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Abstract The LHCb bounds on the branching ratio of the
rare decay D0 → μ+μ− and the constraints on the branch-
ing ratio of D+ → π+μ+μ− in the nonresonant regions
enable us to improve constraints on new physics contribu-
tions. Using the effective Lagrangian approach we determine
the sizes of the Wilson coefficients allowed by the existing
LHCb bounds on rare charm decays. Then we discuss con-
tributions to rare charm meson decay observables in several
models of new physics: a model with an additional spin-1
weak triplet, leptoquark models, Two Higgs doublets model
of type III, and a Z ′ model. Here we complement the dis-
cussion by D0–D̄0 oscillations data. Among the considered
models, only leptoquarks can significantly modify the Wil-
son coefficients. Assuming that the differential decay width
for D+ → π+μ+μ− receives a NP contribution, while the
differential decay width for D+ → π+e+e− is Standard
Model-like, we find that lepton flavor universality can be
violated and might be observed at high dilepton invariant
mass.

1 Introduction

Processes with charmed mesons and top quarks offer an
excellent opportunity to search for new physics (NP) in the
up-type quark sector. In contrast to B meson physics, which
is convenient to search for NP due to good exposure of the
short-distance effects, charm quark systems are dominated
by large long-distance quantum chromodynamics contribu-
tions. Such effects then screen the short-distance contribu-
tions of interest. Within the Standard Model (SM) the short-
distance physics in rare charm decays is strongly affected
by the Glashow–Iliopoulos–Maiani (GIM) mechanism [1].
Namely, box or penguin diagram amplitudes get contribu-
tions from down-type quarks which are approximately mass-
less from the weak scale perspective, and this warrants a very
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effective GIM cancellation. Flavor changing neutral current
(FCNC) processes with charm mesons might change charm
quantum number for two or one unit (|�C | = 2 or |�C | = 1
transitions). The |�C | = 2 transition occurs in D0–D̄0 oscil-
lations and leads to strong constraints on NP from the mea-
sured observables as pointed out in [2,3]. There are two
possibilities for NP in the |�C | = 2 transition: the tran-
sition might occur at tree level, in which case a new neutral
scalar or a vector boson possesses FCNC couplings to u and
c quarks, or at loop level via NP degrees of freedom affect-
ing the box diagrams. The processes with |�C | = 1 on the
quark level are c → uγ and c → u�+�− [4–9]. Both transi-
tions can be approached in the familiar effective Lagrangian
formalism [3]. Additional constraints on NP arise from the
down-type quark sector whenever new bosons couple to left-
handed quark doublets [10,11]. Since NP is very constrained
by the current experimental results coming from B and K
physics [12] the only chance to observe NP in rare charm
decays seems to be when new bosons are coupled to weak
singlets. This then allows one to avoid the strong flavor con-
straints in the down-type quark sector.

On the experimental side the LHCb experiment succeeded
to improve the bound on the rates of |�C | = 1 decays
by almost two orders of magnitude with respect to previ-
ous bounds. For the dileptonic decay the best bound to date
is [13]

BR(D0 → μ+μ−) < 7.6 × 10−9. (1)

The above limit as well as other quoted limits in the fol-
lowing, unless stated otherwise, correspond to the 95 % CL
upper bounds. In the decay D+ → π+μ+μ− the LHCb
experiment focused on kinematic regions of dilepton mass,
q2 = (k− + k+)2, that are below or above the dominant res-
onant contributions due to vector resonances in the range
m2

ρ � q2 � m2
φ . The measured total branching ratio,

obtained by extrapolating spectra over the resonant region,
is [14]

BR(D+ → π+μ+μ−) < 8.3 × 10−8, (2)
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while separate branching fractions in the low- and high-q2

bins were bounded as [14]1

BR(π+μ+μ−)I

≡ BR(D+ → π+μ+μ−)q2∈[0.0625,0.276] GeV2 < 2.5 × 10−8

BR(π+μ+μ−)II

≡ BR(D+ → π+μ+μ−)q2∈[1.56,4.00] GeV2 < 2.9 × 10−8.

(3)

Motivated by these improved bounds we consider several NP
models and either derive constraints on their flavor parame-
ters and masses, or for the models that are severely bounded
from alternative flavor observables (e.g. D0–D̄0 mixing, K ,
or B physics), we comment on the prospects of observing
their signals in rare charm decays. To this end, we use the
effective Lagrangian encoding the short-distance NP con-
tributions in a most general way. Namely, the experimental
results (1) and (3) give us a possibility to constrain NP in
c → u�+�− also in a model independent way.

In the case of b → s�+�− transitions, LHCb has
recently observed a large departure of the experimen-
tally determined lepton flavor universality (LFU) ratio
RK = BR(B → Kμ+μ−)q2∈[1,6] GeV2/BR(B → Ke+
e−)q2∈[1,6] GeV2 from the expected SM value [15]. This value

was found to be RLHCb
K = 0.745+0.090

−0.074 ± 0.036, lower than
the SM prediction RSM

K = 1.0003 ± 0.0001 [16]. This sur-
prising result of LHCb indicates possible violation of LFU
in the μ–e sector. Due to the importance of this result, we
investigate whether analogous tests in the μ–e LFU can be
carried out in c → u�+�− processes.

The outline of this article is as follows. In Sect. 2 we
describe effective Lagrangian of |�C | = 1 transition and
determine bounds on the Wilson coefficients coming from
the experimental limits on BR(D+ → π+μ+μ−) and
BR(D0 → μ+μ−). Section 3 contains an analysis in
the context of specific theoretical models of new physics,
contributing to the c → u�+�− and related processes.
Section 4 discusses lepton flavor universality violation.
Finally, we summarize the results and present conclusions in
Sect. 5.

2 Observables and model independent constraints

2.1 Effective Hamiltonian for c → u�+�−

The relevant effective Hamiltonian at scale μc ∼ mc is split
into three contributions corresponding to diagrams with inter-
mediate quarks q = d, s, b [9,17]

1 Note that the high-q2 bin quoted by the experiment extends beyond
the maximal allowed q2

max = (mD − mπ )2 = 2.99 GeV2.

Heff = λdHd + λsHs + λbHpeng, (4)

where each of them is weighted by an appropriate combina-
tion λq = VuqV ∗

cq of Cabibbo–Kobayashi–Maskawa (CKM)
matrix elements. Virtual contributions of states heavier than
charm quark are by convention contained within

Hpeng = −4GF√
2

∑

i=3,...,10

CiOi . (5)

The operators appearing in the above Hamiltonian have thus
enhanced sensitivity to new physics contributions:

O7 = emc

(4π)2 (ūσμν PRc) F
μν, OS = e2

(4π)2 (ū PRc)(�̄�),

O9 = e2

(4π)2 (ūγ μPLc)(�̄γμ�), OP = e2

(4π)2 (ū PRc)(�̄γ5�),

O10 = e2

(4π)2 (ūγ μPLc)(�̄γμγ5�), OT = e2

(4π)2 (ūσμνc)(�̄σ
μν�),

OT 5 = e2

(4π)2 (ūσμνc)(�̄σ
μνγ5�).

(6)

The chiral projectors are defined as PL ,R = (1 ∓ γ5)/2,
Fμν is the electromagnetic field strength tensor. For each
of the operators O7,9,10,S,P we introduce the corresponding
counterpart O′

7,9,10,S,P with opposite chiralities of quarks.
Within the SM the Wilson coefficients Ci result from the
perturbative dynamics of the electroweak interactions and
QCD renormalization. The latter effect determines the value
of C7(mc) by two-loop mixing with current–current oper-
ators and was found to be V ∗

cbVubC
SM
7 = V ∗

csVus(0.007 +
0.020i)(1 ± 0.2) [4,8]. On the other hand the value of the
C9 Wilson coefficient was found to be small after including
renormalization group running effects, as shown in [7] and
confirmed in [6], while C10 is negligible in the SM [18].

2.2 D+ → π+μ+μ−

In order to analyze NP effects in D+ → π+μ+μ− one needs
to evaluate the hadronic transition matrix elements of cur-
rents ūγμPL ,Rc and ūσμν PL ,Rc. The standard parametriza-
tion expresses these matrix elements in terms of three form
factors:

〈π(k)|ūγ μ(1 ± γ5)c|D(p)〉

= f+(q2)

[
(p + k)μ − m2

D − m2
π

q2 qμ

]

+ f0(q
2)
m2

D − m2
π

q2 qμ, (7)

〈π(k)|ūσμν(1 ± γ5)c|D(p)〉
= i

fT (q2)

mD+mπ

[(p+k)μqν −(p+k)νqμ ± iεμναβ(p+k)αqβ ],
(8)
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where q = p − k is the dilepton four-momentum. For the
f+,0(q2) form factors we use the Bečirević–Kaidalov (BK)
parametrization [19]:

f+(q2) = f+(0)

(1 − x)(1 − ax)
, x = q2/m2

pole,

f0(q
2) = f+(0)

1 − 1
b x

,

(9)

with the shape parameters mpole and a determined by mea-
surements of D → π�ν decay spectra. We make an average
of four experimental fits to the shape parameters, by tak-
ing as input the CLEO-c tagged [20] and untagged anal-
ysis [21], BES III [22], and Babar [23] results, all com-
piled by the HFAG [24]. The fitted shape parameters are
mpole = 1.90(8) GeV and a = 0.28(14). For the nor-
malization of the form factor we rely on the lattice result
f+(0) = 0.67(3) calculated by the HPQCD Collabora-
tion [25]. The shape parameter b = 1.27(17) has also been
extracted in lattice simulations [26]. For the tensor current
form factor we rely on the fit of lattice data to BK shape as
in [26]:

fT (q2) = fT (0)

(1 − x)(1 − aT x)
, (10)

where x = q2/m2
D∗ , fT (0) = 0.46(4), and aT = 0.18(16).

Based on the effective Hamiltonian (4), the most general
expression for the short-distance amplitude can be written
as [27]

ASD(D+(p) → π+(p′)μ+(k+)μ−(k−))

= iGFλbα√
2π

[V ū�pv + A ū�pγ5v + (S + T cos θ)ūv

+ (P + T5 cos θ)ūγ5v].
Here θ is defined as the angle between the three-momenta
of B and �− in the rest frame of lepton pair whereas
V, A, S, P, T , and T5 are q2-dependent functions expressed
in terms of hadronic form factors and Wilson coefficients,

V = 2mc fT (q2)

mD + mπ

(C7 + C ′
7) + f+(q2)(C9 + C ′

9)

+ 8 fT (q2)m�

mD + mπ

CT ,

A = f+(q2)(C10 + C ′
10),

S = m2
D − m2

π

2mc
f0(q

2)(CS + C ′
S),

P = m2
D − m2

π

2mc
f0(q

2)(CP + C ′
P ) − m�

×
[
f+(q2) − m2

D − m2
π

q2 ( f0(q
2) − f+(q2))

]

× (C10 + C ′
10),

T = 2 fT (q2)β�λ
1/2

mD + mπ

CT ,

T5 = 2 fT (q2)β�λ
1/2

mD + mπ

CT 5. (11)

We have employed a shorthand notation λ = λ(m2
D,m2

π , q2),
where λ(x, y, z) = (x + y + z)2 − 4(xy + yz + zx), as well

as β� = β�(q2) =
√

1 − 4m2
�/q

2. The decay spectrum can

be expressed in terms of q2-dependent angular coefficients
as

d�(D → π��)

dq2 d cos θ

= N λ1/2β�[a�(q
2) + b�(q

2) cos θ + c�(q
2) cos2 θ ],

N = G2
F |λb|2α2

(4π)5m3
D

, (12)

whereas the angular coefficients are

a�(q
2) = λ

2
(|V |2 + |A|2) + 8m2

�m
2
D|A|2

+ 2q2[β2
� |S|2 + |P|2]

+ 4m�(m
2
D − m2

π + q2)Re[AP∗],
b�(q2)

4
= q2β2

� Re[ST ∗] + q2Re[PT ∗
5 ]

+m�(m
2
D − m2

π + q2)Re[AT ∗
5 ]

+m�λ
1/2β�Re[V S∗],

c�(q
2) = −λβ2

�

2
(|V |2 + |A|2) + 2q2(β2

� |T |2 + |T5|2)
+ 4m�β�λ

1/2Re[VT ∗]. (13)

The coefficients a� and c� enter then the q2 distribution of
branching ratio whereas b� is proportional to the forward–
backward asymmetry:

dBR

dq2 (D → π��) = τD 2Nλ1/2β�

[
a�(q

2) + 1

3
c�(q

2)

]
,

AFB(q2) ≡
(∫ 1

0 − ∫ 0
−1

)
dcos θ

d�(D→π��)

dq2 d cos θ

d�(D → π��)/dq2

= b�(q2)

a�(q2) + 1
3c�(q2)

. (14)

Contributions of the vector resonances ρ, ω, and φ, decay-
ing to μ+μ−, is due to the first two terms in the effective
Hamiltonian (4) and electromagnetic interaction. Effects of
vector resonances to the spectrum can be treated assuming
naïve factorization by adding a q2-dependent piece toC9 that
contains the vector current of leptons. Analogously, the scalar
contribution of η feeds intoCS . The procedure is described in
detail in Ref. [28] for the contribution of D+ → π+ρ0(ω)

and updated for D+ → π+φ → π+μ+μ− in Ref. [26].
The current experimental upper bound outside the resonance
region indicates that the long-distance contribution is very
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suppressed. One might expect that at high invariant dilepton
mass bin some excited states of vector mesons might give an
additional long-distance contribution. However, it was shown
in [29,30] that contributions of these states are negligible in
comparison with the leading long-distance contributions. We
parametrize the resonances with the Breit–Wigner shapes,

C res
9 = λd

λb

[
aρ

m2
ρ

q2 − m2
ρ + i

√
q2�ρ

+ aω

m2
ω

q2−m2
ω+imω�ω

−aφ

m2
φ

q2−m2
φ+imφ�φ

]
,

C res
S = λd

λb

aηm2
η

q2 − m2
η + imη�η

. (15)

The magnitude of unknown parameters aX (X = ρ, ω, φ, η),
can be fitted to the measured resonant branching ratios,
given in Table 1 [31]. The corresponding values of |aX |
are given in the second row in Table 1. We treat the rela-
tive phases as free parameters. Alternatively, for the relative
phases and magnitudes of aX one can use flavor structure
arguments [18]. In the left-hand panel in Fig. 1 we present
the long-distance contributions to the differential branching
ratio for D+ → π+μ+μ− as a function of dilepton invari-
ant mass for a representative set of parameters |aX | from the
1σ region (Table 1) and random phases of aX . On the right-
hand panel in Fig. 1 we also indicate the interpretation of
experimental upper bounds (3) in the case where the total
amplitude would be constant, namely in the case where all
angular coefficient functions a�, b�, c� would be independent
of q2. We also estimate the saturation of these bounds by the

Table 1 1σ ranges and 90 % CL upper bounds on resonant branching
ratios and amplitude parameters [31]

X ρ ω φ η

BR(D+ → π+X (→
μ+μ−))[10−8]

3.7 (7) < 3.1 160 (10) 2.0 (3)

|aX | 1.21 (12) <0.26 0.94 (3) 0.27 (2)

total resonant decay branching ratio and find for the low-
and high-q2 bin contributions to be smaller than 7.3 × 10−9

and 5.3 × 10−9, respectively. On the other hand, the short-
distance contribution to the total branching ratio of the SM
due to the quoted value of C7 is of the order 10−12 and thus
negligible.

The branching ratio for D0 → μ+μ− can be written in
its most general form as

BR(D0 → μ+μ−)

= 1

�D

G2
Fα2

64π3 |V ∗
cbVub|2 f 2

Dm
3
Dβμ(m2

D)

×
[ ∣∣∣∣

2mμ

mD
(C10 − C ′

10) + mD

mc
(CP − C ′

P )

∣∣∣∣
2

+ m2
D

m2
c

βμ(m2
D)2|(CS − C ′

S)|2
]
, (16)

where the decay constant of a D meson, fD = 209(3) MeV,
has been averaged over N f = 2 + 1 lattice simulations [32–
34]. In the SM this decay is dominated by the intermediate
γ ∗γ ∗ state that is electromagnetically converted to a μ+μ−
pair. It was estimated in [9] that BR(D0 → μ+μ−) � 2.7 ·
10−5 × BR(D0 → γ γ ), and, together with the upper bound
BR(D0 → γ γ ) < 2.2 × 10−6 at 90 % CL [35], this leads to
the limit BR(D0 → μ+μ−)SM � 10−10.

3 Constraints on the Wilson coefficients

In this section we interpret the experimental bounds in kine-
matical regions I and II given in Eq. (3) as constraints on
benchmark scenarios with NP contributions affecting indi-
vidual Wilson coefficients. In the nonresonant regions of
D+ → π+μ+μ− the long-distance resonant contributions
are one order of magnitude below the current experimental
sensitivity. This allows us to saturate experimental results
for the differential decay width distribution at the low/high
dilepton invariant mass bins by the contributions of the effec-
tive Wilson coefficients. In Fig. 2 we show the kinematical
effect of setting to 1 individual Wilson coefficients one at

0.0 1.00.5 1.5 2.0 2.5
10−9

10−8

10−7

10−6

10−5

10−4

q2[GeV2] q2[GeV2]

dB
R
/d
q2

[G
eV

−2
]

dB
R
/d
q2

[G
eV

−2
]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

5.×10−8

1.×10−7

1.5×10−7

2.×10−7

Fig. 1 SM resonant contributions in D+ → π+μ+μ− shown in orange. On the right-hand side panel cyan regions correspond to a scenario with
constant decay amplitude that would saturate LHCb bounds (3)
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Fig. 2 Comparison of short-distance spectrum sensitivities to different
Wilson coefficients. Grey regions indicate the LHCb experimental low-
and high-q2bins

the time, where we have neglected the SM resonant contri-
butions. A strong kinematical dependence of spectra in the
cases of tensor and especially pseudoscalar coefficients sug-
gests they will be better constrained in the high- than in the
low-q2 bin. For EM dipole and (axial-)vector interactions the
enhancement at low-q2 bin is hindered by relatively smaller
phase space devoted to that bin.

We allow only one Wilson coefficient at a time to have
a real nonzero value and extract its upper bound. This is
repeated for each choice of random phases and moduli of the
Breit–Wigner parameters aη,ρ,ω,φ , where the latter are sam-
pled in their 1σ regions (90 % CL bound for |aω|); cf. Table 1.
The most relaxed bound obtained in this way is then reported
in Table 2, where we use the notation C̃i = VubV ∗

cbCi . At
the same time the branching ratio of D0 → μ+μ− can give
bounds on the Wilson coefficients C10, CS , and CP . It turns
out that the upper bound on BR(D0 → μ+μ−) is more
restrictive for the CS,P,10 Wilson coefficients than any of the
invariant dilepton mass bins of D+ → π+μ+μ−.

The high invariant dilepton mass bin is more restrictive
than the low dilepton invariant mass bin. Due to the parity
conservation in D → π transition the bounds for C̃ ′

j , j =
7, 9, 10, S, P are the same as for C̃ j .

In specific cases the angular distribution with respect
to cos θ can be a good discriminant between the resonant
and genuine short-distance contributions. It was shown that
the forward–backward asymmetry (FBA) can be enhanced
toward the larger end of the q2-spectrum in models with
tensor and scalar Wilson coefficients (or pseudoscalar and
pseudotensor) simultaneously present [36]. In principle such
a scenario can be realized by a nonchiral leptoquark to be
discussed in the following section. As a numerical exam-
ple we choose C̃S = 0.049, allowed by the D0 → μ−μ+,
and in addition C̃T = 0.2, which results in BR(D+ →
π+μ+μ−)II < 10−8 and is therefore hard to distinguish
from the resonant background. On the other hand, the FBA

Table 2 Maximal allowed values of the Wilson coefficient mod-
uli, |C̃i | = |VubV ∗

cbCi |, calculated in the nonresonant regions of
D+ → π+μ+μ− in the low lepton invariant mass region (q2 ∈
[0.0625, 0.276] GeV2), denoted by I, in the high invariant mass region
(q2 ∈ [1.56, 4.00] GeV2), denoted by II, and from the upper bound
BR(D0 → μ+μ−) < 7.6 × 10−9 [13]. The last row gives the maximal
value for the case where C̃9 = ±C̃10. All the quoted bounds have been
derived for real Ci . The bounds for C̃i apply also to the chirally flipped
coefficients C̃ ′

j

|C̃i |max

BR(πμμ)I BR(πμμ)II BR(D0 → μμ)

C̃7 2.4 1.6 –

C̃9 2.1 1.3 –

C̃10 1.4 0.92 0.63

C̃S 4.5 0.38 0.049

C̃P 3.6 0.37 0.049

C̃T 4.1 0.76 –

C̃T 5 4.4 0.74 –

C̃9 = ±C̃10 1.3 0.81 0.63

Fig. 3 Forward–backward asymmetry for the resonant background
itself (orange) and in the scenario with CS = 0.049/λb, CT = 0.2/λb
(cyan)

in this case is strongly enhanced in the high-q2 region, as
shown in Fig. 3.

We turn to the discussion of specific models in the next
section.

4 Impact on specific models

4.1 Spin-1 weak triplet

Introducing an additional vector particle that transforms as
a triplet under SU (2)L affects a plethora of flavor observ-
ables. It has been shown recently that a model of this type
explains the current B sector anomalies (RD(∗) , RK ) even in
the scenario with U (2)q ×U (2)� flavor symmetry [11]. The
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relevant effective Lagrangian that follows from integrating
out the vector triplet at tree level reads

L = − 1

2m2
V

Jaμ Jaμ, (17)

representing a contact interaction between vector currents of
left-handed quark and lepton doublets:

Jaμ = gqλ
q
i j (Q̄

iγμT
aQ j ) + g�λ

�
i j (L̄

iγμT
aL j ). (18)

The indices of λq and λ� denote the mass-eigenstates of
down-type quarks and charged leptons. The Hermitian matri-
ces λ

q,�
i j are conventionally normalized to λ

q
33 = λ�

33 = 1,
with subleading entries in λ3i , whereas entries involving only
the first two generations of quarks are severely suppressed.
This hierarchy is a direct consequence of the imposed fla-
vor symmetry. The dominant contributions to the processes
involving only the first two generations are induced by λ

q
bb

and accompanying CKM rotations. Following [11] for the
rare charm decays these are

LFCNC = gqg�

4m2
V

λ�
ab(VλqV †)i j (�̄

aγμPL�b)(ūiγμPLu
j ),

(19)

where the quark sector couplings originate dominantly from
the CKM mixing, namely (VλqV †)uc ≈ VubVcb∗. A purely
left-handed current effective interaction generates the fol-
lowing pair of Wilson coefficients:

− C10 = C9 = R0λ
�
μμ

π

α
, (20)

where R0 = (gqg�m2
W )/(g2m2

V ) is directly related to the
LFU τ/� ratio RD(∗) in semileptonic B meson decays whose
experimental value requires R0 = 0.14±0.04. The constraint
from τ → 3μ implies λ�

μμ = (0.013 ± 0.011)(0.15/R0)
gq
g�

,
while the constraint on the |�C | = 2 operators from CP vio-
lation in D0–D̄0 mixing results in the inequality g�/gq >

1.26R0. From these ingredients one can estimate the maxi-
mum value of C9,

C9 � 50
0.013 ± 0.011

R0
� 10, (21)

which is unfortunately too small to have a detectable effect
in D → πμ+μ− or in D0 → μ+μ−.

4.2 Leptoquarks

There exist several scalar and vector leptoquark (LQ) states
which may leave imprint on c → u�+�− transitions [37].
The possible scalar states transform under the SM gauge
group as (3, 3,−1/3), (3, 1,−1/3), and (3, 2, 7/6), of which
only the latter state conserves baryon and lepton number on

the renormalizable level. Thus the mass of the scalar multi-
plet (3, 2, 7/6) can be close to the electroweak scale with-
out destabilizing the proton. In addition, there are four vec-
tor LQs which potentially contribute in rare charm decays,
and they carry the following quantum numbers: (3, 3, 2/3),
(3, 1, 5/3), (3, 2, 1/6), and (3, 2,−5/6). Only the first two
states have definite baryon and lepton numbers.

Among all scalar LQs we will consider only the baryon
number conserving state (3, 2, 7/6), which comes with a rich
set of couplings that are in general severely constrained by
B and K physics [38]. Then, among the two baryon num-
ber conserving vector LQs we will focus on the state in the
representation (3, 1, 5/3) whose phenomenology is limited
to the up-type quarks and charged leptons.

4.2.1 Scalar leptoquark (3, 2, 7/6)

The renormalizable LQ couplings for the state �(3, 2, 7/6)

are [38]

L = �R YL �†Q + ū R YR �̃†L + h.c. (22)

The LQ Yukawa matrices YL and YR are written in the mass
basis of up-type quarks and charged leptons with the CKM
and PMNS rotations present in the down-type quarks and
neutrinos. Thus, the couplings of LQ component with charge
5/3 are

L(5/3) = (�̄RYLuL)�(5/3)∗−(ū RYR�L)�(5/3)+h.c. (23)

The tree-level amplitude induced by a nonchiral LQ state
�(5/3) involves both chiralities of fermions and is matched
onto the set of (axial)vector, (pseudo)scalar, and
(pseudo)tensor operators:

CP = CS = − π

2
√

2GFαλb

Y L∗
μu Y

R∗
cμ

m2
�

,

− C ′
P = C ′

S = − π

2
√

2GFαλb

Y L
μcY

R
uμ

m2
�

,

CT = − π

8
√

2GFαλb

Y R
uμY

L
μc + Y R∗

cμ Y L∗
μu

m2
�

,

CT 5 = − π

8
√

2GFαλb

−Y R
uμY

L
μc + Y R∗

cμ Y L∗
μu

m2
�

,

C10 = C9 = π√
2GFαλb

Y L
μcY

L∗
μu

m2
�

− C ′
10 = C ′

9 = π√
2GFαλb

Y R∗
cμ Y R

uμ

m2
�

.

(24)

In the minimal numerical scenario, strict bounds in the down-
type quark sector can be evaded completely by putting to zero
the couplings to the left-handed quarks. In this case we are
allowed to have significant contributions to rare charm decays
via the C ′

9 = −C ′
10 contributions for which the bound from
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the last line of Table 2 applies. The contribution to the D0–D̄0

mixing amplitude is matched onto the effective Hamiltonian
H = C6(ū Rγ μcR)(ū RγμcR) with the effective coefficient at
scale m�

C6(m�) = − (Y R∗
cμ Y R

uμ)2

64π2m2
�

= − (GFα)2

32π4 m2
�(C̃ ′

10)
2. (25)

We have assumed that the leptoquark does not couple
to electrons or tau leptons. Hadronic matrix element of
the above operator in mixing is customarily expressed as
〈D̄0|(ū RγμcR)(ū Rγ μcR)|D0〉 = 2

3m
2
D f 2

DB, where the bag
parameter in the MS scheme BD(3 GeV) = 0.757(27)(4)

has been computed on the lattice by the ETM Collaboration
with 2 + 1 + 1 dynamical fermions [39]. The SM part of the
mixing amplitude is poorly known due to its nonperturba-
tive nature and the only robust bound on the LQ couplings
is obtained by requirement that the mixing frequency (in the
absence of CP violation) has to be smaller than the world
average x = 2|M12|/� = (0.49+0.14

−0.15)% as quoted by the
HFAG [24],

|rC6(m�)|2mD f 2
DBD

3�D
< x, (26)

where r = 0.76 is a renormalization factor due to running of
C6 from scale m� = 1 TeV down to 3 GeV [3]. Finally, we
find a bound on C ′

9 slightly stronger than but comparable to
the one obtained from D0 → μ+μ−:

|C6(m�)| < 2.5 × 10−13 GeV−2 �⇒ |C̃ ′
9, C̃

′
10| < 0.34.

(27)

One can imagine an extension of this scenario which
would include also scalar and tensor operators. Namely, we
consider a numerically tuned example with m� = 1 TeV and
large Y R

cμ = 3. The bound on C ′
10 from D0 → μ+μ− would

then impose the smallness of the coupling Y R
uμ, Y R

uμ < 0.007.
Bounds of similar strengths are expected from D0–D̄0 mix-
ing. Now one can introduce a nonzero coupling to the left-
handed quark doublet Y L

μu that would, together with large
Y R
cμ contribute to the Wilson coefficients CS,P and CT,T 5.

However, a very strong bound on CS now emerges from
D0 → μ+μ− and limits the left-handed coupling, Y L

μu <

1.2 × 10−3. Thus we can realize

−C̃ ′
10 = C̃ ′

9 = 0.63,

4C̃T = 4C̃T 5 = C̃P = C̃S = −0.049, (28)

together with small enoughY L
μu = 1.2×10−3 to comply with

the constraints from B, K physics and four fermion operator
constraints [40].

4.2.2 Vector leptoquark (3, 1, 5/3)

The interactions of the vector LQ state V (5/3)(3, 1, 5/3) with
the SM fermions are contained in a single term at the renor-
malizable level:

L = Yi j (�̄iγμPRu j ) V
(5/3)μ + h.c. (29)

Generation indices are denoted i, j . Integrating out V (5/3)

results in the right-handed current operators:

C ′
9 = C ′

10 = π√
2GFλbα

YμcY ∗
μu

m2
V

. (30)

On the other hand, the same combination of couplings enters
the D0–D̄0 mixing. We employ the same type of Hamilto-
nian as in the preceding section, this time with the Wilson
coefficient:

C6(mV ) = (YμuY ∗
μc)

2

32π2m2
V

= (GFα)2

16π4 m2
V (C̃ ′

10)
2. (31)

A consequence of the bound (27) is that the rare decay Wilson
coefficients are limited:

|C̃ ′
9, C̃

′
10| < 0.24. (32)

The above knowledge of C ′
9,10 implies that the branching

ratio of D → πμ+μ− in the high-q2 bin is at most 1.4 ×
10−8, where the long-distance uncertainties have been taken
into account. The effect is twice smaller than the existing
experimental bound.

4.3 Two Higgs doublet model type III

In the Two Higgs doublet model of type III (THDM III)
the neutral Higgses have flavor changing couplings to the
fermions. The spectrum includes two neutral scalars, h and
H , one pseudoscalar, A, and two charged scalars, H±. In the
scenario with MSSM-like scalar potential their masses and
mixing angles are related [41],

tan β = vu

vd
, tan 2α = tan 2β

m2
A + m2

Z

m2
A − m2

Z

,

m2
H± = m2

A + m2
W , m2

H = m2
A + m2

Z − m2
h,

(33)

where β, tan β = vu/vd , is the angle that diagonalizes the
mass matrix of the charged states, α is the mixing angle of
neutral scalars. The vacuum expectation values are normal-
ized to the electroweak vacuum expectation value, v/

√
2 =√

v2
u + v2

d = 174 GeV. The part of the interaction Lagrangian
responsible for FCNCs in the up-type quarks and charged
leptons is [41]
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L = y(�)Hk
i j√

2
Hk �̄L ,i�R, j + y(u)Hk

i j√
2

HkūL ,i uR, j + h.c.,

Hk = (H, h, A), (34)

and the neutral Yukawa couplings for the charged leptons
and up-type quarks are

y(�)Hk
i j = xkd

m�i

vd
δi j − ε�

i j (x
k
d tan β − xk∗u ),

y(u)Hk
i j = xku

mui

vu
δi j − εui j (x

k
u cot β − xk∗d ),

(35)

respectively. The flavor off-diagonal terms ε�
f i , εuf i are free

parameters of the model. The coefficients xkq for Hk =
(H, h, A) are determined by the mixing angles of the neutral
scalars and the VEVs [41]

xku = (− sin α,− cos α, i cos β),

xkd = (− cos α, sin α, i sin β).
(36)

For the transitions c → u�+�− the driving flavor changing
parameter is εu12, which induces scalar and pseudoscalar Wil-
son coefficients, while we assume that ε�

22 is negligible [41]:

− CP = CS = π

4
√

2GFαλb

mμ

v

εu∗
12 tan β

m2
H

, (37)

C ′
P = C ′

S = π

4
√

2GFαλb

mμ

v

εu21 tan β

m2
H

. (38)

The best upper bounds on CP , CS , or C ′
P , C ′

S pairs are
obtained from BR(D0 → μ+μ−) and read |C̃S−C̃ ′

S| ≤ 0.05
and |C̃P − C̃ ′

P | ≤ 0.05, which makes them very difficult
to probe in D → πμ+μ− decay, unless the cancellation
between CS (CP ) and C ′

S (C ′
P ) in D0 → μ+μ− is arranged

by fine-tuning.

4.4 Flavor specific Z ′ extension

An additional neutral gauge boson appears in many exten-
sions of the SM. Current searches for Z ′ at the LHC are well
motivated by many extensions of the SM; see e.g. [42,43].
Even more, a Z ′ boson can explain the B → K ∗μ+μ−
angular asymmetries puzzle, as presented in e.g. [44,45].
Assuming as in [43] flavor nonuniversal couplings of Z ′ to
fermions, we allow Z ′ to couple only to the pair c̄u and cū.
Such a model in the most general way has been considered by
the authors of [3]. In order to avoid constraints coming from
the down-type quark sector which will affect left-handed
quark couplings, we allow only right-handed couplings of
Lq
Z ′ = Cu(ūγ μPRc)Z ′

μ. This assumption leads to the same
effective operator Heff = C6(ūγμPRc)(ūγ μPRc) as already
discussed in the case of leptoquarks. The effective Wilson
coefficient describing the D0–D̄0 transition is now

C6(mZ ′) = |Cu |2
2m2

Z ′
. (39)

The bound on C6 (27) leads to |Cu | < 7.1 × 10−4 (mZ ′/
1 TeV). Allowing Z ′ to couple to muons as in the SM
with g�

L = (g/ cos θW )(−1/2 + sin2 θW ) and g�
R =

g sin2 θW / cos θW , we obtain

C ′
9 = 4π√

2GFλbα

(g�
L + g�

R)Cu

2m2
Z ′

(40)

and

C ′
10 = 4π√

2GFλbα

(−g�
L + g�

R)Cu

2m2
Z ′

. (41)

For mZ ′ ∼ 1 TeV this amounts to |C9| � 8 and |C10| � 100
(|C̃9| < 10−3, and |C̃10| < 0.014); this induces negligible
effects in D → πμ+μ− and D → μ+μ− decays.

5 Lepton flavor universality violation

Lepton flavor universality was checked in the case of B →
K�+�− with � = e, μ by the LHCb experiment [15] in the
low dilepton invariant mass region, q2 ∈ [1, 6] GeV2. The
disagreement between the measurement and the value pre-
dicted within the SM is 2.6 σ [46]. This disagreement might
be a result of NP, as first pointed out in Ref. [46]. Many subse-
quent studies found a number of models which can account
for the observed discrepancy. In the following we assume
that the amplitude for D+ → π+e+e− receives SM contri-
butions only, while in the case of the π+μ+μ− mode, there
can be NP contributions, similarly to what was assumed for
RK in Ref. [47]. We define LFU ratios in the low- and high-q2

regions by

RI
π = BR(D+ → π+μ+μ−)q2∈[0.252,0.5252] GeV2

BR(D+ → π+e+e−)q2∈[0.252,0.5252] GeV2
(42)

and

RII
π = BR(D+ → π+μ+μ−)q2∈[1.252,1.732] GeV2

BR(D+ → π+e+e−)q2∈[1.252,1.732] GeV2
. (43)

In the SM the departure of the above ratios from 1 comes
entirely from the lepton mass differences. We find RI,SM

π =
0.87±0.09 in the low-q2 and RII,SM

π = 0.999±0.001 in the
high-q2 region, where in the latter region both leptons are
effectively massless. In Table 3 we quote ranges for the ratio
RII

π for the maximal allowed values of Wilson coefficients
by rare charm decays considered in the previous sections.
Generally we find that with currently allowed Wilson coef-
ficients and assuming no NP contribution in the electronic
modes these ratios could become much larger. The spread
in these predictions is large because of the unknown relative
phases in the resonant part of the spectrum, i.e., BR(D+ →
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Table 3 The LFU ratio RII
π at high dilepton invariant mass bin and

maximal value of each Wilson coefficient (applies also for the primed
coefficients, C̃ ′

i ). It is assumed that NP contributes only to the muonic
mode. The SM value of RII

π is given in the first row

|C̃i |max RII
π

SM – 0.999 ± 0.001

C̃7 1.6 ∼6–100

C̃9 1.3 ∼6–120

C̃10 0.63 ∼3–30

C̃S 0.05 ∼1–2

C̃P 0.05 ∼1–2

C̃T 0.76 ∼6–70

C̃T 5 0.74 ∼6–60

C̃9 = ±C̃10 0.63 ∼3–60

C̃ ′
9 = −C̃ ′

10

∣∣
LQ(3,2,7/6)

0.34 ∼1–20

π+e+e−) ≈ BR(D+ → π+μ+μ−) ≈ (0.5–5.3) × 10−9.
Note that large enhancements are allowed in the scenarios
which are currently constrained by D+ → π+μ+μ−. In the
low-q2 region the interference terms in RI

π are even more pro-
nounced since the effect of nearby ρ resonance is interfering
either in positive or in negative direction, and thus we cannot
conclude the sign of the deviation from the SM value of RI

π .

6 Summary and outlook

Motivated by the great improvement of the bounds on rare
charm decays by the LHCb experiment we determine the
bounds on the effective Wilson coefficients. Existing data
implies upper bounds on the effective Wilson coefficients
as presented in Table 2. The strongest constraints on C10,
CP , CS , and C ′

10, C ′
P , C ′

S are obtained from the bound on
the branching fraction of D0 → μ+μ− decay. The nonreso-
nant differential decay width distribution gives bounds onCi ,
i = 7, 9, 10, S, P, T, T 5 as well as on the coefficients of the
operators of opposite chirality. The constraints are stricter in
the high dilepton invariant mass bin than in the low dilepton
invariant mass bin, and this statement applies in particular
to the contributions of the scalar and pseudoscalar operators.
The forward–backward asymmetry is sensitive to the com-
bination of scalar and tensor coefficients at high-q2.

Next, we have investigated new physics models in which
the effective operators may be generated. We have found
that the presence of a leptoquark, which is either a scalar and
weak doublet, (3, 2, 7/6), or has spin-1 and is a weak singlet,
(3, 1, 5/3), can lead to sizable contributions to the Wilson
coefficients C ′

9 and C ′
10. The sensitivity to the LQ scenarios

is similar in the high-q2 bin of D+ → π+μ+μ− and D0 →
μ+μ−, while D0–D̄0 mixing results in a somewhat stronger
constraint. For the Two Higgs doublet model of type III the

presence of scalar and pseudoscalar operators enhances the
sensitivity in D0 → μ+μ− and therefore results in small
effects in D+ → π+μ+μ−. We have also discussed a SM
extension by a Z ′ gauge boson where the tree-level amplitude
in D0–D̄0 mixing is a dominant constraint and leaves no
possibility of signals in rare charm decays.

Our study indicates the possibility to check whether lepton
flavor universality between muonic and electronic channels
is valid by means of studying ratios of widths of D+ →
π+�+�− at low or high dilepton invariant mass bins, RI,II

π .
In the SM the two ratios are close to 1, especially in the high-
q2 bin. Assuming the electronic decay is purely SM-like, we
find that in the high-q2 bin the ratio RII

π is in most cases sig-
nificantly increased with respect to the SM prediction, while
there is no clear preference between higher and lower val-
ues at low-q2 bin ratio RI

π . In the leptoquark models studied
in this paper the ratio may be greatly increased, but a slight
decrease cannot be excluded, presently due to the unknown
interplay of weak phases with the phases of the resonant
spectrum. Chances to observe new physics in rare charm
decays are present in models where the connection to the
stringent constraints stemming from B and K flavor physics
are hindered. New physics models which fulfill this condition
are main candidates to be exposed experimentally by future
progress in bounding the rare charm decays D → πμ+μ−
and D0 → μ+μ−, as well as by more precise studies of
D0–D̄0 mixing with the potential NP contributions. Alter-
natively, experimental tests of lepton flavor universality in
rare charm decays might point toward the presence of new
physics in the charm sector, which can easily be hidden in
the case of existing experimental observables.

Note While we were finishing this paper another work [48]
appeared in which the authors studied rare charm decays.
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doi:10.1007/JHEP11(2013)084

39. N. Carrasco, P. Dimopoulos, R. Frezzotti, V. Lubicz, G.C. Rossi, S.
Simula, C. Tarantino, Phys. Rev. D 92(3), 034516 (2015). doi:10.
1103/PhysRevD.92.034516

40. M. Carpentier, S. Davidson, Eur. Phys. J. C 70, 1071 (2010). doi:10.
1140/epjc/s10052-010-1482-4

41. A. Crivellin, A. Kokulu, C. Greub, Phys. Rev. D 87(9), 094031
(2013). doi:10.1103/PhysRevD.87.094031

42. A. Celis, J. Fuentes-Martin, M. Jung, H. Serodio, Phys. Rev. D
92(1), 015007 (2015). doi:10.1103/PhysRevD.92.015007

43. P. Langacker, M. Plumacher, Phys. Rev. D 62, 013006 (2000).
doi:10.1103/PhysRevD.62.013006

44. S. Descotes-Genon, L. Hofer, J. Matias, J. Virto, J. Phys. Conf. Ser.
631(1), 012027 (2015). doi:10.1088/1742-6596/631/1/012027

45. A.J. Buras, F. De Fazio, J. Girrbach, JHEP 02, 116 (2013). doi:10.
1007/JHEP02(2013)116

46. G. Hiller, M. Schmaltz, Phys. Rev. D 90, 054014 (2014). doi:10.
1103/PhysRevD.90.054014
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