a n} \mathrm{X}-\mathrm{Y}$ plotter are collected, and the new records are checked against the previous ancs. Cemparisen of the test traces with previous records highlights any change in valve permormance. The records also indicate failure of vaive operating sygtems, majority-voting circuits and valve tripping systems.

A typical Valve Governor System with its specifications was obtained from a manufacturer and reduced to be established on an analog computer. Then the mathematical model of the Gevernor on the analog computer was connected to a microprocessor over a designed hardware interfacing system.

The software was developed to do the same test steps ${ }^{\wedge}$ done on actual valve. The test results are given. Some discussion
is included on how the microprocessor-based on-Load valve testing techaique can be extended to achieve the task of testing a number of valves.

COMTENTS

Page No.
List of Figures
Chapter I - TURBO-GENERATORS 1
1.1 Description and Torque Concept 1
1.2 Voltage-Current Relations 2
1.3 Power Equations and the Concept of Stability 7
1.4 The Voltage Ragulator 11
1.5 Fast Turbine Valve Control 11
1.6 Steam-Turbine Governor Operation 12
Chapter II - ${ }^{-2}$ VEN OF MLCROPROCES:;OR-BASED CONTROL SYSTRMS. 21
2.1 The Convonience of The Installation of
Microprocessors in Control Systems 21
2.2 Some Hardware Arrangement Teckaiques
Used in Conjunction With Microprocessors 23
2.3 Reliability 25
Chapter III - SWIPC 6800 COMPUTER SYSTEM 33
3.1 General View of The System 33
3.2 MC6800 Microprocsssing Unit (MFU) 34
3.3 MC6830 Read Only Menory (ROM) 37
3.4 MC6810 Ramdom Acess Memory (RAM) 38
3.5 MC6820 Peripheral Interface Adapter (PIA) 38
3.6 MC6850 Asymchromous Communications
Intorface Adapter (ACIA) 39
Chapter IT - EXISTING GOVERNOR SYSTEM AND ITS ANALOG
COMPUTER MODETLTNC. 44
4.1 The Governor Specifications 44
4.2 Briof Description of The System Operation 45
4.3 Ihe factual Onoload Valve Test Sequencing 45
4.3.1 Purpose of The Test 45
4.3.2 Basic Specifioations of The
Used Pushbuttons 46
4.3.3 Detailed Test Prooedure 47
4.3 Simulation of The A.otual Govermor 48
Chapter V - MICROPROCESSOR-BASED ON LOAD
VALVE SAKUENCING 57
5.1 System Hardware Orgaeizatioa 57
5.1.1 Connection Box 58
5.1.2 Control Panel 59
5.1.3 Hardware System Setup 59
5.2 Software Developmeat 63
5.2.1 Plotter Paper Arrangemeat 63
5.2.2 Preparation of The Ramp Sigmal 64
5,2.3 Flowohart 69
5.3 On-Load Valve Testing Procedure 73
5.4 Test Results 76
Chapter VI - MICROCOMPUTER MMPLFMENTATION OF THE
EXISTING TESTING SYSTEM 86
6.1 Differences Of Two On-Load Valve
Sequencings 86
6.2 The Procedure of The Test Signal
(Ramp) Addition To Govermor Signal 88
6.3 Discussion Based The System Software 39
6.4 Adaptation Of The Microprocessor-Eased Single Valve Testjag System To Multi-
Valve Testing System 90
RAFERENCES 94
APPENDLX A - BLOCK CALCULATIONS FOR
ANALOG COMPUTEK MODELI,ING 97
APPENDIXB - FIMMWARE DESCRIPTION AND LISTING 101
appendix C - SELECTION of a Valve numbritON THE PLOTTER PAPER USKD WITH
THE MLCHOPROCESSOH-BASED VALVE
TESTING SY:TTM 12.9

LIST OF FIGUHES

Figure Fage No.
1.1 Torque-Argle Curve of a Synchronous Machine 15
1.2. Elementary salient-pole 3-phase
symachromous Machine 15
1.3 Steady-state power-agele curve of salient-pole syachronous machine 16
1.4 Tramsient power-angle curve of salient- pole syachrosous machine 16
1.5 Dotermination of stabillty limit by the equal-area criterion 17
1.6 Transieat-stability improvement by fast valve action 18
1.7 A typical Electro-Hydraulic Govermor system block diagram of a Turbo-Generator 19
1.E Block diaeram of speed control loop forconventional turbine control system 201.9 Block diagram of "Separate Speed and Load"controls for an electro-hydraulic control
system 20
1.10 Block diagram of "Speed and Load Control by Conditional Loop" system for an electro- hydraulic coatrol system 20
2.1 "Multiplexine Imputa and Outputs" syatem 29
2.2 "Latoming Parallel Data" system 29
2.3 Multiple processors method 30
2.4 Mainiually backed-up system 30
2.5 Display be.ok-up system 31
2.6 An os-lipe compiter control system with two computers connected in series 32
3.1 M6800 Microcomputer family block diagram 41
3.2 MC6800 Microprocessine Unit 42
3.3 The expanded blook diagram of MC6820 Peripheral Interfaco ìdapter 43
4.1 Basic block diagram of the present govermor 50
4.2 Power Piston response in opening
direction and. Actuator response in ol.osing direction to 6 Volt step input 51
4.3 Reduced governor model 52
4.4 The mathematical model established on the aralog computer 53
4.5 Jower Piston response in opening direction and Actuator response in closine direct.on to -26.25 volt step imput 54
4.6 Response of the mathematical governor model
to $-26.2 \mathrm{y}^{\mathbf{7}}$ step imput 55
4.7 Comparable responses of the actuel aystem and its reduced mathematical model 56
5.1 Uverall system block diagram 78
5.2 The top view of the connection box 79
5.3 Pushbutton oomnections 80
5.4 Zener diode circuit 80
5.5 The operatime imput comections
of the relays $R 2$ and $R 3$ 80
5.6 Existing OPAmp conmectioms in the
control panel 81
5.7 Special purpose leads 81
5.8 Valve testing system diagram 82
5.9 Dimensioms on A4 plotter paper usedfor microprocessor-based on-load valvetestimg83
5.10 Teletype comnands of the microprocessorbased on-load valve testine obtaimed at
the and of the test procedure 845.11 The plotter record of the microprooessor-based om-load valve testing system obtainedat the and of the test procedure 856.1 Hardware configuretion for the simulation ofthe ramp signal addition prooedure93
7. Mathematical model of
(a) Servo-Valve
(b) Primery Actuator
(c) Power Fiston 100

CHAPTER I

TUFBO-GENILRATORS

This chapter briefly describes some of the basic characteristics of synchronous machines and also provides the reader with an understanding of the methods of control of turbongenerators.

Attempts have been made to outline the essential points of a brief specification. The emphasis is on steam turbine driven generators and an outline analysis is given of such a machine.

1.1 Description and Torque Concept

In the synchronous machines field windings are supplied with direct current and alternating currents are obtained from or impressed on armature windings. Depending on the rotor shapes, synchronous machines are divided into two groups; salient pole machines and round-rotor machines.

Usually the armature windings are placed on the stators and the field windings on the rotors. Synchronous machines run at constant speed. The flux wave created by the arinatiare current rotates in the air-gap at the same speed as the rotor rotates. So it looks stable as it is viewed from the rotor. The interaction between the magnetic field created by the field current and the magnetic field created by the armature current creates electromagnetic torque. This torque is a function of the angle between the magnetic axis of the stator and the rotor or alternatively between the stator and rotor magnetomotive force waves (mme) and opposes rotation in the generators. The electromagnetic torque has a negative sign
for generator action where the negative sign indicates that the electro-magnetic torque acts in the direction to decrease the displacement angle between the ficld of stator and rotor, and it has a positive sign for motor action whore the positive aign of the torque indicates that the electromagnetic torque acts fin the direction to bring these fields into alignment. A steady torque is produced if the displacement angle is kept constant which means that the stator and rotor magnetic fields travel at the same speed, as the magnetic fields of stator and rotor have constant amplitudes.[8]. Figure 1.1.

1.2 Voltage - Current Relations

The equations fiving the four voltage-current relations In a three phase synchronous machine are

$$
\begin{align*}
& v_{a}=r i_{a}+\frac{d \psi_{a}}{d t} \tag{1-a}\\
& v_{b}=r i_{b}+\frac{d \psi_{b}}{d t} \tag{1-b}\\
& v_{c}=r i_{c}+\frac{d \psi_{c}}{d t} \tag{1-c}
\end{align*}
$$

$$
\begin{equation*}
v_{f}=r_{f} i_{f}+\frac{d \psi_{f}}{d t} \tag{1-d}
\end{equation*}
$$

where V s are the terminal voltages of the windings; i_{a}, i_{b}, i_{c} are the arnature currents in the associated windings, \dot{l}_{f} is the field current. r is the resistance of the arrnature winding and r_{f} is the resistance of the field winding. $\boldsymbol{\psi}$ is the flux linkage of each winding and can be
pritten as functions of curronts, and the self and mutual inductances of each winding so that one can obtain four voltage equations as functions of these quantities. Since this gives a very complicated set of equations, a set of Imagined voltages, currentis and flux linkages are defined as functions of the actual variables. These new electrical variables called "Direct-axis and Quadrature-axis Variables" can be solved as functions of time and this solution can help to find the actual variables as functions of time. For a three phase synchronous machine, at the instant of Figure 1.2, the relation between the fictitious voltages and the actual voltages are as follows

$$
\left[\begin{array}{l}
v_{d} \\
v_{q} \\
v_{0}
\end{array}\right]=\frac{2}{3}\left[\begin{array}{ccc}
\cos \theta & \cos \left(\theta-120^{\circ}\right) & \cos \left(\theta+120^{\circ}\right) \\
-\sin \theta & -\sin \left(\theta-120^{\circ}\right) & -\sin \left(\theta+120^{\circ}\right. \\
1 / 2 & 1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
v_{\alpha} \\
v_{b} \\
v_{c}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
v_{a} \tag{3}\\
v_{b} \\
v_{c}
\end{array}\right]=\left[\begin{array}{lll}
\cos \theta & -\sin \theta & 1 \\
\cos \left(\theta-120^{\circ}\right) & -\sin \left(\theta-120^{\circ}\right) & 1 \\
\cos \left(\theta+12 \sigma^{\circ}\right) & -\sin \left(\theta+120^{\circ}\right) & 1
\end{array}\right]\left[\begin{array}{l}
v_{d} \\
v_{q} \\
v_{0}
\end{array}\right]
$$

These equations can also be rewritten for the flux linkages and currents, by replacing ϑ with ψ and i respectively: In the equations above, \mathcal{V}_{d} is the directaxis voltage, v_{q} is the quadrature-axis voltage and v_{0} is the zero-sequence voltage.

The self and mutual-inductances of a synchronous
machine is the function of the displacement angle θ
between the direct axis and the phase axis, except the selfinductance of the field winding because the stator has a cylindrical shape.

Flux linkages as functions of currents can be obtained

$$
\begin{align*}
& \Psi_{d}=\left(L_{s}+M_{s}+\frac{3}{2} L_{m}\right) i_{d}+M_{f} i_{f} \\
& \Psi_{q}=\left(L_{s}+M_{s}-\frac{3}{2} L_{m}\right) i_{q} \tag{4-b}\\
& \Psi_{0}=\left(L_{s}-2 M_{s}\right) i_{0} \tag{4-c}\\
& \Psi_{f}=\frac{3}{2} M_{f} i_{d}+L_{f f} i_{f} \tag{4-d}
\end{align*}
$$

where L_{s} is the component of the self-inductance of one phase of the arnature which is independent of the ansular
diaplacement θ, M_{s} is the component of the mutual inductance between two armature phases which is independent of the angle, M_{f} is the anplitude of the mutual inductance between the field winding and any armature phase, $L_{f f}$ is the self-inductance of the field winding, L_{m} is the amplitude of the component of the stator self-inductance which is dependent on the angular displacement. Eqs. 4 may be written

$$
\begin{equation*}
\Psi_{d}=L_{d} \dot{i}_{d}+M_{f}{\dot{i_{f}}} \tag{5-a}
\end{equation*}
$$

$$
\begin{equation*}
\Psi_{q}=L_{q} i_{q} \tag{5-b}
\end{equation*}
$$

$$
\begin{equation*}
\psi_{0}=L_{0} i_{0} \tag{5-c}
\end{equation*}
$$

$$
\begin{equation*}
\psi_{f}=\frac{3}{2} M_{f} \dot{i}_{d}+L_{f f} i_{f} \tag{5-d}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{d}=L_{s}+M_{s}+\frac{3}{2} L_{m} \tag{6-a}
\end{equation*}
$$

$$
\begin{equation*}
L_{q}=L_{s}+M_{s}-\frac{3}{2} L_{m} \tag{6-b}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{0}=L_{s}-2 M_{s} \tag{6-c}
\end{equation*}
$$

L_{d}, L_{q} and L_{0} are constant quantities and called direct-axis synchronous inductance, quadrature -axis synchronous inductance and zero-sequence inductance, respectively. The: le machine constants can be determined from teats.

From the equations given above, the following voltagecurrent relations are obtained

$$
\begin{equation*}
v_{d}=r i_{d}+L_{d} \frac{d \dot{q}_{d}}{d t}-w L_{q} i_{q}+M_{f} \frac{d i_{e}}{d t} \tag{7-a}
\end{equation*}
$$

$$
v_{q}=r i_{q}+L_{q} \frac{d i_{s}}{d t}+w\left(L_{d} i_{d}+M_{f} i_{f}\right) \quad(7-b)
$$

$$
\begin{equation*}
v_{0}=r i_{0}+L_{0} \frac{d i_{0}}{d t} \tag{7-c}
\end{equation*}
$$

$$
\begin{equation*}
v_{f}=r_{f} i_{f}+L_{f f} \frac{d \dot{i}_{f}}{d t}+\frac{3}{2} M_{f} \frac{d \dot{u}_{f}}{d t} \tag{7-d}
\end{equation*}
$$

These equations are for motor action. For generator action the currents i_{d} and i_{q} change the signs so that the equations become

$$
\begin{equation*}
v_{d}=-\mu_{i_{d}}+w L_{q} i_{q}-L_{d} \frac{d i_{i}}{d t}+M_{f} \frac{d i_{f}}{d t} \tag{8-a}
\end{equation*}
$$

$$
\begin{equation*}
v_{q}=-r i_{q}-L_{q} \frac{d i_{q}}{d t}+w M_{f} L_{f}-w L_{d} i_{d} \tag{8-b}
\end{equation*}
$$

$$
v_{f}=r_{f} i_{f}+L_{f f} \frac{d i_{f}}{d t}-\frac{\pi}{2} M_{f} \frac{d i_{l}}{d t} \quad(8-c)
$$

$[8,11]$

1.3 Power Equations and The Concept of Stability

In the steady state, the power output of a salient-pole generator is given as

$$
\begin{align*}
& P=E_{q} v \frac{r^{2}+x_{q}^{2}}{r^{2}+x_{d} x_{q}} \sin (\delta+\alpha)- \\
& v^{2} \frac{r}{r^{2}+x_{d} x_{q}}+v^{2} \frac{x_{d}-x_{q}}{2\left(r^{2}+x_{d} x_{q}\right)} \sin 2 \delta \tag{9}
\end{align*}
$$

where E_{q} is the steady-state internal voltage of the generator, \mathbf{V} is the terminal voltage, δ is the phase angle between the internal voltage $\mathbb{E q}_{q}$ and the terninal voltage V, r is the resistance of the armature winding, $X_{d}=\omega l_{d}$ is called the direct-axis symchronous reactance and $X_{\boldsymbol{q}}=\boldsymbol{w} \boldsymbol{L}_{\mathbf{q}}$ is called the quadrature -axis symchronous reactance. (ω is the stator angular frequency and $\theta=\omega t$ where θ is the displacement angle). Here

$$
\begin{equation*}
\sin \alpha=\frac{r}{\sqrt{r^{2}+x_{q}^{2}}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\cos \alpha=\frac{x_{9}}{\sqrt{r^{2}+x_{q}^{2}}} \tag{11}
\end{equation*}
$$

If the machine is connected to the infinite bus ∇ is the bus voltage, if it is connected to another machine is the internal voltage of the eecond machine. If the connection was made through an internal impedance, $\boldsymbol{x}, \boldsymbol{x}_{\mathbf{d}}$ and $\boldsymbol{x}_{\mathbf{q}}$ would be added to the external impedance when the equivalent circuit replacement of these impedances was being done. If the resistance is negligible, this power output equation of the generator simplifies to

$$
\begin{equation*}
P=\frac{E_{q} V}{x_{d}} \sin \delta+V^{2} \frac{x_{d}-x_{g}}{2 x_{d} x_{q}} \sin 2 \delta \tag{12}
\end{equation*}
$$

This equation was shown graphically in Figure 1.3.
If the machine had round rotor, \mathbf{x}_{d} would be equal to $\mathbf{x}_{\mathbf{q}}$ and therefore the reluctance power due to saliency represented by the second harmonic term would cease to exist, so that the power equation for the round rotor machine becones

$$
\begin{equation*}
P=\frac{E_{q} V}{x_{d}} \sin \delta \tag{13}
\end{equation*}
$$

In the case of the constant . Bq and $\mathbf{\nabla}$, the maximum power occurs at $\delta=90^{\circ}$ and this power limitit is known as the Steady State Stability Limit.

The values of the voltiges and the currents are rms values.

In the transient state, the power-angle expression
becomes

$$
\begin{equation*}
P=\frac{E_{g}^{\prime} v}{x_{d}^{\prime}} \sin \delta+v^{2} \frac{x_{d}^{\prime}-x_{g}}{2 x_{j}^{\prime} x_{q}} \sin 2 \delta \tag{14}
\end{equation*}
$$

The voltage E'q is the quadrature-axis vol tage behind transient reactance, and $\mathbf{x}_{\mathbf{d}}^{\prime}$ is the direct-axis transient reactance. The second harinonic is negative since usually $x_{q}>x_{q}$. The amplitude of the trinsient pover-ancle curve is greater than that of the steady state. So, if the duration of the suddenly applied overload is short, synchronism will not be lost. Refer to Figure 1.4.

For a synchronous machine the accelerating power is given as

$$
\begin{equation*}
P_{a}=P_{i}-P_{0}=I_{u} \frac{d^{2} \delta}{d t^{2}} \tag{15}
\end{equation*}
$$

where $\boldsymbol{P}_{\mathbf{1}}=$ Input power of the machine
$P_{0}=$ Outiput power of the machine
$I=$ foment of inertia
w = Angular velocity
and
$\boldsymbol{\delta}=$ Angular displacement of the machine with respect to another machine or to the infinite bus to which it is cornected.

At stendy state the necelerating power equil.s zoro and the power input equals the power output. Negative $P_{\text {a }}$ represents retarding power and positive P_{a} represents accelerating power. The $\mathcal{P}_{\mathbf{a}}$ versus \mathcal{E} curve shows that the system is unstable if the angle δ increases without limit. For generator action P_{i} is the mechanical input power and P_{0} is the electrical output power. As derived earlier, this electrical output power is represented by the sinusold on the power-angle curve.

The equal-area criterion is used to deternine the Transient Stability Limit. As the assumptions of constant input power, constant voltage behind transient reactance and no damping are made, the gener:ator and the infinite bus are in balance at point a (Fizure 1.5) an the pre-fault power curve. P_{i} is constant and therefore is parallel to the horizantal axis. The power-angle curve during the fault is lower than the pre-fault curve. When a fault occurs electrical power output decreases and the operiting point a drops to the point b on the fault output curve. At this point mechanical input power exceeds electrical output power. This accelerates the unit causing the angle δ increase. The acceleration causes the electrical output power to increase to the point c. Since at point c the accelerating power decreases but the speed of the machine is still hich the angle increase to δ_{m}. This results in retarding pover on the generator. Therefore the speed decreases as does the angle, and the operating point moves back towards c. The generator will not pull out of step
during the transient disturbance if the area A_{1} equals or is less than the area \boldsymbol{A}_{2} on the diagram. This is the definition of the transient stability limit. If the area $\boldsymbol{A}_{\mathbf{1}}$ is sraater than the area A_{2}, the generrtor otays in synchronism with the system.

1.4 The Voltage Regulator

One of the ways of improving the stability margin is by increasjing the internal voltages of the synchronous machine.

Since the power output of a symchronous miachine is proportional to its excitation voltage this output power is controlled by varying the field current. This variation may be achieved by use of an Autonatic Voltage Regulator (iVR) or by manual control. By increasing the excitation voltage the amplitude of the transmitted power equation increases. When the steady-state limiting angle exceeds 90° a fast acting AYR increases the applied voltage to the field circuit of the machine; in other words the demianetising effect of the armature current is being opposed by maintaining the decaying field flux linkage by means of AVR.

[^0]transient disturbances by increasing the critical fault clearing time.

Soon after a fault recornition the conlroller is designed to close the turbine valves for a short time period related to the time-integral of the difference between input power and output power, and then re-opened slowly. This action of the valves results in a decrease in the mechanical input power. By this means, the difference between the reduced generator electrical. output power and mechanical input power is reduced quickly.

On referring to the power-angle curve in Figure 1.6, it can be seen that if a fault occurs while the turbine generator is in balance with the power system at point P, the electrical output power of the generator will drop to the point P1. After the fault clearance, the system is stable at newly established working point $P 2$ on the post-f:ault power-angle curve. In the diagram of Flgure 1.6, the mechanical input power is shown as a. function of $\boldsymbol{\delta}$ which arises from the fast valve operation. It is indicated by the dolted line. Fast valve action starts $3 s$ the fault occurs.

Since the transient stability limit is given with $\mathbf{A}_{\mathbf{1}} \geq \mathbf{A}_{\mathbf{2}}$ 。 as the fast valve control concept is applied it is apparent that a significantly increased critical iault clearing time arises. [1].

1.6 Stean Turbine Governor Operation
 The decreased inertia-to-torque ratio on large turbogenerator units increases the control conplexity of turbines

so that electro-hydraulic control systans essentially replaced the conventional mechanical hydraulic governing systens.

In basic form, an electro-hydraulic governor is illugtrated in Figure 1.7 [9]. Three main feedback loops are : shown dotted. To this figure, a main stop valve just ahead of the main governing valves and a reheater stop valve just to the reheater out,put may be added $[4]$.

There are two difierent modes of governor operation; "Full-Arc Adnission" and "Partial-Arc Admission". As a brief explanation; in "Full-Arc Admission" operation, the control of steam flow to turbine is accomplished by throttling the main steam through main stop valve while the governor valves are fully open. In the later mode, however, the main steam is throttled through control valves while the ${ }^{\text {thep }}$ valve is wide open. Full-Arc Adnission operation is done during wide range speed control and Partial-Arc Admission operation is done durins normal operation.

In conventional mechunical-hydraulic governor systems the speed and the load refurence signals were both applied before the regulating element as shown in Figure 1.8. The block 'Valve Operators of Stean Volumes' represents all valve controlling loops in ane generator control system.

An attempt to overcone the difficulty that arises during the transfer of the operation modes, from one mode to the other, has been implemented in electro-hydraulic control systems by making the lad reference signal independent of regulation $[4]$. Refer to Figure 1.9.

Another proposed approach uses a conditional loop so that the selected higher loop error assumes the controi [9]. Figure 1.10.

For the purpose of generator protection against overspeed there are usually two independent emergency governors provided. The one of them is Normal Speed Governor that operates Control Valves and Interceptor Valves, and the other is an emergency Trip system that shuts the Main Stop Valve and the Reheater Stop Valve an overspeed conditions.

Sirce the input power of a turbo-generator is controlled by means of steanfinlet villves, stability can be markedly altered by theiraction. They must operate efficiently and reliably.

Gemerater Aotion

Figue 1.1 Troque-Angle Cuxve of a Symaromous Madine

Pigure 1.2 Hementary salient-pole 3-phase aynchroneus machise

MOTOR

Figure 1.3 Steady-atate power-angle curve of salient-pole eynchronous machine.

Figure 1.4 Transient power-angle curve of salient-pole synchrenous machine.

Figure 1.5 Determination of atability limit by the equal-axe ofiterion.

Pigure 1.6 Transient-stability improvement by fast valve aotion.

Figure 1.7 A typical Electro-Hyarsulic Governor system block diegram

Maree 1.8 Blect Alagran of speed cmetral leop Sex oespentional turisine eantrel ayaterno

MHare 1.9 Bleur Alegram of "geparato Speon and Lead" controls fer an electre-hydraulio central myetem.

Figure 1.10 Block diagram of "Speed and Lead Cantrol by Cenditienal Loop" gystem for an eleotrohydraulic oentral aystom.

CIIAPIER II

GENERAL VIL'V OF MICROPIRCLSGOR-BASEU CCNILROL SY'MLRIS

Abstract

The technical and econonic features of microprocessor-based control systoms are investigated in this chapter. This investigation has been extended into the use of some technical hardware arrangements. Some of the important hardvare configurations for the reliability aspects of on-line computer control systems are also discussed.

2.1 The Convenience of the Installation of Microprocessors in

Control Systems

Control equations can be fomulated mathematically in a way such that digital computers can perform the sane tasks as analog controllers. However, the choice of on-line computer control systems is limited since for single ${ }^{\text {loop }}$ control problems they may provide more complex solutions than an analog electrical control system. As the complexity of control problems increases, both analog electrical and mechanical control systems soon becone more and more complex whereas this is not necessarily the case for digital controllers. In fact, comilexity of the controller directly effocts the technical and camercial reasons for the choice of the kind of control systen to be used, and both of these reasons are as important in the justificution of on-line computer control systems as they are for the justification of the other type controllers.

Hicroprocessor-beased control systems may replace analof
electronic or other forms of hardwired digital electronic, inechanical and computer control systems $[20,3,22,10,12]$. Since they are stiall, fast and have low cost computing power, and they can perform many functions minicomputers do, these systems can improve control and do it for a reduced cost. 'ihey offer advantaces in performance, flexibility, maintenance, cost and size. $[22,12]$. They allow the control systems to perform logical operitions and give intelligence to control systems, [18], and they are also easy to program. Indirect measurements which are difficult to measure with analog controllers can be obtained in microprocessor-based control systems by calculation, [7]. They can also be used as replacements for special/ zomplex equipment which would otherwise bo required to implement the control. They enhance accuracy [22]; especially with disital transducers [13], rather then with nonlinear anal or transducers. Diécitul sicmals can be easily transmitited without distortion whereas aniolog signals are prone to error because of their hardwired couplings and temperature variations. Since microprocessors are very relisble electronic devices and eive exact calculations, they provide increased accurncy in control systems. as word length serts loncer, accuracy of the machines increases. In the market, 4-bit, 8-bit, 12 bit and 16 bit machines exist; such as 4040 (4-bit), $1: 16800$ (8 -bit) and CP1600 (16-bit). Hicroprocessor-based controllers can b由 reprogranmed and their hardware reconfigured with miniual physical modification. The same hardware can therefore be used to obtain an entirely different controller for a variety of applicitions. This sort
of modification increases the system flexibility. Since microprocessors are much simpler than full size computers and can replace a number of analog controllers, as a central element in a control system [25], it is easier to locate a failure and replace iti in microprocessor-based process control areas.
lificroprocessors are inexpensive electronic devices. They can be used to provide a sincle control for a number of machines. Because microcomputers replace a number of analog control loops, the total cost of the repilaced equipment helps to meet a considerable part of the cost of these computers. Because of their high performance and accuracy, in some systems they reduce system power consumption and thus provide an economic advantage,
[26]. They also increase the bulk of product since they are so fast $[22,12]$. All these make them an economic solution for many applications.

In large control systems microprocessors share the control loops and achieve the control under the supervision of a master computer, [18]. In the control hierarchy microprocessors cannot perform the management functions because of their size. $[22,18]$. Coordinating entire complex systems, generating up-to-date reports, doing cost accounting, etc., require extensive storage and a single niur ocomputer may not meet these demends.
2. 2 Sone Hardware Arranirement I'echniques Used In Conjunction With

Licroprocessors
Some authors have made proposals to keep the number of A / D and D / A converters used with one microprocessor down. $[2,5,2] i] h i s$ approach results in a drop in the amount of the input and output port
addresses necessary. To utilise only one A / D and only one D / A converter for more than one input and one output of a microcanputer, analog input and analog output multiplexors are proposed. These multiplexors get control comnands to select the desired channels, Figure 2.1. As either of these two multiplexors receives a channel select signal, the converter connected to that multiplexor will be switched over to that chosen channel. After the selection of the channel, another command starts A / D or D / A conversion, depending on which is required. Thus ane input address to ${ }^{\text {fhe }} \mathrm{A} / \mathrm{D}$ and one output address to ${ }^{\text {the }} D / \mathbf{A}$ are dedicated. Track-hold circuits are proposed to koep the actuator at its latest position until the next data is available. $[21,5,20]$.

In a microprocessor-based position controller of machine tools a register which is essentially an electronic device corisisting of flip-flops was utilised at the digital side of each digital to analog converter. The first output data waits in one of these registers until the other output data are housed in the remaining registers. Then these data are sent to $0^{\text {the }} \mathrm{D} / \mathrm{A}^{\prime} \mathrm{s}$. This gives an opportunity to apply all output data almost sinultancously, refer to Figure 2.2. The latch registers duplicate their data towards the $D / A ' s$ as they receive individual control signals. $[21]$.

A thyristor cycloconverter converts an alternatine voltage of one frequency to an altemating: voltage of another frequency by opening and closing the switches within the converter in appropriate manner. A microprocessor is used to calculate these tri.ggering instants and to achieve the control of a three pulsecy cloconverter. The equation that gives the SCR triggering instants
needs sine and arcsine calculations. To increase the speed, table look-up technique is utilised. This reduces the software overhead time. Again for the speed increment, the author used the Advance Micro Devices (multiplication hardware) for 16 bit multiplication in a short time of $3 \mu s e c, ~[3]$. Table look-up techniques and multiplication hardware have been used al so by sone other authors to meet the demands of fast acting control systems where the process time is prime concern. Refer to [10] and [16].

2.3 Reliability

Considering technical and economic reasons it can be seen that there are many advantages in employing on-line computer control systems. However, since these digital computer controllers are required to perform a multitude of functions, attention must be paid to reliability. In conventional analog control systems, each functianal task is performed by a dedicated hardware element and the failure of that particular element ends with the loss of that function. But, if a computer failure occurs in an on-line computer control systen, we lose all control. This loss of control cannot be tolerated in most cases. In order to be able to overcome this problem, a number oî different ways have been considered. Canplete redundancy is one of these approaches. But this is not economic since twice as much money must be spent to obtain a reliable computerised process control.

The fact that the cost of microprocessor has become so 1 ow made it possible to employ more than one microprocessor in one control scheme in order that each microprocessor is to perform
only a small number of functions. To do so, ane microprocessor failure causes anly the loss of the functions performed by this dedicated microprocessor. Thus, the control still exists since the other functions remained as they were. But this way of solution may not be satisfactory, since one microprocessor is oblized to perform only four or eight functions although it is crpable of performing many more functions alone.

Hore than one computer in parallel wes, used as an alternative method of achievine reliability. If one of them fails the other one assumes control.

A multiple processor method is used where a switchover mode is acceptable, Fifure 2.3. Here are, for example, two processors connected to the same inputs in parallel, and the same outputs can be switched over from one process or to the other. [2].

For the reliability and survivability aspects an aircraft fly-by-wire system uses four computer and voter units. When a failure occurs on the computer that has been doing the control tasks, the control tasks start to be achieved by one of the other three computers. [6].

A backup system assumes the tasks to control the system as the computer fails, if manual control is acceptable as the backup molle. After the computer failure has occurred, the operator controls the process manually. In such a control system, only a couple of most important functions may be performed by the operator in order to keep the most inportant and small part of the syoten running while the failure is beinc located and replaced,

Figure 2.4. [2].
Where safoty is of main cuncern all oontroilitn wignaila should be checked before they have reached the process. In a gunpowder manufacturing plant, two computers are connected in series to perform the control tasks of the hazardous process. One of these computers is a complex one and works at supervisory level. The other one is a simple computer and has the tasks at direct digital control (DDC) level. Mainly the process control system has three distinct control systems; Process Controller or Computer (Supervisory Computer), Dicital Control System which may be a microcomputer and Analog Control System. Refer to Figure 2.6. The supervisory computer sends start-up commands to the programable controller and provides set-point and digital control signal to the analog control systen. Since the progremmable controller consists of the process shut-down logic and some control logic, it can check the sent commands, for example a command to switch a machine on or off, against its logic which has the status of the process elements. So there is a double check of the commands before any action is taken in the process area. The anal of control system, in effect, is a self contafined systom and can monitor al.l process variables. In the event of a computer failure, the control of the process is achieved under the operator commands sent from the ilanual Interface Panel (seai-automatic control). In fact, a computer failure is indicated by analog values going into alarn and a shutdown of the process computer. [18].

Some vendors introduced another method of backup systens to handle computer failure modes. For this backup system, firstly, manual control is to be acceptable and each out put channel must have individual D / A converters. In addition, these output channels can be manipulated by an external source. Under these conditions, the discrete signals inhibit the processor from changing the output. On referring to Figure 2.5, it can be seen that two indicators are used to indicate the input and the output. For a given input the operator can change the output value, raise or lover, manually by using mode switching. In the figure there are four independent channels. Each channel has its own output card that consists of an D / A converter and hold station, so called. [2].

Pigure 2.2 'Latohing Parallel Data' system

Figure 2.3° Malliple processorn' methed

Mgure 2.4 Manuaily becked-up aymtem

Figure 2.5 Display back-up system

Figure 2.6 An a-line cemputer control system with twe omputere cenneoted in series.

SUTPPC 6800 CO.ITUU'ER SYSTEM

3.1 General View of the System

Since this system runs on 16 bit address buses, one MPU can address up to 64 K ; in other words memory capacity is 64 K . Information flow between the systenfs elements and also between the system and the outside world is done on B-bit bi-directional. data buses. The word length is 0 bit. $[24,14]$.

It has 72 busic instructions. It is laded with the machine codes of its assembler instructions. To obtain the machine codes of a program written in assenbler code there is a need of a host computer that has the compiler to translate the instructions into machine codes. There are eight addressing modes in the M6800; Dual Addressing, Accunulator Addressing, Inherent Addressing, Imnediate Addressing, Relative Addressing, Indexed Addressing, Direct Addressing and lixtended Addressing.

A SWrPPC 6800 canputer systen consists of a Microprocessing Unit (MPU), a Read Only Momory (ROM), some Random Access Memory (RAM) s, sone Peripheral Interiace Adapter (PIA) s and sone Asynchronous Communicitions Interface Adapter (ACIA) s. PIA provides parallel interfacing and ACIA gives serial interfacing. But, in fact, the :IIKBUG hardvare program in $1 \mathrm{KMC6830}$ ROil enables a $M 6820$ PIA package to be used as a serial interfacing adapter. For our project, a 168820 PIA is used to make serial TTY interfacine to the liPU.

Each of the M6800 family elenents in this computer system operates on a single five-volts power supply.

A clock is essential for the processor and the interface circuits. The system may be expanded up to eight interfaces and the various baud rate (one baud is so many bits' flow per second) of each interface circuit can be selected by a bit rate generator such as MC14411.

Figure 3.1 can give sone idea of the connections of the system's elements in blocks. Figure 3.1 also consists of a crystal controlled oscillator used as a clock source. The control bus in the figure is shown bi-directional. In fact, some control lines are only inputs to the MPU and some of them are only outputs from the MPU. In addition, all control lines connected to memories have the signal flows from the MPU to the memories only.
3.2 HO6800 Microprocessing Unit (MPU)

This is a Large Scale Integration (LSI) device and consists of two 8-bit accumulators, one 16-bit Index Register (X), one 16 -bit Prograin Counter Register (PC), one 16 -bit Stack Pointer Register (SP) and one 8-bit Condition Code Register (CC). The number of the program instructions used to activate the logic and arithmetic functions of the APU is 72. It contains instruction decoding logic, Arithmetic and Logic Unit (A.L.U.), and program sequence control. It is provided with an 8-bit bidirectional data bus, a 16-bit address bus and some control lines; Read/Write (R / il), Valid Hemory Address (V:A), Data Bus Enable (DBE), Interrupt Request (IRiu), Restart (RiBS), NonLiaskable Interrupt (NMI), Go/Halt (G/H), Bus Available (BA) and Three State Control (ISSC). It is also provided with a two-phase
clock whose operating rate is up to 1 iHz . The MPU uses the clock as a timing reference to execute instructions. For example, the $M P \mathrm{places}$ an address on the address bus during one phase of the clock and the data bus will be active during the other phase of the clock. Refer to Figure 3.2.

The MPU transfers information between the memory units and the outside world so that if it is required the MPU will fetch an item of data from a memory address and then store it to the desired output. The sequential fetchine of instructions in the program memories is done through the PC. After loading a program and giving the starting address to the PC register, the $G o(G)$ command is applied to start the execution of the program. The processor then loads the address in the PC on to the address bus and the Read pulse (high state of the $R / / i /$ signal) strobes the data at the given address into the MPU. The instruction decoding lofic of the MPU wil. enable the MPU to interpret the strobed data as an instruction or just a number. The execution of instructions is done in the A.L.U. After fetchin $\mu_{i ;}$ a data the value of the PC will autonatically increase by one. The new value in the PC is the next address for the WPU to get the next data to execute. However, if the program requires the result of an execution to be stored in a memory location, then the MPU places the address, where the resultirs data is to be stored, on the address bus. The output signal of an Aild whose inputs are the Vili and $\phi 2$ clock signals will inform the external devices of the MPU that there is a valid address on the address bus. In fact, this enable signal is applied to the

Enable lines (E) of the memories and I/O devices. The DBE which is normally the $\phi 2$ clock $\operatorname{li}_{[\text {[mal }}$. puts the data on the data bus from the MPU.

The IRQ line of the MPU gets signal from PIA/ACIA. An interrupt signal will be sent to this line if there is an available data on a peripheral while a program is running. Next, the present contents of the $P C, X$, accumulators and CC register will be stored in seven bytes of RAlif starting with the menory address that the Stack Pointer (SP) contains, and proceeding in de:scending order of memory addresses downwards in sequential manner, if the interrupt mask bit in the processor condition code register is not set. Then the MPU sets the interrupt mask bit to ensure that it will not response to any iurther interrupt before the completion of the serving to the present one. The $\mathbb{I P U}$ starts ruming a program that serves the IRQ. The startins address of the subroutine is loaded into the PC from two memory locations. The instruction RII (Return from Interrupt) causes the MFU status Laded with their contents before the interrupt occured. Upon completion of the service program the execution of the suspended program is resumed. In fact, this way of data transfer fron the outside world may save processing tine if it is compared with the way of data transferring where a progran would periodically exanine every aincle port in turn for an available data.

The RES simal recovers the HIH from a power failure and it may also be used for an initial start-up of the processor. fo be able to communicate with the HiPU through a teletype while there is a prograin continually this signal is to be applied. That results
in atopping the program being executed. The RES signal is also connected to the RES line of PIAs. This signal has the effect of setting all PIAs' registers to logical zero.

The Go signal (high state of the G / H signal) starts the execution of program at the address in the PC. If this signal is at low state program exccution will be halted.

In the high state the BA signal indicates that the MPU has stopped execution and the address bus is available.

The NMI signal has no effect of the interrupt mask bit in the CC register. At the presence of this signil the MPU status are stored away through the SF. The interrupt mask bit is set. The MFU branches to a routine that serves this interrupt. The address of the routine is stored in two memory locations and the $C C$ is loaded with this address autonatically. Upon completian of the routine, the previous program is resumed by the RIPU.

3.3 MO6830 Read Only Memory (ROM)

This LSI device has static operation. It is a $1024 \times$ Byte $=$ 1K byte packige. It has the fiKBUG hardware program in it and fIIKBUG is unal.terable. The RIKBUG monitor progran does not only provide the user with the subrcutines to use in his prograns but also enables him to examine a memory locetion and chanes it at will (except the memory locations of Roils), and to start execution of his program, and to load an object tape, and to print a block of memory via a keyboard.
iIKKBUG also uses one Random Access inenory package as a temporary data storage.

3.4 MO6B10 Random Access Hemory (RAM)

This is used to store software programs. It is an al terable Read/Write memory. Wach RaM is organised as 128 Bytes.

3.5 H06820 Peripheral Interface Adapter (PIA)

The 406820 Peripheral Interface Adapter is a parallel type interface adapter circuit. Its MPU side has 18 lines provided. (Refer to Figure 3.3). Fight of these lines form the bi-directional data bus, and the others are used for addressing and controlling the PIA and the internal registers of the PIA. The peripheral side has 20 lines end 16 of them form two 8 bit bi-directional data buses. Four out of these 20 lines are utilised as control lines.

The address of PIA is defined by hardware selection logic. The Chip Select (CSO, CS1, ©S2) lines on the MPU side are used to select a PIA. The PIA is programmable. Each PIA has six 8-bit registers in two sets called A side registers and B side registers. Each side has one Data Direction Register (DDR), one Out put Regiater and one Control Register. Which set will be utilised as Input or output depends on the bit positions of the DDR.

The MPU treats the DDis and the Output Registers on each side as a single memory location and the $M P \mathrm{PU}$ treats one PIA as four memory locations.

In conjunction with the Register Select (RSO and RS1) Iines one bit of the control register direats the $l: P P U$ to the $D D R$ or Output Register.

On the $\overline{H P U}$ side of the PIA there are two IRQ lines; one of them is used for the interrupt request of one side and the other one for the interrupt request of the other side.

Two control lines CA1 and CB1 on the peripheral side are only input. The CA2 and CB2 may, however, be prosrammed to act as the peripheral outputs or the interrupt inputs.

Since the PIA is a parallel I/O device, to connect an analog aignal to a PIA an Analog to Digital (A/D) converter circult is to be placed between the signal and the PIA's data lines. The digital out puts of an 0 bit A / D converter are connected with these 8 bit data lines. Since a convenient bit pattern of the CRA (CRB) may sei the interrupt flag of the same control register during a high to low transition on the CA1 (CB1), the CA1 (CB1) control line of the PIA may be connected to the status signal (the signal that informs that the A / D conversion has been completed) of the A / D converter circuit. Since setting one of the control registor bits may make $C A 2$ (CB') go high, the CA2 (CB2) may be connected to the "Start Conversion" line of the A / D in order to make the M / D circuit start the conversion. Firstly a software program 1 oads the control register with a bit position set so that the $C A 2$ (CB2) goes high and consequently the conversion starts. Upon completion of the conversion the status signal of the A / D goes $10: i$, so does the CA1 (CB1) and the progran may read the data into the H iPU after the recognition of the IRQ flag that was set by high to low transition on the CA1 (CB1).

3.6 MO850 Asynchronous Communications Interface Adapter (ACIA)

This N 6800 family element enables the user to make serial
data comunicutions with the liPU. 'Ihe user's 'lwY control terminal, Keyboard and Cassette Recorder may be interfaced to the NPU through ACIAs. The Motorola's :ILBBUG hardware prograin in 1 K

MC6830 ROM enables PIA to be utilised for the same purpose.
Since we are using a PIA in the project to make serial communications, the references [24], [14] and [15] should be referred to obtain the detailed infomation about ACIA.

Fance 3.1 m6800 Matoocnputer family b.lock diagran

Figare $3.2 \mathrm{MC6} 800 \mathrm{Mi}$ ©roproceseing Unit

Figure 3.3 The expanded block diagram of MC 6820 Peripheral Interface Adapter

GIAPind IV

EXISTING COVLINOR SYS'LEM AND I'IS

ANALOG CO.IPUFER MODEXLING

A valve controlling system block diagram supplied with the step-by-step on-load valve testing procedure wes obtained from a manufacturer. This chapter mentions the brief description of this electro-hydraulic valve control system operation and the valve testing steps. The reduced governor model with some changes in the block gains and time constants, and the mathematical model of this system eatablished on the analog computer are also given in this chapter. The block diagram calculations for the analog computer simulation, however, are in Appendix A.

4.1 The Governor Specifications

The block diagram of the given mectro-Hydraulic Governor systan is in Figure 4.1 ; and the gains and the time constants given by the manufacturer are listed in lable 1.

The Power Piston response in the opening direction and the Actuat or response in the closine direction for a 6 volt step input also given by the manufacturer is illustrated in Figure 4.2.

This Governor achieves the control task for both Control and Intercept valves.

canis		USHTY	THE CONSTANTs In seoonds	
01	5.38	milli-ampa/ volt	T1	. 04
G2	2.666	$\frac{\text { oubio inohes plow }}{\text { millit-amp }}$	$T 2$. 013
03	1.25	1/Arce squ.inohes	T3	. 16
C4	20.	10Polt/Stroke inokes	T4	. 0028
65	1.		T5	. 1
66	. 0755	1/area squoinches	T6	. 1
$G 7$	1.666	10volt/3troke inches	17	. 1
			T8	1.

Table 1.

canta		UNEITY	TMIR CONSTANTS in seconds	
62	2.66	$\frac{\text { oubio inohes flow }}{\text { milli-amp }}$	T5	. 1
63	1.25	1/aree squ.inckes	76	-1
C4	2.	10Volt/Stroke inohes	T7	00^{0}
65	1.		T'8	. 01
66	. 0755	$\sqrt{\text { area squ.inches }}$		
$0 \cdot 7$	55.	10V014/8troke inohes		

Table 2.

4.2 Brief Description of The System Oparation

The Phase Rectifior with the gain G4 is a Linear Variable Differential Transformer and the position transducer with the gain G7 is a rotary type transducer. Since the Primary Actuator and the Power Piston are pure integration devices, to obtain a constant output position of these devices for a constant input signal and to enhance their performance, the feedback paths are established around these devices.

The Servo-Valve Amplifier is an electronic device and amplifies the error signal. The current supplied by the amplifier operates the Servo-Valve. 'The oil flow from the Servo-Valve to the Primary Actuator results in the piston movement of the Actuator. Since the Pilot Valve piston is mechanically in connection with the Primary Actuator piston, the Pilot Valve operates and a hich pressure oil flows into the Power Piston. 'The valve operation is achieved over a lever that links the val.ve to the Power Piston.

The gains of the Servo-Valve, Prinary Actuator, the rectifier gain G4, Pilot Valve and Power Piston may vary between contracts where different pressure requirements exist. The gains G1, G7 and also G6 in Figure 4.1 vary between Governor and Intercept valves.

4.3 The Actual On-Load Talve Test Sequencing

4.3.1 Purpose of the 'lest

'The on-load val.ve testing is achieved by doins the following in sequence: selecting the valve to be tested, adding a negative roing ramp signal to the operating Governor input siignal and consequently closing the valve, tripping the valve, applying a positive going ramp signal to the Governor input, reapplication of the negative goine ramp, releasing trip and bringing the valve back to its pre-test position.

During the teat a permanent record of the valve performance is provided by an $X-Y$ plotter. The X input of the ploter receives the valve position output and the Y input is in connection with the Governor input. The graph plotted during the test is the input versus output curve. The curve characterises the behaviour of the Governor by indicating if the trip operation has failed and if the valve being tested gives unexpected response because of the erosion on the valve. Getting no vertical trace is the result of the fact that there is failure of the trip operation, because the plotter's X input is expected to be zero and the Y movement still exists during the ramp operation following the tripping of the valve. Any friction or faulty response of the valve vill. cause ${ }^{a} k i n k$ in the traces beine obtained during the valve closure and re-opening.

The newly recorded response for each valve is checked against its previous test record and the differences are observed to gain ideas on the present conditions of the trip operation system and the valve itself. Then the necessary precautions may be taken to avold risk.

4.3.2 Bueic Specifications of the Used Pushbuttons

The on-l oad tests on the valves are carried out remotely from a control room.

There are a certain number of pushbuttons on the control panel dedicated to the same number of the valves on the turbine. These buttons are called "Select Pushbuttons". One valve is tested and one plotter record for this valve is obtained at a time. When pressed the button initiates the test procedure on the appropriate val.ve. The Select buttons are latch-down tyrpe of buttons.

Also there are two non-lat chiref pushbuttons that have to be pressed and held down in sequence during the tests. These buttons are common to all valves. One of these non-latching ones called "Test"
initiates a comnand to interrupt the pragent Govemor aignal when procsed and causes the rostorution of the Governor sidenal when released by means of the ramp signal. The other button called "Prip" is utilised to trip the valve under control.

The Select and Trip buttons also operate a set of switches so that only one valve can be selected at a time and the 'Prip button cannot be depressed before the Test button.

4.3.3 Detailed Test Procedure

The on-load valve test is done step by step as follows:

Select Valve

'The valve subject to the test is selected by pressinc the button dedicated to that pariticular valve. The signet obtained by pressing the button results in switching the X input of a ploter from its normal valve position input to another X input which in turn givesthe X movenent during the encircling/ the valve number on the plotter. The Y input of the plotter is also supplied by the same module after the SEXEC comnand has ${ }^{\wedge}$ reached. After the valve identification, the relay is released and the X input on this relay is switiched to the valve position input. Another relay called "pault Reset Relay" is also energised and this provides a signal to the Govemor control pancl to indicate "on-l oad test" in progress.

Press Test Pushbutton

When this test button is pressed down a ramp sional is added to the present Governor input signal and the valve closes.

During the valve closure, the system autonatically checies the signal selection (votin: ${ }^{\prime}$) circuit in the Servo-Valve Amplifier.

Press 'lrin Test Pushbutton

The Itrip Test Relay is energised, this results in tripping
the valve. To avoid accicental rapid valve closure that would result by depressing the TRIP button before the TiSN button, here some switches are used $2 s$ interlocks.

Release 'Pest Pushbutton

The close Governor signal is caricelled. The Primary Actuat or operates but no valve movement occurs. A limit switch closes to guard against accidental rapid operation of the valve.

Press Test Pushbutton

The close Governor signal is applied and the Actuator closes down. The valve still stays at its close position.

Release Trip Test Pushbutton
The Trip signal is cancelled.

Release Test Pushbutton

The close Governor signal is interrupted and the valve re-opens.

Release Select or Pushbutton

The fault reset relay is de-energised and the "on-1oad test" lanp on the Governor control panel is extinguished.

4.3 Simulation of the Actual Governor

For simplicity, the given Governor model was reduced to the system whose block diagram is illustrated in Figure 4.3. The gains and time constants of the blocks used in this reduced system have been listed in Table 2. The block diagram calculation of the system for the anal og computer simulation is given in Appendix A.

When the calculated blocks were connected in their order the mathematical model for the analog computer became as illustrated in Figure 4.4.

For better observation of the system response the amplitude of the step input was taken to be as big as-26.25 volts. The negative signal is used to obtain the positive outiputs of the arnplifiers 2A2 and B4. The Power Piston response in the opening direction and the Actuator response inn closing direction for -26.25 volts have been plotted and seen to be as in Figure 4.5. As it can be seen in the figure, the calibration has been done and the Position Output has been multiplied by ten. To compare the actual system responses of the Actuator and the Power Piston in Figure 4.2 with their model responses, a further scaling has been done by. switching the capacitor value of the amplifier $B 4$ from $0.1 \mu \mathrm{~F}$ to $0.01 \mu \mathrm{~F}$ and feeding the out put sicnal. of the pot $P 7$ to the sumine anplifier $2 C 5$ over $1 \mathrm{M} \Omega$ but not $0.1 \mathrm{M} \Omega$. The Actuator and the Power Piston responses obtained after the scaling are illustrated in Figure 4.6. The actual system respanses can be easily canpared with the model responses in Figure 4.7. This figure is made up of Figure 4.2 and Figure 4.6. The model response is ten times slower than that of the actual Governor.

Figure 42 Power Platon respanse in opening direction and Actiator response in clesing direction
to 6 Volt step input.

Pigure 4.3 Reduced governor model

Figure 4.4 The mathematical model established
on the amalog computer

Figure 4.5 Power Piatom response in opening direction and
Actuator respanse in closing airection te - 26.25 volt step input

Figure 4.6 Respanse of the mathematical gevernor model to -26.25^{∇} step input
(a) Scaled respanse of the Actustor model in alosing direction.
(b) Scaled response of the Power Pistan model
in opening direction.

MI CROPHOCESSOR-BASED ON-LOAD VALVE SEQUENCING

Miaroprocessor-based On-Load Valve Sequencing is developed in this chapter. The chapter describes both the manner in which the MC6800 microprocessor is interfaced to the external systems and the manner in which the microprocessor program is developed. The arrangement of the plotter paper used to obtain a permanent record of valve porformance and the time calculation of the ramp signal created via the system software are given in this chapter. $[24,14,15]$.

5.1 System Hardware Organisation

The experimental system contains the $M \alpha 800$ microprocessor, 4096 words of the 128×8 RAM (Madim810)s, a 1024×8 ROM (MO6830) and three MC6820 PIAs.

The present peripherals include: one A / D arid two D / A converters to produce digital input to and analog outputs from the computer, a Teletype for operator communication, a Connection Box to obtain flexibility in connections during the system setup, the Control Panel to place the necessary equipment (pushbuttons, amplifiers and relays), an $X-Y$ plotter and the Analog Computer. A fairly basic block diagran is shown in Figure 5.1.

There are two PIAs used for this project apart from the PIA-3 used for interfacing the TTY.

Because it is possible to arrange the control lines CA1, CB1, CA2 and CB2 of a PLA on the peripheral side as inputs or outputs and because the NPU may control the conditions of these lines on request, the "status" line of the A / D converter was connected to the control line CB3 and the "Convert Command" line
was oonnected to the control line CB4. The necessary software was prepared to control and complete the oonversion. The second side of the PLA-1 has been established as the output side and the 8-parallel data lines an the peripheral side of the PIA-1 were connected to the inputs of the converter $D / A-1$. The control lines CA1 and CA2 have been established by the software as input and output, respectively.

One side of the second PIA is also connected to another D / A converter named $D / A-2$. The control lines of this side $C A 3$ and $C A 4$ were established again by the software as input and output, respectively. Chly one control line CB2 of the second side of the PIA-2 was established as input.

The commands SELECT, 'TEST, 'TRIP and PEN (on - off) were connected to CA1, CB2, CA3 and CA4, respectively. CA2 was used in connoction with the relay $R 2$ and $R 3$ in order to obtain the computer control of the relays' operations.

The A / D and $D / A s$ consist of ZN425 8-bit dual mode single chip converters. The clock frequency of the A / D is 259.9 kHz . For fullscale reading the maximum conversion time is

$$
\frac{2^{8}}{259.9 \times 10^{3}}=0.985 \text { millisecond }
$$

The full scales of the converters have been set at 3.8 volts.

5.1.1 Connection Box

Fran both PIA-1 and PIA-2 six out of eight control lines CA1, CA2, CB1, CB2, CA3 and CA4 have been connected to 4 mm sockets on the box. Two D / A output lines and one A / D input have also been connected to three 4 mm sockets. In addition, the grounds of the converters have been placed on this box to obtain a reference for the input and outputs. Figure 5.2 illustrates the top view of the connection box.

This box has been prepared for quick and easy alteration of
the connections during the system setup.
5.1.2 Control Panel

A control parel with three pushbuttons was buill. lhe buttons latch dovin and glow when reressed. They have to be pressed a second time to release them. Each button energises a circuit made up with two invertors connected in series and the output of each circuit is connected to a 4 im socket. When the button is on there is 5 volts available at the associated socket. These pushbutt on circuits provide adequate interfacing of the commands SELECT, WEST and TRP to the PIAs' control bits. In addition, the TRIP button has been directly connected to a double pole form C D.I.L. Reed Relay (R1) to operate two relays in one mackace, simultaneously. Figure 5.3.

A Zener Diode Circuit with the gain 0.5 was built to inticrface the analog model output with the maxinum 3.1 volts to the coriputer. The Zener breaicdown voltage is 6.2 volts. Refer to Figure 5.4.

To operate two relays $R 2$ and $R 3$ by mears of one cortrol line (CA2) of the PIA, the circuit in Figure 5.5 was established, The point 5 is a 4 mm socket.

The box also houses three non-invertint OP Ampsused to secure no-current-flow to the plotter and anal or computer. One of the purposes of the CP Amps is to effect the calibrations. Refor to Figure 5.6.
5.1.3 Hardware System Setup

The overall diagrem is shown in Figure 5.8.
The test system was connected to the mathematical model of the Governor. Once the Analof Canputer is switched to the "canpute" mode, $2 l l$ the test sequencine iz ackicved from the Control Mancl, TTY, and the iticroconputer.

A sheet of Ad chart puper is used to obtajn a pernanent record of the vallve icerformence. How such a paper hat been :armariod for onduined in the Syshem Soltware part of the thecis.

Whem the software is run, the widich bution has to be pressed to start the step-by-sicp testing sequence. When this button is on, the plotter identifies the required valve by underlining one of the pre-printed code numbers on the plotter paper. Then a constant input is fed to the model. The TEST button is pressed to close the valve by decreasing the Governor input to zero. Then the TRIP button is pressed to trip the Power Piston. Releasirg the résr initiates a command to increuse the Govemor injut ejpral. from nought to its pre-test value. Then the TEST button is prosod to decrease the Covemor input to zoro. At the bottom stop of the plotter pen the 'lRTP and 'pis'r buttons are releused in sequence. When the val.ve regains its wre-test position the SBLDCT button is released.

Driver

The Governor signal obtained from the canputer is sent to the converter $D / A-2$ and the analor signal at the output of the $D / A-2$ is fed to the OP A:lp-1. The grin of the anplifier is 2.26 . The ruepose of the amplifior is not only to prevent the converter frow the possible current-sink efrcct of the plotter arid the Analog Computer, but also to amplify the ploter's Y input signal during the valve identification procedure. The amplifier output is applied to the Y input of the plotter and to the pot 2P13 whose value is 0.306 when the relay R2 is snort-circuited. Ihis pot is on the Analof Computer. A suming amplifier (2A3) of the Analog Conputer is utilised to obtain the gain of 10 and
sign inversion. The sign inversion was necessary since the negative Governor input gives a positive Governor output.

The values of the OP Amp-1, the pot 2P13 and the amplifier 2A3 were arranged so that the anplitude of the Governor input would be 26.25 volts for the maximum $\mathrm{D} / \mathrm{A}-1$ output 3.8 volts. The obtainable maximum gain of the summing amplifier is not more than 10.

Sensor

The Zener Diode Circuit receives the Position Output, multiplies it by 0.5 and foeds to the OP Anp-3. 'The purpose of the circuit is that the diode regulates the A / D input against variations in the model output and also against variations in the Λ / D input current. The Zener breakdown voltage is 3.6 volts. Since the maximum value of the Position Output is less than 7.2 volts, the gain of the circuit was chosen to be 0.5 . The OP Alup-3 with the gain of 1 was placed to prevent the interaction between the Zener Diode Circuit and the A / D converter. The output of the $O P$ Amp- 3 supplies the signal to the A / D and, when the relay $R 3$ positioned to the X input of the plotter over the OP Anp-2 whose grin is 3.35. The OP Anp-2 prevents the current draw of the plotter from the converter D/A-1. 'The gain was chosen higher than one in order to obtain more distinct record of the valve perfornance and large movement on the X axis during the test sequerncing.

Other Connections

The outputs of the SEHECI, TRES and TRIP circuits were connected to CA1, CB2 and CA3 sockets on the Connection Bax over the specially prepared leads shown in Figure 5.7. The reas on why the leads were arranged was the fact that the PIA control lines CA1, CB2 and CA3 were floating when their inputs (SELECR, TEST and -61-

TRIP) were zero. With this arrangement of connections it was ensured that when their inputs are zero these control lines are earthed and do not float.

The relays R11 and R12 in the relay package R1 were arranged as in Figure 5.8. When TRIP is on the input of the prot P2 is earthed and the input of the amplifier B4 over 0.1 M (is connected to its output. This R11 operation produces the same effect as the Trip Test Relay does on the actual valve. Although the pot P2 input was earthed the amplifier $B 4$ would still integrate and produce non-zero output which is partly the result of the fact that the gain of $\mathrm{B} /$ is as big as 100 . For this reason the relay R12 was felt to be necessury. In fact, even if the $B 4$ input over $0.1 \mathrm{M} \Omega$ was sarthed when TRIP was on, the amplifier would still integrate. That was why the B4 output would be short-circuited with this B4 input when TRIP was on.

The cal socket on the Connection Box was connected to the PFN command input of the plotter over a piece of wire. The CAA is set to +5 V or to 0 V through the software. When the PEN command input is supplicd with +5 V the pen is on, otherwise it is released.

The socket called $C A 2$ is connected, over a wire, to the point 5 socket on the Control Panel that positions the relays R2 and R3. The socket CA2 is energised and de-energised under the software control. This enables the computer to control the operations of the relays $R 2$ and $R 3$ when the socket 5 is connected to CA2. The $D / A-1$ output is used to give the X movement during val.ve identification on the plotter. This computer output is not utilised before or after the valve identification.

The software has been prepared as program paakages fer ease ${ }^{\text {of applications-oriented nan-pregrammers. The system }}$ abotware includes 10 subroutines whose purpeses in ceneral are: creating the negative and positive geing ramp signals at ane of the microcemputer's cutput ports, ceading the present input sienal at the input pert, storing the data used for the valve identifioation in the dedicated memory locations, and enabling the TYIY to print the ocmmands that inform the operater of what to do next. [15].

5.2.1 Plottor Papar Arrangement

There are 20 different numbers on the actual pletter paper sheet in twe columns each censisting of 10 numbers. Each number belems to one valve the syatem.

The tupe of paper arranced to be used in the microprocessorbased control system is illustrated in Figure 59. The distance between two subsequent numbers on the same column has been assumed to be 1.5 an and the distance between two numbers an the same row has been assumed to be 2 cm . Also it was assuned that the pen of the pletter draws 1 am length of line under the number during the valve identification of the ploter. For these reasgns the seailing on both axes has been taken to be $500 \mathrm{mV} / \mathrm{cm}$.

The gain on the X-axis is 3.35 and on the Y-axis is 2.26.

Te under-line ane of the numbers in the first columa the X-axis should start with the decimal 225 and finish with the
deoimal number 235 and the Y-axis should be adjusted to ane of the following deodmal mumbers according te the valve numbers: 24, 46, 68, 90, 112, 134, 156, 178, 200, 222.

The deodmal values of Y above are still valid fer the fallo wing second column, but the starting and ending values on the X-mis should be decimal 245 and 255, for the numbers on the second column.

Table 3 summarises the values math X and Y-axis required to undorline each valve number.. (See the example in APPENDIX C $)$

5.2.2 Preparation of The Ramp Sipmal

During on-load valve test sequenolige, the aotual steam valve movement fram the fully open to the fully closed position tafpos approximately 3 secends. Since the atep input response of our Governer model is ten times slower than the actual system response, this ramp speed has also been assumed to be, 30 seo, ten times slewer than the actual 3 sec duration.

Since the 8-bit oonverters are used in the project, it was assumed that the maximum opening of the valve will occur when the full soose reading $F F$ of the converter in the driver circuit exists.

The hexadecimal number $F F$ equals to 255 decimal. Te enable the computer to produce a positive going ramp signal, nought to maximum, we may write a program where an accumulator is increased by one and each time the new value of the accumulator is stored at the output. Since this will be a loop repeated

Decimal		VALVE NUMBERE																			
Number to be put on		Frat Column										Seconr Column									
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
X-axis	Starting	225										245									
	Funishing	235										255									
Y-axis		222	200	173	156	134	112	90	68	46	24	222	200	178	156	134	112	90	68	16	21

255 times because before the start the acoumulator had beon oleared, and it is required that the loop should take 30 seo, the time spent betye㫿c the out put two subsequent accumulator
 The first four figures after the comma may give the adequate app roximation. But the value is being taken as it is to give some idea of how the conmand NOP (NO Operation) may be used fer acouracy.

Nermally the following plece of program is enough to store the centent of the accumulator B after identifying the output address and clearing B :
POSGO STAB Adrata

INCB
CMPB mumm
BLS POSGO
In this program dddd is the output addrass and mamm is the address of the memory location whose content is hexadecimal FE (deadmal 254). This program takes $5+2+4+4=15$ ay ales and, because the MPV used in this work executes one cycle in $2 \mu \mathrm{sec}, 15 \mathrm{x} 2=30 \mu \mathrm{sec}$
$117.647058 \mathrm{msec}>0.030 \mathrm{msec}$
Now a delay loop should de added. The delay loop is:
LDX kkkk
X1
DEX
BNE X1
Here kkkk is the content of the index register. LiX kkkk takes 3 eachine oycies or $3 \times 2=6 \mu \mathrm{sec}$ of execution time.

$$
30 \mu \text { sect } 6 \mu \mathrm{sec}=36 \mu \mathrm{sec}=0.836 \text { msec }
$$

Then, we find that
117.647058 mョec -0.036 msec $=117.611058$ nsec.

DEX and ENE X1 together take $4+4=8$ cycles or 16μ sec $=0.016 \mathrm{msec}$ The content of the index register then should be

```
\(\frac{117.611058 \mathrm{msec}}{0.016 \text { msec }}=7350.691125\)
```

The decimal 7350 equals to the hexadecimal 1 CB6.

Since

7350×0.016 meec -117.6 mseo
there is otill need for a delay time of $11.058 \mu s e c$ because
117.611058 msec -117.6 msec $=0.011058 \mathrm{msec}=11.058 \mu$ sec

Since one NOP takes 2 cyales or $4 \mu s e c$, two or three NOP should be added. Two NOPs take $2 x 4 \mu s e c=8$ Msec and three NOPs take $3 x 4 \mu$ sec $=12 \mu$ вео.

Sinae 12 preec la nearier to 11.058 رsec than 8 رsec is, it has bees thought that adding 3 NOPs would be adequate.

This may of thinking made the loop POSGO to be:

PGOING	S'PAB	dddd
	LIX	1 CB6
X1	DEX	
	BNE	X1
	NOP	
	NOP	
	NOP	
	INCB	
	CMP3	mmmon
	BLS	PGOINC

```
    The same idea is used for the sub-progrum that would
give the negative going ramp signal. The sub-program is:
    NGOING STAA dddd
    I9 LDXX 1CB6
    BNE L9
    NOP
    NOP
    NOP
    NOP
    NOP
    DECA
    BNE NGOING
Here twe more NOPs have been added to comprise the same length
of time that COPB mmmm in the previous sub-program spends.
```


5.2.3 Flonchart

The following flowchart was prepared to organize the
preblem.

The system aubroutines;

5.3 On-Load Valve Testing Procedure

When the program atarts sumaing the relay R2 is ahortoirouited, the relay R3 has its points B and 2 shortoircuited. Refor to Figure 5.8. The pan of the plotter becomes off.

The TTY prints:
(1) prass selbet pusibution

The MFU cheoks is a loop if the SELBCT is on.

Seleot Valve

As the SXLSCT command ${ }^{\text {is }}$ reached, the relays R2 and R3 change their positions so that the model on the amalog computer gets no input sigal and the X axis of the plotter gets switoned over from its valve position input to the output of the oonverter y/A - 1. The computer geaerates the X and Y movements over the D/A -1 and D/A -2 respectively. The PGN ON oommand is also oreated by the softrare and fed to the pen oirouit of the plotter. The Y input value is kept constant while the X input is being inoreased. After undorliniag the valve number on the plotter, the pen is released and it goes to its set-point since the inputs to both plotter axes are zeroed by the program. Then the relay R 2 is short-oircuited and the X axes is switched baok to the valve position imput. After this is dome, a oonstant input is fed to the model and the Y iaput of the plotter over the OP Amp -1. Obviously the X input gets a position output as a response to the input signal fed to the mathematical model. The value applied as the input to the model is also stored in a memory loortion.

The THY prints: 2) PRESS TEST FUSHBUTTON
(
Then the MPV starts checking in a loop if the TUST ON command bus been applied.

Press Test Pushbutton

When TEST is 6 , the computer reads the valve position and atores it in a memory location. Then the PHN ON command is applied and the stered value on the $D / A-2$ is decreased to zere. This results in zere output of the valve position. The plotter drams the output of the model an the analog eemputer, which is the valve positien, against the reduaing input, continuealy. This is the ine $\overline{\mathrm{ABO}}$ shom in F1gure 5.11.

After the pen has reached at its bottom stop, the rriy printe: 3) PRWES TRIP PUSHBUTY'ON $($

The UPU starts checking in a loop if TRIP is ON.

Press Trip Test Pushbutton

When the TRIP button is switched on the relays R11 and R12 change position so that the input of the pot P2 is earthed anil the input of the amplifier $B 4$ is switched fren the output of pot P12 te its own output. (Refer to Figure 5.8). The TIY printas 4) Rhand TEST PUSHBUTTON
'Man the MPU checks in a loop if the TEST butten has beem released.

Rel esse Test Pushbutten
This initiates the executica of a subroutine which increases the input voltage te the medel on the analog cemputer. This input value is inareasel frem zere to the value axisting before the fixgt TEST CIN cemmand was applied. Since the TRIP ON command has awitched off the Perer Pisten input, the X input of the pletter atays at zere and the Y input mever from zero te the point C. Figure 5.11 mows this by drawing a line between the points 0 and C. Then the TTY prints: 5) PRESS TEST PUSHBUTTOA (

The MPU checks in a loop if the TEST button has been pressed. The pen stays at the point C in Figure 5 .fluntil the TEST butten is pressed dewn

Preas Teat Pughbutton
This atarts the execution of a aubroutine that would give the fecmoment on the input velue of the medel until this input aignal reaches at zero. During the decrement of the model input the pen meves frem the point C te O indicating that the TRIP is still an and the Gevernor is getting the alesure signal. When the pen reaches at its bettem step, the TITY prints:

6) rherase trip poshbutton

```
(
```

The MPU starts cheaking in a loop if the TRIP butten has been relemed.

Release Trip Test Pushbutton

Releasing the TRIP button results in the position ohanges of both relays R11 and R12 simultaneously eo that the input of the pot P2 is switched back to the output of the amplifier 2A2 and the input of the amplifier B4 is switched back te the output of the pet P12. (Refer te FHgure 5.8). Then the TTY prints:
7) RBthase test pushbutton $($ The MPO checks in a loop if the TTBST button bas bean released.

Release Test Pushbutton

The Gevernor gets its operating value, before the test sequenoing had been started by pressing the SELECT buttan back. The pen meves from its bottom-stop te the point A over the line $\overline{O D A}$ in Figure 5.8. The the $T T Y$ prints:

8) himbase select poshburton

The MPO checks in a leop if the SELECI button has been released.

Release Selector Pushbutt on

This initiates a command to release the pen.

5.4 Test Regulte
 For a typical test, the program was run after having adjusted the specified setpoint of the plotter. At the end of the test, the peletype commands shown in Figure 5.10 and the plotter respenees illustrated in FYgure 5.11 were obtained.

As it is seen in Figure 5.11, there is a phase difference between the vaive closure line $\overline{A B O}$ and the valve opening line $\overline{\text { ODA }}$ which eccurs because of the overall time constant in the analeg Gevernor. If the delay did not ecour during the closing and re-opening of the valve, the pen movement betwean A and 0 woul be a straight line. Added to this there is a further deley phich results fren the processing time of the cemputer and the $D / A-2{ }^{\prime} \mathrm{g}$ cenversion time. Since storing the contents of an accumulator in extended addressing mode takes five machine cyales and one machine cycle takes $2 \mu \mathrm{sec}$ of processing time, losing data on a D / A cenverter takes $10 \mu s e c$. $!$ The cenversion time of the D / A for full scale reading is 1 millisecond.

Pigure 5.1 Overall syetem block diagran

Figure 5.2 The top view of the conneation bex.

Figure 5.3 Pushbutten cennections.

F4gure 5.4 Zener diode circuit

Figure 5.5 The operating input connections of the relays $R 2$ and $R 3$.

OPAmp-1. Gain $=2.26$

$$
\text { AP Amp -. } 3 \text {. Gain }=1
$$

Figure 5.6 Existing OP Amp connections in the control panel.

Figure 5.7 Special purpose leads

Figure 5.8 Valve testing system diagram

$\rightarrow n+n+n$

(2)
Figure 5.9 Dimentiens an 44 pletter paper used for

(1) PRESS SEMECT PUSHBUTTON
(2) PRMSS TEEST PUSHBUTYOR
(3) PRESS TRIP POSHBUTTON
(4) RTHLEASE TIEST POSHBUTHONT
(5) PRTASS TAST POSHBUTTOAT
(6) Rimease trip posbibition
(7) reherase test poshbuttors
(8) RRIFASE SHLECT PUSHBUTTOAS

Pigure 5.10 Teletype ocmmands of the micreprecesser -based m-lead valve testing ebtained at the and of the test procedure.

Hgare 5.11 The plotter recerd of the micropreoesser-based en Iead Valve
testing aystem obtsined at the end of the teat procedure.

CMAPIER VI

MICROCOMFUTER DMPLEMRNTATION OF THE BXISTING TESTING SYSTRM

This abaptor deale aith the difforencos botwoon the oxisting analog on-load valve sequanoing and its miorooomputer implementation. It also disousses the different ways of how the implamentation oan be adapted on the aotual aystem. Pigure 5.8 akoula be roo ferred ${ }^{\text {to }}$ Qloag ${ }^{\text {with }}$ this ohapter.

Some disoussions about the system software have been found to be mecessary and they are placed in this ohapter. Simoe the om-load valve testing of one valve has beon aohieved in the projeot, a basic idea of how the mioroprocessor-based testing syatam may be utilized to test a numbor of velves of this type is also givan.

6.1 Differemes of Two on-Load Valve Sequeadiag

When the Seleot is on, the actual aystem identifies tie valve by emoirouliag the valve number on the loft-hand side of the plotter paper, but the model drawe a lime under the number on the right-hamd side of the paper.

Sinoe the pushbuttons used in this project glow when pressed there is mo meed of any other signal indioating "OnLosd Test" in progress.

The prooedure of onecking the majority-voting oircuit

In the Serve-Value Amplifier during the remp operatica may be achioved with additional hardware adroite and extra software Iar this puxpese. The coftware then may be placed with the delay leops in the auberoutines NGOING and PGONNG of our preeram. In fact the execution of the software for thif purpose is time-limited. This limit is 117.617 msec for our pro gram where the ramp takee 30 sec to make the valve meve frem the fully open te the fully closed position. See ClyAPIFR V, 5.2.2.

If the relay package R1 is disomneoted frem the Trip puabbutten and operated by a computer oeatrolled separate aligal, like the relays $R 2$ and $R 3$, there will be no need te use axtra gwitches as interlocks, te prevent the aooidental valve movement resulting from imadvertently depreselig the Trip buttea. When the Trip is en, however, the oomputer atrolled relay package R1 pill receive a aignal ever an axtra output ehamnel frem the mioreocnputer, and consequently the Pewer Piston will become tripped. This trippiag positien of the relay will be kept uatil the Trip is awitched off at the end of the test. When the Trip is cheoked and found to be off by the omputer, the program will re-arrange the position of the relays R11 and R12 in the R1 package.

The Gevecrer and the Teat aignals in our case have bean assumed to be produced by the cemputer and fed in the same inpat. In fact, on the actual system, the test sigaal which is a ramp signal is added to the Gevemer sigasl and sub-
tracted frem the Gevemar signal during the valve test. A methed by which this sort of eperation can be simulated is now discussed.

6.2 The Preoedure of The Teat Simal (Ramp)
 Addition Te Geverner Simal

Cin the actual system, the ramp sigal is added to and aubetracted frem the operating Gevernor aigal. In this project, hewever, it was assumed that even the Gevernor aignal was being ebtatred fren the ecmputer. Beaase of this assumptica, after the valve selectien had hean ocmpleted a constant voltage oreated threugh the seftware was fed inte the Gevernor Medel, and it was gereed te alose the valve when the Test button was en and it was inereased back te its operating valee when the Test buttan aas eff. This can be arranged se that the ramp signal may anly be added to a cemstant signal suppesed to be the Gevernor signal and then fed to the Goveman. Then the hardwere and gaftware sheuld be rearranged. The changes in the hardware cesfiguration in Figure 5.8 are shem in Figure 6.1. Here, the summing amplifier 01, the airgle inverter 02 and the petentiemeter 12FX are on the Analog oamputer. The re-arranged hardware alse includes a deuble-pole relay R4. The purpose of the pet 12PX is the calibratien. When the Select puahbutten is en, the cemputer changes the poaition of the relays $R 2, R 3$ and $R 4$ in Flgure 6.1. These pesitieas' change ensures the fact that during the valve identification the Gerernor is still ma-load, and the X and Y meremente of the pletter cemexated frem the micrecemputer are
not effecting the operating Gereanor signal. After the ideatification procedure the relays mentiened above ro-gain their positimas in Plequre 6.1. At this stage of the software already written there is no need of a oenstant input from the micrecemputer te the $O P$ Amp-1 in FHgure 5.8.to make the valve on-l oad since there is a positive input callad "INPUT" to the summing amplifier 01 in Floure 6.1. To provide the alose Governar signal the amplitude of the computer generated ramp signal at the output of the aspiffier $2 A 3$ should be increased te be equal to the censtant input aigral. This can be done oither by readiag the constant input in and letting the miccocomputer kaew how high the ramp amplitude is going te be or by reading the error and checking the error againgt the ramp signal during the t ime the ramp is beine generated. When the error becomes zero the ramp amplitide mast net be further increased. Alternatively, the restoratien of the oporating Gevernor signal may be achieved by doemearing the generated ramp te zero.

In the system software, the positive and negative ramp generating subroutines, PGOING and NGOING respectively, would be exchanged.

6.3 Discussion Based On The System Softmare

In the supervisory part of the software the siatermupt Request (IRQ) flage of the PIAs Control Registers were aleared before the contrel medes were set, and the Data Direction Registers of the output ports were cleared before the identift atica of these perts as the outputs. For this reasen caly
twenty-aix memery locatimes were needed. In fact, pressing the RESEI button ca the computer before running a program sets all PIA registers to zero so that these memory locations might be saved. But the flag alearing in this section of the flymmare guarantees the fact that no mulfunction will oocur because of the software even if a flacg had been set for any reason before the program was ruas.

Far the teletype (TYY) commands eaoh word to be printed has been written in subroutine-form and an adequate set of these subroutines are called each time the operator's at tention is to be drawn. This way of printing the commands calls for less than four hundred memery locations (356). However, if each piece of the program of the commands to be printed on the THY was placed at the beginning of each system test step, 1140 memory locations would be needed. By preparing the software pection for this purpose in subroutine-forms more than 700 memory locations have been saved.

6.4 Adaptation of the Microprocesson-Besed Single Valve Testing System To Multi-Valve Testing Systom.

Only ane Governor System controlling the position of one valve has bean simulated and valve testing of ane unit has bean outlined in this project.

To adapt the valve testing system in Figure 5.8 to a multivelve testing system some hardware and software reconfigurations must be done. In the single valve testing system it was assumed that the operating Governor signal was processed by the computer, and to alose the valve this signal was zeroed and then increased
to open the valve. If all the valves on a stean turbine syatem ane receivine their operating eignals from the computer output channels, then alooing or oponing each valve requires the sigmal an each dedicated analog output to be zeroed or increased by means of the system software. If one seleot pushbuttion is dodicated to each valve, all the select signals may be input to the cemputer. The softwere prepared for this purpoge checks eech select input in turn and when one of the select buttons ie on then the program loads the necessery deta in the dedicated mememery locations to be referred during valve identifiostion. The computer may also switch an $X-Y$ plotter's X input from cne valve position output to a computer output channel and then provide both X and Y movement. After a valve identification the scmputer switches the X and Y inputs of the plotter to the peaition output and the Governor input channel of the valve to be tested by arranging a set of relays. Since the computer will knew whia valve is te be tested after cheaking the select imputs, it should not be difflcult for the computer te arrange the relay positions so that the plotter is switched to the valve under test. In the software, after establishing the $I / 0$ ports and the TTY has printed the "PRYBSS SELEIT"command, the computer atarts cheoking all select inputs in a loop. When one pariticolar select button is m, then the program may jump to a subroutine and laad the data dedicated to that particular valve in the dedicated memory lecations to be referred to during the valve identification. In our program, the aubroutine VALNOM stands for this purpose. If there are, say, twenty valves and select input channels, then there should be twenty subrouti-
nes each of which laads different: maximum X, minjmum X and Y values in the dedicated memory locations. When the Test is on, the position output of the desired valve may be switahed over ;e me input channel of the canputer. So there is a need of aly cae input channel to read the desired valve position. One test input will be enough to check if the test buttom has been pressec.: Then the valve clemure or epenning is desired, the seftware.may call a subroutine to identify which ocmputer output channel sheuld receive the alesure or openning signal. The cemmon negative or positive going ramp processing subratine may be used fer any valve.

Figure 6.1 Hardware configuration for the simulation of the ramp signal addition procedure.

1. Aenstad, O, J., Hand Lokay, It. E., "Fast Valve Control Can Improve Turbine-Generator Response to Transient Disturbances", Westinghouse Engineer, July 1970, pp 114-119.
a. Bur, P, il., "Design Considerations for Achieving Reliable Contral \#ithin Shared Microprocessor-Based Digital Controllexs", Advances in Instrumentation, I5A-76 dinual Conference, Vol.31, iart 4, 1976.
 verter", IDEii Transactions on Industrial inec. and Control Instr., Vol. IeCI-24, No. 3, pp. 226-230, August 1977.
2. Iggenberger, i. A., "An Electronydraulic Control System For Reheat iurbines", Proceedings of the American Power Conference, 1965, Vol.27, pp. 351-361.
3. Legers, C.if., "Direct Digital Control Cones of Afge", lestinghouse Enginear, July 1969, pp. 90-1J3.
4. infinger, Jo, and Flannigan, J., "Fly by "ire Technol ogy", aIAA paper 72-882 AIAA Guidance + Control Conf.
5. Fadum, $0 . \mathrm{K}_{\mathrm{E}}$, "A Computer-Coordinated Contrill System For Batch Digesters"., Advances in Instrumentation ISA-76 Annual Conference, 1976, Vol.31, Part 4, Paper No. 527.
B. Fitzgerald, A. E., Kingsley, C., and Kuso, A., "Wectric Machinery", McGraw-Ilill, To oky o.
6. Ham, P, A. L., "Control Requirenents for Large 'Turbines", Inst.M.C. Symposium: 'Iurbine and Compressor Control, April 1972, pp. 28-35.
7. Higuchi, T., Saito, T., and Kanomata, A., "A Hicroprocessor Based Digital Filter Frogramaled in a Block Diagram Language", ISEP Transactions on Industrial mectronics and Control Instrumentation, Vol.I:iCI-24, No.3,Aug. 1977, yp. 231-234
8. Kimbark, E. ï., "Pewer System Stability", Vol.I andlIII, pub. by John ililey and Scans 1948.
9. Lewis, J. $\%$, and Davis, J. ت., " "Development of a MicroprocessorBased Clinical Analyzer Controllor", Advances in Instrumentation ISA-16 Annual Conference, 1776, Vol.31, Part 4, Paper No. 510.
10. Lin, $\mathrm{A}_{\mathrm{i}} \mathrm{K}_{\mathrm{A}}$, and Koepsel, il.it., "A illicroprocessor Speed Cantrol System", IEELE Transactions on Industrial Blectranics and Cantral Instrumentation, Vol.IECI-24,No.3, Aug. 1977. pp. 241-247.
11. i.6800 ili croprocesso: Application Mannual, i: ©torola Inc., 1975.
12. il6800 ilicr op ocess or Frograming hanual, Hot oraza Inc., 1975.
13. AcKay, C.i., and Cross, C., "A Microprocessor Based Fhow :ionitoring System", Advances in Instrunentation TSA-76 innual Conference, 1976,Vol.31, Paper No.821.
14. Noyes, ت.C., and Birnbaun, M., "Electro-Hydraulic Control Taproves Cpuraticn and Availability of Large Steam 'Turbịnes", :\%estinchouse Fherineer, Warch 196í, pp.4y-'j4.
15. Preiffer,J.C., "Process Safety and Reliability Through Process Contral Canputer/lrogramable Controller Interconnection", Advances in Instrumentation ISA-70 Annual Conference, Vol.31, Fart 4, 1976.
16. Pracht, C. P., "A Distributed !itcroprocessor-B̈ased Cantrol Systen Progranuable by the Process lihginear", Aövences in Instrumentation ISA-7C Amual Conference, 1976, Vol.31, Paper Ho. 51\%.
17. Reed, ifo, and Mergler, $\mathrm{H}_{0} \mathrm{H}_{0}$, "A hicroprocessor-liased Control Sybtem", IEFS Transactions on Industrial :ipec. and Control Intrucientalion, Vol.IficI-2A, No.3, Aurgust 197\%, pp.253-2\%.
18. Sauer, il.J., and Frunk, Yi. P., "Position Control of nachine riools Usjne A ilicrocomputer", Advances ir Instrumentaticas ISA-76 Anuual Conference, Vol. 31, Paper i'o. 5.f4, 19?6.
19. Schlutz, R_{6}, "h iiticorocesnor-ansed Solar Cell. Test. Systen", ILiz: Transactims on Instrumentation and lieasurement, Vol. IM-26, No. 4., December 1977.
20. Smith, Gow., and :lood, $\mathrm{K}_{0} \mathrm{C}_{0}$, "Principles of Analeg Computation". Pub. by licGraw-Hill, 19.59.
21. SirTPC 6800 Computer System Docuriontation liotebook, 1.Aot orola' Inc.
22. Ugetani, A., "flultil nop Proces: Cantroller Based on fificroprocessor", Advances in Instrumentalim ISA-76 Armual Conference, Vol. 31, Parl: 4, 1976.
23. Zim:ner, $\mathrm{H}_{.}$, "Chiller Control Using On-Line AJlocation For Znersy Canservation", Advences in Instrumertation ISA-76 Annual. Conference, Vol.31, Part 4, 1976, Paper No. 522.

APPEMDDX A

BLOCK CALCULATIONS FOR ANALOG COMPUTER MODELLLNG

The block celculations of the reduced system have been done step by step as the following $[23]$ ($E 1$ is blook input signal and EO is blook output sigaal).

```
BLOCK I - Semvo-Valve
    G2
    1+T5S
    Eo EX = = =
    EO + T5SEO = G2Ei
    T5SEO = G2EI - Bo
    T5EO = = (GWEI - EO) dt
    For G2 = 2.666 and T5 = 0.1,
    it cam be writter 0.1Eo = \int(0.2666 < 10 x Ei - EO)dt
```

 Figure 7. (a).

BLOCK II - Primary Actuator

We may also write this equation in the following form;
T6SEO $=\frac{1}{S} \times G 3 \times E i-\frac{S R O}{S}=\frac{1}{S}(G 3 \times E i-S E O)$
In ${ }^{\text {the }}$ time-domais: fthis becomes
$T 6 \frac{d E O}{d t}=\int\left(G 3 \times \mathrm{El}_{1}-\frac{\mathrm{dE} 0}{d t}\right) d t$

For $63=1.25$ and $T 6=0.1$, the equation may be written as
$0.1 \frac{d E O}{d t}=\int\left(0.125 \times 10 \times E i-\frac{d E O}{d t}\right) d t$

Figure 7.(b).

BLOCK VI - Power Piston

$$
\begin{aligned}
& \frac{66}{\left(1+T^{\prime} 8 S\right) S} \\
& \frac{E 0}{B i}=\frac{G 6}{\left(1+T^{\prime} 8 S\right) S} \\
& T 8 \frac{d E O}{d t}=\int\left(G 6 E i-\frac{d E o}{d t}\right) d t
\end{aligned}
$$

For $66=0.0755$ and $1 \dot{\mathrm{~B}}=0.01$, it becomes

$$
0.01 \frac{d E 0}{d t}=\int\left(0.0755 E 1-\frac{d E 0}{d t}\right) d t
$$

At the point A in the diagram , we have a signal
corresponding to
10^{-1} dEon . See Figure 7. (o) overleaf.
$\mathrm{d} t$

(a)

(b)

(c)

Pigure 7. Mathematical model of
(a) Sorro-Valve
(b) Primary Actuator
(c) Power Piston

APPENDIX B

FIMARARE DFOCHIPRCON AND PROGRMM LISTING

It was possible to punch the progran onto computer cards and store the program in a memory file of the Newcastle Ibif computer. Then this host computer could be instructed to compile the assembler coded progran into machine code. An object tape of the machine code could then be obtained by using the departaental minicomputer Varian V73 because the Varian can easily be linked to the Nevcastle conputer.

But, our program was loaded via a keyboard and then the object tape of the program was obtained fron the M6800. Since the software was developed step-by-step, entiering the program parts via the keyboard was less time consuming than the procedure of obtaining the machine code by using the In computer and $V 73$ microcomputer.

The software written for the project is given in the following paees. The progran conmands with their addresses in the successive memory locations are in a table form. The subroutines are arranced in two croups. GROUP-I includes the subroutines used to produce the output signals, read the input signal and store the data in the given menory locations. But the subroutines in GROUP-II are utilized to enable the TrY to print the coiulands to the operator.[15].
Source Statements
0
8
8
8
Object
$800 A$
8230
$800 B$
$800 A$

APPLY＂PEN on＂COMLiAND
IDENT：CFY VALVE NURBER

	0		d		出			
			\％号	$\begin{array}{r} \text { Oi } \\ \text { no } \end{array}$		$\bar{\delta}$		瓦 8
合		50	¢80\％	¢ ¢ ¢			边	N into
			子o	둥	○○○○			

| $067 玉$ | 378009 |
| ---: | :--- | :--- |
| 0681 | 01 |
| \cdot | \cdot |
| 0685 | 01 |

$\begin{aligned} & 0736 \\ & 0739 \end{aligned}$	B6 800D	LP6	LDA	$800 D$LP6	IS TRIP ON?
	2A F'B		BPL		
073B	01		NOP		21 "Ne Operation!' instructions
-	-		-		
$074{ }^{\circ}$	01		Nop		
* (4)RELEASE TEST PUSHBUMTON					
0750	8634		IDAA	\$1834	PRINT: 4)REWFASE TEST
0752	BD E1D1		JSR	OUTEE	PUSEBUTMTON
0755	3D 0402		JSR	REHEAS	(
0758	3D 03C以		JSR	TEST	
0758	BD 035A		JSR	PJSBOT	
075E	01		NOP		
075F	01		NOP		
0760	01		NOP		
0761	B6 8005		LDAA	800E	DUMY CLEAR
0764	8604		IDAA	\$804	
0766	B7 800F		STAA	800F	STI M YODE CCITROL
0769	B6 800F	LP7	IDAA	800F	
076C	49		ROLA		
076D	49		ROLA		
076E	24 F9		BCC	LP7	IS TEST OFF?
0770	01		NOP		36 "No Cperation" instructions
-	-		-		
0793	01		NOP		
		*			
0794	BD $08 A 6$		JSR	PGOING	CREATE PCSITIVE GOING RAMP
0797	01		NOP		28 "No Operation" instructions
-	-		-		
0782			-		
07B2	01		NOP		
* (5) PRESS TEST PUSHBUTTON					

14 "Ne Operation" instructions

SEI LODE CGITROL
IS TES' OFF?
14 "Ne Operation" instructions
CREATE PCSITIVE GOIVG RAMP
23 "No Operation" instructions 23
23 (1antructions路

$\overline{0} . .5$

DOEATY CL.EAR

DUSEIT C.EAR
SEI HOLOE COLITRCL
IS SADECT OFF?
7 "No Operation" instructions
RiLiEASE Phi y "Ho Operation" instructions
NEGATIVE GOING ON $\mathrm{D} / \mathrm{A}-1$

5 "iilo Operation" instructions

VALNUM IDAA \$E3E

＊！

SII305850FB6800n363037800134F3780うA01010187 S11305950101010101010101010101010101010141 SII305A60136800836800C8632B7800937800D4F35 SII305B6378008B7800C73800873800C860D3DE184 SII305C6DI860A3DE1DI862 צBDEIDI8631BDE1DIOE S11305D6BDO 314BDO 3E3BDO 35A36800\＆L16800C867n SII305ES35B78001：37800913680092AF 301010101 E 7 511305 F 601010101010101010101010101010101 El 511306000101010101010101010101010101010100 S113061601010101BDOEE： 5 FGOOOOF78008CEDFFFOD S113062「J926FD1360001B7800CCEDFFF092SFDEG3C S11306353E37800DF780J\＆CEOFFF0926FDSCF1005A S11306450223F10101CEJAFF0925FDE53637800D8B S113055rFF780DRCEOOFFO926FD5AC10025F2F500EF SII 30655010101F7800CCEOOFF092GFD5ACIO026C0 S1130676F201010101010101878009010101010132 S113068685C0370F00B7800CCEFFFF0925FDCEFF4C S1130696FF0926FDE632BDE1DIBD03143D03CESDDF SI1305A5035AB6800E861637EOOFB5EOOF494924C2 $51130636 F 9010101010101010101010113008 C 501 \mathrm{Al}$ $511306 C 60101010101010101010101010101010110$ S11306D50101010101010101010101010101010100 S11305E501010101013101010101010101010101F0 S11306F6010101010101010101853EB7EOODB60F1A 51．1307050030088F0101010101010101010101017F S1130710．910101010101015633：3DE1U13D0314BDOF
 S1130735：35，EOODPAFBO1010101010101010101013C S11307400101010101010101010185343DE1D1BDAF S1130756040213DO 3CEBDO35NO 1010136800 E860410 S1130756：37800F36800F494924F90101010101013F S1130776010101010101010101010101010101015F S113078651010101010101010101010101013D088C S1130796A60101010101010101010101010101019A S11307A6010101010101010101010101018535BDBA S11307BSEIDIBDO314BDO 3CEBDO 35AO1B5800EES 36 S11307CS16B7800FB6800F494924F9010117BDO8F1 S11307D6EF01010101010101010101010101010171 S11307E60101010101018636BDE1D13D0492BDO 34：3 S11307F63D3D035AB5800C853CB7800DB5800D2AE3 ？ 1130806 FBO10101010186373DE1D13D04023D0 32F「1130816CEBDO 35AB6800E8604B7800F35800F4944 S11308254924F9010101010101010101010101014F S1130E3501B605035FBD08A601010101010101011D 511308450101010101010101010101010101018509 S1130856383DEIDIBDO 402BDO 3E3EDO35AO1010154 $51130865010101013680088634378009 \mathrm{ESEOOORA59}$ S1130876F3010101010101018536．37800101010169 Sll308850101010101017EO5C237世OOCCE1CB60927 S113089526FDO1010101014A25EF39010101010189 SII308ASF7800CCEIC360926FDO101015CF10F0090 S113083523EE390101010101010101010101018652 S11308C534B7800B01863CE7800BB680032AFBB667 $511308 D 5800 A B 70503390101010101010101010182$ S11308ESE63EP7800986F5370000859CB700018668 SIOEOEF6FERT00023909

엉

荀
岕

Memory Object Code Source Statements
Location
 PRINT : TRIP
TRIP LDAA $\$ £ 5$

8 "No Operation" instructions
GARRTAGE REIURN

PRTNT
PUSBUT

45 ＂No Operation＂instructions

万．\quad.			め自8呙
猋•管	 	 	

皆

1.1. "

 511303 A10101010101010101010101010101010135 5113031315101010101010101010101010191010195 511303040101010101010101010185543 E 5010510

$\begin{aligned} & \text { Me } \\ & \text { Lod } \end{aligned}$	ory	The Purposes of the Program Instructions
Fram	To	
0586	-	Inhibiting the microprocessor from servicing an interrupt from a peripheral device. This instruction disables the iiIKBUG interrupt routine and enables the use of the interrupt request flags of the PIA control registers as test bits without causing the program to jump into a service interrupt routine.
0587	0501	Supervising the whole program in general terms. But the instructions in the locations 05AD to 05 B4 of this section identify $C A 2$ and CA4 as outputs, and make CA2 and CA4 staying at low.
05C2	05DE	Enabling the teletype to print: (1) PRISS SELIECT PUSHBUTTOON
05E5	05F1	Chedking if the SELECT is on or not.
061A	0634	Supplying the defined values to the X input and the Y input of the plotter. These values are hexa-decimal F 5 for the X axis and 9C for the Y axis. There are two delay loops, one of which is after the X input is given (locations 0623 to 0628) and the other is after the Y input is given (locations 062F to 0634). These delay loops are necessary to obtain the sinooth jumpine of the pen of the plotter to the valve number on the plotter -119-

		paper. The Y axis value, the minimum and the maximum X axis values are stored in the monory locations 0001,0000 and 0002 respectively via the VAINUM subroutine. As the SELECT command reaches the liPU loads these values in their locations and then the starting values of the both axises are placed on the corresponding plotter axises.
0635	0639	Applying the PWI ON conmand to the plotter . This is achieved by setting the PIA's controi line CA4 to the logic 1 that corresponds to 5 volts.
063A	0648	Drawing an identifying line under the valve number. Since the number has already been reached by the plotter pen and the PEN ON command has been applied, increasing the value on the X axis to a constant value makes the pen draw a line parallel to the X axis of the plotter. For this particular program, after the PEN ON has been applied, the computer output to the plotter's X input increases from the hexadecimal F 5 to FF .
064B	0650	The delay loop. This delay loop ensures the smooth return to the set-point on the plotter.
0651	0655	Releasing the pen. The pen is released when CA4 is de-energised.

0656	0676	Via these instructions the pen moves to its set point. This is done by decreasing the values on the X and Y axis to zero in sequence. The delay loops ideritified by L4 and L5 are used to prevent the pen from sudden jumps.
067 E	0680	Short-circuiting the relay R2 and switching the point B of the relay $R 3$ to the point 2 by energising the PIA control line CA2.
0686	068D	Storing an input value to the mathematical model in the memory location OFOO and also giving the same value to the model itself. The value in the program is hexadecimal 00.
068 E	0699	Two delay loops. Since the model itself takes 1.75 gec to response to the $-1+0$ input, these two loops are necessary to give enough time to the model to response adequately. Here two delay loops takes 2.1 seconds of execution time. The reason why 1.75 sec was not used vias the fact that the plotter response was taking longer than that of the model.
069A	06A7	Enabling the 'TTY to print: 2) PRESS TEST PUSHBUTITON

0618	OGB6	Chucking if the Tris'l is an or not.
06C2	$06 C 4$	Reading the valve position via the VALPOS subroutine.
06FF	0703	Application of the PEN ON conmand by setting the PIA control. line CA4 to the logic 1.
0704	0709	Decreasing the model input to zero via the subroutine NGOIMG.
071D	072A	Enabling the 'PrY to print: 3) PRIISS TRIP PUSIIBUINON
072E	073A	Checking if the 'PRIP is on.
0750	075D	Enabling the 'rTY to print: 4) REIEASE TEST PUSIBUIיION
0761	0793	Checkingr if the 'res'r button has been releused.
0794	0796	Enabling the computer to give a positive going signal to the model via the subroutine PGOING.

07B3	07 CO	Bnabling the 'II'Y to print: 5) PHESS THS'I PUSILBU'PION
$07 C 2$	O7D0	Checking if the 'IEST button has been pressed down.
$07 \mathrm{D3}$	0706	Reducing the model input to zero through the subroutine NGOING.
07EC	0779	Enabling the $1 P \Gamma Y$ to print: G) RWIMSE MRETP IOSIDUMCON
C7FA	0806	Checking if the 'I'RIP button has been released
080c	0819	Enabling the ITY to print: 7) RESEASE RUST PUSHBUTTON
001 A	0828	'l'esting if the 'MLS'. button has been relcased.
C83A	083D	Supplying back the operating input signal of the valve control device before the test sequencins had started.
0855	0862	Enabling the i"ry to print: 8) RELBASE SELUCE MUBIDBU! 1 PON

080 | 0876 | $\begin{array}{l}\text { Testing if the SFLECI button has been released. } \\ 087 \mathrm{E}\end{array}$ |
| :--- | :--- |
| 088 C | 0882 |
| Releasing the PLIN ON command. | |

GROUP I

$\begin{array}{r} \text { He } \\ \text { Loca } \end{array}$	ory ions		
From	To	Name	Purposes
1088F	OBAO	I/GOING	Storing the contents of the accumulator A at the output address 8000 , decreasing A by one and continuing the storing until the value in A becones zero. This procedure is done so that 3 seconds of processing time are spent until the contents of A drops to zero from the hexadecimal Fir.
OBAG	03189	pGoing	Storing the contents of the accunulator 13 at the output iddress 800 C , incrementing B by one and comparing the new value with the contents of the iamory loc:tion OFOO. Storing continues until the value in B beccines equal to the value compared with. In this subroutine, increasing the contents of B fron 00 to hexadecimal FF takes 3 sec of execution time.
O8C5	CadB	VALPOS	Reading the model output at the input port address 800 A and storing it in the memory location 0503.

08E6	08FA	VALNU:M	Setting CA2 to high resulting in the fact that the relay R2 becomes opencircuit and the points 13 and 1 of the relay 13 becomes short-circuit. Storing the hexadecimal data F5,9C and FE in the memory locitions 0000 , 0001 and 0002 respectively.

GROUP II

	\%ns		Subroutines
From	To	ivane	Purposes
0314	0330	PRESS	Fnabling the 'TIY to print a closebracket and leave a space. Then the 'ITY prints the letters P, R, D, S and S. Whese printed letters are followed by a sccond space.
033D	0351	'TRIP	Enabling the ITYY to print $\mathrm{P}, \mathrm{R}, \mathrm{I}$ and P.
035A	03A0	PUSBUT	Leaving a space and printing the letters P, U, S, \therefore : $, \mathrm{B}, \mathrm{U}, \mathrm{P}, \mathrm{I}, \mathrm{O}$ and N. This oporation is followed by a Carriage Return and a Linc Foed comand. When the 'infy urints an open-brachot character at the beginnine of the next line.
03 CE	03E2	'TEST	The 'IMY prints the letters T, E. S and T .
03E3	0401	Sintect	The letters $\mathrm{S}, \mathrm{L} . \mathrm{L}, \mathrm{B}, \mathrm{C}$ and T are printed.
0402	0435	RELUAS	Printing a close-parenthesis cheracter, leaving a slace and then printing the letters l?, $\dot{A}, \mathrm{~L}, \mathrm{R}, \mathrm{A}, \mathrm{S}$ and $\mathrm{L} . \mathrm{A}$

$\| \quad\left\{\begin{array}{l}\text { second spize is obtizined after those } \\ \text { letters hive been printed. }\end{array}\right.$

APPMTDIX C

MICROPRDCIBSSOR-BASGD VALYE TASTING SYSTTEM

If it is desired te underline the number 14 on the pletter paper, the 'Lad Accumulater A' inatruotions dre te be leadea vith 245, 254 and 156 decimal numbers in the memory lecations 08MB, 0815, and 08FO respectively. Then the apecified setpoint is arranged. When the program runs, the pletter drems the line under 14 if the command SMRCT is on.

Cheoking back can be dene as the following:
Firstly, because of the speaification of the oenditiensl Jump in the memery leostion 0647, during underliningthe velve number 14 the maximum number an the Output Register that is oennected to the oenverter $D / A-1$ en the X input path of the plotter is decimal 255 but not 254. This full goale reading gives 3.8 volts. The deaimal 245 and 156 oorrespand te 3.65 V 2.32V respectively. Since the gain of the amplifier en the X-axie is 3.35, the signals 3.65 V and 3.8 V should be multiplied by 3.35. The gain of the amplifier on the Y-axis is 2.26. Then the signal 2.32 V should be multiplied by 2.26 .

$$
\begin{aligned}
& 3.65 \mathrm{~V} \times 3.35=12.23 \mathrm{~V} \\
& 3.8 \mathrm{~V} \times 3.35=12.73 \mathrm{~V} \\
& 2.32 \mathrm{~V} \times 2.26=5.24 \mathrm{~V}
\end{aligned}
$$

Since the scaling on both axes is the same $500 \mathrm{mV} / \mathrm{cm}$, the amplifiers' oxtputs shoule be divided by $0.5 \mathrm{~V} / \mathrm{om}$. Then the minimum
value en ithe X -axis is

$$
\frac{12.23 \mathrm{~V}}{\substack{0.5 \mathrm{~V} / \mathrm{cm} \\-129 \mathrm{~m}}}=24.46 \mathrm{~cm}
$$

the maximum value en the X-axis is $\frac{12.73 \mathrm{~V}}{0.5 \mathrm{~V} / \mathrm{om}}=25.46 \mathrm{am}$
the ralue an the Y-axis is $\frac{5.24 \mathrm{~V}}{0.5 \mathrm{~V} / \mathrm{cm}}=10.5 \mathrm{~cm}$
These are the dimances frem the setpoint of the pletter. As it will we seen frem Figure 5月, these are the correct distances for the nuwher 14.

[^0]: 1.5 Fast Turbine Valve Control

 The technique of fast turbine valve control has been introduced elsewhere by some authors[1]aThe principle idea of this technique is to enhance generating-unit stability for

