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.1\BSTRACT 

~'his thesis describes the design, construction and calibration of 

a hybrid hydraulic/electrical type of earth pressure cell and the 

subsequent use of these cells for the measurement of radial ground 

pressures bearing on concrete segmental twmel linings at two locations 

in mixed clayey ground in north-east England. Also desc1·ibed is an 

accompanyine programme of lining distortion measurement and a 

prelir.ninal'Y discussion is directed to11rards theoretical aspects of 

ground/lining interaction mechanics. The tunnels studied \·Tere 3.20 m 

diameter and at depths of 11.77 rn and 12.39 m to the crown. Lining/ 

soil radial interaction pressures were found to be almost uniformly 

dir:•tributecl about the tunnel, these recorded pressures being almost one

half the maximum possible overburden pressure calculated on a ~ z basis. 

:F'urthermore, these ultimate pressures \vere achieved ai't~r a period of 

only 7 to 8 day5 follO\·Jing lining erection and grouting. Ultimate 

measured lini.!".g ring distortions wet·e also realizeci after this 7 day 

period. ~1is relatively rapid stabilisation of ground pressure contrasts 

with a much more protracted, on-going distortion reported by other workers 

in other materials, but is consistent \vit~ contractual experience which 

suggests that tu~el secondary linings could be safelJ erected, with little 

risk cf brittle fracture, much earlier following primary lining construction 

than has hitherto been considered prudent. 
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In this thesis quantities are expressed in both Imperial 

and metric units as follo\·rs: 

I . , . t . mper~~ .... unl.....§. 

in. 

ft 

lbf/in
2 

Metric. U!l.its 

Ra.'ll. 

em. 

m 

2 kgf/cm 

inch u!' inches 

foot 01· feet 

poQ~ds force-per ~quarP. inch 

pounds force per square foot 

millimetre or millimetres 

centimetre O!"' centimetres 

metre or metres 

kilogra'lls for~e per squa.re cen timetr·e 

kilonevrto!l.s per square metre 
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ChAPrER 1 

INTRODUCTION 

1.1 General i..r1troduction. 

One of the most i.!nportant problems ~.'hich arises during tl':e design 

and construction. of tu..'11lel linings is the estimation of the groUJ:.d 

pressures acting on t.he lining after its construction and t.he tim.e afte!" 

which the lin::ing deformation is termi.;·wted. 

Many theories have been developed for the evalv.ation of s~c.n. 

pressures, but field measurements of ground-·lin:iJig i.!1t::.>r-n~tion nre.ssure 

and lining deformation are still one of the most reliable ~:ethcC..s o.::· 

obtah1ing specific design data. 

tht-J con tEtct pressut'es involves the use of pressure cells. 

kn.ow.1 that the accuracy and rel:i.abilj_ty of the r'leasured date. are d:..rect::i.y 

i.nfluenc-:;d hy many fRctors, among wh:.ch are the desi,~::: co.:>.ce:::;t ar.cl ("!ualitj·, 

laboratory calibration, field installation, and th.:- data l'eccrdlng 

techniqu.=.:. 

the co.nt::d of a specific case history of _pressure me.ssu.remen.t. 

The theories developed for the eval:.:.ation of S(•il-.=;t.ructure :i.nt€r-

action p.r·ess1.;re c.::n be classified into twa mai.?J. g:.--oups; tteories taking 

into consideration the effect of i;un.nel depth, a.nd theories dl.srega.rding 

the ~£:fer.;~; cf "tu.!!.nel depth. The first group is repr'=ser~"':.eci in Ap~end:i.x A 

by I:ii·=rbe:.:.n;e:-- theory and Terzaght theory. 'rhe second gr01.:p :;_::; represented 

ilL r\p:pendix :0 by Koi:1merol theor:i and Prot.od.yai.<.OrLOV t~eor;y. 

In the last f€r1: years, theoreticaJ. st.ucy of t;;c tlr.de.rgro;.<.nd. st-:-:.H:tu:ce-· 



finite element method 1r1hich represents the most sophisticated analytical 

technique presently available. The accuracy and the value of the 

results obtained "by applying such a method depend on how 1r1ell the 

adopted mathematical model represents the complexity of the problem in 

question. 

It is well known that the lining-soil re1ativa stiffness does affect 

the distribution of bending moment and thrust through the lining sect:i.cn. 

Accordi."1.gly, it must also infl~tence the amount of lining deformation and 

the ti.ro.e necessary for such deformation to cease. The tu.nnel lining can 

l?e classified, ac(,'Ording to its stiffness, into two types: a flexible 

lining and a rigid linL~g. The effect of lining .stiffness on i..he bendin5 

·moment and thru.st distributiml 1r1ill be discussed in more detail in Ch.>.pta1· 

5· 

Two field experiments in the locations shown in F'igure 1 were 

carried. out ::i...?J. order to investigate this general problem. Six l,)ressure 

cells were designed and const:-ucted. for each of two in 6itu experiments, 

a:i.:ned specifically at measuring radj_al contact pressures at different points 

behind the lining of a tu...'Ulel in mixed ground (stony clay, lamina. ted clay) 

on the n.orth bank of the River Tyne in north-east Engle.nd. 'I'h.e location 

is sho1rm in Figure 2. 

The tunnel ir.. question is 3.20 m (10 1 611 ) diameter, hand-driven \vlthoilt 

a shie-ld. 'lrrois r::ethod. of -..,roridng greatly facilitated installation of the 

gauges. Th<7 .i:'-;mct.ion of the tu .. n.nel, whi~h forms part of the Northtunhriau 

Wa.ter Authority's :1~"' JJJulti-rn:i.:J.Fm pound scheme for upda.ting the se\-tr~!'<l!)e 

facilit:i.E':f3 i!1 Greater 'Iyneside, is to convey se'tlage alone; the .r· -.LJ.na.L length 

of ·!;he }·iortL-l:.-9....'1..l.c i..nt<:!rceptor sevier to the treatment p:i.ant sediment sef.:tl::'-

rnent ta.:.1k.5 at Ho\·:don. 



Fi;~u.re 1 Sit .. ,, plan 
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'l'he pre-cast segmental tur •. nel .!.:ining consists of 61 em (2ft) wide 

rings, each comprising six segmen t.s and a key as sho\m in F.'igures 3 and 

4. The aim wae to install the pressure cells at ~he time of the lining 

erection and tc recover the sensor elements of each of the cells for 

re-use when the secondary brick lird.ng for the t urn1el \<las built se'J"eral 

months later. 'I'hia recover-y opel·ation is a fundamental feature of the 

lo\ot-cost c:ell ciesign to be described subsequently. 

Dudng the design of a p!·e-cast R.C. J.ining, man~r facto!'s should he 

taken into consideration. Among these factors is the requirement that 

the lining should te designed to \or:i. i;hsta:nd the expected outer pressure 

taking into consideration a reasonable factor of safety. T.here mnst also 

be an Gconomy of pr·oduction of the pre-cast segm8nts, enci. th.e segments 

should be strong enough to withstand i;he rough handling receivad d'.lring 

the erection of the lining ring. Before the start of this research, it 

was previously !:a:iown that the R.C. lin:i.ng used :i_n this tutmel \·las quite 

strong er.ough tc re.si.st the e:x-pectcd outer pressilre~ but the poii1."!;,o:; i;.ha.t 

this present research cov~rs relate to "th£ d:..stri"bution of the lin:i.ng-soil 

interaction pressure, the order :;f lining deformation, and the t:i.r.1e ."l.eeded 

for this defon.rlation to terminate. 

Using these results, the period that should be left between :;he 

erection of the primary R.G. linL"'lg a.ncl the building of the secondary brick 

lining rJay be specified from a rather mor'=> 3cientific base. Current 

practice is to defer secondn:ry b:d.d:. li.""J.ing constructi·:m for :::eYc::--al months 

foll0\o1ing pr~..mary lining ere:ctio:n, but if it can b.:- sho1tm thr"lt. radial 

pressl.U'e transfer :::·rom soil to lird.l,€ ceases much err~lier - alHi !1-Jnce, by 

implication, that t.he cc,nceGUt'nrbal .:.~.:,formations terrd.na.te earlier - then 

s~condary lining com:;tructi·:)n :-:o'..!J-'~ ';lt~ll proceed l!'.~!ch soo::-.e:r at a more 

5· 
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convenient time w!len. the full complement of supporting equipment of 

the contractor is still on site. 

1.2 General types of pressure cells. 

Pressure cells may be classified into t\·IO general types: a) diaphragm-

type pressure cells a11d b) hydraulic-type pressure cells. 

a.) Diaphragm--type:: pr~~~: 

The theory of this type of pressure cell is based on measurement of 

the deflection of a sensing diaphragm, activated by the external pressure 

to be measured. Measurement sensing may be by one of the following tv1o 

systems: 

1. Straii'l gauge system: 

In this type of pressure cell, the deflection of the sensing diaphragm 

is weasured by us:Lng a number of strain gauges (generally not less than 

four) mounted on the diaphragm and connected in b:!'idge format. Figure 5 

shO\'IS the electrical strain gauge ec=trth pressure cP.ll designed by P€:atti.a 

and Sparr·o'" ( 195l~) with the strain gauges arranged in a configuration of 

two central tension gauges and two eclge compression gauges. 'l'he accuracy 

of this cell \'las LTJ.fluenced by cross-stresses; these are stresses acting 

in the plane of the sensing diaphragm. In order to avoid the errors 

occurrLTJ.g as a result of cross-sensitivity, Brown and Pell (196?) suggested 

a. new arrangement of the strain gauges, :=ta sho.,.m in Figure 6. The ... . 
s l·X"aJ..Ii 

gauges were arrru1ged in tr..~ee d.ire c t.~.ons 
0 

at 45 • With this ar!·angement, 

the errors due to cross-sensitivity ·.-:ere mini.rn:i.zed. 

Wong ( 1971~) proves thecre~·.t•:aJ.J.y and e:xper:i.me-.'1 tall:." that to 

the effect of non-uniform p:!'essur8 distribution, onl;r gauge•-> near to the 

edge of the ser.sing diaplu:ag!li ~;hculd. be used, \'tith a. r:ri.ni.Jl,i.ir!l of four at 

:i.nte::'vals of The use of a minimum of fol.a· er.ig·e €a''C:9S 1 equally-

8 
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spaced, tends to minimize any effed of localized E::;.:cess load dire·::tly 

over any one of them. 

Generally, with this tyre of pressure cell, it is recorrlM~nded that 

the area of the sensing diaphragm should be as large as pr::tcticable, 

since this facilitates the accurate positioning of the strai..l'l ga-...:.ges and 

reduces the percentage error. 

The cell gene:::-a.lly consists of a rigid supportjng plate, rigid 

supporting ring and a sensi11g diaphragm which is designed to respond to 

the ground pressure. The diaphragm has h-10 projecting arms bet\.;aen which 

the v::..brating \·Tire is stretched Cas sho~·m in :E'igure 8). The defle-::-tion of 

the diaphragm - resulting fro:::1 the applied press1.<.:re - causes Et ~:;_ight 

rotation to the arms, and this changes the stress in the vibrating iYi::.·e and 

thus its frequency. Finally, by using calibration charts, the average 

value of earth pressure acting on the cell diaphragm can be evalua~;ed.. 

Figure 7 repres.:mts a vibrating wire pressu.re ~ell desip1ed by 

Thomas and \.Jard ( '!969). This cell consists of h;c metal diaph~~a~;s i:::oltcd 

together to form the body of the ceJ.l. The vibrating wire i.s ::::t.reto:hed 

between two arms located at the points of maximum rotation (at a d.i::-~tance 

of t3/2 times the diaphragm diameter from the cent!·e). Using thj_s cell, 

h . 11 - . N/ 2 -c anges m pressure as sma as ) K m •11ere r.teasurea.. 

Figure 8 shows a vibrating wire pre~:::st!re cell d.esig;H:d by B~e!"TW.<'l, 

Kenn~r and Kjaernsli ( 1965), rn.'i:iJlly for the measurement o:f sheet p:!.:!.e.-soil 

interaction pressure. 

Figure 9 illustrates a vibrating ,,,ire pressure cell designed t-y 

Shepherd ( 1967). This cell cc~Jsists of t>·!O 't/eld~d .::;t .:r~l plates ::-:: 15 cw 
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diameter, the vibrating ~nre being stretched betwP.en the upper plate 

and a supporting frarrJe .fixed to the body of the cell. The deflection 

of the plate, as a result of e<ny external pressure, causes a cha.YJ.e;e of 

stress in the wire and so its frequency, and by using the calibraticn 

charts the acting pressure may be evaluated. 

b) Hydraulic-ty12,e pressure cell: 

The most common type of hydraulic earth pressure cell is the Gll:ltzl 

cell. As shm·m in "Figure 10 the cell has a thi...'1 sensing pressure pad 

of high area-to-thickness ratio in o~der to minimize the effects of stress 

distortion caused by the difference between the stress-strain character-

istics of the sensing pad and those of the soil. TI1e external press~re 

acting on the sensine pad is determ:L"lcd b;:/ meast:remer:t of t110 compensating 

hydraulic pressure. This caJJ. be achieved by the following procedure: 

i) the sensing pad and the pressure chamber are filled with oil by 

pumping it through the filling tube; 

ii) the pr:ilnar~:t p1·essure (zero gauge reading) inside the sen.sing 

pad and the pressure ci1ambe:r· is de:terwined by applying pressure 

through the pressm·e line. \oihen the pressure li...-·1e exceeds the 

pad pressure, the pressure diaphragm deflects and ~1.llows oil to 

flow in the return line. This means that the pressure in the 

line cannot exceed the cell pressure, a.TJ.d hence the cell pressure 

is equal to the- line pi·e~;sure a.t the e:1tra..."1ce to the bypass 

orifice. 

iii) After i....'lGtallation of the cell, the oil in the pad and the 

pressure cha;nbc:::- is p·:el::isu.r·:L~ed us a result of the su::.·.rounding 

earth pre:ssur·e. 'l-rhe earth pressure is equal to tho:: pressure line 

gauge· reading mil1UE; :t8J"G gouge re2.dn1g :plus gauge elevation 

correct:Lon 



'" .. •:: 

v .iJ!I" .. 1: .l '1 ~-.. 



is the difference in elevation between the cell and the 

pres.::;ure gauge. 

c) Pressure cell used i.'1 the nr~sent study: 

The pressure cell used in this present study is considered c>.s a 

combination of both the diaphragm and the hydraulic t;y·pe of cell. This 

arises because the deflection of the primary sensi•·1g diaphragm, caused 

by the external pressure, creates a pressure in an oil medium, the latt~r 

itself then causing a secondary deflection of a sens~g diaphragm within 

an ·electrical transducer. Fundamental features of the system are the 

design of the primary diaphragm stiffi!ess, t:he lo...,_. volume of the oil 

medium, and the reco•1ery facility for the expensive electrical t!'<:ms:lucnr 

head when the recording work is completed. 'l1he design and calibra-r.io~ 

of such a pressure cell are given in detail in Chapter 2. 

14 



C:HAPl'F~ 2 

_DESIGN, CONSTRUC'l'ION AND CALIBRATION OF THE 

PRESSURE CELL USED HI TKE PRESEN1' STUDY. 

2.1 Design ~he pressure cell used in the present stud_; 

The function of a pressure cell is to measure the total earth 

pressure acting on it. furth pressure measurements can be classified 

into t\·!O general types: pressure in a soil mass a.'ld pressure on the 

boundary at the soil-structure interface. 

The pressur-e cells used in this present study for a first sequence 

of experiments were designed in the form and dimensior..s shO\'II'! in Figures 

11, 12 and 13, to effect mainly the second type of measu~c~e~tE. 

Each cell is composed of three main parts: part 11A11 \.;hich represents 

the steel body of the cell and consists of the sensing diaphragm >tJhich is 

fixed to a rigid cir~.;ular ring and a supporting ,:,teel. plate; part '!B" 

which represc::n ts the connecting pipe, its length G.cper..d.ing on th c lining 

thickness; and part "C" which represents the electrical preseure transducer 

the most valuable and expensive part of the cell. The body of the cell is 

completely filled \oJith very low compressibility oil to act as the pressure 

tra.'lsmitting medium. On the basis of the experience gained from the first 

experiment, the cell design was modified (as shovm in Figures 14 1 15 and 

16) bj• addjng part 11D11 , the cell holder. The ne'ti desi.gr. allO\oiS the 

adjustment of the position of the cell sens'11g diaphragm so that it is in 

O.i:r·ect contact with the soil. The eff'::!ct vf the non-uniformity of the 

grout thicJr.ness (resulting from uneven over-cutting during hc-nd ex.cnvation 

of the clay) a.rotL'1d the tunnel J.ining c.:-.. n thus be mi ni::1izE:d. 

According to previous rese-?.rch a11d. experience in the field cf pressure 

cell design, the follO\·ring factors and principles \-:f,:-e taken into 

15. 
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Fi~ure 15 The pressure cells u:::od in ·tht: second. experil:lent 

Figure 16 One oi' t he prensure cell s used. in "'che :;;econcl cxp erir:lent 



consideration: 

a) The sensitivity of the cell should be consistent with the 

stress level to be mea.sured. 

b) It is \>iell known that the stresses measured by a given cell 

depend to a gr..::at extent on the relative stiffness of the cell and the 

soil in \'lhich it is placed. Previous studies have proved th_qt the error 

in pressure measurzments using pressure cells is directly iai'lucnce~ by 

cell geometry and cell-soil stiffness, as .sho\oill in Figures 1? and 18 

(after Peattie and Sparro\.,., 1954 and Tory and Sparrow, 1967 -::·espec:tively). 

Many of the soil--cell interac:tion probler.:Js with the pressure cell can be 

m·inimized if the ratio between the pressure cell thic~ness (t) c:Ul~l the 

diameter (D) is small and its stiffness is high (t/D 0.2 - \ala.ten.ray~ 

~1eriment Station, 1944). 

c) :t.fa.ny research results have suggested. ti1a.t the de-flection (6) 

at the centre of the cell-sensing diaphragn should not axc•.~ad a c•:;.>:>ta:Ln 

value ( 6 /D 'l/2000 - \vaterways Experirnent Statior., ·1944). 

C.) In order to cbtaL'l representative pressure measarerneni:s, the 

diameter of the cell-sensing diaphragm (D) should b?. &t least 50 times 

20 

the r;;.s....xi;num particle si:<.e of the soil in w:hich the csll is placed (K..<tlJ.stenios 

and Bcrgau 1 1956). 

e) The r.:ro:.im'..i .. l'!l sk:i.n ~t.ress in the diaphrag"\!1 fiEl .. ~-d. 'Je less th::u1 the 

aJ.lo,o~able stres.3es in the ceLi. mat .;ri?.l. 

f) The cell must be of l=>w the]:!!ial sensitivity ~r ::.t least he easily 

corre~.~ted for temperature char:ges. Accord.i..'lgl..v, for the pr-esent c~lls, 

detailed calibration tests W!rt~ performed to ev:alt:atA .:1 temperat"Lrre 

correction factor (Ct). 
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g) The cells were designed, as shown in Fig-..:.res 11 and 1!h 

in such a way that the part "A 11 \-Jill be installed on the elay-contact 

side of the tunnel li."lings with the sensing diaphragm facing the soil. 

The pressure transducer remains inside the tu..nnel during the \·Jh018 period 

of field data recording. Such an arrangement j1nproves the reliability 

of the system and permits recovery of the expensive transducer element 

once the f5.cld measurement prograrmne is termLllated. 

2.1.1.Calculation of Design Pressure: 

· For design purposes, the maximwn possible radial pressure may be 

taken as the over burden pressure ( Y h) • Since, at the i.'lstallatio!l pc:i..nt, 

then, 

h = 15,00 rn and 3 Y = 2, 11+24 t/m 

maximum radial stress = 13.00 x 2.1421f 

= 

= 

27.9 tf/m
2 

! ~~; ,2 2. 79 K0 .~ Cu. 

Taking a factor of design safety of ·1.5, the design presG:lre 'dill thtm 

~.1.2.Calculation of the diat;hra~ thick.l'less: 

It has been recommended, as mentioned before, that the ratio between 

the maximum deflection at. the r.::entre of the sensing diaphragm " 6" and 

its diameter "D" should not exceed 1/2C.l()(). 

1'he relation between. the deflection " 5 11 and the applied pl·essure "p" 

is given by the follow-ing equation: 

p = 6 96Et3 

n4 
(after Hanna, 1973) 

22 

Therefore, for the condition of 6/D ( 1/2000, the mB.xit:.l.:m allowable pressure 

p = 
max 96 E ( .i )3 

2'060 D 

\v-here t is the diaphragm thickness and E is the Young's mcdulus of the 

diaph:cagm material. 
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Thus, t = E
--r---

3 rr' P 
max 

96 E -

Therefore, .for 

E 2.1 X 106 
Kgf/cm 

2 
= 

p 4 Kgf/cm 
2 

= 
max 

D = 7-4 em, 

\"ie have that 

t = 0.2558 em. 

2.1.3. Check for diaphragm skin stress 

The maximum skin stress at the diaphragm centre ''fc1': is gi\·en by 

the following equation: 

f" - 3/16l p(..!2) 2 ) (after Hanna, 1973) -d t 2 
3/16 x(4 ( 7-4 ) } -- 0.25 
675 kg f/cm 

2 = 
2 This value is lE=ss tha..'1. 1400 kgf/cm and the design is tin.:.s 

\-Jell \dthi::! tolerable limits. 

2.1. L.. Calculation of volmne change 

!:~.'he equation of the deflection curve of the e:ensing diaphragm is given 

by: 

••••• (1) 

If dV is the incr~mental volume displaced by the diaphx·agm over a surface 

incremental area of 21tr' dr (see Figure 'lOa), 

dV = 2nr 5 dr 

Then, the total volume change over the '1-/hole area oti:: thf:. dia:!_Jh:cagm V is 

given by: 

v 2rrr dr ••••• (2) 



From equation ( 1) and (2) \-Je get 

a 2 2 2 
V = J 2P(a - r ) ~ dr 

3 6 Et 0 

11 Pa 
6

/ 18 Et3 

= 11 X h X 3.76
/18 X 2.1 X 10

6 
X 0.253 

7 

= 0.05459 cr.rJ 

-.: 
This volume is J.ees t.hc:..n 0. 2 to 0.3 em_,. and is, therefore, satisfactory, 

based on an allo\·!ahle voltune change in the transducer as used of 0.2 to 

0.3 cm3 • 

2.2 ConGtruction of the uressure cells. 
-F-rn--

Each of the pressure cella consists mainly of three parts ror the 

cells used :Ul the first e);:periment, or four parts for the c.ells used in 

the second experiment. Part "A" in both types, wr.icb. represents the cell 

body, had been cor:s tructe::l from a 92 nun cliar:~eter steel be,r i~1 the. form a:1d 

din1ensions shown in Figures 11 and 14. Part "B'1 :i..n. botl"1 ty_pes '! ·N!i . ..i.cl1 

represents the CO!J.:lecticg tube' \•:CJ..s cons t.cucteJ froo 20::1!"r! steel o:u.·. The 

length of the connecti.Tlg tube depends mainly on the thickness of the 

lin~ng; in the ca.se of the first experiment, the length of the tube ·11as 

120 mm, and in the case of the second expedment :i. t was 210 mm. 

Parts A aTld B were connected together to form the steel body of the 

cell. A special ty:;•e of sealing tape was used around the connecting screw 

in ordP.r to minimize a.YJ.y tende:ncy for lealdJlg. Part "C" represents the 

€lectrical pressure transducer havi.Tlg a range of 10'J lb f/in2 (68':) .. 5 ki'l/m
2

). 

Both the cell body and the pressure transducer were completely i:i.l:Led \vith 

oil before actually fitting tht:! pressure transduc.;er. tv the cell and. a soft 

copper washer, in aclcli tion. to the special sealing tape, was used t.o seal 

the connecting sere\-/. 



During the filling of the cell body \·ri th oj_l, dc-aera.tion wr:s 

accomplished via the screw outlet at the sid:=, of the cell base. 'rhe 

screw outlet was also used to adjust the initial pressu1·e inside the 

cell, afte:.· the fitting of the transducer; this \·Jas attained by releasing 

the oil through the scre\of outlet. 

Part 11D11 of the cells used for the secand exped.ment \·ias constructed 

from 50 mm steel bar. 

2.3 Laboratorl Calibration. 

Each of the pressure cells used in the first experiment \lias -::alibrated 

and tested according to the follm·iing progra..·mne: 

a) Each pressure tra."'!sducer \·las individually calihratcci b:J fitting 

it to the standard hydraulic system used for pressure develop:nent in. a 

soil triaxial test (see Figure 20). 'E"le calibration test. was car:d.ecl 

out three times for each transducer; each time the pressure \·!ao applied 

2 ·"f 6 t(~r;~··rl ~ ··5 ~· • 

b) Before fittir1g the pressure transduce,rs, ef•.ch of the ceJ.J. bodies 

of 7 ~-c;f/cm2 ( -::.700 l<".N/m2 ) from the .sa'IIe system used above. 

c) Each pressure cell was calibrated under hydrostatic press~re 

using a triaxial test cell which was modified to allov1 continuity of the 

pressure transducer cable from the cell to the recording equipment during 

the tests, as shovm in Figures 19 and 20. The cA.J.ibratic-n test vias 

performed five times for each cell e.t two different degrees of teJuperature. 

The pressure was applied at 0.5 Kgf/cm
2 (~ 50 k.N/m

2
) increments \1:!,) to a 

total pressure of 5.0 Kgf/cm
2 

€-=500.0 k1·r/m
2

). Figures 21 to 26 inclusive 

shov1 the calibration charts for the pressure cells usee:. i."l the first 

experiment, the results of the calibration tests being li.sted in '.l'a.ble 1. 

25 
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Fit;ure 19 tha cell used i..""'l :1.:n:u.~c.u.lic cJ.libra:C: ion .i-'i5UI'e 20 The pressure system used in cali~ro.tiou 
r.:J 
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d) Each of the pressure cells was then calib:;.-ated using Cb_y 

sieved sand as a test:Ll'lg meditm~. Figure 27 shaHs the rarticle size 

distribution of the sand used. The calibl·ation tank v1as designed an~. 

constructec1 in the form shO\\'Il in Figures 28 and 30. T.~e ta~ cvnsists 

of a steel tabe 49 em in diameter and 61 em high, a ci:::-cula~· supporting 

plate iielded to the tank body at a distanl;e of 30 em from the base, and 

a circular loadL~g plate. During the test, the pressure cell is ,:taced 

inside the upper part of the calibration ta11k facing the teating medium. 

The rest of the cell body remains in the lower part of the calibr·ation 

tank through a 2 it1ch (50 rnm) hole in the supporting plate. The hydraulic 

testing machine used in these tests is sh.ovm in ?igure 29. 

Tests were performed t.o determine the effect of thickness of t!:G sand 

cover, •-;hen the sand and the cell were co::1pressed, upon tl:e output of the 

pressure cell. Figures 31 and 32 show this effect. It is implied. that 

for a sand cover equal to, or greater than 25 ern, there is no effect of 

sand cover char.ges 0:1. the output of t~e cell. Accordingly, a sa..J.d co•1er 

of 27.5 em was used for all the calibration tests il1 ~1h.ich .sand \·iG.3 ;;.sed 

as a testing mediillll. 

The calibration test usJ..ng 27.5 ern sand cover was performed five times 

for each cell, the pressure being applied CJ.t 0.5 Kgi'/cri h1creme:nts up t.o 

a total })ressure of 5.0 Kgf/cm2 ( -t:: .500 :K.N/m
2
). Figure!3 21 to 26 :r·epreseut 

the calibration charts for the pressure cells u.sed in the: first experiment. 

Values are 0:>.-pres.serl by means o:: f:i.ve test-s. F'rom thase cha!:ts the cell 

pressure coefficients 1 Cp 1 - 1 Cp 1 is the :i.nrJ.icatP.:i pr·essure per u..11i t. outpu.t 

'mv 1 - viere calculated. The results of the calibration ~:.ests are listed 

in Ta.ble 2. 

.3l~ 
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. - - 3-~ 
No. 1 No. 2 z.:o. 3 1~o. 4 · No~ 5 tlo. 6l 

G 

At 20 c• e.t 20 c· e.t 19 r! !ll~t 20 c• at 20 if 
. 

('.t. 2.0 G 
' I 

I . 

o.o 17.7 5 .. 6 2o7 5o4 2.9 5.9 

O • .!i 18.6 6.4. }.5 7o4- .1;.".5 7.0 

1.0 19•} 7o4. 4..1 a.; 5G9 882 

1 .; 20o.2 8.5 4.6 9.8. 7"4- 9o5 

2.0 21.2. 9.4 5e~1 11 J+· 9o0 10.7 

2.5 21 e~9 10o4 ; .. 6 12.6 10.4 11.8 

}.0 22.8 11.4 6o-O 1.3o7 11 olt- 12.8 

4.0 2l~o.6 13.3 7r•} 16.2. 14-oO 15a3 

;.o 26.3 15 .. 0 8 .. 6 18.9 16.8 17.6 

-- __ _..,. ,i_- ·~=-.11 

Table 2 !iesu.l ts of calfb:o:\.tion tests for t!te. p:::-~ssw·e O-::!lls 

' 8 

10 

1} 

15 

17 

20 

--
No. 1 Noo 2 No.3 

15.4. 2.0 o.6 
15,6 2.5 0.9 

1 G.o }.1 1 o} 

16 • .5 3.8 1e8 

16e8 4s-~ 2.1 

17.2. 4.9 

I 
2e4 

17.7 .5.6 2.o7 . 
.-::t:•- ....... ~~':"~ ?z= Wllii'M.aaa 

Table 3 Resul h 

( ,. .. ··~"- .. , .... ~·-·-··-'-) • ~~ .:, t~ C:'X;.· ·w.l ..t.~- :;._, • .. 

----, ·l--~--~~-, 

lio. 4- I No. 5 No. 6 

1.,. -1 ole. 0.} 

~ .9 -1 .. 0 0.9 

2.7 ...0.2 2.0 

.),4. 0.3 3.0 

4.0 1.2 3~9 

lt-.6 1 .. 9:· lt- .. 7 

5.7 1 2..9~ 
..........,...__...........\.-,.,_. .. J 



e) 'l'ests were performed to .,.·.-aluate the effect of the temperature 

changes on the ct=·ll output under no load cond.i tions. Test.s were performed 

three time::; for each cell using a variab:i.e temperatu.re water bath. The 

results· of t.hese tests are tabulated l.r: Table 3. The calibration chc.:..rts 

are represented by Figures 21 to 26 from \·rhich the cell temperature 

coefficients 'C.' - 'C.' is defined as the change in the pressure cell 
t t. 

output per one degree cha.ng0 in temperature - \..rere calculated. 

Each of the pressurl:! cells used :iJ.1 the second experiment l-Tere 

calibra·i;ed f..nd tested according to the following programme: 

i) The pressure transducer and the cell bodies ~,orere tested and 

calibrated according to the same procerlnre as before for the cells used i.n 

the first experiment. 

ii) Each of the pressure cells was calibrated uaing dry sieved s~d. 

as a testing medium, following the same procedure mentioned before fo:r the 

cells used in the first exper~nent. The results of the calibration tests 

are tab;.,lated in Table 4· Figi.lres 33 to 38 show the calibration charts 

from \llhich the cell pressure coefficients (C ) were calculated. 
p 

iii) Th.ch of the pressure cells was calibrated using a cylindrical 

clay sample, 20 em in dia:neter and 15 em high, as a contact medium to the 

cell-sensing diaphrag:!l. ~'he rest of .the testing tank voltune \'/as filled 

\ori.th dry sieved sand. These test results \orere identical to those obtained 

from the calibratic11 test using sand only. Figure 39 shows D. section 

in the calibration tc:nk and indicates the position of the clay cylinder. 

iv) Tests were perfonned jn order to evaluate the effect of temperature 

changes. These tests follcwea the same procedure as menti•)nE'd before for 

the cells used in the f:..rst experi.1ient. · Figures 33 to 38 shoY: the 

calibration charts from which t!:e cell 1:-c:mperature coeff:Lcients (Ct) were 

cc;.lculated. 
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Calibration Equations. 

The calibration tests specified earlier result: in the calculation of 

cell press~re coefficient "C ': and cell temperature coefficient. "C 11 
p t • 

It \'las noted that the ti'>'O calibration curves derived u..r1der hydraulic 

pressure at t\·/O different temperatures (Figures 21 to 26) are mutually 

parallel, so implying that a temperature change of t°C shifts the 

calibration cha.rt an amount equal to "Ctt". Thus the calibration 

equations for tne cells may be expressed in the following form: 

where P = the external measured pressure, 

C = cell pressure coefficient, 
p 

ct = cell temperature coefficient, 

T 1 - calibration temperature, 

T = measured temperature, 

R' -- calibration - no load-output, 

and R = measured output. 

The values of Cp' Ct' R', T' and the calibration equations of the pressure 

cells used in the first exp·~riment are tabulated in Table 6, and that of 

the pressure cells used in the second experiment are tabulated in Table 7. 
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-·· -=·· ' ••ppe-'""''"R'"P"!I!'":Z'!'"'"'E' 

r 
I 
I CELL c ct R T C~ibrution eq~~tion 

p 

No.1 0.574.1 0.1727 17.1' 20 P = 0.5747 ( R- (17.7.- 0.1727 (20- T ))) i 

f\Oo2 0.5)19 0.2563 5.6 20 P = 0.5319 ( R- ( 5.6.- 0.2563- (20 - T ))) 
I 
I 

No.3 0.8197 0.1547 2.7 20 P = 0.8197 ( R- ( 2.7 -.0.15*7 (20 - T ))) 

Ho,.: .. 0.3731 0.40/l 5o4 19 P = 0.3731 ( R- ( 5.4- O.l~077 (19 -· T ))) . I 
I 
I 
I 

No~.5 0.-3597 0.3214 2.9 20 P = 0.3S97 ( R- ( 2.SO- O. 3~14(20- T £J 
No.6 0 • .3.145 0.1 .. 071 5.9 20 P = 0.3145 ( R- ( 5.9 - 0.1,0[1 (20 - T ))) 

--
'l't ... bl·~- G cp J ct • R J T ~·:.nd. cal.ibrati.om equutions of" the pressure O<lll& U:Jed ill the ti.ret experiment • 

• \Jl 
0 



CEL1J c 
p 

r~o. 1 1.7857 

N::». 2 1"51.5.2 

No., 3 0,.9259 

!lo. l~o 1 .0417 

Na. 5 o.a_.;_-.:. 

No. 6 0.,66~1 

: 

c ... R' T' Cn.l.ib::..·:~.tion equ<.'.tion ... 

0.,1000 1 .1 20 P = 1 • 785 7 ( R - ( 1 • 1 - 0.1 OsJO ( 20 - T ) ) ) 

o.od60 0.8 18 P ~ 1.5152 ( ~- ( 0.8- O.Oti60 ( 18- T ))) 

0.0700 OuO 20 p·= 0.925-9 ( R- ( 0.0 -· 0.0700 ( 20- T ))) 

0.1083 1.7 22 P = 1 .U!;.17 ( .t( - ( 1 o 7 - 0.1 Udj ( 22 - ~· ) ) ) 

0-.1000 o.6 20 P = o.6353 ( R- ( o.6- -o.1uuo ( 20- ·r ))) 

0.1500 Oc-1 20 P = 0.8621 ( R- ( 0.1 - 0.1500 ( 20 - T ))) 

T:~blo 7 CP· ~ ct ' !t', T'' ·'lnd C<~librution equ..~ticn 01" the pro3SSU:!.'e C·:llls. 

(second experiuent) 

l 

\.TI ..... 



CHAPTER 2 

FIEJ,D INSTALLATIO~IELD 1'-'i:E/l.SURf.~T AND DATA 

RECORDllJG 

3.1 Installation of the pressure cells. 

Installation of the pressure cells was performed '!lith great care, 

sin.ce the. ·quality of installation influences directly the accuracy and 

the reliability of the results. The pressure cella were installed, 

during the construction of the lin:LTJ.g segments~ through six of the 

twelve grouting holes in each lining ring. 

Each pressure cell was installed in such a way that the cell body, 

part A, remained outside the lining with the sen.sing diaphragm facing the 

soil. The pressure transducer, the i;:ost delicate part of i.:he cell, 

remainP.d insicte the tunnel in order to minimize the pcssibility of damage 

and also to allow its recovery once its useful r·ecording life 1r1as over. 

Each cell axis was adjusted in such e1 way that the sensbg diaphJ:=tgm \•ras 

parallel to the tangent pass:LYJ.g through the cut ci1·cular surfacE c.r:f the 

clay at the poj nt of cell :LYJ.stallation. Thus, the U!easured pr·es[;u:res 

represented the normal, radial soil-li.i"ling :LYJ.teraction pressure::: a:::tive 

at the pojnt in question. The lower cells were protected against cmy 

damage which could occur from the traffic inside the turmel. 

The cables connecting the pressu:::·e cells to the electronic recording 

equipment lriere proted.ed against d.:.mpnes.s and damCJ.ge by using a special 

protective tape. The electronic equipment used in the experiments was 

kept inside a locked cupboard, as sh0\;111 in Figure 41+• 

The arrangement and the positions of the prcssilr0 cells are shovm in 

Figures 40 and 41 for the first c;md sEcond. e:>.:pe:;:-iment respectively r 

Figures h3 to 49 r~present photographs of the pressure cells and the 

electronic equipment used in the tv10 experiments. 

.52 



Coli Noo 2 

--~ -- ---- -t- -------------·-- p / 
\ L I' Cell Ho. ~ ~~~ 

---- -1 J 
\ . 

. \\' I ) \ /'') ...._/ 

~~~> ;¥ 
,j,~~// 

--t-



! 
I 

Cell Mo .. 2 
......... 

""· 

·----- -~--;-~ -::_:_· .J_--

/- ·----
---Ht--tr----------- ·---

.1"',.' • .. 
.... "',J ., 

....... ~ '· 

,-
/ 



Figure 43 Vit.:w 'lf the tunnt:;l showing thE~ box used for 

tb a l)rotection of the electrcnic ~qui:p •. ~i:nt 
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Figure 411- Electronic cs_uipment Ufi<'l<l for d[\ta recorcl.1.ng 

in the fir·st ozperiment 

Fit;urc 1;..5 Pressur& c -:: J.l.;; !~on 3andh in the :;econd e;;:p (;rir:: :at 



Fig~.Jre 46 Pressur~::~ eel, Ho 2 in the sucond e:x.-par:U. ent 

Ficure 47 EJ.c::•rl;:con:l.c ~nuij):1t::c.t u.>o:d for c1.at~ rec ord.:i:11g 

i.n. the 1\<J c onJ. .;::;:?e:r ·_;_a~~nt 
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..cit;Ul'0 4<1 For•er supply, vol rJetl-3r , und connecting oox 

Fie;urft 1~9 The ~L'\: channel recC't'dcr userl for tl1o <b.ta. record.i.ng 



3.2 The soil formation 

The tunnel was driven through layers cf stiff stony clay and 

laminated clay. Figures 50 and 51 show the logs of boreholes i'!o.C1 

and H53, the locations of \>lhich are shO\·itl in Figure 1. Labor a to:cy 

tests were cond'J.cted on representative se;nples obtained from th':'! tmmel 

face in order to evaluate the soil unit weight "Y "· Limits of 

consistency and the unconfined strength (via the undrained triaxial 

test) were also deterrrcined. 

ta:.bluated in Table 8. 

The results of these laboratory tests are 

3.3 Measurement of the c!1a .. 11ges in th:: i:un:'lel diameter. 

Changes in the internal tunnel diameter \-/ere meaaur':d :!.n the four 

directions shown in Figure 52. Eight recta!1gular steel pJ.ates~ 

20 x 30 x 4 mm, \oiere fixed on the i..'"l.ternal side of the li.."ling. T'he 

measuri..l'lg points \·!ei·e located by a cii·cular hole 3 mm rlia'!lete:.- in .;:ach 

of the plates. 

Diarr.etr:::~.l chr ... nges \>/ere rnoni tored using a 0.01 :run clial g::;,uge fi~-:ed to 

a circul'il' aluminium bar 50 ll"lll in diameter, with a conical end, as sho\>m 

in Figure 52. Figures 53 a.;·1.-:l. 54 are photographs taken during the tunnel 

meas-:.:remer..ts of li.ning deformation. 

i,: 4 Data recorcliYJ.S?. 

A si:x channel re.:order (Figure l~9) ''las useci for :::ecordlllg tr";;- oL<tput 

of the pressure cel:!.s cont~_nuously d-:..II'ing the t\'IIC> experiments. 'l~H~ 

~reRsure cells we1~e coP..nected to the power supp.ly and th':l output recorder 

through a connecting box, as sho\-m. in Figure 48. 

The results of the two C>x_p!;:riments are tabu.l:J.tecl :i.n Tabl-es / e.:r.od 1C, 

and a detailed discussion a~"J.d a:.alysis of the derived dati.'.. ''ill be fo-..md. 

in Chapter 4. 
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RECORD OF BOREHOLE NO. C i 60 

Grou:-d level: ...... ~J .. ~f_t nbovc (l,f), ~cwl)n Oia. of boring:... Oi" 

Lining [Ubes : .. 81n to 15~\ 

r-------~-------------------r------------------,-------------------------------------------·-
ChJngc of ~;tra~a -~ I Daily I 

Progress · I 
I 

1-· 

I 

I 
I 
I 

I I I 

I 
I I 

I 

I 

.lL!1 '';l 
I 

Samples 

Depth 

2 f .. 
3"6''- 1!'!-" 
J'O"- 11'6" 

6'6" 

8'0" - 9'6" 
9'6" 

11 '£." 

16 '6. 

1B 6" - 19"6" 
19 ~" 

21 '(.'' 

26 ·o· 

ze·c.· - 30"0" 
:w 0" 

32'6" I 
~;;:;:" - JS ·c·· I 

J~ 0" 

'"!1 .... I " " 
38 G" - !!C (I" 

I!("(," 

112 "G" 

II) (•"- 115"0" 
u::.·o· 

Iii 6. I 
116"t"- 50'0"1 5C 0" 

52 t.. 

5~ 6. - 5::: :l" 
r II:' ,... .. 

"· . 

-
Type legend Depth · 0.0. tevel 

D :x 
c (7 i 

BD ~ ~- ' 

D 

U;lii 
D 

·o 

D 

D 

D 

6 0" 

Description of Strata 

FILL (clay, gravel nnd ashes; 

Firl!l to &tiff mottled ~rcy lind brown silty CLAY 

Stiff to vr.ry stiff grer-brown Bndy ~ilt> Ct~Y 
with fine to ~edi~n ~ravel, bccorin~ lc~• sand~ 
bebw )5ft 

I 
I 

------t 

Fieu.re 50 Utl.Cc::-:d: of borehole No. C 1 



61 
D'ECOP.D _ BORE H 0 L E H 53 

Go-V:cds • .3.3409 m.E. 66617 ffi.N. 
Ground level: ............... .?.,'~ · ~ .. 1.L .. 8.~.~.~.~ .. ~.~.~: ... ~~~~.1.:t" ........ ......... .. Dla. of boring: ........ ~.~.~ ....................... .. -·~ ... 
. 

Method of boring: ......... ~~.~!.! ... ':'.'!~ ... ~~!ill!' .................................... . Lining tubes: ........... ~.~~ .. ~~ .. ~?.~.~ ... ?.!~ ...... . 
,.....----...---·------------.--·-----------.--------------·---------

~ Change of Strata 

I 

Daily 
Progress 

6.9.69 

Sar .. plu 

1'0" 

2'6" - "'Ci" 
"'0" 

5'6" - 7'0" 
7'0" 

9'0" 

10'6" - 12'0" 
12'0" 

14' o· 

15'6" - 11'0" 
17'0" 
19'0" 

l7'0" - 18'6" 
I 10'6" 

1 20· o· 
122'0" - 2:;'6" 
1 23'6" 

1 25'6" 

27'0" - 28'6" 
28'6" 

---~ 30'6" 
I 

3.3'6" 
3)'6" - )4'6'' 

)5'0" 

'JT'O" 

)8'6" - 40'0" 
llO'O" 

"2'0" 

11)'6" - ij5'0' 
:05'1)" 

"7. 0. 

ij7'6" - 1:9'0" 
"9'0" 

I 51'6" 
152'6" - 51l'O" 

54'0" 

5/.·o· 
~6'e - ~·o· 

58'0" 

.... --------···-----

Description of S~rata 
Typ.: ll.elll'ncJI Depth ! ~~~-1 
0 ~~-;-~-7;.·-. -5-+-F-I_L_L_! a_s_h_e_s-anu to a I f ragmen_t_s_l ---------t 

u
0
: ij l ~'--_ -."' .-:-.·=~i, 'I ~ ~ .... ~ ~ - Firm to stiff brown silty CLAY with occa~io"al 

~~-·~ fine gravol a~d coal fragments 
'-~~_.:.5_'"6.:... ·-t-..;..7.:.2.:..;.8~1------------------------l U'tJ ~:: 

D ~-~~~ 
0 ::-:;: _:__:. . -~.~ 

·~·) ~~~j 

.:., J~ ~-:·~, 

Very stiff, beco~ing firm, brown with grey ve1r.•~ . 
sandy silty CLAY with occasional gravel end coa: 
fragments: thin bands of sand between 17ft 61n 
and 18ft 6:n 

go ~2j 
I p_-'-~·· :f!'lj'' 50,!l I, 

ll,ij) ....... --.~+----;-----t----------------
0 ~-·~· J.-·L~--:::•-
0 ._.5...: 

r2='-t-~ 
U~ijJ fi::.:~-·:.:::1 

D ~~~ 
D ffi,:.t -::-J 

Ul"l ~~~j 
[i .-·~~:~~ 
D 

0 
v :~~; .... 

D 

D 

U(lli 
D 

D 

iJ(IIl 
Cl 

0 

l!\Ul 
c 

D 
UII;J 

0 

D 
l! (I~ J 

0 

.-r-.-:1 :-...:..;-,. 

Stiff tc very stiff brown sandy silty CL•Y ~· th 
fine. gra.·el ;jiHi otcasiunal cnill fraqmenls; 
occnsional coobles below )Oft 

Firm to stiff l~minated bro~n silty tLAY w1th 
partings of silty fine sand 

firm to very stiff grey-broon sa~dy s1!t) ~L!' 
with fine gravel and OCC•lsio!lal toal fra!;r-.:· ~!-

J 



Section th.rou~1 ·t;he lining sho\rinB i.'o::;:i..tic,u, 

of tho steel pl~teB • 

r 
·~o 1 

7..:.: 
1-----&.L --~ 

$-
one of tho ottJel pl~.tes used 



Figure 53 !.!easuri..1.g of i:;he tu.rill£;1 di&l8ter cht~lGe5 

11igure 54 !ea::.uri;''l.g o:: the ~unnel diameter chan,s'9s 



- ---

~ L~Jaina;ted cl9.Y Stony claj 
.. 

-
¥s 2.0298 gJi1 I cm3 2.2550 g:n / cm3 

"unit weight" 126.8625 lb 1 rt? 14-0.9358 lb I rt3 

L.L .. 6).5. 36.5 

P .. L. 3.0 .. 00 18~18 

1!. 27.17 12&1)9 

c 0.9 K8f/ CIA 
2 

2.1 KBf/ em 
2 

12.80 lbf/ 1't2 'l 

29.87 lbfl ft~'-

l:&.ble 8" Results of the la.borc,tory te~ts • 



CELL 

No, 1 

I 
N~. 2 

No.3 I 

No.4 

:rro. 5 

No. 6 I ~ -

Angle ot the C$ll Depth "h" o-: tho Over burclsn pre- M~xiaun measured 

ar4.a 1l!. th tlls Hl. cell SS1.1r~ Pressure 

'"n" ~~~ h "K(.f/cbl2 
II "P ~. 

L;~ex --
20'. 13.01 2o79 1.097' 

80" 11.77 2.52' 0.954 

eo• 11.77 2.5-2 1.298 

20 .. 1.}.01 2.78 1.062. 

-'+0 6 114 •• }.8 3 .. 08 0.77} 

...t,.O • 11.t..38 }.08 0.705· 

Table- 9 Over burden PretJ3W"e , ~ruimUh1 r.1ea:.1ured. pressure 1 Pma/'t h% 
of·.·tbe pre~umre eell.:s (first eJ.z.peri.ment) o 

PJMX. I 't h % 

}9 

}8 

52 

}8 

25 

2} 

. 

& 



CELL 

No. 1 

l13o 2 

n.,. 3 

IfG>o 4 

Neo 5 

No 0 6 
l 

-
Anglo of the cell Depth 'h 1 o~ tne Over bUl~den pre- 1:dax:im.u."'.'l. ~eastu."ed 

o:J.Ai.s With the. rn. ooll s.sure .., pr'a s s·\ll"e 
'm • 1 l L Kgf/ em' ' 'F I ........ ,~ -·-

- 4.0 15.0000 3.2137 1.2500 

20 13.1!228 2.8761 1,4.30} 

80 12.39~-3 2.6557 0.9629 

80 12.39~.3 2.,6557 1o42J4. 

20 13.1-r228 2 .. 8761 1.2500 

-40 15.0000 3,.2137 1 o1207 

-
Table 10 Ovar burden pressure , Jlll'iUd.eur. mea..s.w.""ed pressure, ~ P /'6 h% 

mAX 

o~ ·;;be p:.•cssurP.~ eoll.3 (csconcl expariraont) 

p /'t~b 
D.< loX 

38o9 

49o7 

36 • .} 

53.6 

4.3.5 

34.9 

0\ 
0\ 



CHI\PrER 4 

A.'N'ALYSIS OF' THE DERIVED DATA 

4.1 Analysis of the first experiment results 

The outputs of the pressure cells were recorded continuously for 

a period of 50 da;rs, the soil-lining i.TJ.teraction pressures being 

evaluated using the calibration charts sho~t.'l'l. i.n Figures 20 to 26. The 

pressure-time curves for tl1e pressure cells are illustrated in Figures 

55, 56 and 57. 

Figure ~·6 shO\·is that the maximum pressure recorded by }:•ressux-P. cells 

2 and 3 near the tunnel crown is 1. 298 kgf/cm
2

, which is equiva~EJ..t to 

52% of the effective overburden pressure at the cell level. 

F-lgure 55 shows that the maxinnun pressure indicated by pressure cells 

1 and 4, the axes of which were at 20° loJith respect to thP. hcriz.ontal, is 

1.097 kgf/cm
2

, and this is equivalent to 39% of the effectio;e ·:Jverburden 

pressure at the cells level. 

Figure 57 shov1s that the maximum pressure indicated b:.- pree:su::.·e cells 

67 

5 and 6, the axes of which were at -40° \oJith the hori.zontal, is 0.775 kgf/cm
2

, 

which is equivalent to 25% of the effective overburden pressure at the cells 

level. 

The pres:s-....re distribution around the tunne~ lintng after 1, 2, 5 days, 

&nd the final presGure distribution, are illustrated i.'1 Figures .58 -t.o 6·1. 

From these Figures it is :::lear that the pressures .,,ere developeci. first of 

all at the cro\-m. and the j_nvert of the tunnel, and as the tunnel li..TJ.ing 

begeJl to deform the lateral 1jassive pressures \Je:ce g:::<•.dW:1.ll~· cre~tE:d. 

The final }>ressure diagram (Figure 61) shows that the terminal pressure 

distribution arOlmd the tunnel lining ia nearly u.niform~ and this &ieans that 
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the tunnel lining is finally subjected to a uniform hoop stress. 

Figures 62 to E7 represent P1P and P 1Yh against time curves for · - max 1 

the six pressure cells used. From these figures it is clear that the 

top cells 2 and 3 reached their maximum pressures withi..Tl a period of 2 

to 3 days and this equally applied to the bottom cells 5 and 6. The 

lateral cells 1 a.TJ.d 4 achieved their maximum pressures within a period of 

7 to 8 days. This suggests that the pressure distribution around the 

lining reached its final form after 7 to ·a days follO\•ring lining erection. 

4.2 Analysis of the second exPerif!!ent results. 

The output of the pressure cells was recorded continuously for a period 

of 50 days, a time period similar to that of the first experiment. Pressure 

time curves for the pressure cells are illustrated in ti1e Figures 68 to 70. 

Figure 68 shO\oiS that the maxirmun pressure indicated by preesure cells 

3 and 4 close to the twmel crown is 1. 4234 kgi/cm2, \·Jhich is equivalent to 

53.6% of the effective overburden p1·eGsm·e at the cell level. 

Fignre 69 shO\oJG that the ma.v.:imum pressure iudic:J.ted by pres:st.:.re cells 

0 . 2 
2 and 5, the axes of which \>Jere at 20 to the horizontal is 1 •. 4303 kgf/cm , 

equivalent to 49.7% of the effective overburden pressure at the cell level. 

Figure 70 indicates that the ma.x:imum pressure monitored by pressure 

cells 1 and 6, the axes of which were at -·40° with t:he horizontal, is 
":) 

1.2500 kgf/cmc., which is equiv.:..lent to l~3-5% of the effective overburden 

pressurO? at the cell level. 

The pressu.re distribution around the tun.."lel lining after 1, 2 and 5 days 

of it's E-rection and the final pressure distribution are shown in Figures 

71 to 74. These Figures prove that the pressure arc•'..:Jl.d the lining in the 

second experiment. wa.s e;enF.rated :i..u a ;:;iinilarrran."ler to that ir. the first 

experiment. The fi11al pressure distribution represe.."l.ted by Figure 7l,. 1 shows 
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that the twmel lining is u.ltimatelj• subjected to a uniform hoop 

pressure. 

P/P and P/Yh - tL~e curves for the pressure cells used in the max 

second eXperiment, are illustrated UJ the Figures 75 to 80. These 

Figures prove that the pressures around the tunnel lining reach their 

terminal ~alues after a period of eight days of the lining erection in 

a closely similar manner to the pressure development in the first. 

experiment. 

4.3 Analysis of the tunnel diameter measurements 

The results of the field measurement·of the changes in tunnel 

diameter are tabula.ted in Table 11. Figure 81 represents the pr~nary 

and the final tunnel lining form, the final form being rea.ched after 8 

days follovting lining erection. 

The development of lining deformation for the four measuring 

directions n
1

, D
2

, n
3 

and n
4 

is indicated jn Figure 8:2. It will be i1oted 

that th& maximum diarnetral change for the vertical diameter D., 'tras 1. 30 rmr., 
I 

\•ihich is equivalent to 0.041%. and for the horizontal diameter D
2 

v:as 

0.88 mm, which is equivalent tu 0.027%. Diametral_ch4~ges for the diameters 

n
3 

and D1 are practically negligible, as might be expected. 
~ 

- ' 
Th~se very lovi values of deformation imply that the lining behaved 

essentially in an ideally rigid manner and for that the grout at the spring 

line \oJas extremely effective in filling the overcut created by the pneumatic 

spades anj in facilitating ~arJ.y mobilization of passive pressure. The 

deformation measurr::mej1ts therefore substantiate the arguments propounded 

earlier on the basis of tht:: pressure cell readings. 
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-

~ D1 D2: D3 D4 

--
0 + o.oo + o.oo + OcOO + o.oo - - - -
3 +0o30 - Oo81 + o.oo - 0.04 

6 + Oo68 - 1 n1 Z -I.Oo 1 0 - o.oa 
14. + 0!080 - 1.30 + 0.,09 - Oo05 

18 + 0.87 - 1.29 + o.o9 - o.o.3 
24 + o.sa - ~ .29 + 0.09 - 0.03. 

30 i• Oa87 - 1 .}0 + o.oa - o.o1+ 

l~rO 1- Oa87 - 1.30 + o .. oe - o.OJ., -

50 +· o.oa - 1.29 + 0.08 - 0.04 



4. 4 Aoplication of turmel-soil ccn~.act pressure theories 

to the tuJL~el situation currently considered 

By applying Terzaghi's theory and Protodyakonov's theory (see 

Appendices A and B) to the present situation we have: 

A) Terzaghi 's theory 

According to this theory, the vertical pressure of the tunnel 

crovm 1 P 1 is given by: 
v 

p 
v = 

v1here 

B(Y/2 C/B) { 1 _ exp (-K tan 2H } 2H ) - s! • 13 ) + q exp C-K tan ri·B 
K tan¢ 

b = tunnel width 

ht = tunnel height 

B = 2 [b/2 + ht ta.~( l6 - ¢/2)] 

y = unit weight of the soil 

¢, C = soil shear strength parameters 

q = superimposed load 

H = tunnel cover depth 

K = coefficient of earth pressure 

l!'or purely cohesive soils, the above equation is modified to the follo~tting 

form·. 

P = H (y - T/B) 
v 

't/here T = the shear strength o·f soil. 

Thus, in the cases in question, 

a) First Experiment 

H - 11.'17 m 

T = 18 tf/rn2 

B = 9.60 m 

y = 2.2550 
7 

t!m--' 

p = 'i1.'17 ( 2.2_55 'i8eO 
) v ·9:6o 
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4-4726 2 = tf/m 

0.1+473 kgf/cm 2 = 
43-8667 2 

-· kN/m • 

b) Second Experiment 

H = 12-39 m 

't = 18 tf/m2 

B = 9.60 m 

y = 2.2550 t/m3 

p = 12.39 ( 2.255 ·J8.o ) 
v - 9-bo 

= 4-7082 tf/m2 

0.4708 kgf/cm 2 = 

= 46~1711+ kN/m2• 

B) Protodyakonov 1 s theory. 

According to this thecry, the v0.rtical pressure at the tunnel 

cro\·m 1 P 1 is 
v 

p = v 

where 

y = 
b 

f = 

given by: 

the m1it weight of the soil 

half t-he tunnel width 

strength factor suggested by Prot0dyakonov 

Thus, in the case in question (the two field experiments) 

p 
v 2 X 2.2550 X 1.6/3 X 1•5 

= 1.6036 tf/m2 

0.160lj. kgf/cm 2 = 

15-730/.j. 2 = kN/In 
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For comparison, the results of the applied theories and the 

field measurements are tabulated belO'I't. 

~ 
Field Terzaghi's Protodyakonov's 

Neasurer.Jent Theory Theory -
~ .. 

lst Experirnen t ·1. 298 kgf/ em 
2 o. 4l~73 ~..gf/cm 2 0.1604 kgf/cm 2 

2 2 2 2nd Experiment 1-4234 kgf/cm o. 4708 k~~; 0. ~604 kgf/cm .• 5 r em 



4.5 Notable case histories of tunnel-soil contact 
pressure measurements: 

~here are a number of case histories relating to in-tunnel 

experimentation. From some of the most notable of these the 

following are chosen to illustrate the type of results that are 

obtained. 

i) Shield tunnels of the Chicago Subway (Ter.zaghi ,1942) 

A long term experiment over a period of ten years \oJas carried out 

in or-der to measure the earth· movement resulting fi·om the dr·iving of 

two adjacent tunnels in Chicago Clay and to gather information on both 

the pressure distribution developed arou."ld the \velded steel tun.11.el 

lL11.er and the turillel lining deformation. 

Each of the two tunnels was 25 ft outer diameter and the invert of 

each was located at a depth of about 50 ft below the street level. ~1e 

space between the tunnels at the spring l:i.ne J.ev~l was about 2ft 9in. 

Two different methods were used for the construr;tion of the ttmnels; 

the liner plate an.d the shield method. North of Chicago R:i.ver, where 

the clay is stiff enough to withs~and the loads imposed upon it by the 

footings, the liner plate method was used. 

The more costly shield method was used south of the river, where 

the clay is too soft to withstand the expected load. These experiments 

resulted in the following conclusions: 

1. Different sizes of opening in the shield face and a variable rate of 

shoving \o~ere used during the tunnel construction, and because of the 

pre~encc of a stiff crust of rJ.ay located about midway between the tunnel 

c:co•~Jn. and the surface of the street overhead, neithe:c the size of the 
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op-ening nor the rate of shoving hc.d a significant effect on the surface 

heave \olhich took place due to the passage of the shield. 

2. The heave that occurred due to the passage of the f;irst and second 

shield \-ias generally followed by a progressive settlement at a decrea,c.;-

ing rate, and thj.s lasted for about one year after the passage of the 

sneld due to the consolidation of the remoulded clay around the tunnel. 

3. Measurement of the lining-soil interaction pressure showed that 

the final equilibrium in the soil did not occur until about five years 

after the lining construction •. Figure 83 represents t.he pressure-

time curve at the cro¥m, invert and the spring line of the lining. 

4o Measurement of the tunnel lining deformation indicated-a slight 

change in the shape of the lining v.p to about one year after erection. 

Figure 8~. represents the deformation-time curve and Figure 85 illuc:trates 

the shape of the ring after 47 days and after 342 days. 

ii) The development of earth loadin_g_ ~~eformation in tunnel 
linings in London Clay (after \-Jard.~ 1965): 

A long term experiment 011er a period of six years \olf.ts performed in 

order to measure the lining-soil i."lteraction pressures a-'1.d the 

deformation of tun...'1.el linings in london Clay. 

The experiment was carried out at two sites for three different 

types of tunnel J.ining: the pal"'ticulars of the linings are tabulated 

in Table 12 and sadiona through the segme:r..ts are illustrated :L11 

Figures 87 and 90. 

The ahanges in the hori:;~ontal and vertical tunnel diameter for the 

three types are illustra.tecl in Figures 86 a."'ld 89, and the Pressure-Time 

curves are illustrated i!l Fig'.lres ~8 3...'1d. 91. 
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r- I --
Site Depth 

Internal Material 
Segmer,ts Sectional Longitudinal Fitting 

diameter in one ring area of joints. to 
ft-in. Segme.YJ.t Clay 

A 79 12-8 c:ast iron 6 I 27 KnucklA jacked I 

8j 12-6 concrete 14- 209 Curved butt \V'edges 

B 55 7-0 cast iron 6 21 Butt 8c grouted 
I bolted 1 I 

Table 12 Particulars of tunnel-llllLYJ.gs 

The measurements of the deformations of each type of li..."'ling sh0\'1 

a decrease in tile vertical diameter and an incre2se in the horizontal 

diameter. The deformations developed rapidly "in the first few months after 

construction, but continued. at a slO\v .rata for at least s:i.x years. 

The maximum diametral changes took place along the vertical anrl 

0 
horizontal diameters, and at 45 to these directions the ch=mges were 

negligible. For the concrete lining the vertical and horizontal changes are 

fairly equal, but for the cast-iron lining the increase in the horizontal 

diameter is less than the decrease in the •rertical diameter. 

Neasurement.s of the circumferential pressur-e arotmd the linings sho"; 

that the distributions of the pressures were fairly uniform. At site A, 

for cast-iron linings, the pressure approached the value of the full over-

burden pressure 3i years following construction, and for concr9te linings 

it reached 65~b o:;: t..h.e o·le~:-tf.rrden p::-essure afte:· 21 m011i:.hs. At s..i.te B, the 

pressure reached 75% of the o·Terb•..:.Td.en presst1.re after 6 years. 



iii) Observations on a tunnel driven in blue London Clay • 
. ~Skempton, 19L-3 

This experiment 1.-1as pel·formed in a tunnel driven in blue U:l.ndun 

Clay. The tunnel lining was a cast-iron type, and of the cross section 

as shown in Figure 93· The tunnel was 12 ft internal diameter, a'l.d 

its axis level \"Je.s 109 ft below the street level. T'ne experiment was 

concerned only with the measurement of the stresses developed in the 

lining by the earth pressure around the tunnel. Two sets of instruments, 

each consisting of three \o/hittemo1·e strain-gauges, 'derc established in 

the positions shown i...'1 Figure 93. 'l'he location:; of the observation 

points .,.,ere 2 feet to the right and the left of the crown. The 

measurements began ten days after ar.. adjacent tunnel - 5 feet bet;.-;een 

the external diameters - had been driven past the ring in =luestiou. 

The experiment results in the conclusion that the clay was 

sufficiently plastic to exert its full weight on the twmel, ar..d a 

two weeks time period being required for the full pressu:::-e to be 

developed. Figure 92 illustrates the pressure-tim~ curve. 

iv) Summary 

The results of the experiments mentioned before a.re listed together 

with the results of the field experiment in question in Table 13. 

9? 
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Table 13 Comparison between the Experiment-results. 

I Tur ..... ·.J.el depth! Internal,No. of segments! Mat .. _1 Experiments Soil Time required 
( ) d. t .. th . er~ct 

I crown ~arne er ~ e r~ng. for pressure 
m m development 

! I 

l Ter:z.aghi. 
I r 

~~icago ! 7.50 7-50 0 1 welded 5 years 
~42) lay I steel 

I I I War:d II.on.d.on j1- 24.095 3.889 6 I cast-iron 3~ years 
(1965) 

I 

jClay I 
I I concrete 

I 

I 2- 25-925 3-812 14 21 months 
I I 1 ~- 16.775 I 

2.135 6 cast-iJ.~on 6 years 
I 

I I 
Skempton !Blue I 

I 
( 1943) ji.ondon 1 31 • 00 3.66 6 cast-iron 14 days 

IClay I 
. I I I 

'The experimen~ Laminated 
1 

11.77 2.90 6 concrete 8 days 
in question clay and 

j stiff 12 39 2.90 6 I concrete 8 days L ________ ._:tony clay • I I 
I 

- ; 

I 
I 

I 

• -- I - "'"'P."""II!••"PN'• 

l"leasured Pressure 
Overburden Pressure 

100% 

100% 

65% 

75% 

100% 

51% 

52% 

l 1 

% Notes I 
I 

I 

! 

lat spr~e; 
level I 

II I I 
I I 

l II 

I at the I 
I crown I 

at the I 
crown I 

~ 
-.!) 



CHAPI'ER 5 

Theoretical study....2£. the effect of lining~ 

stiffness on the distribution of thrust and 

bending moment in the lining. 

5.1 Introduction. 

One of the most interesting problems that faces structural engineers 

during the design of tunnels is -the estimation of the magnitude and 

distribution of the total pressure - that is, the effective earth pressure 

and ... rater pressure - to which these tunnels \oJi.ll be subjected after 

construction. 

The magnitude of the earth pressure is in general independent of the 

stiffness and time of installation of the tunnel lining; only the 

distribution of the earth pressure is directly influenced by the lining 

stiffness. Accordingly, the magnitude a.·1el the distribution of thrust and 

bending moment throughout the lining are directly affect~d by th~ stiffness 

of the lining relative to that of the surrounding soil. 

The ttmnel linings can be classified according to their relative 

stiffness into three types. These are: essentially rigid, essentially 

flexible, and semi-flexible or semi-rigid linings. Fach type will be 

separately discussed subsequently. 

5.2 ~id linLTJ.g. 

The lining is said to be rigid if it deflects insignificantly under 

the effect of the outer soil pressure, that is, there is negligible soil-

lining interaction. In t.~)is case the lining is considered to be subjected 

100 
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to the earth pressures distribution as shown :in Figure 94~ 

According to this pressure diagr91!1, the maximum bending moment 'l-'I' 

and the thrust 'T' in the tunnel-lining are given by (Peck, 1972): 

M = ! 1/4 YH (K -1)R2 
• 0 ' 

T(spring line) = Y H R 

ru1d T(invert & crown)= K Y H R. 
0 

5·3 Flexible Lining. 

The lining is considered to be flexible if it fully interacts with 

the surrounding soil in such a way that the final pressure distribution 

acting upon the lining is nearly uniform. 

In this case the lining must be designed to withstand th.e thrust 

resulting from the outer pressure together with the bending moments 

resulting from the lining deformation, which latter can be estimated from 

experience (usually in the range of~). The structural section of the 

lining must be checked against budding, and this can be at-tained, i.."l the 

case of soft clays, by ensuring that the overburden pressuJ:·e Y H is less 

than 3 EI~, where, 

E = Yotmg's modulus of the linL"lg material, 

I = moment of the lu1il1g-structural section, 

and R = mean radiu:::: of the lining. 

Semi-flexible or semi-rin:id lir.dn~. 
~~~~~~~~~~----~---------~ 

The lini11g is knovm as a semi-flexible or semi-rigid lining if it 

has an intermediate flexibility eompared with the tvto earlie:r·-d~.scussed 

extremes (the flexible UUQ the rigid l~~ning). 
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.Fig-..trt) 94- l1.'enst'II'e d:i.strihntion one. risi.d lini.ng. 

102 



103 

In this study, two quantita.tive methods to determine the relative 

flexibility of the tunnel lining of intennerUate rigidity, as suggested 

by Burns and Richard ( 196~.) and Peck ( 1972), are presented. 

IJ.111e method suggested by Bums and Richard ( '1964). 

In this method the tunnel-soil combination is considered as an elastic 

cylindrical shell embedded in an elastic medium. A structural analysis 

was made for the suggested system. Figure 95 illustrates the straL~ing 

actions imposed upon the shell a."ld upon the medium. In this anel.lysis, the 

effect of a surface over-imposed load P only is considered. · The ~lysis 

is applicable only to deeply buried conduits since the over--imposed load 

is considered to be aeting at infinity in the derj:tation. 

According to this method, a.YJ.y shell medium combination could be 

identified by the follo\·ling parameters: 

i) for the medium: 

a) the constrain modulus H 
E' ( 1 -»') = (1 + ,b' I )'"{1 - 2]J') 

b) the lateral stress ratio K 
J/' = 1 -J) I 

ii) for the shell: 

a) the radius R; 

b) the circumferential extensional stiffness/unit length EA.; 

c) the cjicumferential bending stiffness/unit length EI. 

In these expressions, E 1 is the modulus of elasticity an.dJ' 1 is the 

Poisson's ratio of t.he medium, E is the modulus Qf elasticity for the 

shell and A, I are the area a.r.rl the moment of inertia cf the shell section 

per w1i t. length respectively. 
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From these parameters, the following non-dimensionalized }Jcir3.meters 

and non-dimensionalized constants may be found: 

i) The non-dimensionalized. !J8.ra':1eters: 

a) B ~( 1 + K) 1 ( 1 ) = = "'l .. 1 -)/' I 

b) B = ~(1 - K) = 1 c.:!...::... 2J)') 
2 ?. 1 -J,J I 

The compressibility ratio C = (1 + K) H R 
E A 

d) The flexibility ratio F = (1- K) ~-o E J. 

ii) The non-dimensionalizecl con3ta.nts: 

a) 

b) 

c) 

a = 

a.' = 

au = 

(C - 1 )/(C + B j'""B ) 
1 2 

(2F - 1 )/(2F - 1 + 3/B 
1

) 

The structural analysis shoi·/ed that the stress distributior, and 

displacements throHshout the system are infJ.uencE:d by the foJ.lo11r.Lng 

governing parameters~ 

i) The circumferential extensional flexibility of the metiium relative to 

that of the shell ( compressibility ra.tio, C). 

ii) The circumferential bending flexibi_lity of the medium relative to 

that of the shell (flexibility ratio, F). 

iii) The tangential slippage of the shell relative tc the medium at the 

shell-med.iwn i."lter!r-tce. 

'I·"•o conditions v1ere considered in the analysis: the full slippage and 

non-·slippage condition. Since the shear stresses c..t the shclJ.-r:Jedium 

i."lterface (for most of the cases) are relatively high, the case of full 

sli~opage only viill be con~idered. 
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Acc::>rding to the analysis, the stresses and displacements in 

the medium are given by the following equations: 

(a) the ra.ciial stress 

cos 2•6 J , 

(d) the radial displacement U 

= ~ l [1+a(B_1;B2)(R/r)2J 

(e) ancl the tangent::Lal displacement V 

= ~{[1 +a' (R/r) 4 +a" (2B1/B)(R/r)
2

] sin 2~}. 

The strflsses <:md displacements :Li.1. the shell may be obtained by 

settj~g r = R in the equations as follcws: 

(a) the radial stress Pr • P {a 1 (1-a]- B 
2 
~ + 3a' - 4a"] cos 2fj , 

(b) the radial displacement w = ~ t (1 + a ( B 1/B)J - G - a' +2a"fB1] cos ze}, 

(c) the tangential displacement V = t~{[_F + C(B2/2B1 )] [1 + 3D.' - liB"] si."'l 26}. 

Figo..~r.: 96 represents graphically the afore mentioned equations. 
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The method suggested by P.'!ck ( 1972): 

According to this method, the stiffness of the lining relative to 

that of the soil meditnn may be quantitatively evaluated by two parameters: 

the compressibility ratio and the flexibility ratio. The compressibility 

ratio is a measure of the extensional stiffness of the medium relative to 

that of the lin:ing., vthere the extensional stiffness is the measure of the 

·equal uniform pressure necessary tc cause unit diametral strain of the 

lining without any change in shape (see Figure 97). On the other hand, 

the flexibility ratio is a measure of the flexural stiffness of the medium 

relative to that of the lining, where the flexural stiffness is a measure 

of the magnitude of the non-uniform pressure (see Fisure 98) necessary 

to cause unit diametral strain which results in a change L~ shape, or an 

ovaling of the lining. The compressibility ratio C and the flexibility 

ratio F. are given by the following expressions: 

c = 

and 

F = 

E'/(1 + ll' )(1 - 2p') 
. ') 

Et/(R('I -.v'-)) 

E'/ (1 +J.J') 

6EI/(~( 1 - J.})) 

where E' andJJ' are the Young's modulus and Poisson's ratio of the soil 

medium respectively, and E,ll, R, t and I are the Young's modulus, Poisson's 

ratio, radius, thickness a~d moment of inertia of the tunnel lining 

respectively. 'I~"le equations derived by Bu:rns and Richard ( 1964) -

mentioned earlier .i.."l. Section 5.2 - can be easily modified to give the 

thrust, bending moment, a.ud displacement at any section in tile lining for 

any values of coefficient of earth pressure K • 
0 

The following equations 
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give the values of the thrust, bending moment, and d:i.splacement 

at the cro\·m and at the spri:agline of a deeply-buried tunnel lining: 

a) For the crown or i.!wert: 

1 { (1 + K
0

) b
1 

1 
- Ko) b2 } T = 2 -- (1 Y H R 

c 3 

M 1 (1 - K
0

) c
2 

Y H R 2 
= b c J 

w 1 y H R 
[ ( 1 - ).1') (1 + K ) b1C + ~ 1 -.v' ( 1 - ~ 0) b 2F} • = 2 c M 0 1 - 2J)' 

b) For the s;Eringline: 

T = i! (1 + K ) b1 +.1 ( 1 - K
0

) b
2

} y H R 
s 0 3 

1 K ) Y H R2 M =-r( 1 b2 ' s 0 0 

w i Y H R I <1 -v'H1 + K ) b1C 2 ~·-· (1 - K ) b
2 

F} . = --s J.1 0 3 1 - 2v' n 

where 

b1 = 1 - a1, 

b~ = 1 + 3a2 - 4a'Z, 
~ J 

and (1 2 J)') (C 1) - -a,. = 
I (1 2p I) c + 1 -

2F+ 1 - 2J)I 
a2 = 

2F + 5 - 6.)) I 

2F- 1 
a3 = 

2F + 5 - 6;;' 

In these equations, 

y = unit '1-Teight of soil, 

H = height to centre of tunnel, 

and R = the mean radius of the tunnel. 
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These equations are graphically expressed in Figures 99, 100 and 

101 for t\\'O values of K (0.5 and 2.0). 
0 

According to the above 

equations, the thrust is influenced by both the ccmpressibility ratio 

and the flexibility ratio. Figure 99 represents the Ulfluence of both 

the compressibility ratio C and the flexibility ratio F on the thrust 

coefficient (T/Y H R). This Figure shov:s that for a given value of F, 

the thrust coefficiP~t decreases as C increases, and for a given value 

of C, the thrustl:i at the crown and the springli.'"le become nearly identical 

as F increases. On the other hand, the moment is influenced only by the 

flexibility ratio and not by the compressibility ratio. The relation bet111een 

the moment coefficient (M/ Y H R2) and the flexibility ratio is shown in 

Figure 100. Figu.r·e 101 shows the variation of the diametral cha!'l.ges 

vlith the flexibility ratio. Th:L.s Figure indicates that for flexibility 

ratios greater than 10, the diametral ch~~es reach a constant value, a~d thus 

the d.eforii'.ation i..TJ. the lining is independent of the lining strur.;tu:cal 

properties but is governed by the mecrdL~i~8i ct~xacteristics of the soil. 
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Clif\.Pl'EH 6 

Sill>IHARY AND CONCLUSIONS 

6.1 Swnmary 

A programri!e of \-JOrk has bee.""! instituted \·lith the object of 

designing, cons"trw::ting and calibrating a type of earth pressure 

cell and using it in t\-10 field experiments for the measurement of 

tunnel lli1ing-soil interaction pressure. Six pressure cells \<!ere 

developed for each experiment, the details of the design, construction 

and calibratiou of these cells beLTlg discussed in detail in Chapter 2 

of the thesis. 

'l'wo field experiments were carried out for measuring the radial 

contact pressures arou.'l.d the lining of a tunnel in mixed 'soft' ground 

(stony clay, laminated clay) on the north bank of the ri,er Tyne i.'1. 

north east Englar!d, as shown in Figures 1 and 2. The d~formations 

of the tunnel lining we!"e measured using a dial gauge measuring beam 

of 0.01 mm sensitivity. Details of the field mea.surements, installation 

and data recording are given in Chapter 3. 

In Chapter 4, technical analysis of and discussion on the derived 

data are presented. 

may be dra\om.. 

6.2 Conclusions 

Resulting from this study, several conclusions 

1. The lining-s•)il L'lte!·actiou pressure has a nearly ur1iform final 

distribution about the tunnel cross-section. 

2. The value of the developed pr·essure at the tunnel cro\oftl. is nearly 

one-half the value of the overburden pressure as calculated on the 
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basis of soil density mult:i..plied by depth .f.rom ground surface 

to the point of measureme2t jnterest. 

3. The rad~al contact pressure around the tun.nel lin~g reached 

a constant level after a period of 7-8 days following lini.ng 

erection and grouting. 

4. The measurement of the deformation r•f the tunnel lining showed 

that, under the conditions pertaining, the ma.."'Cir.m ... rn change in the 

vertical diameter was 1-30 mm (0.041%), the maximum change in the 

horizontal diameter \·las 0.88 mm (0.027%) 1 and the deformation 

reached a constant valu~ 7 days after lining installation. 

5. We may conclude from this evidence that it is possible, under 

115 

the conditions as specified, to begin the building of the secondary 

brick lining 6 \-!eeks following the erection of the segml3ntal r;on.crete 

primary lining since there appears to be no facility for further 

significant deformation after this period of time. This conclusion 

is of special interest when, at the present time, the contractor 

j_s required to hold-off construction of the secondary lining for a 

substan.tial period of time. This may requ;re off-site -r-emoval of 

pla...""lt following primary construction, the plant then having to 

return later for secondary lining construction at greater cost 

ultimately to the client. 

operations are ob·-fious. 

The practical advantages of continuous 
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APPENDIX A 

Theories taking the effect of tunnel depth inco.consideration 

This group will be represented by hio theo:!"ies; Bierbliuiner 1s 

theory and Terzaghi 1 s theory. 

1. Bierbllwner 1 s theory 

According to this theory, the tu..11nel lini.11g ioiill be acted upon by 

a pressure 11P 11 , equivalent to the .weight of the soil ma.ss bounded by a 

parabola of height h =co( H, as shovm in Figure A 1. 'l'he reduction factvr 

1 cot. 1 could be determined by the follO\·r.i.ng method. 

It is assumed that the: soil r.iass, a:ter the excavation of the twmel, 

0 

tends to move along sliding planes aa
2 

and bb
2 

L~clL~ed at 45+ ¢/2 w~th the hori-

zontal. 'l'he plane ab at the crown of the tw1n.el is acted upon by the l'ieight 

of the sliding mass aa, bb, which is counteracted by "t-...10 forces of friction 

along the vertical planes aa, and bb, equal to 2~. 'lrnus the net J.oc=.d at 

the pla11e ab could be given by the follo'\·d.ng e:;.-pi~ession: 

and the pressure Pis given by: 

where 

p = P/B = yR i 1 _ tan tJ t.:u:t
2

( L-5 - ~/2)H 1 
b + 2httan (45 - l/2) 

= -<. y H 

1 
2 

tan ¢ ta...'1 ( l:..5 - r//2) H 

b + 2htt~'1(45 - l/2) 

The reduction factor -<. has two limi tiJ1g values; fer e-rnall depths ol~ = 1 

and for great depths ( H.) 5B) the effect of depth on the vF:.lue uf ~ uecomes 

insignificant and its value. is given by co< = ta..11 4(/-t5 - l/2) 
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2. Terzaghi's pressure theory 

According to this theory, the pressure: 110' v" acting upon th·e turu1el 

crown is evaluated according to the follo\·ling procedure: 

Figure A2 represents the pressure diagram suggested by this 

theory (after Terzaghi 1946). The movement ofU1.esoil mass is assumed tc 
. . 

take place along two planes of rupture inclined a.t 45+ r//2 with the 

horizontal,st.art:i.ng from the level of the tunnel invert to the level of 

the tunnel cro~,om, then it continues along the h.ro vertical planes aa
1 

and.bb
1
• 

The stability of a soil prism of width B and height dz at a depth 

z from the soil surface is considered. The equilibrium of tho:; forces 

acting un this prism may be expressed as follows: 

. ' 

B dz Y = B(O' 
v 

dO' ) - B 0' + 2 T dz 
v v 

where B = 

y-

T = 

= 

= 

b + 2 ht tan (45 - r//2) 

the soil unit weight 

shearing force along the planes of failure 

c + O'h tan rl 

c + K e1 tan rl 
v 

Substituting in equation 1 we get:-

B Y dz = B(c- + dO' ) - B e1 + 2c dz + 2K e1 dz tru1 r1 v v v v 

d ()' 
v = 2c t~~ ¢ 

y - - B - 2K C1 v :3 
dz 

1 

2 

By solvin.g this differential equation and by considedng the boundary 

condition e1 = q at z = 0 \ve get : 
v 
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z-- ::-: c to t~ul JJ 
.X 



i• C• 

a = v 

B( ~ - ~ ) 

K tan; { 1 - exp (-K tan ~ ~~ >} + q exp (-K tan ~ 2~) 

for·a tunnel at a depth 'H' the soil pressure 11? 11 is given by 
v 

p 
v 

B<r - ..£> r. l 
= 2 

B l1 - exp ~ -K tan ¢ ~H ) J + q 
K tan~ 

( .J 2H ) exp -K tan JU B 
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APPENDIX B 

.Theories neglecting the effect of the turLDel depth. 

This group is represented by two th.eories; the Kommerell theory 

and the Protodyakonov theory. 

1. Kommerell theory. 

i'his theory is considered to be one of the approximate methods \llhich 

gives a quick idea about the soil-structure interaction pressures. 

According to this theory,the height "h" of the soil mass loaded on the 

structure is determined from the deformation "e" of the supporting 

structure, and . is given by the follo~dng relation: 

h = •)00 e/c ..... 
'• 

where 5 is the loosening coefficient of the surroundL,g soil. 

Values of 5 are given in the Table belo\11: 

pescription 

Loose. granular soil 

Moderately cohesive soil 

Cohesive soil 

Soft rocks 

Solid rock 

ll.. 
1-3 

3-5 
5-8 
8-12 

10-15 

The pressure diagram suggested by Kommerell is illustrated in 

1 

Figure B1. According to this diagra.In~ the structure is loaded by a total 

load 11P11 equ~l to the weight of a soil mass, bounded by a half ellipse of 

height "h". 

The equation of the :')llipse is given by: 

2 
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From equations 1 and 2 we get 

2 lf/ X 1 + = 
b2 (100e) 2 

and the total load liP II is given by 

p = iY 1: b h = 50 y r: b e/6 3 

and the pressure is given by 

p = 25 'Y n e/5 • • • • • lt 

· 2. Protodygkonov 1 s theory. 

This is the most popular theory adopted for the construction of 

·the underground structures in the U.S.S.R. Figure B2 represents the 

pressure diagram proposed by Protodyakonov. According to this theory 

the development. of a parabolic arch ACB on the structure is assumed. 

Thus, the stresses along this arch are purely compressiv'3 (no bending). 

Considering the equilibrium of the part CD \·Jhich is subjecteli to the 

forces 11T 11 the horizontal fo:"r::e at C, 11PX11 the vertical pressure, and 

"R" the tangential force at D, and by taldng mome...TJ.ts about D, we get: 

= 0 

.1. 2 
••2PX =Ty ..... 1 

The resultant force "R" acting at tha arch support A can be resolved 

into t\-ro components V and H, as shown in Figure B2. The relationship 

between the vertical compon-::nt V and the horizontal component H, taking 

the effect of the shear stress '1." into consideration, is give.11 by 

H = fV ~· Th 

\oJhere f, the coefficient of internal friction = tar. ~ , and V, the vertical 

component at A-B level = p b • 

• 
• o H fpb -Th .... " . 2 



From equations 1 and 2 we get 

~ p b2 = { f p b - 'th } h 

p b t 2fh - b J 3 't = 2 
2h 

The height 1h' of the developed arch is obtained by d.:i .. fferentiati.ng 

equa t:i.on 3. This \..rill cover the condition that h :is developed with the 

maximum value of "L"", whence 

d't/dh pb t b - fh = 
h3 

There!'ore h = b/f 

From equations 3 and 4 we get 

1 2 
'!' = 2- PI 

1.= 0 

and by substituting in equation 2 \ole have 

T = fpb - ~ pbf = ~ pbf 

..... 4 

5 

6 

Substituting in the equation 1 we drive the equation of the parabola 

as 

y = 2/b~ X I 

The total load/tmit length of the structure 11P11 equals the weight 

of the soil mass bounded by the parabola: 

p = 

= 

.!tbhY 
3 

l~ "( b
2
/ 3f 

whence the pressttre at A-B level is given by 

N.B. 

Pv = 2 y b/3f 

uhere Y = 
f = 

unit \'Ieight of the soil 

tan~ 

This theory has been developed for granular non-cohesive soil (sand), 

r.•1t it could be applied to cohesive soils and rocks ~y using the values 
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of the empirical coefiici8nt 11f 11 proposed by Protodyakonov as a 

result of experiments and practical experience. The values of the 

coefficient "f" (knmm as the strength coefficient) are tabulated in 

Table 14. 
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Cru;hing 
Strcnglh Sll"englh Unil·Y•ei{!ht slren&lh 

grade Dcno:.tliun ur I"OCk ~sui I) 
(kgim'J a, COt{J. 

(kg:cm'J 'f' . 
Highest Solicl. rtense quanzite. basalt and 2800 :woo 20 

otho:r .;olid rocks of exceptionally 3000 
high strength 

Very high Snlid. granite. quanzporphyr. silica 2600-2700 1500 15 
sh:1h:. 1-ligl::y rc.:sistive samlstones 
and limestOnes 

High Granite and alike. Very resistive 2500-2600 1000 10 
s:md- and limestones. Quartz. 
Solid conglomerates. 

High Limestone. weathered granite. 2500 800 8 
Solid sandstone, marb!c. Pyrites. 

Moderillely Normal sandstone 2400 600 6 
strong 

:\lodc~ately Sandstone shales 2300 .500 s 
strong 

Medium Clay-shales. Sand- and limestones 2400-2800 400 4 
of smaller rcsistanco:. Loose 
conglomerates 

Medium Various shales and slates. 2400-2600 300 3 
Dc:nse marls. 

Modcratdy Loose shale and very loose lime- 2200-2600 200-150 2 
loose Slone. gypsum.frozcn ground.Com-

man marl. Blocky sandstone, ce-
mcnted gravel and boulders, ~toney 
ground 

Moderately 

I 
Gra\·clly pound. Blocky and i1s- 2200-2400 I - I·S 

loo~e surcd sh:1le, compre~.ied bouidcrs 
and gravel. han! day. 

loose Dense day. Cohc•ivc b:1llast. 2000-2200 - I J·O 
Clayey ground. 

Loose Loose loam, ioess, gravel. iS00-2000 - 0·8 

Soils Soil with vegetation, peat, 1600-1800 - 0·6 
soft loam, wet sand. 

Granular Sund, fine grnvcl, upfill 1400-1600 - o·s 
soils 

Pia~ tic Silty ~round, rnodi!!cd loess and - - 0·3 ., 
01hcr soils in !iquid c.Jndilioa SOirS 

I ~ 

Tuble 14 Sh"'el1Sth coefficbnt '!''( aftGr Protodyllko:1ov ). 
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