Durham E-Theses

$$
\begin{gathered}
\text { Some aspects of the ecology of tm freshwater pulmonate } \\
\text { gastropods; limnaea stagnalis (l) and planorbis } \\
\text { planarms (l,) }
\end{gathered}
$$

Morphy, Michael J.

How to cite:

Morphy, Michael J. (1966) Some aspects of the ecology of tm freshwater pulmonate gastropods; limnaea stagnalis (l) and planorbis planarms (l,), Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8907/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

Academic Support Office, Durham University, University Office, Old Elvet, Durham DH1 3HP e-mail: e-theses.admin@dur.ac.uk Tel: +4401913346107
http://etheses.dur.ac.uk

Some aspects of the ecology of two freshwater pulmonate gastropods; Limnaea stagnaiis (L.) and Planorbis olanorbis (I_{0}).

Michael J. Morphy, Durham University, September: 1966.

Thesis submitted as part of the requirements for the degree of MaSc. in Ecology.

Paze.
General Introduction I.
Hife cycle studies
Introduction and description of habitat. 1.
Methode. 2.
Results: 6.
Discuesiom. 20.
Sumary: 43.
Acknowledgements. 45.
References 45.

The study outlined in the eollowing thesis was made over a period of nine nonths, between November 1965 and August 1966. The object of the study was to examine the life cycles, growth rates, and any possible interactions, of the two syecies of freshwater gastropods, Limnaea stagnalis (I) and Planorbis glanorbis (L).

Both epecies belong to the pulmonate gastropod suborder Besommatophora, members oi which are charactorised by having only one pair of tentacles, with eyes at the base of the tentacles. In common uith all other puimonate gastropods, these animals are hermaphrodite. They breed aeasonaliyy laying batches of eggs held together in masses of jelly. The young develop without an intervening larval stage.

Limnaee stamalis (L_{0}), the Great Pond Snail, (Plate 1), which belongs to the Ramily Limnaeidae, may attain a height of 6 cm . and a breadth of 3 cm . It is restricted to all hard water areas of the British Tsies and prefers waters having a calcium content of at least $20 \mathrm{mg} / 1$. (Boycott, 1936). Thus it is present throughout England, (except the south west), eastern Wales, the lowlands of Scotland, and in Ireland it is quite widespread, but absent from the peat districtis of West Cork, Kerry, Wicklow and the north east of Donegal (Ellis, 1951). In 1965, Berrie, working on a Limnaea gtagnalis population in Lanarkshire, demonstrated a biennial life cycle for this species. This was the first fully substantiated work to show that this species. unlike other British Ireshwater. snails (Hunter, 1957\% Duncan 1959\%), had a life cycle which lasted for more than a year.

Planorbis planorbis ($L_{.}$). ($=$umbilicatus Muller; $=$ mareinatus Drapornaud; = complanatus Jeffreys;) is now classified in the planorbidae. It grows up to 18 mm . in breadth and 4 mm . In height. In the British Isles this species is very similar in range to Limmaea stagnalis, beins restricted to hard water districts, in which the calcium concentration of the water is at least $20 \mathrm{mg} / \mathrm{M}$, Like Limnaea stagnalis, it is found in rivers, canals, ponds, ditches and swomps. It is generalily found in smaller bodies of water than its near selative planorbis carinatus, (Ellis, 1951; Boycott, 1936). In these habitats it is Pound in the calmer waters; which are rich in aquatic weeds on which it seems to be more dependent than members of the fimnaeidae, (Janus, 1965). This study appears to be the first attempt to clarify the nature of the life cycle of this species.

PLATE 1.

(a). Examples of the species Planorbis planorbig.
(b). Examples of the species Limnaea stagnalis.

LIEE CXCEE STUDIES

(a) Introduction and descrintion of habitat.

The site selected for the study of life cycles was in an area near to the village of Brasside (Map Reference: NZ 45/290452) which is situated two miles (3.2 km) to the North east of Durhan Gity. The Iocality, which stands approximately 200 feet (60.96 mo) above sea level, lies on the laminated clays of the old submerged valley of the River Wear (Maling; 1955). At this point the doposits are about 70 feet (21.3 mo) thick and consist of interlajed beds of sands and laminated clajs, which overile a thin bed of boulder clay, which in turn reste on the bed sock of the Durham coal measures. This area has been excavated for clay and is therefore characterised by a mosaic of brick diggings which, when excavation ceased about 20-30 years agop became filled with rain water to forn ponds which were thei invaded by aquatic plants and animals. In the immediate locality there are about nine ponds (Figure 9) in an area of $2-3$ acres ($0.8-1.2$ hectares). Ponds A-H lie in a depression which is about 8-10 feet (2.4-3 0m.) below the level of the surrounding ground and thus forms an artificial drainage system. Paid I is damined with clay at its northern end but persistent leakage through the clay is sufficient to form a stream which stocks ponds $H_{\text {. }} G$ and A1, and possibly pond A during severe flooding. Pond I is on a similar level to the surrounding land and therefore stands 8-10 feet (2.4-3 0m.) above the other ponds in the systom. The ground adjacent to the ponds is used as rough grazing for cattle, horses and pigs.

FIGURE 2. Detailed map of Pond A.

FIGURE 1. Map showing the systen of ponds at Brasside.

Plate 2. View of Pond 1 .

Pond A (figure 2) was selected for the detailed stuaies of life cycles, for unitike the other ponds in the system it contained both Limnaea stagnelis and Planorbis planorbis. This pond, which wase approximately $1000 \mathrm{sq} . \mathrm{ft} .(92.9 \mathrm{sq.m*})$ in area and 2-3 feet (0.600 .9 mo) deep, had no definite ingow, but as stated above, it is possible that during severe flooding it may have received water from the stream which supplied ponds H, G and A1, and which originates in Pond to Under normal weather conditions hovever, Pond A seemed to derive its water from direct precipitation and drainage, from the higher ground above its eastern bank. During the period of study,Pond A was observed to remain entirely separate, and there was no known direct contamination from any of the other posids in the system, including pond A1. The outlet stream of Pond:A joined the main outfiow from the syatem. The limb of pond A_{0} which ran southwards, became increasingly shallower with distance srom the main pond and during long dry periods become discontimuous to form a string of pools a few inches deep.'. During drought this limb would probabiy have ceased to exist.

The other two ponds relevant to this study are H and B, which were used as chemical and biological controls. Whe former receives its water supply from Pond I and its outflow feeds several other ponds in the system. Pond B, like pond $A_{;}$is completely separated from all the other ponds in the system, being situated on slightly higher ground and is on entity in its own right, having no definite inflow or outflow. (b) Methods.

The field work performed on the three ponds falls into three sections, firstly, a qualitative survey of the vegetation and fauna
of the three ponds, secondly, a quantitative study of certain physical and chenical factors and finally the actual sampling of the two species under examination.
(i) Generai ECOIOEX:

The dominant plant species were noted and their distributions and densities estimated by eye. An ardinary fine mesh pond net was used to deterraine the components of the fauna of the three ponds, and estimates were nade of their comparative abundance.
(ii) Chemical and physical Sectorse

Amount of sunshine, temperature and rainfall data were supplied by the Durham 0nivessity Observatory, which is situated about $2 \frac{7}{2}$ miles (4.0 km) Prom the study area. Water samples were taken at monthly intervals, in 250 c.c. reagent bottles. Each sample was filtered through a Whatman No. 1 filter paper and then stored in a cold incubator at 3 degoc, thus reducing biological and cheasical activity to a minimum-

The pH of each sample wos measured using an E.I.L. Model 23A Direct Reading pII meter, and the electrical conductivity using a Taylor fodel $110 c \mathrm{C}$ \& R Bridge in conjunction with a Mullard conductivity cell, with a cell constant of 0.23. All conductivity measurements were performed at 22 deg. C.

Aukalinity, total hardness, magnesium and colcium concentrations were measured for each sample using the methods suggest by Mackereth (1963), with the modifications put forward by Cheng et al (1953) for, calcium and magnestum titrations.

$$
=3-
$$

Initially it was intended to study the vertical distributions of the two species by employing three methods of sampling. It was considered that if a sampler could be devised to sample the whole water column, a pond net used to sample the open water and a bottom sampler to assess the bonthic component, then by difference, one might gain an approximation of any differences in vertical distribution of the two populations To this end a column sampler was constructed; a modification of the type used by Garnett and Huntiae (1965). However, after several triels, this method proved unsatisfactory for such a small system, for in order to acquire an adequate sample, nemy sumplinge were required, and these caused considerable destruction of the benthic and floating flora of the ponde Therefore, the colum sampling was discontinued. For the major studies a fine mesh pond net was used. An atterpt was made to standardise the sampling procedure, so that each sample consisted of a 15 second sweep, through approximately 8 cubic fect (226 IItres) of water. At each sampling date, wo samples were taken, one from station 4, the other from station 4A The contents of the net were placed in a large white enamel tray and all the specimens of both species were collected and taken back to the laboratory Using a pair of callipers, the breadth and height of each specimen were measured and recorded and then ali specimens were seturned to the pond. Height in the case of Limnaea stagnalis ond breadth in Planorbis planorbis are the most conspicuous indicators of growth, as it is in these planes that it is most rapid.

Thorefore using these atmonsions, the pestults were plotted as histograms. Elurthen eriments, whereby sample time and hence sample size was varied, showed that the 15 second sweep was sufficient to give a rellable pieture of the pomiation stmetures.

Bottom samplers were onsstrucưă using a 5×8 inch (12.7 x 20.3 cri.) Pramenaris of argled atainlass stiel, to forp a rectangular tray, into the botion ol which was soldeed phospher bronze gauze (18 mach to the tucko). Troys wase place at ten atations down the Iength of the pont (xizure 2), at the gented wen eggs vere beginning to hatch, in order to osamine the posstiblity of localised breedinge The intervale botwen ench station are follows:-

stations,	$\begin{aligned} & \text { Distonce } \\ & \text { foet } \end{aligned}$	stations. netres. (approx)
1-2	19	3
2-3	10	3
3-4	10	3
4-5	20	6
5-6	20	6
6-7	20	6
7-8	45	13.7
8-9	20	6
9-10	20	6

During August, quantities of the cominant plant species were collected from pends A and H, sakan back to the laboratomies and examined for age masses. The number of est mases and number of egss per mass was counted to each type of plant, and rocorded. As the
breeding season of Planorbis planorbis is limited to the period between April and July, this study was confined to limnaea stagnalis. (c) Results:
(i) General Ecology.

At the outlet stream of pond $A_{\text {; }}$ that is station 1, the water was about 6 inches (15.2 cmo) deep, and Juncus articulatus, Myosotis species, Eilobium panvinlozum, together with the benthic plants, Lemna trisulca and Dreponocladus exannulatus were the dominant plants. Stations $2-6$ constituted the main pond and here the depth varied from 1-21 qeet $(30.5-76.2 \mathrm{~cm})$. The dotted Iine in figure 2 shows the 2 Loot (61 cm.) contour. The main pond was skirted around its margins by Juncus effusus, Juncus conglomeratus, Enilobium parviflorum and Myosotis species. In the deeper water of stations $2-4$ inclusive, Potamogeton natans predominated, and was most dense at station 3 , the deepest station. In this region there was a hparse benthic flora, consisting of Drepanocladus and Chara species. Th the shallower morginal water of the main pond, Dleocharis palustris was comon. Between stations 4 and 5. Potamogeton decreased in its abundance wen compared with stations $2-4$ and was replaced by a thick Iururiant mat of benthic plants, of which Chara was the dominant. Towards station 6 , the pond narrowed and the water was more shallow so that at staition 6 it was only $6-9$ inches ($15-23 \mathrm{~cm}$.) deep. Here there was a profusion of Juncus apecies and Eleocharis. In the water between each clump of rushes there was a thick growth of Chara' Lemna trisulca and Drepanocladus. At station 7 the flora was similar qualitatively to that of station 6. However, a decrease in Lemna trisalca was apparent, and Juncus axticulatus was more, and Myosotis less comon
thion at station 6. At station 8, 鸷eocharis was dominant, as was also the case at stations 9 and 10 ; but at the latter two stations it was associated with Epilobium, patches of Juncus, and a thin cover of Equisetum. Stations 8 - 10 were cheracterised by a predominance of energent plants and a large area of bare mud surface due to the absence of submerged macrophytes.

At the outlet stream of pond A_{i} station 1, both Eydrobia jenkinsi and Pisidium species were found to be common. At stations 9 and 10, there was one occurence of Limnaea truncatula and one of Limnaea pereger. Timneea stagnalis and Plenorbis planorbis occured at all stations down the pond, the shells of the older specimens supporting exotic growths of the epiphtic alga Chaetophora incrassata. Other components of the faura included Notonecta glauca, Corixa species, Haliplidae, Nepa cinerea, the Iarvae of Bohemeroptera, case bearing Irichoptera, Pyrrhosoma, Coenagrion, Culicidae, and Chaoborus, olso included were Asellus aquaticus, Hydracarines, Cladocerans and Copepods.

Pond A represents an intermediate stage in the hydrological. seral process, whereas the other two ponds, H and B, represent early and late stages respectively. The eastern end of pond B is characterised by an intertwined nass of potamogeton atans, which predominated over the deeper watoro which was up to 3 feet (91 cm .) deep in places. At the western end of the pond, the terrestrialisation process was well advanced. Juncus effusus and Juncus conplomeratus were present, and Typha latifolia was encroaching upon the deeper, open waters of the pond. In the deeper waters the dominant species was the floating Riccia, which replaced the potamogeton seen at the eastern end. Gastropods were absent from pond B, except for a single specimen of Limnaea pereger;
taken during March, 1966. Other antrouts present included Notonecta glauca; Corisa species, Haliplidae, Asellus aquaticus, Cladocerans, Copepods, and the Iaruae of Pyrrhosoma, Coenagrion, Enallagma, Ishnura, Aeshina, Ephemeropiera, case bearing Trichoptera, Chaoborus, Chironomids and Ceratopogonidae.

Fond H has an area of apyroximately 300 sq. feet (27.9 sq. m_{*}) and is about 3 seet (91.4 cm .) deep at its centre. Potamogeton was the only floating macrophyte represented, of which there was only a small stando With no benthic macrophytice flora represented, the mud surface was naked, The water of this pond had a murky appearance due to the presence of a heavy suspension of clay particles, probably derived from seepage through the clay dam at the northern end of pond T. The pond viargins wore dominated by dense stands of Juncus effusus, Juncus conglomeratus, and poilobium parviflorum, whilst Eleocharis palustxid thrived in the shallow waters of the pond. The main components of a sparse fauna included Limnaea stagnalis, of which there was a small population of very large individuels, Planorbis alba, Aseijus aquaticus, aquatic Coleoptera, and Ehemeroptera larvae.
(ii) Ehysical and Chemical Factors.

Figure 3 shous meteorological data which were considered to be relevant to the study. The temperature curves, monthly mean maximum, wonthly mean mininum and monthly mean, show the same trends. A rapid drop in termerature between October and November was followed by a more gradual decrease in January, and from then onvards tup to June there was a steady increase, although

FIGURE 3. Weather conditions in the Durham area during the study period, November 1965 to August 1966.

Monthly mean temperature (deg. C.)
Monthly mean maximum temperature (deg. $\mathrm{C}_{\text {. }}$) \square
Monthly mean minimum temperature (deg. $\mathrm{C}_{\text {. }}$) $x-x-x$
Hours of sunshine per month.
Rainfall (inches per month).

there was a slight dron during March and April. Thereatter, the general trend of increase secovered and during Jine and July a summer maximum was reached. tigure 3 also shows the hours of sunshine per month which followed the temperature curve quite closely, but in June there was a deep depression in the curve, which was not neflected in the temperature curves. Finally, Figure 3 shows rainfall uith a large peak in November, smaller peaks in February and April; and troughs in October, December and March, whereas duxing hay, June and July it senained fairly constant. Figures 4, 5 and 6 show the results of the quantitative analysjs of certain chemical components for the ponds A, B and H respectively. For pond A (figure 4), the curve for total hardness shows a trough in December, then rises steeply to a peak in January, followed by a stepped decrease and then a plateau from March to May 1. This is followed by another slight drop to a June/July plateau. The curve for magnesium concentration is a shallow version of the total hardness curve until March, when unlike the total hardness curve it shows a slight increase up to a peak in June and then falls away The curve for calcium concentration is similar to the total hardness curve, except that from June to July there was an increase in calcium.

The $p H$ curve for pond A, of which there was no data for October 1965, begins at a Iow level in December and January, and then increases at finst steeply and then more gradually to a maximum in March, when it falls away to a trough in May, followed by a sharp peak in Jume, and thereafter decreases rapidiy to a low level in July: $\quad-9$

FIGURE 4. Pond A chemical data. pH Conductivity (mhos). Alkalinity (mE/1.). -....-

Total Hardness (mg./1.)......
Calcium concentration (mg./1.). $0-0$
Magnesium concentration (mg./1.). $x — x$

Figure 5. Pond B chemical data.

```
pH -----
```

```
Conductivity (mhos).
```

Alkalinity (mE./1.).—————
Total hardness (mg./1.).. \longrightarrow
Calcium contentration (mg./1.). $0 \longrightarrow 0$
Hagnesium concentration (mg./1.). $x — x-x$

FIGURE 6. Pond H chemical data.
pH
Conductivity (mhos.).
Alkalinity (mE./1.). -.......
Total hardness (mg./1.) $\ldots \ldots$
Calcium concentration (mg. $/ 1$.). $\square \longrightarrow$
Magnesium concentration (mgo/1.). $x — x$ ——

The alkazinity curve shows a chasp decrease in November, but becones more gradual from Novenber, to a December mindmus. This is followed by a rapid inerease to a tomury peak, a decrease in Felaruary, and then onvards through the sumer months there is a gradual inomeasc.

Up to 1 Harch (xigure 4 n the conductivity curve is similar to the totai nardnese curve, but at this poift there is a gradual Increase up to tie Hedy level, followed by a decrease during June anc July.

For Pena B (figure 5), the calcium, nagnesium, and total bardness curves thew the sinilar features of a trough in Novenber and maximuins in January and June. the atkalinity curve is also characterised by a Novemoer 1ow, slight peak in January running to a slight trough in Faxch, and then onwards a gradual increase during the swate months. The at cuxve is similar to that for pond A. The conduetivity curve ahows a.bight trough in January and then gradually wises to a plateau in Way and June, and then talls away.

The total faxdness. caleika magnesium and alkalinity curvos Lot pond it (sigupe 6), show trough in Tecember, and then Eradual increases up to weseins in Jume, attar which there is a decrease. hat pir curve droys from its Foverber ievel to a minimum in December,
 rise to a higher harch level. Thic is gollowed by a trough in Kay, a sharpich pow ita June, and then another trough in July. There is no data for the tovember conductivity, but it increases from a low level in Deceahe to a pear in Hay; then decreases shardy and
then more gradueity during June and Juiy.
(iii) Population Studies.
(a) Monthily sampling at two stations.

No major diPferences were ápparent between the net sueep samples taken at the two stations, 4 and 4A, when the pogulation data was plotted as histograms. Therefore, the data for each of the two stations was pooled for the two species Iimnaea stagnalis and Planorbis planorbis, and the resulting histograms are show in figures 7 and 8.

Limnaes stagnalis. Figure 7 shows a distinct bomodal distribution for the December to June semples. It is clear that individuals of this species which hatched during the summer of 1965 passed the winter in the $0-10 \mathrm{~mm}$. range, whereas those assumed to have hatched during the sumer of 1964 overvintered at 20.30 mim, but see the discussion for further consideration. No significant growth occured until Moy when samples indicated that growth had recomenced, in that both generations had a greater mean height than in earlier samples. By June, the "1965" generations. reached 10-20 mac and the "1964" generation 25-35 ma. During July the 1966 generation was hatchod and appeared in the $0-5 \mathrm{~mm}$. size class, represented by a vexy large peak. During this time of the year the distribution was cleariy trimodal, the oldest 11964 ! generation composed of the lasgest animals, the "1965" generation occupying the $15-20 \mathrm{~mm}$. sange, and the 1966 generation being represented by the smallest animels. During August the $11964 "$ and 1966 generations continued to occupy the largest and smallest size categories, but the generation of the intermediate jear was missed.

FIGURE 7. Size distribution of Limnaea stagnalis specimens in successive collections from Brasside Pond $A_{\text {. }}$

From December until August, the "1964" and "1965"
generations could be distinguished on a size basis, and the progress of the generations could be followed throughout the year. As the different generations remained distinct, the analysis technique of Berrie (1965) vas adopted. However it must be emphasised that the numbers were not really adequate for this type of analysis and the ravages of a hard wintor presumably caused such great mortality as to reduce the population to a very low level (see figure 9). Thus the sample became smaller with time. Therefore the results of the analysis, especially those given in table 1, must be treated with reservation and the only conclusions drawn are those which might document previous work.

Table 1 shows data obtaịned for the "1965" generation. This generation overwintered at a mean stize of 4.5 mm. , but after a temporary cossation of growth during the winter period, in which individuals remained in the $0-10 \mathrm{~mm}$. size class (figure 7), grouth rates apparently increased from May onwards. Note the decreased mean size in February; for the explanation of this anomaly, see the discussion.

FIGURE 9．Population data for Limnaea stagnalis population of Brasside Pond A ，for successive sameles． Population mean size（mm．）．．

Numbers in each successive sample．$x — x-x$
Proportion of Limnaea stagnalis，as a percentage of the total snail populition．－－ーーーー－

In table 2, a similar cessation of growth during the winter period is appareat for the "1964" generation, which overwintered at an average size of 26 mm . Growth recommenced in May, but was clearly not as great as in the younger "1965" generation, at that period (see Table 1). Again, note the negative value for the Janiary sample, which is commented upon in the discussion.

Figure 9 shows: the numbers of Iinnaea stagnalis taken in two samples, at stations 4 and 4A, at each successive sampling. date; the mean sige of the animals in these two samples for each sampling date; and also the proportion of Limnaea stagnalis individuals present in the two samples, as a percentage of the total number of Limnaea stagnalis and Planorbis planorbis. The curve for numbers shows a decline during the winter months and reaches ita nadic during February, remaining at this low level until recruitment from breeding comences after hatching, during June and July. The: curve for mean size also shows a decline during the winter months with a trough towards the end of February, possibly associated with mortality of older and larger forms of the 1964 generation. With. the onset of spring, growth rates increased and this was reflected in the increase in mean size of animals, until recruitment commenced in June and July (see figure 7). The curve showing the proportionate representation of Limneea stamnalis at each successive sampling date is fairly constint for most of the year, but when hatching begins the proportion of Linnaea stamalis in the samples increases.

Figure 11 shows the relationship between height and breadth for Limnaea stamatis and shows that for this species growth is most rapid along the height axis.

EIGURE 8. Size distribution of planorbis planorbis specimens in successive collections from Brasside Pond A.

FIGURE 10. Population data for Planorbis planorbis population of Brasside Pond A, for successive samples.

Numbers in each successive sample. $x — x — x$
Proportion of Planorbis planorbig, q a percentage of the total snail population. -----

Planorbis planorbis. As with texe Limnaea stagnelis, sweep net data, from the two sampling stations, (4 and 4 A,) of Pond A, were pooled. Figure 8 shows the population to have a distinct bimodal distribution during December 1965 and January 1966, with the 1965 generation grouped around the 5 mm . pealk, and the generation which hatched in 1954, grouped around the 10 mm . peak. From December 1965 to June 1966 the size range of each yeer class became smaller as the larger and older individuals died off. The smaller individuals of the 1965 generation grew ropidiy, eventually to form the adult group which lies in the range of $8=14$ rm. in breadth. During July, the 1966 generation appeared and the histogram again shows a bimodal distribution Howover, the generations can only be clearly distinguished for little more then a month, for in August the size classes of the two generations begin to overlap. This precluded the possibility of examining the growth rates of the two component generations of the population separately as was done for irmaea stagnalis (after Berrie. 1965).

Figure 10 shows: the numbers of Planorbis planorbis taken in successive samples at station 4 and $4 A_{3}$ the mean size of the animals In the population at these two sampling stations at each sampling date: and also, the proportion of planorbis planorbis individuals as a percentage of the total number of planorbis planorbis and Inmaea stagnalis oresent at the two stations at each successive sampling date. The curve for numbers shows a stoep decline from December to January and then a more gradual drop to a minimum in Late February. From this point onwards, the numbers remained

FIGURE 11. Relationship between height and breadth for the two species, Planorbis planorbis and Limnaea stagnalis.

Planortis planorbis:

Limnaea stagnalis:

constantly low until July, when recruitment to the population began. However, there is a slight peak in June, but as no hatching had occured and recruitment from any other source seems unlikely, this reflects a slight inconsistency in the sampling for that month, The curve for population mean size shous a decrease to a January minimum, followed by a rise to a peak at the end of February, and then a plateau from February to Nay.

The relationship between breadth and height for Planorbis planorbis is shoum in figure 11, and it is apparent that growth is most pronounced in the breadth dimension.
(b) Bottom tray sampling.

Results are show in Figure 12, and represent data accumulated from four consecutive weeks of sampling from stations $1-10$ (see BJgure 2) between 14 July and 8 August.

Limnaea stapnalise. The largest numbers of newly hatched 1966 generation were found at station 1 , and here the size group composed of the largest animals ranks second in importance. At the other stations the size classes containing the largest and intermediate sized animals pcedominated, except at stations 7 and 10 where no Limnaea stapnalis were taken. Young also appeared in the samples taken at stations 2, 4 and 6. The significance of this distribution is dealt with in the discussion.
planorbis planorbis. The histogram shows that at station 1 there is a large proportion of the size class containing the largest anirals and a considerable representation of the intermediate sizo group This station sanks fousth in order of abundance of änimals hatched in 1966. Station 2 had a much smaller number of individuals

FIGURE 12.

(a). Size distribution of Planorbis planorbis snails taken at 10 stations along Pond A, at four sampling dates, by bottom tray sampling.

0-3.9 mm. size class
4-7.9 mm. size class
8 - 11.9 mm . size class
(b). Size distribution of Limned stagnalis snails taken at 10 stations along Pond A by bottom tray sampling. The data from four consecutive sampling dates has been pooled.

0-4.9 mm. size class
5-14.9 rum. size class

15-24.9 nm. size class \square
25-34.9 mm. size class 菓

and is characterised by a mall number of animals in the intermediate size category, whereas the class containing the smallest sized individuals ranks second in importance to the vominent large animal size category. A similar situation exists at station 3. At stations 4 and 6 the situation is completely reversed, for the 1966 generation predominates and the intermediate size class ranks second in importance, At station 5 there were very few individuals. At station 7 a similar situation to that found at station 1 occurs, whereas at station 8 , although the same order of ingortance to that at station 7 was observed, the 1966 generation was only poorly represented as was also the case at stations 9 and 10. At the latter two stations the intermediate sitce class was absent and here the largest sized animals predominated. It wes here that the largest specimens of the whole study were talsen, some reaching 14.5 ma , in breadth, and often the shells of these gients were festooned with the epiphytic algae, Chaetophora incrassata. See the discussion for the consideration of the distribution of the different size classes.
(c) Study of err capsules.

The results of this study are seen in Table 3.
It is apparent that Limnaea stamalis prefers the sites offered by Poianogeton. regaddess of station on pond, and qualitative observations suggest that it is the undersides of the floating leaves of this species waich are most favoured. In pond A where there were dense stands of potamoreftin, eges were not found on other types of vegetation. In ponil H, however, there there wase very little Potanogeton, many egg capsules were laid on the limited supply of leaves, and in fact
the ege capsules collected from this pond were taken from 3 leaves and one stem whereas in the Pond A sample, 50 leaves and stems were examined. It appears that when the supply of preferred sites is Iimited, as in Pond H, the animals resont to other plant species for oviposition sites. Whus in pond II, edg capsules were also found on Juncus articulatus and Eleocheris palustris.

The other aigmificant resuli of this study was that egg capsules, laid by the Iaxger individuals of the pond if population, contained about twice as many eggs per capsule as those laid by the smaller individuals of the Fond A poputation.

(d) Discussion

The use of the pond net as the major means of sampling must first be appraised as aubsequent discussion assumes the Integrity of this form of sampling procedure. Animals such as Inmaea stagnalis and plenoribis planorbis. even though they are slow moving, obviate a very migorous form of sampiling procedure, for they have very extensive habits; frequenting open watery crawling through vegetation, floating to the surface, and burying themselves in the mud (Germain, 1931). Vaxious methods have been pursued in an attempt to surmount this problem, and theoretically that devised by Gamett and Hunt (1965) would seem to be the best, in that it semples the whole water colum and the mud as well. However, as mentioned in the methods section; this system proved msetissactory and furthernore, it could not be used successfulizy to sample animals crawling through nloating vegetation, such as Potamogeton, as it merely brushed aside this type of plant. Berrie (1965), in his stuaty of Eimnaea stagnalis gathored 40 specimens by hand from the part of the pond where the bottom was covered with layge stones. Berrie allows that this method might favour the larger specimens but states that "there is no reason to believe that the resuits have been unduly biased in this wayi. However the present author Pinds himself unable to agree with this statement and suggests that this method gives an exaggerated picture, of the importance numericalily, of the Zarge sized indiviauals in the population, whilst on the other hand it gives an inaccurate picture of the importance of recruitment in this species. Duncen's (1959) work emphasises the importance of very close scrutiny. In the present
study a small white ensmel tray wes used, a much more confined area in which to work, with less possibility of error, and yet smaller individuals were frequently nearly overlooked. When data from the present study wepe compared with the data given by Berrie, it was found that, after the firrt batch of Ifmnaea stagnolis: had hatched, the proportion of young newly hatched in the Bellshill population was 30\% in Juiy 1957 and 438 in July 1958, compared with 78. 4 佔 for July 1966 in the present study However, it may be argued that inthis study, sampling was performed in the middle of a centre of high breedingy but even if this were the case, it gives a mare accurate picture of the whole population structure, and gives the right emphasis to the importance of secruitment in this species: However; it may be that the size of recruitment varies from one population to another; according to the prevailing conditions: Berrie's. Eampling technique may also be biased in that individuals were removed from one station and were not returned to the system: This removal of what Berrie terms "a very significant proportion of the total population" must certainly throw doubt upon the importance to be attached to his erowth rate data, as an interference of thjs magmitude into the interaction between animal numbers; size and food supply, cannot but cause some fundamental change in the pattern of popalation structure and growth aates. Finally the anomaly, in Berrie's results for January 1958, in which small sized individuals apparently appear out of the blue, suggests that these small sized individuals vere overlooked in the previous samples.

Anothen technique, which was used by Berrie (1965), though unsuccessfully, is collecting for a unit period of time. This again would be open to the cxiticigm that it favours the larger sized individuals.

Botton trays were used in this study, but if vertical differences in the distribution of species existed (see later), this method would give on inaccurate picture, if used without some supplementary form of sampling procedure to sample the upper lapers of water.

Duncan (1959) weed the pond sweep method in his study of Physa fontinailis, but samples at rondom stations at monthly intervaks. However; sampling at fixed stations was favoured in this study, as it was considered impontant that successive samples should be comparable, In an effort to determine diprerences between the two stations, but as has been stated no differences of this kind weje found to exist. Thus, in thits study, it is probable that a degree of integrity has been sacrificed for want of a comparison. Nevertheless, certain behavioural activities of the animals suggest that successive samples would not be strictiy comparable. Shelford (in milis, 1926), noted that menbers of the family lamnaeidae had the habit of moving into the light open water on duil days: and retreating amongst the vegetation when the sunshine was too bright. Thus samples at predetermined stations might not be comparable $\dot{f} f$ light intensities at subsequent sampling dates differed significantiJ. Certain authors (Ramer; 1907; Jeffreys 1862;) have stated that Limmaed gtagnalis is gregarious which also poses problems in sampling. Members of the freshwater pulmonate group, Besommatophora; of which Limnaea stapnalis and planorbis planorbis
are members, jack gilis and an operculum and have to respire by means of a capillary network, which forms a lung in the roof of the respiratory chambere Although this cutaneous arrangement is geared to aquatic breathing, Individuals have the habit of floating to the surface in order to expel effete air from their: respiratory chamber, and replenish their supply of oxygen. This is especially the case in foul waters and during warm summer weather, when the oxygen tension of the water is low (Hilis; 1926). In accordance with the surface area/volume relationship,it is usually the larger Individuals which behave in this fashion, as they have to meet gieater oxygen requirements. Firther, the present author, has observed, that once an animal is at the surface, it is at the mercy of the surface currents and a sjight breeze is sufficient to carry individuals to the margins of the pond. These behavioumal characteristics pose further problems and lay the pond Eweep method open to some criticism. Localisation or concentration of the population in some centre would also affect the results and the integrity of the samplings. All menbers of the Basomatophora have a radula, and therefore they can be selective in their feeding. Boycott (1936) suggested that there wes no obligatory relationship between snoil species and food plant species, and that what may superficially seem to suggest that such a relationship might exist, may merely have been that both species have a particular preference for a certain type of locuse This would give rise to an indirect association. However, Boycott was dealing ofith macrophytes, md it nust be emphasised that such a relationship is still undecided in the case of microphytes, especially in those algae which form a felt like cover over vegetation;
stones and mud surfaces. If certain species of these algae are preferred in the diet, this might give rise to concentration of the population over centres of abundence of the food organism. Concerning breeding sites, it seems possible from the present work that snail species prefer a particular type of site for oviposition, and this, as wes the case in Werrie's gtudy (1955), may mean, that unless one is aware of this preference, one might either hit or miss the importance of recruitment. In the case of Berrie's study, the sampling station was removed irom the centre of breeding, and as he states; it was some time before the newly hatched generation colonised the area which the was eamplinge

Despite ail these problems which make samplige procedure very difficult, though the pond net method fell short in many respects: a glance at the results suggests that this method, despite its Inadequacies, gave a faisly good picture of the population structure for the two species studied. Howeverg a bias may exist, which. it is suggested; favoured Limnaea stagnails during the breeding season, and possibly underestimated the importance of recruitment in Planorbis planorble, (see later).

The assumption that size may serve as an index of age, must also be appraised. As seen from the results (tables 1 and 2), the relationship is not a simple one, but depends upon pregailing conditions and is probrbly gorerned ultimately by food supply. although other factoris, such as temperature and the concentration of certain minerals, muet not bs uderrated. Semper (in Step, 1945). found mexinum size obtained to be directly related to the volume of
water in which on individual developed. Boycott (1936) however, suggested that thic was more likely to be a food relationship, the larger the system the more the food. The present work does not support the findings of Semper, for in pond A there waw a large population of individuals which never exceeded 35 mas. in height, whereas in the saller and more oligotrophic pond H_{0} the adults in the population were much larger, though the actual population was much smalier. In a sample taken in pond H during August, all the adult members of the population were over 38 mm . in height.

The functioning of a hierarchical system (Wynne-Edwards; 1962; Macan, 1965;) and the possibility of secretion of growth inhibitors, is still speculative and, as yet, has not been documented for freshwater snails. Thus discounting this possibility, and also vegarding genetical differences in the size of individuals, in an isolated populationg as negiigible, it seems reasonable to assume that all animals have fairity equal chances of obtaining a given quantity of food from an enclosed system, and of converting this into their own body substance. Thus, size should, in these circumstances give a fairly good indication of the age structure of an isolated snail population.

In general, British freshwater pulmonate snails have been found to have annusl life cycles (Duncon, 1959; Hunter, 1953:1957, 1967ai 1961b;) or more than one cycle per year, however Berrie in 1965, showed Limnaea stagnalis to have a biennial life cycle which was contrary to the view held by Boycott (1936). After extensive studies
in the south of migland, Boycott concluded that all freshwater snaile were annualsg with the possible exception of Planorbamius corneus. Whereas Hunter, (1957), considered Ihinaea stagnalis. Limnaea auricularia, and planorbarius corneus, to be the only species likely to hava life cycles of more than a year's duration. Op to the present, therefore, Limnea starnalis appears to be the onily fuily documented case of a Brititish freshwater pulmonate snail having a life cycle of nore than a year.

Limnaea stagnalis. Although the present study was confined to a period of nise montins, the results obtained support the conclusion made by Berrie (1965) concerning the biennial life cycle of this species. Berrie shoged that nost animels could breed in the year in which they were hatched and again in the spring and summer of the Lollowing yeari when individuals were a year old. However, data presented in this paper appear to conflict, in part, with this conclusion, for it would seem that snails breed in the early spring and sumper of the two years folloving the summer in which they were hat thed. This would suggest that snaile might have a life span of two years or more, whereas Bermie's data suggests that snails live 18-20 months. In the light of Berrie's work, it seems 1ikoly that the group termea, for convenience, in the result section, the "1964" generation, (see table 2 and Figure 7), is probably composed of the older 1964 individuals together with animals hatched early in 1965. whereas the group contained in the $0-10$ tum size category end termed the 1965 generation, represents individuals hatched in the Iate surmer of 1965.

After December, the $21-25$ amo animals (see Figure 7) presumably grow to form the $26-30 \mathrm{~mm}$. class, replacing the older and larger members of the 1964 generation, many of which probably died during the winter period. This vieu is substantiated in figure 9, where froin December 1965 to Jamary 1966, decreases in both numbers and population mean size are apparent, presumabiy the resuit of the cold, hard winter of 1965/66. A preferential mortality of larger individuals would explain the spectacular decrease in mean size of the population during the winter period. This view is also substantiated in Tables 1 and 2.

Data in tables 1 and 2 suggest that during the minter period growth was slight, a finding in accordance with Berrie's results. Although growth probably did cocup, it is only clearly evident in the younger sector of the population, data for which is presented in tabie 1. The reduced growth rates for the summer period (epparent in table 2), in the large animal component of the population, can be expleined on the grounds already suggested, that the group, the "1964" generation, is in fact a mixture of early hatched 1965 animols and late hatched 1964 individuals. The explanation would be that death of the last surviving members of the 1964 generation, which would most probably be the largest, would have the effect of reducing the mean size of this portion of the population.

An anomaly noted in these results was the occurence of two negative results in the February data in table 1, and for the January data in table 2. These diecrepanciee point to an inadequany in the sampling technique. But, at a time when growth rates are minima,
the if one or two if the largest specimens died or failed to be included in a smaty somple, this would have the effect of teducing the mean size to a value less then that of the preceding sample.

After the quiescent winter pericd, temperatures and sunshine began the anmual climb to their respective surmer maxima. During April, May and June improvement in weather condations was particularly rapid and presumably had the effect of inoraasing the supply of plant food, which in turn increased the oxygen content of the water and as plant cover increased, was partly responsible for the translation of sunidght energy into heat in the pond system. This rapid amelioration in conditions, probably accounts for the burst of growth which oceured during the spring months, which can be observed in figures 7 and 9 and table 1. Aithougto this trond Le not so apparent in table 2, these low values are probably Anaccurate, as stated above, and reflect the death of the last surviving individuale of the 1964 generation, The general trend of increased growth rated is especially marifest in the population mean size curve in figure 9. The increase observed, suggests that growth rates were sufficient to offeet any setback thich might have been incimred through loss of the largest and oldest of the 1964 generation. Growtin rates in both groups are seen to reach a maximum during June, (tables 1 and 2, and figure 9), which might be attributed to the high mean temperature of this month, (figure 3).

Assuning that hatching takes 21 doys (Berrie, 1965; Germain 1931;), the individualstaken in the July sampies were probably laid during the pirst or second week in June, at which time temperatures
wore increasing rapialy, The appearance of the first batch of newly hatched young, apparent in Fisures 7 and 9, causes the spectacular drop in population mean gize, due to recruitment into the population of young small sized animals. This decrease is, probaboly enhanced by the disappearance, due to death, of the large sized animals $31-35 \mathrm{~mm}$, in height, of the 1964 gaeeration, which were present in the June sample, and further by the mill representation of the intermediate size class of aninals $16-20 \mathrm{~mm}$. in height. This small representation of the intermediate size group and absence from the August sample, suegests that the data for these two months are inadequate.

The present resulte can be used to support the conclusions made by Berrie (1965), that Limnaea stamalis has a bionnial life cycle. However, the possibility romains that a life cycle longer than two years, duration might be the case. Berrie comments on some work performed by Campion (in Borrie, 1965) at Malham Tarn, about 50 miles to the south west of Durham City, in wich it was stated that Limnoea stagmalis had a sinple annual life cycle, Further, Berrie has made unpublished observation in southern mingland which also suggest on annual life cycle. Nevertheless, it must be emphasised that, with a calcium concentration of more than $40 \mathrm{mg} / 1$. and talcing into account the atititude and lattitude of the present study area, the Durhan habitat cannot be considered as parginal for this species. Thit suggests that conditions are especially favourable at Malham, which is a calcareous region, However, the altitude at Malhom would appear to be unfavourable; as this is the
highest station at wich Einnaea stamelis has been recorded in Britain. (Boycott, 1936). Clearly more work must be done before any definite staiement can be made, as to the length of the life cycle of this species.
planoribis planarbis. Though the nature of the size distributions in this species precluded the possibility of en anolysis of the type adopted for Himpea giagualis (apter Berrie, 1905). deductions can be made and several conclusions drawn from the examination of the data presented in figures 3 and 10. It seems feasible to ascume that the peals in the range of the emall sized animals in the Decenter 1965 semple (Figure 8) ropresents animals hatched during the spring of that yeare whilat the peak in the lange animol size ectegories is probably formed from the 1964 generation, but the earliest hatched animals of the 1965 generation probably contribute tobaras the latter group. Mortnility between Decerber 1965 and January 1966^{\prime} is sự"cient do rogister as a decresse in population mean size in Iigure 10 , but this is not very large, and the later recovery of the nean size curve suggests that many of the surviving mambers of the 1964 Eeneration probabiy the laxgest aninals, died during the December to Jenuary period, then conditions were extreme. Âter Janusxy when conditions appeared to be improving, especially gean temperature, a fairly rapid growih of the younger and smallez members of the populaizion occured, and this is manifest in the mean oize curve in Figure 10. This increase in mean size could also have been caused by high-mortolity amongst the smeliler animals in the population. Howewer; ecrutiny of the histograms for the succeeding
monthis (Figure 8), sugegests that a general ohift has occured and that as growth rates continued to be foinly high throughout the winter, the smalter individuals grew to replace the remont of the 1964 generation, in the ranks of the large sined animal categories. That the last of the 1964 generation bad cled out by February, seems, quite a pleusible deduction, as after this period, until recruitment in July, the porulation remains fafriy constant with regara to numbers, mean size, and popriation structure.

When compared with Timnea stemelis, in which there is a quruescence in growth during the wiarten period, it appesps that planorbfs planombis is qeared to continue its growth durine the adverse winter peqiod, for grovith rates seem to be much greater for thits species, than for Zfmnaee staghelis, during the vinter period. observations (see dater) sugest that this species has one burst of reproductive activity when conditions iaprove, and that after this short period of breeding, though conditions mas remain optimal, no furthor breeding in fact takes place. Thus, it seems likely that this spectes relies on mitntaining fairly high growth rates during the winter period, so that when cpportunities first occasion the posaibility of breeding th the spring animals are mature nith regard both to gize and reproductive condition.

In contrast to Limnaea stagnalis; it is seen that the nean size in plonorbis planorbis (Figuro 10), roaches a maximum during. February, and thereaterer deoreases silightly during March and April. This decrease could either be due to mortality in the large sized animal oategories, whilst growth rates reatin high, on altematively
to small mortality of the large animals, whilst growth rates remain comparatively amall. The fact that there are no obvious differences in the structure and distributions of the histograns during this period, suggests that growth sates are reduced, and that the slight decrease registered in the mean size curve (Figure 10) is due to deatin of a smoll number of the larger animals in the population.

During July recmitment comenced, but unlike IAmaea stegnalis, this species seened to confine its repboductive activity to a few weoks during the late spring and early summer. On the other hond, Iimnaea ctamajis, contimued to breed right up to August wien the study ended. Searches made for the egg capsules of planorbis planorbis after the last woek in July, were in vain; before this period. egs capsules were found in abundance, especially amongst the benthic vegetation, amidst such plants as Dropanocladus and Iema trisulca. According to Germain (1931), the egge are laid between April ad July, and hatching takes $14=16$ days after oviposition. This cuggests that the eggs of the 1966 generation were laid some time during the second or third week in June. Again, the only factor, of those measured, which shows colncident change, is increase in temperature. None of the other factors measured appear to be relevant. The stimulation of oviposition and copulation In other species has been shown to be quite complex, and as yet unsolved, (Timermans, 1959; Duncan 1959;) thus it would be precipitate to suggest that temperature is the sole stimulating factor. Nevertheless, in the absence of more data, the tentative
suggestion is made that temperature was the limiting factor In this case, and that all other relevant condstions for breeding had been satisfied. This is further suggested, since in 1966, spring was late. the appearance of the 7966 generation caused a dramatic drop in the population mean site curve, but this is not Fefiected so consplicuously in the eurve for numbers (Figure 10).

The devolopment oi thermal stratification, in small and shallaw ponds, is extremely milikely, since precipitation or "alight wind would be sufficient to cause overturn. Therefore, it is assumed that the concentration of all the chemical components of the water remained uniform throughout the system, and that exchanges between the mud surface and vater. spread through the system quate rapidyy and were not localised in the bottom layer. In the main, variations in the concentration were probably due to dilution; caused by precipitation and alse to the absorption of minerale by the organisms.

High rainfall during November. which caused water levels to rise very high, probably accounts for the marked drop in ponds A and B, of totel hardness, calcium concentration, conductivity, alkalinity and to a lesser extent magnestim concentration, (Flgures 4 and 5). The peak of these factors during January (the samples of Which were taken under jce) may reflect the drier, weather conditions during this month. Whe fnorease in calcium, and hence in alkalinity and total hardness, may reflect the return of calctim, in the form of tacated ohells to the system since many dead shells were observed on the pond phoor during this period, especially in the
case of pond A, where the peak is more pronounced. However this offect may have been only slight. It seems possible that the increased concentrations were nagnified by the ponds being frozen over during this period. Mortimer (1941) states that ice, when melted, gives quite a pure grade of distilled water. This fact, in itself,would have a concentrating effect. Furthermore, although there are no data or oxygen concentration, if anaerobia conditions did appertain during this period of ice cover, it is possible to speculate that the sedox potentials might have been reduced and more minerals released from the mud surface, (Mortimer 1941).

After Jenuary the chemical data, in general, reflects the emount of precipitation and evaporation. pH is a poor indicator. for it is know to vary considerably during the day. The trough In the pH curve during May in ponds A and B (Figures 4 and 5), probably reflects high respiration rates, due to increase in sunshine. It is interesting to note that in pond A (Figure 4) during the remoinder of the study period, after January, there wes a decreasen in calcium concentration, reflected in the total hafidess curve, which is not evident over the seme period for pond B (Figure 5) : This might be due to calcium uptake by a large, rapidly growing eneil population present in pond A. This decrease is not observed in the results for pond B; where snails were ebsent. The fall in June, in calcium and magnesium concentrations and tutal hardness, in pond A, and the concomitent continued increase in alkalinity is inempicable, and suggest an error in measurement. Except for the period of ice cover. therefore, it in suggeated that variations in
the chemical components of the pond water reflect the realtionship between precipitation and evaporation, In such systems as those studied, a weeks rain or a weelds sunshine would have sufficient effect to cause considerable variation in concentrations, through precipitation and evaporation, and it is believed that if more precise data of this kind were available, the explanation for the variations would become more apparent.

Conditions in pond I present a special case, aince here there is continual flow of water. This might explain the apparent constancy of the chemical componenta. Furtherwore, it is quite different from the other two ponds being oligotrophic, when compared with the eutrophic enclosed status of the ponds A and B.

Therefore, although there appears to be no appacent corelation between the beginning of breeding and the chem fal factofo measured, the importance of these factors must not be underestimated.

Working with Elanorbis plenorbis, Timmermans (1959) found that a gradual xise in temperature to $25-28$ deg. C. stimulated oviposition within one or two hours provided that the temperature on the preceding day did not fall below 21 deg. C. Moreover, this species showed better oviposition after a yeast diet. Timmermans suggested that plant moterial and oxygen concentration might also be of importance, Limnaea stamagis is stimnlated to ovipoait in aquaria, by the introduction of lettuce leaves; or certain other plants which gloat on the surface. A sudden rise in oxygen concentration or gradual wise in temperature are both known to stimulate oviposition in this apecies (Timmernans, 1959).

Working with Dhysa fontina7is: Duncan (1959) also found temperature to be an important factor. He suggested that it might have the indirect effect of controlling the rate of development, which might reguate the time of reproduction, and that there night be a critical temperature, below which oviposition does not occur. Duncan concluded that when the action specific ensrgy had built up to a maximum, then any enviroment variation such as a rise In temperature, or change in water, might be sufficient to initiate oviposition. Thus, due to the intricacy of the problem, all that can be concluded in the present study, is that breeding in both Ifmaea stagnalis and plenorbis planorbis coincided with the relatively rapid increase in temperature, which occured during the spring and summer months. It seems relevant to observe that sunlight, proposed by Hinter (1961a) to be the stimulating factor of oviposition in Ancylus fluviatilis, a herbivorous aninat., would be of no value as a proximate factor, stimulating oviposition in the breeding processes of Iimnaea stagnaitis and Planorbis planorbis, as neither species are obligatory herbiveres. Furthermore sunshine data (Figure 3), substantiates this view, as no corelation is apparent. However, the data is not refined enough, and day to day observations on behaviour and prevailing conditions would be required,before any really valuable deductions could be made.

The fesults of bottom sampling at 10 stations along pond A (Figure 12), during the months of July and August, auggests that there were centres of breeding. Higher frequencies of young planorbis planorbis were reconded at stations 4 and 6 and a fairly high number
of the 1966 generation were also observed in the samples taken at stations $1,2,3$ and 7. These centres of breeding seem to coincide with the occurence of a thick layer of benthic plants, of the species Drepanocladus exannulatug, Lemna trisulca and Chara. However, at station 5; where there was a pure stand of Chara, the frequencies of both young and ald were very low, suggesting that conditions here were too exposed, there being no emergent or floating vegetation. Thus it is suggested that eggs were laid, and therefore young concentrated, in centres were there was a thick mat of benthic plants, and where the sites were unexposed, either by being situated under dense stands of Potamogeton in deep water, or in the shallower water between rushes. As no quantitative data relating to actual oviposition is available, the evidence must remain circumstantial. It is interesting to note that egg capsules of Planorbis planorbis were found to be abundant in the rich benthic vegetation during July.

The data for Limnee stagnalis are interesting in that the highest irequencies of small young animals, hatched during July 1966 and thereafter, were recorded in the bottom amples taken at station 1 (Figure 12). The egg data (Table 3) suggested that Potamogeton was the preferred oviposition site for this species, in this pond. As will have been observed, there was no potarnogeton present at station 1. Therefore, it must be assumed either that this reflects the presence of a small breeding centre at the outlet stream, station 1, where in the absence of Potamogeton. egg capsules are oviposited in the benthic vegetation, or alternatively that this represents diepersion, colonisation or carriage of young individuals from stations 2,3 and 4 , where it is
considered that mest of the breedinh eccured. Since eggs were recorded from the type of situation existing at station 1 (Table 3). it seens probable that the former interpretation is quite plausdble. The very small representation of young Lirmaea stagnalis in bottom samples, taken at stations 2, 3 and 4, where Potamogeton was abundant, is also explicable. If the percentage of Foung in the bottom samples, taken in Pour weeks of sampling at station 4, is calculated, it is found to be 25% and that for the pooled data of the three Potamogeton dense stations 2, 3 and 4, is found to be 16.7% and the percentage of young in all ten samples, taken over four weeles of sampling. is found to be 37.7%. When this is compared with the percentage of young 1966 hatched animals, in the August net sweep sample, which was 72.7\%, a remarkable disparity is apparent. It was noted, during the egg count study, that large nuribers of young newly hatched animals of this species were found adhering to the stems and leaves of the Potamogeton, passibiy feeding on the algal epiphytes. It is therefore suggested that novly hatched nembers of the population remain bigh up in the water colum, amongst the kigher branches of the iloating vegetation. and that the newiy hatched animals taken in the bottom samples, are those which have either dropped or alescended from the above vegetation. This zonation of the buils of the young meabers of the Limaea stagnalis population in the higher water layers, mey oither be due to feading activity, or merely be a consequence of the situation of the breeding sites.

When sinilar calculations were nade for Planorbis planorbis, for July and August, it was found that the net samples for these months contained 17.3% and 38.2% respectively; of the 1966 generation,
whereas the botton samples taken at station 4 , for the same two months, contained 21.8 and 66.7\% of the animals hatched in 1966. Thus, It is apperent that, at the deep water stations, the young newly hatched Elanorbis planorbis predominate at the bottom of the water colum. but it sems that they ascend the emergent and fioating stems, to appear in the net scmples talcen further up the water colunn. It appears that young Limaea stagnalis was situated high up In the water columi wereas young Flanorbis planorbis predominated at the bottom. These relationships were probably a consequence of their respective breeding positions in the system. One would expect that the results from the net sampling might reflect an fincrease in the proportion of Limnaea etagnaiis in the semple, since this technique samples the higher water zones. This isg in fact, the case in Figures 9 and 10. where an Increase in the proportion of Limnaea etagnalis in the sample is observed, and a decrease in the case of Elanorbis planorbis.

Recruitment in Inmaea stagnalis is manifest by on increase In numbers (Figure 9), but in Planorbis pianorbis the increase in numbers between July and August, after breeding has taken place, is so slight, that it suggests that littie breeding takes place in the surface loyens of water, at that station. The fact that the mean size curve for planorbis plenorbis (Figure 10) continues to decrease during August, suggests that colonisation of the higher water zones by newly hatched, small sized animals is still proceeding. This is, furthermores reflected by a small increase in numbers (Agure 10) and by the return of the curve showing the proportion of Planorbis planophis in the samples to its former level.

Thus, it is suggested that during the breoding season, the distimbution of the two species differs, due to the difference in their breeding sites. Whis difference in distribution possibly disappears when the newty hatched individusls disperse from the breeding centres and invade the rest of the system. Qualitative observations support a more uniform distribution of adult forms. Nevertheless, it may be that oviposition is fairly general throughout the habitat and that the resulis in Figure 12 werely reflect the degree of success in hatehing and development, at the different stations, due to rariations in conditions.

According to Germain (1931), tho egg capsules of Limuea starnatis contein $40-100$ eges, but sometimes as many as 140. However, Bondesen (in Berrie, 1965) states that there are on average 100 eggs per capsule, with a maximum of up to 150 , whereas Schociduyn (in Berrite, 1965) gives an average of 3 eggs pex capsule. Berrie (1965) found 35 eggs per capoule, whereas is the present study $2-80$ itoggs per capsule wese noted, (Table 3). It was found that the number of egigs per capsole could be corelated with the mean size of the breeding individuels. Thus the breeding animals of the pond A popplation, which never oxceeded 35 ma . in height, laid egg capsules containing not more than \mathcal{Z}^{2} eggs per capsule, wereas those of the larger pond A enjasis, whioh were more thar 38 mm . in height, Laid egg capsules containing up to 80 eggs pex capsule, and on the avorage had twice as many eggs per capsule as those laid by the pond A animals. It seems, therefore, that clutch size can be related to the size of the breeding odults in the populetion; the larger the animal the larger the clutch
size. In his study of Physa fontinalis, Duncan (1959) found that brood size decreased at each successive laying, on the other hand. Berrie (1965) states that certain authors have noted that the first बaperuies, leyed by individual anails, were smaller than those produced later. Thus these results, from ponds A and H, may not be strictiy comparable.

Berrie fornd the average number of eggs per capsule to be 35.0 with a maximum of 55 . He colliciuded that the reason for the clutch size being enaller in the Bellshill population, than that observed by other workors elsethere, was because of the marginal nature of the habitat which caused the population to be composed of small bized individuals. Rowever, evidence from the present study guggents that there can be iarge differences in clutch size, even between two adjacent water bodies. Pond B has a caicium concentration of about $73 \mathrm{me} . / 1$, which would be considered narginal, according to Boycoit (1936). Whereas pond A has a calcium concentration of $45-55 \mathrm{ng} / 1$. Thus one would expect the conditions, prevailing in pond A, to be rare conducive to the growth and reproduction of Limnaea stagnalis, than those existing in pond E. Therefore, it is suggested that in pond H, a considerable loss of individuals maintained the population density at a lov level, but sufficiency of food, in this pond, allowed the residual population to reach largar dimensions and, In consequence; lay a greater number of eggs per capaule. Thus with high losses, the residual population is able to make amends, but if the clutch size pas not plastic in this way, extinction of the population might be imminent. In pond A, it is suggested that losses are not as great, therefore more individuals are present, but due to the
limitations set by a factor such as food supply, the animals do not attain such large dimensions, ad this is reflected in the smaller clutch size.

Other data, presented in Table 3, suggest that Lirnasa stagnalis prefers Potamogecon to other species of plants, for its oriposition sites, but where this plant is in short supply, as in pond H, the species first utilises existing sites to the full, but resorts to other plants when the favourite sites are all taken up. Comparing the two species. it appears that in Limnaea stagnalis, with its probable biennial life cycle and high egg laying capacity which can extend throughout the late spring and sumer, recruitment is on a large scale, whoreas in Planorbis planorbis, there is a limited breeding period; a smaller egg laying potential; with only 8-20 aggs per capsule (Gemain, 1931) and only an annual life cycle. As the proportion of Limnaea stagnalis in the total anail population of pond A is smel1, then compared with the planorbis planorbis popilation. it can be concluded that Limmaea stagnalis in the present study, experiences much greater lossax than that experienced by Planorbis planorbis.

Sting

1. A compartative etudy ef tuo vieates of freshuator puinonate onails. Thagea stagntits abi Elamorbis planorbis was made at a eysten of pands nopr murhai Clty, Curing a pariod of nune monthy, Detwen Hovgmber 1965 and August 1966. Bottom tray samplugi in conjunctien wh net sampling, was auggested as the bersi rican of aseesming the population structure.
2. Population data and phyefermehtical factors were oxmined.
3. The grati pophintion of the thret ponda atudied diffored markedsy, put no obvicus factars pesponsible for these

 eycle in condraet to glanoxbls pisnorbis which had an annual 14fe cycle. Differences in the erevth rates betweon the two shecies wewo obstived duning the inter period, and it was euggectec that the riverth ratoer ol Limaca stamalis wore Influecaed by veather conditlons; wereas those of plonorbis Rlanorblis uere theaght ta weltated to the length of the 12fe cycte.
4. The choice of Afferant oviponitien oites, Limaea stamalis prefermiag the Leaves of Eetandutong and planorbis planorbis

Summary (continued)
6. Amount of egg production wound to vary considerably from pond to pond and this was corelated wath the size of the breeding adults in the populations. It was suggested that such plasticity allows a species to Inhobit a wider range of qqatic habitats.

Acknowledgements

Thanks are due to the Lancashire Education Committee
without whose financial support this study would have been impossibire. Also to the farmers and land owners in the Durhain area, who have given me free access to their land. To Mr. A.E. Ellis and Dr. M.P. Kerney for the identification of material. I am indebted to the many unnamed persons who have given generously of their time, and finally to my supervisor, Dr. J. Phillipson who has given me encouragement throughout the work.

Heferences.

Berrie, A.D., 1965. On the Life cycle of Limnaea stagnalis (I.)
in the West of Scotiand.
Froc. Malac. Soc. Lond. 36. 283-295.
Boycott, A.E., 1936. The habitats of freshwater Moilusca in Britain. J. Anime Ecol. 2. 116-186.

Cheng, K.I., Melsied, $\mathrm{So}_{\mathrm{i}} \mathrm{N}_{\mathrm{t}}$ and Bray, RoHo, 1953.
Removing interfering matals in the versenate determination of calcium and magnesium. Soin Sci. 25. 37-40.

Duncan, C.J., 1959. The life cycle and ecology of the freshwater snoil Physa fontinalis (L.). J. Anim. Ecol. 28. 97-117.

Ellis, A.E., 1926. Bxikish Snails, Oxford.
E1Its. A.E., 1951. Census of the distribution of Britigh non-marine Mollusca. J. Conch. 23. 171-244.

Forbea, E. and Hanley. S. 1853. A history of the British Moilusca and their ghellse Iondon.

Garnett, P.A, and Hunt, R.H., 1965. Tuo techniques for sampling freshwater habitats, Hydrobiol. 26, 114-120.

Germain, L. 1931. Mollusques terrestres et fluviatiles. Faune de France 21. Paris.

Hunter, W. Fussell. 1953. On the growth of the freshwater limpet, Ancylus Eluviatilia Muller. Proc. zool. Soc. Lond. 123. 623-636.

Hunter, W. Russel1, 1957. Studies on freshwater anails at Loch Lomond. Glas. Univ. Puble, Stud. Loch Lomond 1. 56m95.

Hunter; W. Russe17, 1961a. Annual vaxiations in growth and density in natural populations of freshwater enails in the West of Scotland. Proc. zool. Soc. Lond. 136: 219-253.

Hunter, W. Russeli, 1961b. Life cycies of four freshwater snails in limited populations in Loch Lomond, with a discussion of infraspecific vamation. Proc. zool. Soc. Lond. 132. 135-171.

Janus, F., 1965. The young specialist looks at kand and Ereshwater nolluscs. London.

Jeffreye, J.G., 1862. British Conchology. London.
Lack. De, 1955.
Macan, T.T.. 1965.
The natural regulation of animal numbers. Oxford.
Sezf-controis on populationselize. New Scientist. 801-803.

Nallng, DoHe: 1955. The Geomorohology of the Wear Valley, Ph.D. Thesis. Durham.

Mortimer; C.He; 1941: The exchange of dissolved substances between mud and waters in lekes. J. Ecol. 29, 280-329.

Rammer, Re: 1907.
Land and freshwater shells of the British Isles. Edinburgh.

Step, E., 1945. Shell Life. London.
Timmermans; L.P.M.; 1959. Stimulation of oviposition in some land and Ereshwater snails. Proc. ned.Akad.Wet.Amst. 62C. 363-372.

Wynne-Edwards, Voce, 1962. Animal dispersal in relation to social behavioure Oliver and Boyd.

