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PREFACE 

This thesis describes work performed during the 

three and a half years commencing October 1966. During 

the first two years the sono buoy system described in 

the first part of the thesis was constructed and was 

used in August 1968, in a refraction survey of the 

Iceland-Faeroe Rise. The single ship refraction project, 

however, was abandoned after the loss of the buoy units 

in this survey. The author then carried out an inter

pretation of magnetic measurements obtained later in the 

same survey over the Faeroe Bank. This work is presented 

in the second part of the thesis. 
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I THE DEVELOPMENT OF A MARINE SEISMIC RECORDING SYSTEM 

ABSTRACT 

The first section of the thesis reviews the 

design of marine seismic refraction systems which 

have been evolved to enabl~ surveys to be carried 

out using only one ship. This is followed by a 

discussion· of the .design of a specific self-recording 

sonobuoy which stores the seismic information on 

magnetic tape, together with the specifications 

and circuit detaits of the system built at Durham 

University. Each buoy incorporates a four track 

tape recorder which is programmed, using an internal 

crystal· clock, to switch on and off at pr~determined 

intervals. The clock times .the seismic arrivals and 

is periodically synchronised with time on board ~he 

sl1ooting ship by the radio transmissions to the buoy. 

The seismic signnl is recorde~ at two gain levels 

and there is a facility for wo'v and flutter compen

sation. Finally, there is a description of a refrac

tion survey on the Iceland-Faeroe Rise, which 

regretably culminated in the loss of the buoy units. 
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CHAPTER 1 

THE DESIGN OF A SELF RECORDING SONO BUOY 

1.1 Introduction 

The relative inaccessibility of the ocean ~attorn compared 

to the land surface has necessarily led to the important 

role of geophysics in its investigation. The first geophys

ical investigations of the ocean floor were made from 

gravity measurements. However, it was clear that gravit

ational evidence alone could not provide any detailed 

knowledge oft-he general structure of the oceans. This situ

ation was greatly improved by the advent of marine seismic 

refraction techniques. More detailed information has since 

been obtained about the nature of the oceanic crust from 

this technique than by any other. This method of surveying 

not only provides the thickness of refracting layers, but 

also the velocity of compressional waves in them. These 

velocity measurements allow, within limitations, the iden

tification of the material of the layer. 

The Department of Geology at Durham University has for 

a number of years carried out marine geophysical surveys 

both on and off the Continental Shelf of Britain, u~ing 

gravity, magnetic and seismic profiler methods. An increasing 

need developed for seismic refraction control in the geo

physical interpretation of these areas. The following 

chapters describe the design and construction of a system 

which would allow refraction surveying to be carried out 

from one ship. 
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1.2 Marine Seismic Refraction Methods 

The earliest marine refraction studies were conducted 

in shallow water based on techniques used on land. The 

explosives and geophones were placed on the sea bed and 

the signal from the geophone was recorded on board ship 

(Ewing et al., 1937). The depth of water in oceanic areas 

pro~ibited the use of a geophone and work started on a 

pressure sensitive hydrophone receiver, suspended a few 

hundred metres below the surface of the sea. Progress 

stopped during the Second World War, but after its close 

refraction surveying gained a great impetus from the 

wartime development of underwater detectors and the 

availability of large quantities of surplus explosives. 

American workers developed methods of refraction 

shooting at sea using two ships for the survey (Officer 

et al., 1959). The shooting ship proceeded along the 

survey profile while the other remained stationary to 

re-ce-ive the refracted wa-ve-s- and--direct sound through the 

water. The ship firing the charges transmitted the shot 

instant to the recording ship by radio, thus determining 

the travel times of the waves from the explosion to the 

receiver. Once the shooting ship had reached the limit 

of the profile the two ships reversed roles. This method 

ensured that the profile was fully reversed with the 

m1n1mum of delay. 

British refraction techniques have followed different 

lines. It was realised that there would be great difficulty 

in obtaining two ships for the conventional method of 
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refraction shooting, so single ship methods were employed. 

This led to the development at the Department of Geodesy 

and Geophysics, Cambridge, of the sono radio system, in 

which each of a number of buoys transmits the received 

seismic signals by radio to the ship from which the charges 

were fired (Hill, 1952). On board ship the signal from 

each buoy was recorded with time markers and an indication 

of the shot instant. 

Each shot is received at a number of detectors which 

can be useful in determining the validity of dubious phases 

on the records. The main disadvantage of this system compared 

with the two ship method is that once the buoys are launched 

they are no longer under control ~nd it is not possible to 

change amplifier gains or quieten the hydrophones by 

adjusting the streaming of the cable. Moreover, it becomes 

difficult to recover the buoys in high winds which means that 

the system is very dependent on weather conditions. There 

are a number of other problems associated with radio sono

buoys which have, to a certain extent, been overcome by 

the development of self-recording sono-buoys. 

The sono-radio buoy has a range of use limited by the 

frequency of transmission and po,ver of the transmitter to 

less than 50 km. Since refractions from the oceanic 

Mohorovicic Discontinuity only become first arrivals at this 

range, the method is restricted to a study of the velocities 

in the layers above the Moho. The self-recording buoy 

overcomes this limitation, as the seismic information is 

stored within the buoy and is recovered at the end of each 
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profile. A further advantage is that by eliminating the 

radio link the quality of the recorded signal is improved. 

The first self-recording buoys developed recorded the 

information on a multi-channel fil~ recorder (Francis, 1964). 

The photographic film recorder was soon superceded by the 

magnetic tape recorder (Meyer et al., 1967). As the signal 

information is preserved in its electrical form the original 

event can effectively be recreated any number of times, 

with an altered time base, if required. There is no 

necessity to decide on filter settings before the experiment, 

as greater control of the quality of the signal can be 

achieved by filtering on playback. 

It is no longer possible to record the output of each 

receiver against a common time. It thus becomes necessary, 

either to have an accurate clock in each buoy or to transmit 

the shot instant or a correlating time code from the 

shooting ship to each of the buoys. 

As a self-recording system does not allow the received 

signal to be monitored during the survey, transmitters are 

often included to check the quality of the arrivals during 

the initial stages of the profil.e (Neyer et ~1., 1967; 

Gray and Owen, 1969). 

It was envisaged at Durham that there would be similar 

difficulties in obtaining two ships for seismic refraction 

experiments and that more efficient use of the surveying 

apparatus would be· achieved if a sono-buoy system were 

developed. Work has been conducted at Durham University 

on various sono-buoy systems for a number of years, but 
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none had achieved any measure of success. In 1967 the 

author carried out a reappraisal of the equipment design 

with the aim of producing a workable system for the 1968 

field season. It w·as decided that the most feasible method 

with fewest limitations would be to use a sono-buoy system 

which stored the information on magnetic tape. 

1.3 A Review of the Techniques for Recording Seismic In~ormation" 

on Magnetic Tape~ 

One of the initial design problems to be resolved 

concerns the form in which the data is to be stored on 

magnetic tape. There are today three methods by which 

seismic data is recorded on tape. 

The first to be considered is the direct record system, 

in which the incoming signal is superimposed on a high 

frequency bias signal and fed to a recording head. The 

value of the flux superimposed on the magnetic tape is 

dir.ectly proportional to the. signal current. Playback is 

accomplished by monitoring the induced voltage in the 

reproduce head, which is proportional to the rate of change 

of flux across it. The reproduced signal thus tends to 

decrease in amplitude as the frequency decreases. This 

frequency dependence can be partially compensated for by 

designing the replay amplifier to have a frequency response 

characteristic which is the inverse of the reproduce head 

characteristic. However, when the output voltage from the 

reproduce head decreases to the inherent noise level of 

the system it becomes impossible to recover the signal. 
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Hence there is a lower frequency limit below which it is 

impossible to record and play back successfully, which is 

approximately 20Hz. Thus although .this technique is 

feasible in seismic reflection work, the lower frequencies 

of refracted arrivals (between 2Hz and 20Hz (Shor, 1963)) 

make it unsuitable for seismic refraction applications. 

This problem of recording low frequency signals is 

overcome by frequency modulation. The method employs a 

carrier frequency which is frequency modulated by the input 

signal. As the amplitude of the incoming signal increases, 

the value of the carrier frequency is increased and as the 

amplitude decreases the frequency of the carrier decreases. 

Demodulation is accomplished by feeding the signal picked up 

from the replay head through an amplifier which gives a 

square wave output, s·o reducing the noise introduced on 

playback. These clipped signals are fed to a frequency 

sensitive circuit which reconstructs voltages from frequency 

values. As the frequency deviates the voltage deviates pro

portionally and the original modulating signal is recovered. 

The output of this demodulator also contains pulses at the 

carrier frequency which are then filtered out to obtain the 

low frequency signal. The frequency modulation recording 

process, however, makes very stringent demands on the ability 

of the tape transport to move tape across the heads at a 

precisely uniform speed. Any speed variation introduced 

into the tape at its point of contact with the heads will 

cause an umvanted modulation of the carrier frequency and 

result in system noise and reduced dynamic range. A noise 

cancelling circuit is often employed in a frequency modulation 
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system to cancel this mechanical wow and flutter. In multi

channel recording systems an unmodulated carrier is recorded 

on one of the channels reproducing a noise voltage which 

is the same as is reproduced on all other channels. This 

noise voltage is then mixed into all other channels 180° 

out of phase and cancels noise in those channels. This corr

ection has limitations as not all fluctuations in the tape 

motion are uniform across the entire head. 

With the advance of seismic processing techniques 

using digital computers, there has been a rapid growth in 

digital recording processes enabling data to be fed directly 

into computers for analysis. Digital data processing 

techniques are more versatile and potentially faster than 

analogue methods. 

The input signal is sampled at uniformly spaced dis

crete intervals of time, and the sampled readings are then 

converted into a series of binary digits. As each binary 

digit has only two po~sible values it can be represented on 

the recorded tape by one of two stages of magnetisation. 

The tape is recorded to saturation in either the positive or 

negative direction. This makes no demands on the linearity 

of the reproduce head characteristics as it is only necessary 

to measure polarity changes. A major advantage of the 

digital recording process is that it places no arbitrary 

limit on the accuracy of the system, as the accuracy is 

limited only by the number of binary digits used to express 

the numbers. The speed stability of the transport is not as 

important as relatively large amounts of wow and flutter can 

be tolerated without affecting the recording accuracy. However, 
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there is a limitation on the maximum pulse packing density; 

since small imperfections in tape can cause loss of pulses 

or spurious pulses on playback there is a practical minimum 

duration for the recorded pulses. A safeguard usually built 

into the system to provide greater reliability against tape 

dropout and other errors is a parity check. One track on 

the tape is reserved for a parity pulse which is derived 

from the pulses being recorded simultaneously on th~ other 

tracks. By counting the total number of recorded pulses 

on playback it is possible to detect the loss or gain of 

one pulse. Excellent tape guiding is essential in the 

design of the transport to prevent tape skew resulting in 

erroneous reading of the pulses. One of the relative 

disadvantages'of ·the digital recording process over frequency 

modulation is that the efficiency of tape utilisation is 

very poor. The number of cycles per inch that can be 

recorded is an order of magnitude less. The process also 

demands complex circuitry for the digitisation of the 

original data. 

1.4 Design Considerations for the Construction of a Magnetic 

Recording Sono-Buoy System 

The choice of recording technique used depends upon 

the demands of the seismic system. The least low frequency 

pressive variation caused by sea noise in calm weather is 

2 about 0.1 dyne/em (Shor 1 1963) 1 while the intensity of 

the direct water wave arrival from a 5 lb charge exploded 

3 km away may reach 10,000 dyne/cm
2 

(Ewing, Worzel and 
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Pekeris, 1948). This demands that the seismic recording 

system has a dynamic range of up to 100 dB. The dynamic 

range of the frequency modulation recording technique is 

limited to !55 dB, but by recording the signal at two gain 

levels the dynamic range could be extended up to 110 dB. 

Thus a frequency modulation recording system was judged 

to be more suitable for this application than a. digital 

system because of the greater expense and complexity of 

the latter. 

The specifications of the tape recorder to be used 

were dictated by a number of factors. The recorder has 

to be portable, rugged and compact and engineered to 

high standards so that wow and flutter was very low at 

the slow speeds that the application demanded. Even if a 

tape recorder with a speed of 15/16"/sec were used, it 

would be necessary to switch the recorder on and off after 

the launching of the buoy, as the duration of the refraction 

profile might be up to 12" hr. Considerable tape economy 

could be achieved if the recorder were switched off while 

the shooting ship was steaming between shot positions. 

Two methods could be used to switch the recorder on 

and off to conserve recording time. The first is by a 

radio trigger signal transmitted from the shooting ship 

immediately before detonation of the charge (Francis, 1964; 

Green and Hales, 1966). If this command signal is inter-

rupted for more than about 10 sec the recorder switches 

itself off. This 'hold-on' period is necessary to cope 
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with radio .fading. The other system at present used by 

Cambridge University (Gray and Owen, -1969) is to employ 

a switching pulse derived from the buoy's crystal clock 

to control the recording cycle. 

It was decided that the most reliable method would 

be to programme the switching of the tape recorder from 

the buoy's internal clock and organise the shooting 

schedule to coincide with a period when the buoy recorders 

were switched. on. At" tape recorder could be modified 

to record up to four simultaneous information channels, 

which would be adequate for this application. The four 

information blocks which had to be recorded were the 

seismic signal, recorded at two gain levels, timing code 

and a wow and flutter compensation signal. 

Since arrival times are the most used single 

parameters in seismic work the design of the timing device 

is of prime importance. It is only by measuring the water 

wave travel time from the shot to the buoy that the range 

of the buoy can be determined. The clocl~ has to supp~y 

a time code to produce -time interval marks down to at least 

0.1 sec. Arrivals then could be read to an accuracy of 

0~01 sec. If an error of 0.01 sec were introduced in 

picking a Moho arrival travelling at 8.0 km/sec it is 

equivalent to an error in position of 80 m, which is well 

within the limits of error in position of the buoy. The 

clocks in each buoy would be synchronised with the master 

clock on board the shooting ship at the start of the seismic 
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profile and must be sufficiently stable to enable accurate 

timing of events 12 hr later. A crystal controlled 

oscillator which had the required stability of a few parts 

per million was chosen as the reference frequency. 

As a further correlation technique between the shot 

instant as timed by the master clock and the seismic 

arrivals timed at the buoy it was decided to transmit a 

coded timing signal from the shooting ship which could be 

simultaneously recorded against the master clock and each 

buoy clock. For this purpose commercial short wave radios 

were installed in each buoy. As wow and flutter compensation 

is only needed during the reception of seismic signals it 

was possible to substitute these timing signals from the 

radio for the wow and flutter compensation signal prior to 

the detonation of the shot. 

Semiconductors were used throughout in circuit design 

for reliability and low power consumption and the circuits 

were constructed either on printed circuit hoard or encase.d 

in plug-in plastic capsules for ease of replacement. The 

full details and specifications of all the circuits are given 

in a later chapter, but a block diagram of the buoy system 

is shown in Fig. 1. 

It was decided to house the electronics in a vertical 

spar buoy. It is possible with this type of buoy to achieve 

a sufficient righting moment to avoid excessive rolling of 

the buoy without the addition of a great deal of extra mass 

which would be needed if a horizontally floating buoy were 

used. However, it must also be sufficiently damped by the 
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below water parts not to oscillate rapidly in the water, 

which would create difficulties in launching and retrieval 

of the buoy and could damage the antenna on the superstruc-

ture. Rapid motion would also increase wow and flutter in 

the tape transport. The problem was overcome by the attach-

ment of a weighted keel. The material of the buoy casing 

had to be durable without being too costly, and it was 

decided to construct it from P.V.C. piping strengthened 

with an outer coating of fibre glass. Th1~roduced a light 

but rigid structure with good waterproof qualities. 

1.5 The Bubble Pulse Phenomenon and its Application to the Design 

of tne Hydrophone Suspension 

It is important to achieve maximum efficiency in the 

use of explosives as storage facilities on board ship are 

usually limited. Mueh work has therefore been devoted to 

the dhal problem of increasing signal strength and decreasing 

noise in the low frequEf:ricy spectrum, i11 wh-ich t·h-e --b-est 

propagation of the refracted waves occur. The best method 

found so far for obtaining the maximum signal from a given 

size of charge is to hold the receiver and fire the charge 

at a depth equal to a quarter ·wavelength of the "bubble 

pulse" frequency. 

The occurrence of the bubble pulse phenomenon was first 

reported by Lay (1945), who found that a seismic wave with 

the same apparent velocity as the direct P wave followed the 

P wave by a time interval dependent on the size of the charge. 
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Detailed studies on underwater explosions by Arons and 

Yennie (1948), have provided much information on the 

mechanism of the bubble pulse. In the detonation process 

the energy of chemical bonding is suddenly converted into 

the kinetic energy of rapidly moving gas molecules. As 

this volume of high pressure, high temperature gas expands 

it transfers energy to the water. Part of this energy is 

dissipated in heating the water through which the shock 

w·ave is propagated. The remainder of the energy transferred 

to the water is imparted to it as kinetic energy, the water 

being pushed radially outward against the opposing pressure. 

The gas globe continues to expand until the kinetic energy 

is all stored as potential energy in the water. At this point 

the gas bubble ~cquires its maximum radius and because of 

cooling in temperature and expansion in volume its internal 

pressure is w·ell below that of the surrounding hydrosta.ti.c 

level. This energy in the water is reversible energy as 

it is retur-ned to the gas globe in the succeed-ing- ·collapse 

of the bubble. There is a rapidly increasing inward velocity 

in the water medium and rapidly increasing pressure due to 

compression of the gas bubble. Ultimately, the now outward 

directed pressure gradient brings contraction to a halt and 

bubble expansion begins again. At this time when the bubble 

radius is a minimum and the volume acceleration is a maximum 

a second pressure pulse is radiated. Thus part of the 

potential energy stored 1n the water is radiated accoustically 

as the bubble pulse and is not all returned to the bubble 
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as compressional energy. Additional energy losses from 

water turbulence, the transfer to kinetic energy of bubble 

migration, and the cooling of the gas bubble result in a 

general exponential diminution of the overall system energy. 

This cycle may be repeated several times, though with 

decreasing energy and intensity. Although the bubble pulse 

is much lower in peak pressure amplitude than the initial 

shock wave, it radiates an appreciable amount of seismic 

energy because of its considerably longer time duration. 

It must be noted that if the charge is detonated immediately 

below the water surface, so that the gas bubble bursts 

through the surface on first expansion or during the later 

contraction as the bubble migrates toward the surface, then 

no bubble pulsations occur. 

The frequency spectrum of the refracted wave consists 

largely of lmv frequencies, usually between 2Hz and 20Hz. 

Hence the problem of obtaining maximum utilisation of 

explosive energi is to fi~d the depth of shot and detec~or 

at which the dominant low frequency of the explosion has 

maxim~m effect. The low frequency part of the Fourier 

energy spectrum of an explosion has been measured by Raitt 

(1952) and shows a peak at a frequency approximately equal 

to the reciprocal of the interval between the _initial 

pressure pulse and the first bubble pulse. This is called 

the bubble-pulse frequency. The value of this frequency is 

determined by the Rayleigh-,'lillis fo:r·mula. 
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f 
(D + 33)~ 

K\vl 
1 

where D is depth of explosion in feet, W is the weight 

of explosive in pounds, K is an explosion constant, 4.36 

for TNT, 4.94 for Nitraman WW-EL, and f is in Hertz. 

For optimum signal strength the charge should be 

detona~ed at such a depth that the reflected sound of 

bubble pulse frequency is in phase with the first direct 

sound sent vertically downward. This depth is one quarter 

wavelength of the bubble pulse frequency. Raitt (1952), 

using the above formula has derived·the optimum charge 

depth as a function of charge weight and the relationship 

is shown in Fig. 2. In some cases it has been found 

necessary to detonate charges at depths other than the 

optimum. Often the larger charges sink at such a rapid 

rate that in order to allow time for the shooting ship 

to reach a sufficiently safe distance they have to be 

detonated at greater depths. At short ranges where 

sub-bottom reflections are the first arrivals, seismic 

efficiency is often sacrificed by exploding the charges 

near the surface so that the gas bubble blows out and 

bubble pulses are avoided, giving·a less complex signal. 

The refracted waves are detected by a hydrophone 

generally consisting of a pressure sensitive crystal 

unit. The sensitivity of the system in detecting these 

weak signals is very dependent on the background noise 

level and proper choice of the hydrophone depth. One 

system to reduce background noise level at the hydrophone 
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used by Scripps Institution of Oceanography {Raitt, 1952) 

also applicable to sono-buoy work (Hill, 1963) is the 

neutrally buoyant, multiple-bight suspension. The hydro

phone unit is balanced to be as closely neutrally buoyant 

as possible by means of floats and lead weights. The 

outer 15 to 30 m of cable is also supported to neutral 

buoyancy by small floats along its length so that the 

cable hangs in small loops between the floats. This 

creates a mechanical filter to _:e:liminate disturbances 

propagated along the cable, and by the construction of 

a neutrally buoyant system, flow noise past the hydro

phone is kept to a minimum. This horizontal portion of 

the cable is attached to a heavy weight from which the 

cable leads up to the surface of the water. Here the 

cable is attached to a group of small floats before 

reaching the recording ship or buoy, so providing further 

decoupling. If the hydrophone cable is pulled tight by 

excessive drift then the decoupling action is l~~~L_the 

hydrophone rises toward the surface and wave and flo'v 

noise develop. In two ship work this does not present 

too much of a p1·oblem as the cable can always be restreamed; 

but when this arrangement is used with sana-buoys it 

presents more of a problem. The noise levels become so 

great that refraction surveying using sana-buoys usually 

has to stop if sea conditions are worse than force 4. 

The length of the vertical section of the hydro

phone cable determines the depth at which the hydrophone 
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floats. The hydrophone must be far enough below the 

surface of the water to be undisturbed by surface wave 

action, yet if the cable becomes too long currents past 

the cable increase the 'dangling' noise. Typical charge 

sizes used in refraction surveying range between 5 lb 

and 300 lb. 'fhen exploded at the optimum charge depth 

they have corresponding bubble frequencies of 9 Hz and 

4Hz. 

The amount of energy at a particular frequency 

arriving at a hydrophone suspended at a fixed depth 

depends on the phase difference between the surface 

reflected wave and the direct wave. This will be a 

maximum if both waves arrive in phase. If it is assumed 

that the arrivals travel near vertically to the surface 

then it is found that a,hydrophone suspended 60 m below 

the surface of the water receives at least 75% of the 

theoretical maximum energy at frequencies between 4 Hz 

and 8 Hz. This was the depth at which it was chnsen to 

suspend the hydrophone. 
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CHAPTER 2 

THE CIRCUIT DETAILS AND PERFO~~NCE OF THE SYSTEM 

2.1 A Description of the Circuit Components 

The design of the multiple-bight hydrophone suspen-

sian used was discussed in the previous chapter. The 

hydrophone is balanced with wood and cork floats to lie 

with its axis horizontal, which reduces any dangling 

motion of the hydrophone from the cable. The next 30 m 

of ~able is balanced using cork floats so that it hangs 

in four bights of 3, 6, 9 and 12 m length between the 

hydrophone and a 2 Kg weight~ 

A 60 m length of cable leads from the weight to a 

group of small floats on the sea surface and thence to 

a plug on the buoy casing. The floats are tied to the 

buoy housing with 2 m len-gths of rubber, so that there 

·is no direct strain on the hydrophone cable itself. 

The cable used is a P.V.C. coated twin core screened 

cable of i in. diameter, and the hydrophone unit is a 

Rayflex Exploration Company Model D l83B. The pressure 

sensing element is a barium titanate ceramic cylinder 

and the hydrophone contains a preamplifier which is self 

powered from a rechargeable cell. The useful life of 

the hydrophone from the fully charged condition is 

about 30 days. It produces a signal of l50pV per 

dyne/cm2 for signals between 0.5 Hz and 15 lulz. The 

ambient sea noise is very variable and is inversely 
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dependent upon frequency. In the low frequency band 

of interest the main sources of noise are turbulent 

pressure fluctuations and seismic noise from volcanic 

~nd tectonic sources (Wenz, 1962). The lowest ambient 

noise levels observed at sea would produce a signal at 

the hydrophone output of l5~V, which is lower than the 

self noise output voltage of the preamplifier of 25~V . 

Thus the dynamic range of the hydrophone is limited by 

the self noise of the system, w·hich is an undesirable 

situation that fortunately only occurs in the quietest 

of sea conditions. In the majority of cases the two 

noise levels will be of the same order. 

The maximum undistorted output signal from the 

hydrophone preamplifier is l V peak to peak which 

gives a dynamic range for the preamplifier of 86 dB. 

HydroEhone Dl83B Specifications 

Frequency range 0.5 Hz to 15 kHz 

Output l50t'V/dyne/cm 
2 

Noise level 35tAV R.N.S. 

Dynamic range 86 dB 

Gain 20 dB 

Output impadQnce 10 ohm. 
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The seismic amplifier,which is needed to increase 

the signal from the hydrophone preamplifier to a suitable 

level to be fed to the frequency modulator unit,is 

built around two integrated circuit operational ampli

fiers. The inherent advantages of integrated circuits, 

i.e. stability and reliability, coupled with very low 

noise levels, make them much more suitable for the 

present application than amplifiers made from discrete 

components. The S.G.S. type 702 is an operational 

amplifier which can easily be modified by external 

feedback to produce an amplifier with the desired gain 

and frequency response. To obtain the necessary gain 

two stages of amplification were used, thus ensuring 

good stability of gain. The total bandwidth of the 

S.G.S. 702 is from zero to 0.8 MHz, so that it is 

necessary to control the frequency response of the 

amplifier using capacitive ·feedback. This reduces 

noise at frequencies outside the seismic band of interest 

and thereby increases the dynamic range of the amplifier. 

In order to encompass the large range in amplitudes 

of seismic signal that could be recorded it was decided 

to use a high and low gain amplifier with gains 25 dB 

apart. The amplification of the high gain system is 

73 dB, and has a noise level equivalent to 4~V at the 
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input. The maximum signal level which can be recorded 

without distortion is 4.4 V; thus the dynamic range 

of the high gain amplifier is 48 dB, similar to the 

dynamic range of the frequency modulator which is a 

maximum of 55 dB. By recording the signal at two 

levels the total dynamic range of the amplifier system 

at maximum gain is increased to 73 dB. 

If the ambient sea noise were high the usable 

dynamic range of the hydrophone system would be very 

much reduced, and in order to increase the signal to 

noise ratio to an acceptable level it becomes necessary 

to fire larger charges. At close ranges the direct 

water w·ave arrival would saturate the amplifiers, and 

filtering of the refracted waves would be impossible. 

It therefore became necessary to incorporate an attenu

ator between the first and second stages of amplifi

cation. Using the attenuator the gain can be reduced 

in five stag-es from 0 to. -28 dB .o.f_ the maximum. Siri_ce 

both amplifiers possess identical attenuator units the 

two levels remain 25 dB apart. At the minimum gain 

setting the dynamic range of the amplifier system is 

increased to 100 dB (Fig. 3). Thus the overall dynamic 

range of the system is effectively controlled at low 

gains by the stability of the tape speed and noise 

introduced on playback, and at high gains by the noise 

level of the hydrophone preamplifier. The frequency 
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Fig. 4 Circuit Diagram of the Seismic Amplifier 
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responses of the two amplifiers are flat to within-3 dB 

b-etween 1 Hz and 160 Hz for the high gain unit, and 

between 1Hz and 230Hz for the low gain unit. Thus· 

there is sufficient gain at high frequencies to record 

the direct water wave arrival oh both seismic channels. 

It will-be shown, however, in a later section, that 

the high frequency response of the system will be decided 

by the demodulator filters rather than the amplifier 

characteristics. 

A diagram of the amplifier circuit is shown in 

Fig. 4. It consists basically o-f twp single ended invert

ing amplifiers connected via a five stage 'T' section 

attenuator with an iterative impedQnce of 1 KA . Certain 

additions to the circuitry need to be made to ensure the 

stability and protection of the amplifier. The steady 

state voltage present at the output will not, in general, 

be exactly zero for the condition of no input d.c. signal. 

The reasons-are-that the electrical character1stics of the 

circuit elements within the amplifier will not be exactly 

balanced and also that a finite current will flow through 

the input leads of the amplifier. This offset voltage 

becomes important in high gain amplifiers when it can 

cause the amplifier to saturate and so distort the signal. 

A typical value for the input offset. voltage of a 702 

is 2 mV, which is more than sufficient to saturate an 

amplifier with a gain of 73 dB. This input offset 
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voltage can be reduced by arranging that the impedance 

from the inverting and non-inverting terminals to 

earth are approximately equal. Further compensation can be 

achieved by applying a voltage across the input terminals 

from a potential divider, to balance the offset voltage. 

The input circuit of the second stage is first balanced 

using fixed value resistors and the whole amplifier is 

then balanced by an adjustable potentiometer. The 'T' 

section attenuator offers a constant output impedance 

to the second stage, independent of the attenuation 

setting, so that once set up the input impedance of the 

second stage will remain balanced. 

A diode is placed across the inverting input to 

ground to protect the amplifier from large signals. 

A further problem iB the design of operational ampli

fiers employing large amounts of feedback is that the 

phase shift of the amplifier at high frequencies may 

exceed 180°, leading to oscillation. By shaping the 

gain-frequency characteristics by external compensation 

the rate of fall of gain can be made sufficiently 

gradual for the circuit to remain stable even for very 

large degrees of feedback. This is most easily achieved 

by placing a relatively large capacitor between the 

compensation terminal and ground, so shunting part of 

the high frequency signal to ground. A 68 pF capacitor 

pl~ced between the non-inverting input and ground also 
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prevents oscillation. Finally, to ensure amplifier 

stability two O.l~F capacitors are placed between the 

power supply rails and ground to decouple the amplifier 

from fluctuations in the power lines. Each two-stage 

amplifier and attenuator is mounted on printed circuit 

board and the components are sufficiently close together 

for it to be possible to decouple both amplifiers using 

one capacitor for each supply rail. 

As it is important to keep noise in the seismic 

amplifiers to a minimum a separate power supply from 

the other electronics ±s used. Six HP2 1.5 V dry cells 

provide the necessary +6V and -3V power lines. The 

amplifiers consume 4 rnA, which gives the battery pack 

a life of over 60 hr. Metal film resistors are used 

throughout the circuit to reduce system noise. 

Seismic Amplifier Specifications 

Frequency response 

Maximum voltage gain 

Supply voltage 

Power consumption 

Noise level 

Maximum output 

Output impedance 

Input impedance 

Recovery time 

Attenuator 

flat within 3 dB, 1Hz to 160Hz 
hi-g-h gai-n 

1 Hz to 230Hz 
low gain 

73 dB high gain, 48 dB low gain 

+6V, -3V 

40 mW per channel 

~V p. to p. referred to input 
terminated with 500A 

4.4V P: to p. 

200A 

1 K A 

40 m sec 

Resistive 'T' network of 1 K.n. 
iterative imped~nce: six 
settings: OdB, -8dB, -13dB 
-18dB, -23dB, -28dB. 
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2.1.3 ~~~-~E~~~~~~~-~~~~!~~~Es 

The low frequency seismic signal is converted to 

a series of pulses with a frequency dependent on the 

amplitude of the signal. This pulse train is passed 

to a bistable circuit which provides a series of square 

pulses of half the initial frequency. The square wave 

is then passed to an emitter follower stage, which drives 

the magnetic recording head to saturation, thus provid

ing a frequency modulated recording of the seismic 

signal. 

The coding circuit used was developed by De'Sa 

and Molyneux (1962) and is shown in Fig. 5. The basis 

of the circuit is the Miller Integrater TR 2 which 

when discharging decreases the potential on the emitter 

of a second transistor, TR 3, causing it to conduct. 

This condition, however, is only briefly maintained as 

the current through the transistor is insufficient to 

lieep it in a bottomed condition. At this point- the 

capacitor is fully charged and the cycle restarts. 

1fuen the transistor conducts, a sharp negative pulse is 

produced at the base of TR 3. These pulses provide 

the modulator output. During discharge, the current 

through C remains constant due to the feedback action. 

The discharge time and hence the pulse repetition rate 

is linearly dependent upon the input voltage. The centre 

frequency of the modulator is dependent on the values 

of R and C where R consists of a series combination of 
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a fixed resistor and a precision potentiometer which 

provide fine control of the output frequency. 

The short pulses are passed to an Eccles-Jordan 

bistable which converts them to a series of square 

pulses of half the initial frequency. It is necessary 

to square the initial pulses as they are only of 50 1.1 sec 

duration, too brief to be recorded on magnetic tape. 

An emitter follower transmits the signal at a sufficiently 

high current level to drive the magnetic recording head. 

The carrier frequency of the frequency modulator 

is directly related to the tape speed used. A tape 

packing density of 900 cycles per inch is used for 

compatibility with the Emidata Series I Playback System 

in the Department of Geology at Durham University. A 

tape speed of 15/16 in/sec was chosen,which fixed the 

centre frequency at 850 Hz. To obtain this frequency 

the pulse repetition rate had to be 1700 Hz. The modu

lator will pe;rmi t Q.evi~tions of + 40% of th_e centre 

frequency without distortion, which is equivalent to 

a maximum input of ~ 2.2V. In order to avoid signal 

distortion due to over-modulation, when the voltage

frequency characteristic becomes non-linear, an ampli

tude limiting circuit is inserted between the seismic 

amplifier and the frequency modulator. 

It can be seen from Fig. 5 that the base voltages 

of the two transistors forming the limiter are fixed 

by the potential divider at + 2V and - 2V. If the signal 

applied to the two emitters becomes more positive than 

about 2.2V then TR A will conduct and the emitter will 
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remain at 2.2V. Similarly, if the signal is more 

negative than -2.2V TR B will conduct and the voltage 

will remain at -2.2V. At intermediate voltages neither 

transistor conducts and the signal is passed directly 

to the modulator. A series resistor is applied between 

the amplifier and limiter to avoid current overloading 

in the output stage of the amplifier. 

Fig. 6 shows two 20 Hz sine waves which h~ve 

been recorded on the buoy's magnetic tape recorder using 

the above amplifier and modulator replayed on the 

Emidata Playback System. A wow and flutter correction 

has also b.een applied and the output signal passed 

through a 2 Hz to 30 Hz filter. The two signals are 

-40 dB and -46 dB below· the maximum modulator input 

level. The third trace shows the output obtained for 

zero input to the seismic amplifier with a gain of 65 dB 

and 500A input termination. This shows that the frequency 

modulation syst_~_m used has a dyna_lllic _!'~ng_e ~n excess of 

50 dB. 

The signal limiter and modulator are built together 

on one circuit board and the bistable and emitter follower 

on another. Each unit is voltage stabilised using a 9V 

Zener diode and decoupling circuit as they are all fed from 

the main power source. Each circuit is made into a plug

in unit by attaching a McMurdo 8-way plug to the circuit 

board and encasing the whole unit in a plastic cover 

sealed at the edges with silicone rubber. 
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In order to increase the dynamic range of the 

recording system a wow and flutter compensation signal 

is recorded \vith the two seismic information channels. 

The compensation signal is obtained by recording the 

unmodulated carrier frequency. The wow and flutter 

compensation signal wasLrecorded between the high 

and low gain seismic tracks, as flutter compensation 

is most effective on adjacent tracks. 

Input. 

Output 

Frequency Modulator Specifications 

+ 2.2 V maximum 

Carrier frequency 

Supply voltage 

Modulation 

Bandwidth 

Zero drift 

_ ;Pow~r consumptio.n 

3 rnA p to p recording current 

850 Hz 

-12 v 

40% from maximum input 

-3 dB: d.c. to 312 Hz 

0.1% of full scale per °C 

12n mW per ·ch~nnel 
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The crystal controlled clock was developed for 

the present purpose from an original circuit designed 

by Dr. Gray. It consisted basically of a reference 

frequency of 10 KHz which was divided down by binary 

division and gating to provide a suitable time code. 

The time code chosen produced pulses 0.02 sec long 

every 0.1 sec, a pulse 0.12 sec long every 1 sec and one 

0.82 sec long every minute. Every hour the minute marker 

was omitted. This time code was recorded using satura

tion frequency modulation. 

This crystal clock performed a number of functions, 

so it was imperative that it was accurate and reliable. 

The Venner range of transistorised plug-in stages was 

chosen for the purpose. This system provides a varied 

range of compatible circuit elements which demanded a 

minimum of linking circuitry, and would all operate on 

-l2V supply. Each circuit is encased in a plastic cover 

and their plug-in nature makes fault rectification straight

forward. 

The circuit is best explained by reference to the 

schematic circuit diagram in Fig. 7. The 10 hlfz reference 

frequency obtained from a crystal oscillator (Venner 

Unit TS 5) is divided down by binary division to a 

pulse of period l hour. The division is achieved by 

the use of linked bistable multivibrators, based on the 

Eccles-Jordan circuit (Venner Units TS 2B and TS 10/5). 
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Using controlled feedback it has been possible to 

obtain the necessary frequency division. 

A second circuit element (Venner Unit TS 2B) is 

the 'waveform gate'. This uses the two inputs of a 

bistable to gate the pulse length of a pulse train of 

a given frequency. This has been necessary to ensure 

that the pulse length of the time code was compatible 

with the seismic replay system in the Department. A 

pulse train of period equal to the desired pulse length 

is applied to input A while the waveform of required 

frequency is applied to input B. The two waveforms 

are differentiated and rectified at the input so that 

only positive pulses reach the bases of the two trans

istors, TR A and TR B. When the units are reset side 

A is cut off and side B is turned on. Positive pulses 

are applied to each input at the start of the cycle. 

The one to input A is blocked, but the one to input B 

is steered on to the base of the conducting TR B, so 

cutting it off. The next positive pulse, applied to 

TR A, then switches the circuit to the second stable 

state, that with TR B conducting and TR A biassed off. 

Further positive pulses have no effect on side A, as 

it is cut off. It is not until the next positive going 

pulse is applied to side B, one cycle later, that the 

circuit reverts to its first stable state with TR A 

conducting and TR B biassed off. The output from the 

collector of TR B is thus -9V while side B is off and 

rises to -JV when TR B conducts, giving the output 
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waveforms observed at gates 1 and 2. They are negative 

pulses of 0.1 sec duration every 1 sec and negative 

pulses l sec long every 1 min respectively. The out

put from the collector of TR A is the reverse of the 

above, as shown at gate 3, where a positive pulse 1 sec 

long is produced every hour. 

In order to combine the individual pulses into 

a synchronised time code two diode logic gates, an 

'AND' and an'OR' gate, were used. The output of the 

'AND' gate remains at -9V only if all inputs are at 

-9V, in which case the diodes are reverse biassed, no 

current flows through the resistor and the output is 

held at -9V. This state only occurs once every minute 

for 0.8 sec, except on the hour. At all other times 

a voltage of -3V is applied to at least one of the inputs, 

causing a diode to conduct and a voltage of -3V to appear 

at the output. This 1 min pulse passes to one input 

of a three input 'OR' gate. The second input is a 10 Hz 

train of negative pulses 0.02 sec long, and the third, 

a train of negative pulses 0.1 sec long of frequency 

l Hz. If any one of the inputs is at -9V then the 

diode will conduct and the output will drop to -9V. 

Thi~ produces the required gating voltages to the 

modulating gate. 

The coded sequenc~ of pulses is recorded on mag

netic tape in frequency modulated form, using a fre

quency doubling circuit. A differentiated 500 Hz 
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square wave signal derived from the chain of bistables 

is divided into a positive pulse l-ine and a negative 

pulse line by opposed diodes. The former is fed 

directly to the tape presentation u~it, _giving a ·con

stant 500 pulses per sec output, while the negative 

pulses are fed to the signal input of the modulator. 

This modulator is basically a gate which is 1n the 

open condition if a D.C. level more positive than -6V 

is applied and is closed if the input is more negative 

than -8V. The time code switches the gate to pass or 

block the sigrial input. This circuit (Venner Unit TS 16) 

consists of a_pulse a~plifier with a variable input 

imped~nce formed by the collector to emitter impedance 

of a transistor. If a negative switching level is 

applied to this transistor it c·onducts, so reducing the 

input impedQnce of the amplifier. The input signal 

~~plied to the base of the amplifier is thus shorted 

to · e-a-rt-h. Th-is rep r e·s·en-t·s t-he c 1-o·s·e d- ·s·ta-t e -o·f the gate . 

A positive switching level, however, cuts off this 

input transistor, which then possesses a high collector 

to emitter impedance, thus enabling the signal to pass 

to the amplifier. This represents the open state of 

the gate. The negative input pulses are inverted by 

the amplifier and are passed through a blocking capa

citor, where they combine with the rectified positive 

puises and pass to the input of the tape presentation 

unit. This recombination of the two signals produces 
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a basic 500 pulses/sec periodically doubled by the 

gating action governed by the time code. The tape 

presentation unit is constructed from a bistable and 

emitter follower, as used in the frequency modulator 

circuits, hence the input across the recording head 

is a sequence of square pulses alternating between 

500 Hz and 250 Hz. 

Each clock unit also incorporates a reset unit. 

By momentarily shorting the input of the unit to the 

supply voltage, a pulse is produced which resets every 

bistable to the same state. This ensures that counting 

begins at the same part of the cycle. The two reset 

points are fitted to the front of each clock. If all 

clocks are connected in parallel across a push button 

switch, then all clocks can be simultaneously reset 

at zero. 

It was found that the crystal could be set to 

within 8 ·parts per million of the standard frequency 

of 10kHz. The clock output was checked against the 

M.S.F. time standard for periods of up to 12 hr, and 

it was found that the drift of th--e clock was constant 

to within a standard error of 0.4 m sec. Therefore 

little error is introduced in the picking times if the 

drift of the clock is assumed linear over the survey 

period. 



- 3~ -

It has been mentioned earlier that one of the 

requirements of any frequency modulation recording 

system is that the magnetic recording deck should meet 

very high engineering standards. The portable recorder 

used needed to be robust and reliable enough to 

operate in rough sea conditions, have a slow enough 

recording speed to permit the maximum packing density 

of seismic information, and to have low wow and flutter 

characteristics, comparable with instrumentation decks. 

Earlier research in the Geology Department into the 

construction of a precision slow-speed tape deck proved 
,· 

to be a long process and rather beyond its scope. It 

was decided to use a moderately expensive, domestic 

audio 1/4" tape recorder, the Uher 40001, as used by 

the University of Wisconsin (Meyer et al., 1967). 

When purchased, the tape recorder was fitted with t 
tra·ck recora-ing ·head and this was replaced by a Mullard 

ER 7557 four-track record and playback head. The deck, 

running at its slowest speed of 15/16 in/sec had wow 

and flutter stability figures of less than 0.5%. If 

5 inch spools of double play tape are used, four hour 

continuous recording time is available. The power for 

the tape deck is provided by internal dry cells giving 

5 hr playing time. Therefore batteries and tape spools 

are both renewed at the start of each profile. As the 

clocks in every buoy are synchronised at the start of 
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the survey, it was decided to use a programmed 

sequence of pulses from each clock to switch the 

recorders on and off. This method is more wasteful 

of magnetic tape than a radio command system, but as 

the Department has had little experience of radio 

command systems, it w·as felt that the former method 

would prove more reliable on the prototype buoys and 

that modifications could be made at a later stage 

when more experience had been gained. Wow and flutter 

compensation is only needed during the period when 

seismic signals are also being received. Therefore, 

to provide more efficient use of the fourth informa

tion track, radio transmissions from the shooting 

ship are also recorded. At the beginning of the period 

during which the tape deck is switched on coded timing 

pips are transmitted from the shooting ship and 

received by a small commercial marine band radio 'vi thin 

each buoy. The radio used is the Sanyo 8M-P20 which 

covered the 1.85 - 4.2 MHz band. The radio output 

is connected via the existing direct record electronics 

of the Uher recorder, to the recording head. The 

broadcast time code is also recorded against the master 

clock on board ship to provide extra correlation 

between ship and buoy clocks. The switching sequence 

decided upon was that the tape recorder should be 

switched on for 8 min every 30 min. For the first 

2 min the ~adio output would be recorded and after 
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that time the wow and flutter compensation channel 

would be substituted. This enables the survey to 

proceed for up to 15 hours with the possibility of 

firing 30 charges. Other cycles could be obtained 

if necessary using different pulse combinations. 

Pulses derived from the clock are combined to provide 

the required waveform using a similar circuit to 

those used within the clock to produce the gating wave

form. This waveform then switches on and off a trans

istor relay dtive-·circuit (Fig. 8). A voltage of 

-3V applied to the base of the transistor causes it 

to conduct and the collector current drives the relay. 

If the input is -9V the transistor remains cut off. 

The diode strapped across the relay protects the 

transistor from transient voltages produced when the 

relay coil is switched off. As can be seen from Fig. 8 

the relays are used to switch power to the tape recorder 

and radio receiver or to connect one of two signals 

to the recording head. A similar circuit to those 1n 

each buoy is added to the master clock. The relay 

drive circuit is replaced by a lamp drive circuit 

operated by similar switching waveforms. The lamps 

on the master clock then show the state of the buoy's 

recording electronics and indicate when radio trans

missions may be made and the shots should be fired. 

As a further measure to conserve tape the power line 

from the tape recorder to its batteries is only com-
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pleted when the external hydrophone is fitted to the 

buoy. 

2.1.6 ~~~-~~!~~-g~~~!E~~~~~~ 

The buoy electronics require a 12 volt power 

source supplying up to 6 watts. It was desirable 

to use non-spill batteries to avoid the risk of 

corrosion. Varley Ltd. make a range of non-spill 

jelly batteries and two 6 volt 6 NSI units connected 

in series had an adequate capacity of 12 ampere hours. 

This configuration also provides a 6 volt power 

line for the switching relays. As has already been 

mentioned, the tape recorder and seismic amplifiers 

are run from separate dry cell batteries. 

2.2 Buoy Housing 

During a survey it is important that any faulty 

circuit ·can be replaced with the minimum of delay 

and dismantling of apparatus. With this aim in mind 

the amplifiers, frequency modulators and clock circuits 

are all constructed as easily accessible plug-in units. 

The recording electronics are reduced to four main 

functional units: the 6 volt batteries, the crystal 

clock, the seismic amplifiers and modul~tors, and the 

tape recorder, radio and relays. Each unit is assembled 

on a base plate which is then bolted to the chassis 

frit.mework. The components on one board are connected 
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to those on other boards by plugs to assist in the 

dismantling and testing of units. These four plates 

and a circular top plate are held in position one 

above the other by two sets of vertical guide rails. 

These guide rails slide be-tween P. V. C. lugs welded 

to the inside of the buoy casing and hold the chassis 

firmly against the side of the casing. The top plate 

is then bolted to the lugs to keep the chassis in 

position. It is imperative that the chassis does not 

flex and knock against the casing while the buoy is 

floating as this will affect the tape transport. As 

a precaution against condensat~on within the buoy 

a container of silica gel is fixed to the chassis. 

The-buoy casing is constructed from a 100 em length 

of 3 mm wall P.V.C. piping, with an outside diameter 

of 32 em. A disc of P.V.C. is welded across the 

bottom of the tube to seal one end. The top seal is 

achieved by a "Tufnol" cap and "0" ring piston seal 

fitted inside the tubing, and the cap bolts on to a 

1.5 em thick P.V.C. flange welded around the top of 

the tube. Six 5 em wide fins of P.V.C. are welded 

longitudinally to the outside of the casing for extra 

protection and strength, and also serve·' as brackets 

from which to attach the stabilising spar to the 

base of the buoy. In the manufacture of P.V.C. tubing 

air inclusions can form within the walls which causes 

the P.V.C. to become porous to water. This possibility 
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is prevented by covering the exterior of the buoy with 

a 0.75 em thickness of fibre glass. This also gives 

added strength and rigidity to the casing. An orange dye 

added in the fibre glass makes the buoy more clearly 

visible. The manufacture of the casings was contracted 

out to a local plastics engineering firm. 

No specific testing criteria for the buoy package 

were developed. However, during a storm on one survey 

all five buoys broke away from their vertical storage 

positions and toppled on to the hold of the ship. No 

electronic units were dislodged nor was there any damage 

to the outer casing. The only damage caused to any of 

the buoys was superficial buckling of the wire mesh radar 

reflectors. 

The stabilising spar consists of a drum of concrete 

fixed with an iron bar to the fins. The dimensions of 

this spar were varied until the buoy.floated with about 

35 em of the casing above water with sufficient righting 

moment to achieve stability. A keel consisting of 35 kg 

of ballast on a 80 em long pole was found to be suitable. 

A brass strip fixed along one of the fins provides 

an earth connection for the recording electronics. The 

hydrophone cable and·earth wire are connected to the buoy 

electronics through a waterproof plug in the top cap. A 

3 m whip aerial for the radio receiver is fitted through 

the top cap and sealed with a rubber gland. The lower 
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metre of the aerial is sheathed in a plastic tube to 

prevent waves shorting out the aerial. All permanent 

fixtures are further sealed by filling with silicone 

rubber. 

Also attached to the exterior of the buoy casing are 

three location systems for the recovery of the buoy. The 

first is a l watt 4 MHz radio_ .transmitter manufactured 

by Underwater Narine Electronics Ltd., which had a specified 

range of 15 km. A flashing light which has a maximum 

range at night of 6 km is also fitted together with a 

radar reflector, which could be located up to a distance 

of 4 km. 

The buoy is lifted from the water by a rope sling 

attached to shackles fixed through the fins of the buoy. 

T~e recovery of the sling is facilitated by a string of 

floats streamed behind the buoy. 

2.3 .. '. Shot Recording Apparatus 

The recording apparatus on board the shooting ship 

was designed originally for use in sono-buoy refraction 

work, but ha·s since been used successfully in two ship 

refraction surveying. The basic purpose of the ship record 

is to be able to correlate events in the shooting ship 

w·ith events received at each buoy. For .this purpose, 

two recording systems are used. The first is an ultra

violet galvanometer recorder which provides an immediate 

correlation of the shot instant with the ship's master 

clock. In order to correlate the clocks onthe ship 
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and in the buoys the transmitted timing pips are recorded 

against the master clock on a twin-track tape recorder. 

It is desirable to make a continuous recording from the 

time the timing pips ware transmit~ed, until the shot 

instant is recorded. This period could be greater than 

five minutes, and it was therefore decided to use the 

tape recorder as a second system to economise on galvano-

meter paper. The information recorded by the two systems 

is shown in Fig. 10. Time from the master clock is 

recorded on the galvanometer circuit, using the unmodu-

lated gating waveform, while it· is also written on mag-

netic tape in frequency modulated form identical to that 

recorded in each buoy. The shot instant is also recorded 

by both systems. 

Explosive charges can be detonated either electrically 

or with a slow burning fuse. When electrical detonation 

is used the firing impulse can be used to record the 

exact instant to within a few milliseconds. A relay 

with two sets of contacts is placed in parallel across 

the electrical detonator, and is opened by the firing 

impulse from the exploder. This allows a short burst of 

a l kHz signal to be recorded on tape and produces a 

sharp d.c. change across the galvanometer. 

However, the advantage of accurate timing is often 

outweighed by the problems of paying out and retrieving 

the firing line, so slow burning fuses are frequently 
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used. This second method needs a correction for the time 

the water takes to travel from the shot to the ship and 

the accuracy is an order of magnitude less. The instant 

at which the water wave reaches the ship is received on 

a hull-mounted geophone and can be recorded directly on 

to magnetic tape and paper record. 

The shot instant and all other information is written 

on magnetic tape through the direct record electronics 

of the tape recorder and a control switch is used to 

select the required input. The coded time signals trans

mitted to the buoys at the beginning of a recording 

cycle consist of varying numbers of l kHz timing pips 

of 0.1 sec duration, derived from the master clock. A 

push button sw·i tch controls the duration of the pulse 

train. The timing pips are broadcast through the ship's 

transmitter from the loudspeaker output of the recording 

electronics. There is a facility to record a radio output 

on magnetic tape in case it is decided to tune the buoy 

radios to a standard time station instead of the ship's 

transmitter. A microphone input is also provided so that 

the tape recordings can be edited and further information 

given concerning the shot. A typical record is shown in 

Fig. 11. 

2.4. ·'· Replay Apparatus 

The replay of the seismic records would normally be 

carried out on the Emidata Series I Replay System in 

Durham. The recorded tape is replayed on the Uher deck and 
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connections from the heads are made directly to the head 

amplifiers and demodulators of the replay system. By 

ensuring that the wow and flutter compensation signal is 

fed to the appropriate replay channel a correction can be 

applied internally to the other three channels. The 

band,~iclth of the replay system is from d. c. to 312 Hz 

(- 3 dB points) at a replay speed of 15/16"/sec. Hence 

the seismic amplifier limits the low frequency response 

of the system, but the upper limit is determined by the 

filter in the demodulator circuit. Signals from the 

demodulator output may be passed through auxiliary 

filters before display on a jet pen recorder. A 12 channel 

~scilloscope with a long persistence phosphor is available 

to monitor the processed signals. It is necessary, however, 

to have replay apparatus on board ship so that the quality 

of the records can be checked, and any necessary altera

tions in the future shooting programme made. The replay 

electronics have been designed to receive the signals from 

the replay head of the Uher deck and process them in a 

suitable form for display on the ultra-violet galvanometer 

recorder. The system is designed around Venner trans

istor plug-in stages and can be separated into the 

functional units shown in Fig. 12. The two seismic 

channels, the wow and flutter compensation channel and time 

code are all demodulated before presentation to the ultra

violet recorder, and the radio broadcasts are amplified 

by the replay electronics of the Uher recorder, to a 

suitable level to drive the galvanometer circuit. A 
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Sinclair Zl2 audio amplifier is incorporated in the replay 

system to monitor the signals from the replay head. 

Although saturation recording is used, the wave-

form from the replay head is approximately sinusoidal. 

To demodulate the frequency modulated information a head 

amplifier consisting of two cascaded stages of a general 

purpose transistor amplifier (TS 4), squares the incoming 

signal from the replay heads. An emitter follower (TS 17) 

at the output of the head amplifier provides a low 

impedence for driving the next stage. This is a pulse 

shaper (TS 14) which serves to trigger a monostable 

contained in the demodulating,circuit. The pulse shaper 

differentiates and rectifies the input waveform to produce 

a train of negative pulses. These pulses switch on and 

off a Schmitt trigger stage, and the square wave output 

is differentiated and amplified to produce a steep-fronted 

narrow-width pulse which is used to trigger the succeeding 

monostahle with precision. 

The monostable produces a negative going constant 

area pulse of a frequency equal to the input-pulse repet

ition rate. The pulses are then fed to a low pas~-filter 

constructed from inductive and capacitive components 

consisting of a constant K section and a m shunt derived 

t section (m = 0.6). The- 3 dB cut off frequency is 

125 Hz. The filter output is directly related to the 

r~petition rate of the input pulses. This is connected to 

a high impe4Qnce d.c. amplifier, constructed from a S.G.S. 

702, which drives the recording galvanometer. A resistive 
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network terminated by the specified galvanometer damping 

resistor is used to attenuate the input to the galvan

ometer. 

2.5 Survey Technique 

Five sono-buoys were constructed to provide a 

number of receiving points for each shot. Using this 

receiving technique it is possible to obtainQinformation 

about the dip of the strata beneath, and obtain a partial 

reversal of the line. At the start of the survey each 

buoy system is switched on·, and the reset points of the 

master clock are connected with those in the buoys. The 

operation of the push button reset control on the master 

clock simultaneously resets all clocks to zero. The 

resetting is checked.by examination of the clock outputs 

on the galvanometer recorder. Each buoy is sealed and 

launched at about 2 ~~ intervals along the intend~d 

refraction profile. The buoys are left free floating as 

it had been found that the strumming of the anchor cable 

and the action of water flowing past the hydrophone 

severely reduced the signal to noise ratio of the recording 

system. At the programmed times, lights on the master 

clock indicate when the buoy recorders are running and 

also when the radio receivers are switched on. The 

generated timing signal is then transmitted over the 

ship's radio to the buoys. It usually consists of a 

simple code dependent upon the shot number. When the 
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second light indicates that the wow and flutter compen

sation signal has been switched on to the fourth tape 

channel the charge is released and detonated. 

The charge spacing is dependent upon the type of 

geological structure being investigated. Because the 

shots must be detonated at fixed intervals of time, the 

velocity of the ship along the profile must be varied. 

This demands that an accurate log be kept during the 

survey. The maximum possible length of the profile is 

determined by the selected switching sequence. The 

switching rate used allowed the apparatus to receive 

arrivals for a period of eight minutes every half hour. 

This resulted in a maximum steaming time of 15 hours from 

the time the first buoy was dropped. At short ranges 

the charges are generally closely spaced in order to 

detect refracted signals from the lower velocity layers 

in the upper oceanic crust as first arrivals. The charge 

size is usually determi~ed by experience, as it is very 

dependent on system sensitivity and backg~ound noise 

level as well as range. 

After shooting the profile the ship returns and 

retrieves the buoys guided by the transmitter. On 

recovery the outputs of the clocks are displayed on the 

galvanometer recorder to ensure that all have remained 

in synchronisation and to measure any drift between 

clocks. The recorded tapes are then replayed as the ship 

travels to the next starting position to check the quality 
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of the records and to make a preliminary assessment of 

the results. Once the batteries and tapes are renewed 

the buoy is ready for the next refraction profile. 

2.6 Results of Seismic Refraction Experiments with the 
Sono-Buoys 

Field testing of the sono-buoy system has been 

very limited. One unit was tested 10 km from Blyth off 

the North-East coast of Britain. A short profile 

20 km long of five charges w·as shot, during which the 

buoy electronics functioned satisfactorily. Fig. 13 

shows a seismic record obtained on this profile. It 

shows arrivals obtained at a distance of 5 km from a 

10 lb. charge. The direct water wave is clearly visible 

saturating the high gain amplifier while an earlier 

arrival may also be present preceeding the water wave 

by about 1 sec. However, the hydrophone noise levels 

were high and prevented reliable picking of first arrivals 

from all the shots. The high noise levels may 1n part 

have been caused by the hydrophone suspension, but were 

probably more affected by the strong tidal effects in the 

area where the water is shallower than 40 m. 

In September 1968 a full scale refraction survey 

was attempted using five sono-buoys. It formed part of 

a geophysical survey of the Iceland-Faeroes region being 

carried out by the Department of Geology·at Durham 

University, in a chartered vessel 'Ditte Holm~'. The 
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five buoys were placed free floating in line 1.5 km 

0 0 apart at a position 8 40'W and 62 50'N and a full 

refraction line was shot in a northwest direction along 

the Iceland-Faeroes Rise. The total length of the 

refraction line was 100 km from the nearest buoy and 

15 charges of 'Geophex' were exploded. The refraction 

line took 9 hr to complete. 

'fuen the ship returned 8 hr later to the position 

where the buoys had been dropped it was unable to locate 

them, and a number of short zig-zag search legs were 

conducted across the suspected buoy positions. This 

initial search proved unsuccessful, so a larger scale 

one was conducted over an area within a 25 km radius of 

the buoy's first position. It consisted of parallel 

legs of 5 km spacing, running approximately at right 

angles to the direction of the refraction line. The 

ship was fitted with a Loran C receiver which gave the 

position to within 300 m. The pattern of search was 

continued for 64 hr before the search was abandoned. 

During the search period visibility was over 5 fuT. 

in daylight and at night the flashing lights onihe buoys 

should have been visible from at least the same range. 

A 24 hr watch with binoculars was kept from the ship's 

bridge, with periodic radar searches. At no time during 

the survey and ensuing search was the wind above force 3, 

and although there was still a dying swell from a gale 
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a few days earlier, it had previously been possible 

under similar conditions to detect the radar reflectors 

on the buoys at a range of 4 km. Although a 4 MHz 

radio transmitter was attached to the middle one of 

the five buoys to facilitate their location, the 

useful. range was far below the specified 15 km. This 

was in part due to the inadequate radio direction 

finding equipment on board ship, but also probably due 

to the low performance of the transmitter itself. 

All buoy casing units had been repeatedly tested 

against water leakage and all had proved sound, so it 

is unlikely that any of the buoys had sunk. This was 

confirmed almost a year later, in August 1969, when a 

Norwegian trawler recovered one buoy unit still floating 

some 1000 km north of the point where it was dropped. 

The most likely fate of the buoys was that they had been 

scattered and had drifted outside the search area. As 

the tidal cycle in the area is almost a closed ellipse 

(taken from Decca lattice chart L(DG)245), tidal drift 

would be minimal. Surface currents usually only reach 

2% of the windspeed, although the wind resistance of 

the buoy could increase its motion to 5% of the wind-

speed (Steele, personal communication). This approxi

mation was checked by a trial tracking of the buoy. 

The wind was light and variable during the search, and 

the main factor contributing to buoy drift would probably 

have been local currents which can be rather unpredictable. 
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However, there still remains the possibility that one 

or more of the buoys were picked up by other shipping 

1.n the area. 

Summary 

The conclusion which emerges from this work is 

that problems in marine exploration can only be solved 

by the thorough testing of each component under field 

conditions. As the success of the experiment hinges 

on buoy recovery it is important to incorporate an 

efficient location system on each buoy. After the 

transmitter proved to be of'little use for radio direction 

finding the chances of retrieval were very much diminished. 

The recording electronics and buoy construction proved 

fully reliable and justified the design chosen for the 

sono-buoys, although it was not possible to determine 

adequately whe-ther noise l-evels at the hydrophone we-re 

sufficiently low to be able to obtain refracted arrivals, 

especially at large ranges. As similar suspensions are 

used with success by other experimenters, it is unlikely 

that any major modification would have been necessary. 

It may well mean, however, that in areas where strong 

currents exist satisfactory refraction profiles can 

only be conducted from two ships using cable streaming 

techniques. 

It is hoped that the knowledge and experience 

gained from this project will be of benefit to future 

workers in the field. 
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APPENDIX 

Information Gained from the Recovered Sono-Buoy 

One of the five sono-buoys launched in the survey 

of the Iceland-Faeroes Rise in August 1968 was recovered 

on 2nd August 1969 by a Norwegian trawler M/K Frisko 

at a position 71°33'N, 8°55'E, approximately 1000 km 

from the Rise. The buoy was still floating but the 

salvage report did not mention how much of the super

structure and hydrophone suspension remained. The buoy 

had been landed in Aalesund in Nor,vay and was returned 

to Durham in February 1970. 

The brackets holding the ballast weight had been 

removed and the aerial sawn off for ease of transport

ation, while the buoy electronics were packaged sepa:rately 

from the casing. It appeared that only about two inches 

of water had seeped into the casing, well below the 

level of the electronics' chassis. The electronic 

components had suffered a considerable amount of corrosion 

partly during its time in the water, and partly during 

the period in Norway when the damp buoy was left out of 

its casing. The magnetic tape, however, had been wound 

on to the take-up spool and apart from a slight coating 

of salt on the outer surfaces had not suffered at all. 

The tape was replayed in the Department and provided 

valuable information concerning the performance of the 

system. 
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It was evident that the buoy electronics and 

switching relays had performed successfully throughout 

the full 15 hr of the survey. The radio transmissions 

of timing pips and speech had been recorded and were 

recognisable up to a range of 95 km from the shooting 

ship. Tape wow and flutter was low but there was 

background noise on both high and low gain amplifier 

tracks. This was noise from the hydrophone and appeared 

in bursts approximately every 6 sec. The bobbing 

action of the buoy was probably being transmitted down 

the cable to the hydrophone causing thi~ noise. The 

bursts lasted for about 1 sec and noise levels at other 

times were reasonably lo~·. The first shot of the survey 

was a 10 lb charge fired 4 km from the recovered buoy. 

The water wave arrival was clearly visible on both seismic 

channels, but any earlier arrival "\vas uncertain as it 

coincided with a burst of noise. If other buoys had 

been recovered it would probably have been possible to 

compare early phases on different records for that shot 

and identify a first arrival. During the interval 

between shots one and two when the tape recorder was 

switched off, the input signal to the seismic amplifiers 

was lost. This could have been caused by a cut or break 

in the hydrophone cable resulting from the cable fouling 
• 

on the stabilising keel. This would also explain why 

the hydrophone had earlier seemed to be coupled to the 

motion of the buoy. 
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It was not possible to obtain any geophysical 

results from the recorded tape but the information obtained 

supported the conclusions based on previous tests as to 

the overall feasibility of the system. 
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II A MAGNETIC SURVEY OF THE FAEROE BANK 

ABSTRACT 

A detailed bathymetric and ~agnetic survey was conducted, 

dur~ng September 1968, over the Faeroe Bank, a tabular shoal 

100 km southwest of the Faeroe Islands. An analysis of the data 

has shown that the bank is probably composed of basic _igneous 

rock, some of '"hich can be seen outcroppi_ng on its top, and that 

there is very little sedimentary cover. There are a number of short 

wavel~ngth ~agnetic anomalies which have been shown to be caused by 

bodies of shallow or_igin. One is a stro_ngly ~agnetic dyke 80 m 

wide trendi_ng northwest-southeast across the bank and can clearly 

be traced for 20 km. It is probably a multiple dyke of Tertiary 

_age intruded when the earth's field was of normal polarity. The 

~agnetic field over the bank does not s_uggest that it is ~ guyot, 

rather it is more likely to be composed of basalt plateau lavas 

extruded from sets of north to northwest trend~ng dyke swarms, 

comparable to those on the adjacent Faeroe Islands. There is 

evidence of a l~rge intrusive body near the southeastern e_dge, 

which may form part of an _igneous ri_ng complex anal_ogous to those 

observed on the Scottish mainland. The Faeroe Bank was probably 

formed from ~agma risi_ng thro_ugh fissures in the continental crust 

caused by the initiation of continental drift in the area about 

60 million years _ago. 
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CHAPTER 1 

THE SURVEY AND ITS REDUCTION 

1.1 Introduction 

The magnetic survey described in this thesis represents part of 

the Geophysical Survey of the Iceland-Faeroes r.egion o.rganised by the 

University of Durham. The survey was made duri?g September 1968 from 

the vessel M.V. Ditte Holm~, a coaster fitted out for scientific 

work at the Wallsend Slipway and E?gineering Company on the Tyne. 

The Fae~oe Bank lies approximately 100 km southwest of the 

Faeroe Islands and is essentially rectangular in plan, with an 

aver.age depth to the top of 100 m. The survey was composed of 23 

parallel magnetic and bathymetric profiles, 3 km apart, across the 

bank, covering an area 90 km x 60 km. The purpose of the survey 

was to investigate the m.agnetic field for possible indications of 

the bank's history, with reference to its position relative to the 

British Continental Shelf and the Mid-Atlantic Ri.dge system. The 

total earth's ~agnetic field ~as measured on a proton precession 

~agnetometer and all positioni.ng \lias made relative to the Loran C 

Navigation Chain. In the followi.ng discussion of the ~agnetic 

survey the field techn~que~and reduction of the observations are 

treated first, follmved by an interpretation of some discrete 

bodies and also the more. general m.agnetic features in terms of the 

bank's ge.ographical position. The reduction of the data, and much 

of the interpretation, has been carried out on the Northumbrian 

Universities Multiple Access Computer IBM 360/67 and the Durham 

University IBM 1130. 
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1.2 Instrumentation 

The instrument used for reco~ding magnetic data was a Varian 

V-4937 proton precession magnetometer, kindly loaned by the 

University College of North Wales, Bangor. The instrument itself 

was positioned in the cargo hold, and produced a continuous paper 

analogue record. The sensing head of the magnetometer was carried 

in a 'fish' towed about 125 m (2.5 ship's lengths) astern of the 

vessel. The magnetic disturbance produced by the towing ship is 

dependent on the position of the 'fish' re1ative to the ship and 

the ship's heading. 

The difference in effect is a minimum between east and west 

courses (Bullard and Mason, 196~), and if the 'fish' is towed more 

than two ship's lengths behind the ship the difference is usually 

less than 5~ and can be neglected. A magnetic survey in the North 

Atlantic (Vogt and Ostenso, 1966) supports this. 

The optimum recycling period of the magnetometer was found 

at the start of the survey. A sufficient number of readings was 

needed to define accurately the high frequency anomalies, but too 

short a recycling period would decrease the strength of the measured 

signa.l and give inaccurate readings. The recycling period wa.s 

fixed at 10 sec throughout the survey. This resulted in a measure

ment every 30 m if the ship's speed was assumed to be 7- knots. 

There was a facility for writing time marks at the edge of 

the paper record adjacent to the position of the magnetometer trace. 

The time marks were produced by simply switching a D.C. voltage 
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across the pen terminals. The switch was positioned in the bridge 

of the vessel. The magnetometer scale was set at 1000 ~ full scale 

reading for the whole of the survey, as the field frequently had a 

gradient in excess of 2000 ~ /km. After the initial adjustments had 

been made the only attention necessary was to ensure the paper record 

was spooling correctly. 

The M.V. Ditte Holm~ had been fitted for the survey with a 

Loran C AN - 31 receiver, which has a claimed fixing accuracy of 

300 m. The ship's exact position need not be known when initially 

setting up the Loran C receiver, since, once the approximate Loran 

co-ordinates have been given, the instrument can be made to lock 

on to the signal and track it continuously. The receiver had to be 

seL.up more than once, however, because of an occasional loss of 

signal caused by a faulty component. It was clear from the loss of 

waveform on the visual monitor when this occurred, so no errors 

were introduced because of this fault. 

1.3 Survey Procedure 

The Loran C receiver was positioned in the bridge of the 

vessel together with a Venner digital clock, which registered 

British Summer Time, and was run continuously without correction, 

having a cumulative error of less than 2 sec over the period of 

the survey. Every 10 min during the survey period the Loran 

reading was taken while a set of switched pulses was simultaneously 

sent to the Varian chart recorder in the hold. TI1e coded sequence 

was written in the log book beside the time, for ease of correlation. 
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The ship's headi_ng was also recorded in the log book. The Atlas 

Echelot depth recorder produced time markers every half-hour and it 

was only necessary to write the ship's time on the record approx

imately every hour. 

A preliminary magnetic survey of the Faeroe Bank area was 

carried out from the north to the south side of the bank and con

sisted of a series of profiles in a number of different directions 

to determine the axes of the ~agnetic trends in the area. These 

preliminary tracks covered 170 km (Plate 1). The results of this 

initial survey showed that the Faeroe Bank had a number of la_rge 

amplitude h_igh frequency magnetic anomalies associated with it. 

M_egnetic profiles in an east-west direction showed predomin

antly shorter wavelengths than those in other directions, indicati_ng 

that the magnetic trends were mainly in the north-south direction. 

It was decided that a series of parallel traverses should be made at 

right-angles to the major trends. A total of 23 profiles was measured 

in the east-west direction. Each l_eg was continued past the edge 

of the bank until the water reached a depth of about 400 m, before 

altering course to the next leg. It was found that far fewer course 

changes were necessary if (rather than follow an exact east-west line) 

the ship was steered alo_ng a Loran line of constant time difference, 

which intersected the area more or less in an east-west direction. 

This accounts for the curved courses on the track chart (Plate 1). 

As there were very few course changes the ship's speed could be 

assumed to be constant between successive navigation fixes. 
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1.4 Reduction of Magnetic Observations 

1.4.1 Reduction methods 

M.agnetic observations may be affected by the magnetism of 

the ship and by temporal variations of the earth's magnetic field, as 

well as by submarine. geology. The effect of the ship has been shown 

earlier to be negligible, so the observations needed no correction 

for the magnetism of the ship. 

Time variations can be considered to be composed of three 

types. 'the normal daily:· variation which is dependent on local time. 

magnetic storms which occur simultaneously at different points on 

the. globe and the long-term secular variation. Secular corrections 

need only be made if the survey is spread over a number of months; 

in the Faeroe region the annual increase is less than 301 (taken 

from world magnetic chart I-10 1703, published by U.S. Naval Oceano-

graphic Office). 

In surveying small areas, the more rapid time fluctuations 

at sea are best assessed by a second moored magnetometer within 

the survey area (Hill and Mason, 1962). ·Roden and Mason (1965) 

found that the diurnal fluctuation in the Indian Ocean could 

be closely approximated by using a weighted mean, dependent on 

lo.ngitude, of observations at two land stations in Bombay and 

Aden. However, the case is complicated at higher latitudes, 

where the vertical force variations induce electric currents 

in the conducting sea \"ater and anomalous field variations 

are produced in the vicinity of the e.dge of the ocean (Roden, 1964; 
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Asho1:1r, 1965). Observations by Hill and Mason (1962) suggest that 

in the deep water off the southwest end of the English Channel the 

daily variation is greater than it is in western Europe. In the 

open ocean this induction of electric currents should reduce the 

daily variation below that observed on land (Chapman and \fuitehead, 

1923). From the above evidence it is obvious that the exact diurnal 

correction to be applied to a marine survey on the basis of land . 

station readings is uncertain. Magnetograms obtained from Lerwick 

Observatory, Shetlands, recorded during the survey period, show that 

on quiet days the diurnal variation was less than 50 'I Because 

of the larger amplitude and shorter wavelength of the crustal anomalies, 

errors introduced by assuming a similar daily variation would be 

small. 

Magnetic storms present a more serious problem. The validity 

of applying a correction from a land observatory must be questionable 

because of the modification, by induced currents, of these magnetic 

disturbances with periods of approximately an hour. The method 

used by Avery, Burton and Heirtzler (1968) in reducing their aero

magnetic survey of the Norwegian Sea was to compare the original 

flight data with the corresponding K indices from Lerwick arld Trams¢. 

It was found that when the K index exceeded 5 at Trams¢ Observatory 

(equivalent to a variation of 2801 in the three hour period) the 

data was excessively influenced by time variations and that subsequent 

contouring of the profiles was adversely affected by the inclusion of 

these disturbed tracks. Thus in the final residual contour map, 

tracks flown during periods when the time variations exceeded K value 

of 5 were excluded. The magnetograms from Lerwick Observatory showed 
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that at two periods during the main survey (see Table I) the K index 

\lfas above 5, which was equivalent to a variation greater than 2~0 ¥ 

in the three hour period. When the profiles measured under disturbed 

conditions were compared to the magnetogram a certain correlation 

was evident, but the extent to which they had been influenced was 

difficult to assess from adjacent profiles, as the whole area was 

one of very variable magnetic character. However, from work described 

later in this chapter,on the differences in measured magnetic field 

values at crossover points of the ship's track, it was found that 

these differences decreased if both readings were corrected for 

temporal variations. This appeared to justify the application of a 

correction for temporal magnetic effects. It was decided to include 

all profiles in the magnetic residual contour map but to avoid using 

profiles measured during storm periods for detailed interpretation 

purposes. 

In order to plot anomalies in an intelligible form it is 

necessary to remove the regional trend. Since the removal of a 

complicated trend may introduce spurious features into the pattern 

of anomalies and remove some important trends with the regional, a 

low order polynomial regional field is more desirable. A linear 

function of distance north and distance east was fitted by least 

squares to the magnetic total intensity values. Such a fit distri

butes equal positive and negative anomaly vo!l.·urnes about the fitted 

surface, and assumes all the magnetic anomaly sources are contained 

within the area of the survey. As the survey was to investigate 

the nature of the bodies comprising the Faeroe Bank,_ this is a. 

valid assumption. 



Table 1 

The K Indices of Geomagnetic Activity Recorded at Lerwick Observatory during the Survey Period 

l 
Day -0000 0300 0600 0900 1200 1500 1800 2100 I 

0300 0600 0900 1200 1500 1800 2100 24aa 1 

9 Sept. 4 2 1 3 3 1 2 1 
) 

I 

The relationship between 
the station K values and 
total field variation in 

I 

I 10 Sept. 1 1 0 2 2 2 0 0 
gamma 

K 00 

11 Sept. 2 1 1 0 0 0 0 0 
I 

0 0-9 

12 Sept. 1 ., .. 1 1 4 3 3 5 I 
1 10-19 

' 

2 20-39 

13 Sept. 6 4 3 3 4 4 4 3 
3 40-79 

14 Sept. 6 5 3 2 3 4 3 3 
4 80-139 

5 140-239 

15 Sept. 5 4 3 2 4 4 4 3 
6 240-399 

-- -

These figures are taken from the Journal of Atmospheric 
and Terrestrial Physics, Vol. 3~ No. 1, January 1969, p. 223. 
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1.4.2 ~~~~!!P!!~~-~;-~~!!~~-~~!~~r-~~~~~!!~~-~!~~!~~ 

A diagram to show the various stages of digital processing of 

the marine survey data is shown in Fig. 2. As these programs have 

only been used in the reduction of one survey the input and output 

format is rather specific. The navigation was assumed to be good 

enough to input the ship's log entries directly into the reduction 

program. In this case no weighting or smoothing of the values 

was necessary. The echo sounder records and magnetograms were 

both digitised with a pen-follower from the original analogue records. 

The Varian magnetometer did not record the magnetic data digitally, 

so the more time-consuming task of digitising by pen-follower had to 

be performed. This had the advantage that the sampling rate could 

be varied depending on the wavelength of the anomaly recorded and that 

any spurious readings could be removed. This led to a more efficient 

use of the processing system. All programs output cards in a suitable 

format to be displayed on the graph plotter using a Fortran II program 

on the IBM 1130. 

A. Navigation Data 

a) Loran C to geographic co-ordinates: The first stage 

in the reduction of navigation data was to establish the 

ship's position in latitude and longitude at each fix. 

A program developed by Decca Navigation Company was used 

to convert Loran C co-ordinates to latitude and longitude. 

The program calculates the equations of two sets of 

hyperbolas of constant time difference on the surface 

of a sphere. The radius of the sphere is equal to the 

radius of the earth at the position of the master station. 

The latitude and longitude of the ship's position are 

given on this sphere, by the point where two hyperbolas 
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of the given time difference intersect. 

b) Geographic to National Grid co-ordinates: A second 

program converted latitude and longitude to km north 

and km east on the National Grid System of Great Britain. 

The formula for this conversion is given in Constants, 

Formulae and Methods Used in Transverse Mercator Projection, 

published by HMSO. The method assumes a square grid 

over a transverse Mercator projection. Card output from 

this program contained the time, latitude, longitude, 

km north, km east, and ship's heading. This was the final 

-reduced form of the navigation data. 

c) Track chart: A plot of the ship's tracks (Plate 1), 

was drawn from this data on a square grid using positions 

drawn by the graph pl~tter in conjunction with the IBM 

1130. This program was written by A.B. Watts, and has 

also been adapted for plotting the bathymetric and magnetic 

anomaly charts. 

B. Magnetic Data 

a) Pen-follower co-ordinates to gamma: The Varian records 

were in analogue form and were digitised on to paper 

tape using the D-Mac pen-follower. The paper tape was 

then read into the IBM 360 and the pen-follower co

ordinates converted to magnetic field values, using program 

MMRED-A. The program automatically rotates the axes 

of the record parallel to those of the pen-follower. It 
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also allows for the changes of record base line, 

which occur especially in steep field gradients. The 

records were digitised in blocks, as delineated by the 

time marks. The block widths varied between 10 min 

and 30 min, depending on the navigation cover. The 

correlation of magnetic readings with geographical 

position is made with respect to time, using the time 

marks at block headings. The actual time need not 

necessarily be correct; no error will be introduced 

provided that the time mark corresponds exactly to the 

time a navigation fix was taken. Thus the output from 

MMRED-A is a field value in gamma, followed by its 

position in terms of a fraction of the total block width. 

These values are output on cards for plotting magnetic 

profiles, and are also stored on disc on the IBM 360 

ready for inputting to the second half of the program, 

MMRED-B. 

b) Main magnetic reduction program: This program, MMRED-B, 

initially stores all the navigation and magnetogram data. 

The navigation fixes, however, give the position of the 

ship, butthe recorded magnetic readings represent the 

field at a point behind the ship, at the position of the 

magnetometer 'fish'. In order to correct for this it 

is necessary to know the ship's heading and the distance 

of the 'fish' from the mast. This distance was 125 m 

and the angle between grid north and magnetic north is 
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about ll 0 W for the area. Thus, as the navigation data 

was read into the program the grid co-ordinates were 

modified accordingly. The magnetic readings were then 

brought down from disc, each block heading time being 

assigned a grid position from the navigation data. TI1e 

individual magnetic readings were allocated grid positions 

and corrected for temporal variation by interpolation. 

The magnetic readings were then smoothed by grouping 

together all readings along each 10 km length of traverse 

and finding the mean. These mean values were used to 

obtain a regional for the survey by a least squares method. 

This enables one to calculate the best fitting plane 

through the observed magnetic anomalies, so that the 

square of the residuals is a minimum. The theory behind 

this method is adequately described in Statistical Methods 

in Research and Production, by O.L. Davies (p.256). First 

the set of normal equations so obtained were solved to 

give the co-ordinates of the plane. Once the regional 

field had been calculated the magnetic readings were 

converted to residuals. For ease in contouring, any 

residuals which varied from the previous-one by less than 

20 ~ were ignored. Those with variations greater than 

20 -g were expressed to the nearest multiples of 10 ~ , 

This was calculated by interpolation, using the previous 

residual. As the field points were on average only 200 m 

apart the field gradient between them could be assumed to 

be linear. These values were punched out on cards giving 
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time, latitude, longitude, km north, km east, total field,and 

residual. Magnetic programs MMRED-A and MMRED-B were not 

combined into one program for a number of reasons. The 

paper tapes obtained from the D-Mac pen-follower often 

have errors which are difficult to spoi on the teleprinter. 

A preliminary run of program MMRED-A without storing the 

results on disc is therefore useful. As almost 12,000 

magnetic readings are used together in p':rogram MMRED-B, 

input has to be from a file set up on diiiC. This can be 

done most conveniently by successive runs tf MMRED-A. 

c) Magnetic anomaly contour chart and profile plot: The 

magnetic anomaly contour chart (Plate 2) was dtq_wn by hand 

from the values of residuals obtained from progr<.'m MMRED-B 

using the same plotting routine as for the track ,·thart. A 

second program, written for the 1130 computer in association 

with the graph plotter, produced magnetic profiles of each 

track, using a similar method of allocating grid positions 

to the field values as program MMRED-B. The magnetic 

profiles were positioned parallel to one another with a 

slope of 13° to grid west, the mean angle of the tracks. 

The plot of the magnetic anomaly profiles is shown in 

Fig. 3. This can only give an approximate idea of the 

magnetic trends as the ship's tracks do not follow straight 

lines. 
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C. Bathymetric Data 

a) Pen-follower co-ordinates to depth and position: This 

program MDRED uses many of the facilities of MMRED-A and 

MMRED-B. The echo sounder records are digitised in the 

same manner as the Varian records and are converted to 

metres from the pen-follower co-ordinates in alprogram 

almost identical to MMRED-A. The records, however, do 

not have time marks which could be correlated with the 

navigation data, so each individual depth reading was 

paired with a time corresponding to ship time. By inter

polation of the navigation data the position of the ship 

at that time was found. Depth values were punched on 

cards at intervals of 10 m, together with time, latitude, 

longitude, km north, km east, to obtain a bathymetric 

contour chart. It became obvious when calculating the 

apparent ship's speed between supposed 10 min fixes, and 

from the apparent speed of the Varian paper drive, that 

not every fix and time mark was made at the time stated 

in the log book. These timing errors can be avoided if 

time marks are matched directly to the position shown 

in the log, as was done in reducing the magnetic records. 

These errors are a maximum of 1.5 min, and because of the 

small bathymetric gradient they do not affect the readings 

badly enough:to invalidate their use in contouring. 

_b) Bathymetric contour chart: This again was hand contoured, 

using an identical technique to that used in producing the 

magnetic anomaly chart, and is shown in Plate 3. 
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D. Temporal Variation Data 

The three magnetic quantities recorded at Lerwick Observatory 

are vertical field, horizontal field and declination. To form 

some estimate of the disturbi_ng influence of the temporal 

variations in the observed measurements, the total field had 

to be calculated. This was achieved usi_ng pr_ogram STORM. The 

traces of horizontal and vertical field were ~igitised on the 

D-Mac pen-follower, and from these co-ordinates the total 

magnetic field was calculated every 20 min and punched out 

on cards. The base line for correction purposes was taken to 

be the mean of all total field readi?gs over the survey period. 

The p~ogram used for plotting ~agnetic measurements was used 

to plot these total field readings for direct comparison with 

the magnetic profiles. 

1.5 Discussion of Survey Errors 

1.5.1 Instrument Errors 

A. Loran C Equipment 

The quoted fixi_ng accuracy for the system is between 

200 - 400 m in the_ good cover_age around the Faeroe Islands. 

Relative errors between individual fixes are probably much 

smaller. The receiver can measure the time differences between 

master and slave pulses to about 0.11' S (Loran C Operating 

Instructions); however, the tracki_ng stability was such that a 

dial reading could only be accurate to about 0. 31'S at best. 

The survey area was well covered by slaves at Sandur in Iceland 

and Sylt in Germany from a master station at Ejdes in the 
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Faeroe Islands. The two sets of hyperbolas crossed approx

imately at right angles. A reading error of 0. 3 t" S on both 

slaves is equivalent to an uncertainty in position of about 

70 m in each direction or 70 x j2 = 100m overall. So, solely 

as a result of the errors in reading the Loran C receiver 

dials an uncertainty in position of 100 m is introduced for 

each navigation fix. 

B. Magnetometer 

The instrument is accurat·e to 1 ¥ ; the magnetometer analogue 

records can be read to : 2 ~ ; the errors due to the heading 

effect of the ship are about 5 lf . These are negligible in 

comparison to the effects of temporal variations of the earth's 

field, which have been described earlier. 

C. Echo Sounder 

There are a number of sources of error connected with continuous 

trace echo sounders. TI1e echo sounder, an Atlas Echelot Mono

graph 58, was set for an assumed sound velocity of 1500 m/sec 

and there has to be a correction made for the mean velocity of 

sound in the area where the soundings were made. Matthews (1939) 

compiled a set of tables of echo sounder corrections to be 

applied for different areas of the world. Unfortun~tely, the 

Faeroe Bank lies in a region where a number;of areas meet, and 

corrections from the tables are difficult to apply. The velocity 

of sound in sea-water depends upon the temperature, salinity 

and pressure. From data collected in Iceland-Faeroe Ridge 

International "Overflow" Expedition, May-June 1960 (Tait, 1967) 
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and using Matthews' tables to determine the velocity of sound 

in sea water, a value of 1487 m/sec was obtained. Harvey (1965) 

in a study of the Faeroe Bank Channel calculated a valu~of 

1488 m/sec for depths down to 400 m. Using a velocity of 1487 

m/sec the actual depth will be 1% less than that recorded. 

A second constant error will be that due to the depth of 

the transducer below the surface of the water, and in this 

case has led to the measured depth being 3 m less than the 

true depth. Errors in displacement of the transmission line 

against the scale are negligible, as the depths were digitised 

using the transmission line as a true zero. 

In traversing steep slopes, side echoes may arrive prior 

to returns from directly beneath the ship, resulting in an 

apparent sea-floor slope which is less than the true slope. 

However, the maximum apparent slope is 5°, giving a negligible 

error of 0.3% in the true slope. Thus in the survey over the 

bank the above errors vary between + 2 m for a measured depth 

of 100 m to + 1 m at 200 m. Errors resulting from reading the 

echo sounder records would amount to + 2 m. There will be a 

further source of error caused by variations in the timing of 

the echo sounder. No attempt was made to measure this error, 

as any gradual speed variation would only be evident at track 

crossovers. The tidal range measured at SyderH, the closest 

island in the Faeroes to the Faeroe Bank, is a maximum of 1.3 m, 

so errors caused by tidal changes are small. Thus an estimate 

of the error of a single reading should be less than 4 m. 
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1.5.2 Calculation of Errors 

In theory where two tracks intersect and there are gradients 

of both depth and magnetic field that do not have coincident 

directions, the point of intersection is uniquely determined 

by the position of equality of both the depth and field (Laughton, 

I-fill and Allan, 1960). It was found, however, that the sea bed 

had a very slight gradient and that the magnetic field was so 

variable that unique intersections could not be found. Instead 

both sets of data were analysed separately and the conclusions 

obtained combined to give a general representation of the accuracy 

.of the measurements. To aid in the analysis a computer program 

was written to compute the exact time at which ship tracks and 

magnetometer tracks intersected. 

Initially, the navigation data cards for the survey are stored 

in an array. The track chart (Plate 1) shows where tracks inter-

sect and approximate times either side of the intersection point 

on each track can be found. The times; chosen in this case have 

been the times of the Loran fixes. For each crossover point four 

times are input to the progr<L"n. By the same sorting routine described 

earlier a km north and km east position is assigned to each time. 

Using a pair of grid co-ordinates for the times at each end of 

the profile the equation of the track line is found in terms of 

grid co-ordinates. This is repeated for the other intersecting 

track. The po~nt of intersection of the two lines is found and 
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by interpolation the time on each track is found when the 

intersection occurs. The pr_ogram was run twice, once to find the 

times at which the ship was over the same point of the sea bed for 

comparison of bathymetry, and a second time to determine when 

the magnetometer was over the same spot for comparison of the 

magnetic records. 

It was decided not to elaborate the p~ogram and obtain the 

corresponding magnetic and bathymetric values automatically, but 

to use the crossover times to compare the records manually, as 

the gradients either side of the fix were also required. The 

small number of digi1ised ~agnetic and bathymetric readings made 

it impossible to do this accurately by computer. 

From the track chart it is evident that there are 58 points 

at which the survey tracks cross. The program XOVERS, however, 

assumes the ship's track is a str~ight line between the two position 

fixes. This assumption does not hold in areas where the Loran 

s.ignal was lost for long periods (which only occurred twice, both 

times on the preliminary survey) nor when a course ch~nge has occurred 

between fixes. The total of intersecti.ng survey lines was thus 

reduced to 48. 

1. s. 4 ~~]~!~~!~-~!- ~~!~~~~!!'!~-~!'!:~E~-~!_'!'!:~~~-!1]!~!'~~~!!~1]~ 

Most of the intersections in the ship's tracks occur when the 

preliminary survey crosses the main grid survey. Unfortunately, 

the echo sounder was not functioni_ng for the early part of the 

preliminary survey, so only 22 crossovers could be used for a 

comparison of the bathymetry. Of these only one was off the bank 
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in water deeper than 200 m. This crossover, where the depth was 

300m, had a steep enough bathymetric gradient (1:40) to enable 

an estimate to be made of the accuracy of one traverse relative 

to the other. The difference between two values was 4 m so that 

on this basis the relative positioning appeared to be about 150 m. 

Of the remaining twenty positions most depth readings agreed to 

within the reading error of 2 m. As most of these readings were 

in shallow water, where the topographic gradient was less than 

1:250, they showed that the depths recorded were in fact accurate 

to the ! 2 m quoted earlier, but could give no futher information 

as to the accuracy of navigation. 

A group of six successive points, however, did not correlate 

closely. These were along the second half of the southerly profile 

R and had depth readings approximately 5 m greater than the readings 

taken on the east-west profiles. It is significant that the errors 

increase with distance along Profile R until the direction changes 

to east-west along profile S. A close fit could be obtained with 

the east-west profiles either by displacing Profile R 1.5 km to 

the south or 0.5 km to the west. An increase in recorded running 

speed half way along Profile R and a subsequent decrease could 

have occurred, but this is unlikely. 

A comparison of bathymetric profiles at the crossover points 

in the survey showed that, apart from one traverse, all other 

tracks agreed to within 200 m of one another. Although in general 

there was good correlation between profiles on the contoured bathy

metric chart supporting this overall consistency, the sparseness of 

profiles for direct comparison meant that no definite conclusion 

could be drawn solely from these observations. 
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Use could be made of the magnetic field values at crossover 

positions to give further information on the navigational accuracy, 

as the field gradients are large. 1be approach used was first to 

determine the value of magnetic field on each of the two tracks 

at the time when magnetometer tracks intersected. The magnetic 

gradient at each point was measured from the analogue record. It 

has been estimated that the ship's position could be read from the 

Loran equipment to an accuracy of 100 m, so the exact point of 

intersection could be up to 100 m either side of that calculated 

on each track. A best fit between the two magnetic values was 

obtained by using the known gradients at each point, and allowing 

a drift in intersection position of up to 100 m. This distance 

was represented by a time interval of 0.5 min on the Varian record, 

assuming a mean ship velocity of 13 km/hr (about 7 knots). A 

correction equal to the observed temporal variation at Lerwick was 

applied te the magnetic readings, and a similar procedure followed. 

Table 2 lists the difference between field values at the inter-

section points as a function of frequency of occurrence. 

Table 2 

Distribution of Magnetic Field Value Differences 
at Track Intersections 

o, 0-50~ 50-100 ~ 100-150"¥ 
over 
150~ 

Without 
temporal 18 8 8 5 9 
correction 

With 
temporal 28 6 4 4 6 
correction 

TOTAL 

48 

48 
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A comparison of the two sets of observations shm"s that applying 

a correction for temporal variations helps reduce the differences 

between readings at crossover points. 

The six anomalous crossovers discussed in the earlier section 

on bathymetric comparisons also showed anomalous magnetic crossovers, 

in one case a difference of over 500¥. Thus it must be concluded 

that during Profile R considerable nav.igation errors were introduced 

and hence this profile was not used for contouri.ng purposes. 

Six of the e.ight remaining crossover points, where differences 

in field values. greater than 50 r occurred, resulted from measurements 

made during a magnetic storm, when the magnetic field at Lerwick 

Observatory was at least 120 1f above the daily average. This 

emphasises the importance of a reference station close to the survey 

area to correct for temporal variations in detailed magnetic surveys. 

Apart from these, the field values at only two of the remaining 36 

crossovers differ by more than 50 'I( • This indicated good relative 

positioning of the navigation fixes, to within approximately 200 m. 

---oOo---
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CHAPTER 2 

THE INTERPRETATION OF THE SURVEY DATA 

2.1 Geology and Topography of the Area 

The Norwegian and the Greenland Seas are separated from the 

North Atlantic Ocean by a bathymetric rise extending approximately 

2,000 km from East Greenland to Northwest Scotland. Two transverse 

rises occur on this barrier, the la_rger bei_ng the Reykjanes Ridge, 

a portion of the Mid-Atlantic Ridge, \vhich has Iceland as its cumu-

lation and a smaller spur further north to Jan Mayen. The second 

transverse rise is the Faeroe Rise and has Rockall Bank and the 

Faeroe Islands at its summit. The Faeroe Bank is one of a number 

of shoals on the Faeroe Rise and is separated from the Faeroe 

Islands by the Faeroe Bank Channel. This channel has a northwest-

southeast trend. Joini_ng the Faeroe Bank with the continental 

shelf west of. Lewis is the. Wyville Thomson Rise, trendi_ng approximately 

parallel to the channel. 

This whole area of the North Atlantic is included in the Thulean 

Igneous Province, which extends from Greenland to Western Scotland, 

Northeast Ireland and the Bristol Channel. Duri_ng early Tertiary 

times the Hebridean-Irish region was the site of intense _igneous 

activity; plateau basalts poured out in profusion, remanents of which 

2 still occupy an area of over 5,000 km . Followi?g the eruption of 

the plateau lavas there was a prolonged period of alternati_ng explosive.:. 

and intrusive activity, localised at a number of independent centres, 

e_. g. Skye, Rhum, Ardnamurchan, Mull, Arran and S.lieve Gullion. A number 

of workers have analysed rocks from the intrusive centres, using 

isotopic dating techniques, and have found them to be of similar age. 
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The Arran. granite has been dated as c.60 million years (Miller and 

Harland, 1963) 1 the Skye. granite as 54 ~ 3 million years (Moorbath 

and Bell, 1965) and the Ardnamurchan quartz-monzonite of centre 3 as 

55 ~ 6 mi Ilion years (Miller and Mohr, 1965). The final st.ages of 

activity were marked by a widespread injection of dykes and sills. 

These basic dykes are especially abundant in the vicinity of the 

plutonic complexes to which they are evidently related (Richey, 1939). 

The northwest trending swarms traverse not only the basalt lavas and 

intrusive masses, but also extend well beyond the areas uovered by; 

the lavas into Northern England . 

. The Tertiary volcanic rocks found in the Hebridean-Irish region 

probably represent only a fraction of the total area involved. l~ager 

(1934) found in Eastern Greenland that 'Tertiary .igneous phenomena 

are displayed on at least the same scale and with at least the srune 

variety as in the British Isles'. The chrono~ogical order of events 

appears to be very similar to those in Northwest Scotland, although 

the dyke swarms present do not have the same trends, they strike in 

a northeast-southwest direction parallel to the coastline. Subsequent 

to the formation of the main plateau basalts crustal warpi.ng took 

place, producing a flexure of the crust into which the dykes were 

intruded. The Rb - Sr isotope analysis of a aample from the 

Kangerdlussuak alkaline intrusion in East Greenland gives a date of 

49 + 2 million years (Hamilton, 1966), confirming that it is of 

lower Tertiary age. The southerly limit of the Thulean Province 

appears to extend to the island of Lundy in the Bristol Channel. 

Here a dyke swarm similar to that in Mull has been found, and Dodson 

and Long (1962) have dated the granite as 52 + 2 million years. 
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The Faeroe Islands are igneous in or.igin and a 3,000 m 

succession of plateau lavas has been mapped (Noe-Nygaard, 1962). 

Radioactive dating by Tarli.ng and Gale (1968) has established a 

lower Tertiary age, 55 - 60 million years, for the sequence. The 

uniformity of water depth around the Faeroe Islands is attributed to 

a seaward extension of the basalt flows (Robinson, 1952), while 

basalt has been dre.dged from Bill Bailey's Bank, 180 km to the south

west. (Dangeard, 1928). The Tertiary plateau basalts of Iceland 

have been grouped with the similar rocks in Northwestern Scotland, 

Greenland and the Faeroe Islands. However, recent work by Moorbath 

et al. (196~) has established that the oldest exposed rocks in Iceland 

are late Tertiary - only 12 - 16 million 1ears old. 

The Thulean Igneous Province also stretched to the west of 

Britain. On Rockall Bank a number of specimens of basalt· have been 

dredged (Dangeard, 1928), s.u.ggesti.ng that the bank is, at least in 

part, a plateau of basalt. The Rockall islet, however, is formed of 

aegerine.-granite dated isotopically as 60 ! 10 million years old 

(Miller, 1965), which proves it is contemporaneous with the B+itish 

Tertiary granites. It may well represent a local. granite intrusion 

similar to those associated with the basalt plateau lavas in Mull 

and Skye. This is stro.ngly supported by a ~agnetic survey over the 

Roekall Bank (Roberts, 1969), which suggests the existence of a 

volcanic centre on the Bank in the vicinity of the islet. Another 

centre of igneous activity is presumably represented by the St. Kilda 

group of islands. The exposed rocks on the islands represent the 

remanents of a much more extensive complex of some 10 km in diameter 
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(Harding, 1966). Miller and Mohr (1965) obtained ages of between 

50 and 60 million years for the l~rge intrusion and 35 million 

years for the later dykes. 

Recent strontium and lead isotope studies have revealed 

important differences between the volcanic rocks in Iceland and 

elsewhere in the TI1ulean Province. In the case of Iceland, 

strontium and lead isotopic ratios from acidic and basic rocks 

indicate an upper mantle derivation, with no isotopic evidence 

for sialic contamination (Moorbath and Walker~l965; Welke, 
moy 

Moorbath, CWJuning and Sigurdsson,. 1968). This~s.U:ggest.: the 

absence of a sialic crust beneath Iceland, which _agrees with 

the seismic evidence of Tr_y_ggvason and B§th (1961). In the 

contrasting case of the Lower Tertiary _igneous centre of Skye, 

acid rocks are characterised by an excess of radi_ogenic strontium 

and of unradiogenic lead which has been interpreted as indicati_ng 

partial melting of ancient Lewisian basement. It has also been 

concluded that Rockall_ granite magma could have differentiated 

from a basic magma which had been contaminated by ancient sialic 

rocks (Moorbath and Welke, 19.69). This evidence justifies the 

inclusion of Rockall Bank, and the exclusion of Iceland in the 

palae_oge_ographic reconstruction of the North Atlantic landmasses 

before continental drift (Bullard et al., 1965). All this throws 

considerable doubt upon the old theory that the whole of the North 

Atlantic Tertiary Igneous Province was continuous and contem-

poraneous from Northwest Scotland to East Greenland, and that 

the Atlantic Ocean rested on a foundered continent (Thoraddsen, 

1906). Thus it appears that Iceland was formed at its present site 
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on the Mid-Atlantic Ridge by crustal drift, achieved by crustal 

extension through dyke injection of the material from the upper 

mantle. (Btldvarsson and Walker, 1964). This is in contrast with 

the continental affinity of Rockall Bank. 

2.2 Interpretation of Bathymetric Data on the Faeroe Bank 

The bathymetric chart (Plate 3) of the Faeroe Bank shows 

it to have a flat-topped structure el~ngated in the southwest

northeast direction. The average bottom depth is 100 m, tho_ugh 

in places it is less than 90 m below sea level. The edges of the 

bank are steeper on the northeast and southwest sides, more 

especially to the nor,theast, where a slope of 1 in 10 is observed. 

The echo sounder records show that in a number of places stro_ngly 

reflecti_ng crystalline rock outcrops Qn the bank top (F_ig. 4). 

As the outcrops cannot be traced across profiles there seems no 

evidence of any continuous ridges crossing the bank. These outcrops 

reach a height of up to 30m with slopes of up to 1:4. This 

r·ugged relief of the bank surface is confined to the southwest 

half of the bank, while the northeast part seems far more smooth. 

A continuous reflection and asdic survey of the Faeroe Bank Channel 

was carried out by Stride et al. (1967). One of the traverses of 

this survey crossed the northeast e_dge of the bank, and a close 

inspection of the asdic records revealed a number of reflecti~g 

crystalline rock outcrops (Belderson, personal communication). The 

relief of these outcrops \vas lower than those observed over the 

southwest portion of the bank, but definite trends sometimes 

extending for about 0.5 km were present. A plot of the trends 
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I 

showed that they have a definite arcuate structure concentric with 

the northeast edge of the bank. Therefore, some of these outcrops 

might indicate the edges of lava flows on the bank. Some sediment 

is also present, mainly at the bank e_dges, but there is no evidence 

on the aparker records of any layered beddi_ng on the top of the 

bank, so that the sediments are probably very thin or occur only 

in pockets. This is supported by evidence from a gravity traverse 

\vhich indicates a free air anomaly of + 50 _mgal over the bank. 

The anomaly is ·adequately explained if the bank is assumed to be 

composed of material havi_ng a density contrast of about 1.8 gm/cm3 

with the surrounding water. The mean density of basaltic lavas from 

the Faeroe Islands is 2.86 gm/cm3 (Saxov and Abrahamsen, 1964), 

suggesti_ng that no great thickness of sediment is present over 

the eastern e_dge of the bank (Watts, personal communication) . 

One noticeable feature of the bank is a submarine escarpment 

(F_igs. 4 and 5) along the northern face of the bank, which can be 

traced for a distance of 40 km. The bench he_ight varies between 

25 and 35 m, but as the variation is not systematic this could 

well be caused by small increases in sediment thickness alo_ng the 

escarpment. 

The escarpment tra~sgresses the bathymetric contours, the 

top scarp varying between 170 and 200m, the lower between 200 

and 230 m. There could be a number of origins for this feature. 

Robinson (1952) has found by sonic soundi_ng a submarine escarp-· 

ment continui_ng for 30 km, to the west of the Faeroe Islands 

between the 200 and 300 m contours, and has attributed this to 

the edge of an individual lava flow. Holtedahl (1955), however, 
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noticed a distinct ch~nge in slope at a depth of 280 m northeast 

of Thorshavn and compared this with the presumed former marine 

base-leved: pff the Norw_egian coast 300 m below the present sea

level; he s_"ll:ggests the escarpment was formed duri_ng a period of 

lower sea-level. 

The persistence and linearity of the two scarps over such 

a large distance a_rgues _against them bei_ng e_dges of lava flows 

unless there has been associated faul ti_ng, and also throws doubt 

on any sedimentary slump o~igin. It is doubtful if these two terraces 

indicate former sea levels as they are only sepa1·ated by 30 m, 

and would be expected to lose-.:·the.ir j.ndi vidual identities. They 

would also be present elsewhere on the bank. The most likely 

o~igin, suggested by the linearity of the scarp e_dges, is that 

they were caused by normal faulti_ng parallel to the northwest 

edge of the Faeroe Bank, and similar to those observed on the 

continental shelf and slope off Norway (Holtedahl, 1955). 

Th.e only previous bathymetric survey of th.e bank was made by 

the.British Admiralty between 1941 and 1943. The survey was based 

on taut -~ire runs and had an accuracy of one -tQ two km in position. 

Spot soundi_ngs only were availa.ble. This data is shown in F_ig. 6 

(by kind permission of the Hydr_ographer of the Navy) together with 

the contours obtained from surveys of the Faeroe Bank Channel 

made by the 'Explorer' and 'Ernest Holt' between 1960 and 1963 

(Harvey, 1965). Harvey noticed a shift in the position of the 

contours between the two surveys, on the western side of the Channel, 

apparently indicati_ng that erosion had taken place at the northeast 

edge .of the bank. In the 1941-43 and 1968 ~urveys, however, the 
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area of the bank delineated by the 200 m contour is approximately 

the same; if there has been erosion to the northeast then it is 

accompanied by silti_ng to the southwest. The shift in contours 

is therefore more probably caused by errors in nav_igation and the 

echo soundi_ng equipment. A comparison of the contours obtained 

in 1960-63 and those of the 1968 survey show that displacements 

are never_ greater than 2 km, which is within the quoted navi-

gational error of the two surveys. The conclusions from·this 

data are in _agreement with the find~ngs of Stride et al. (1967) 

that the Faeroe Bank Channel separates two shoals of igneous 

o~igin and that erosion within the Channel by stro_ng bottom 

currents is relatively unimportant. 

2. 3 Interpretation of Magnetic Anomalies 

The ~agnetic anomaly contour chart was obtained from the 

total field measurements by subtracti_ng a plane ~egional field 

computelii from the observations. To_ give a better comparison of 

the obtained r_egional with previously determined r_egional fields 

in the area, all ~egional bac_kgrounds were calculated at a false 

o~igin in the bottom southwest corner of the survey area at 

Faeroe Bank Survey: 

Regional background at false or_igin 
Regional gradient eastwards 
Regional: gradient northwards 

= 50012 gamma 
= - 1. 5.92 gamma/km 
= 2. 266_ gamma/km 

International Geo~agnetic Reference Field: 

Regional background at false origin = 50069 gamma 
~egional_ gradient eastwards = ':"" Q.471 gamma/km 
R:egi~<mal_ gra,d:i:ent nQrth,\.iards; = 1. 9A6 gamma/km 
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These values were calculated from a world ~agnetic ~egional pr.ogram 

provided by the Department of Geodesy and Geophysics, Cambri.dge 

University, usi.ng coefficients .agreed upon at W.M.S. Conference, 

October 1968, Washi.ngton. The pr.ogram calculates the r.egional 

field at the corners of the d.egree square containi.ng the point and 

fits a plane to these values, by the method of least squares. As 

the survey is almost completely contained within a degree square 

this approximates to a plane across the whole survey area. 

Great Britain: 

Regional background at false o~igin = 50009 gamma 
Regional gradient eastwards = - 0.2'59 gamma/km 
~egional: gradient northwards = 2 .173. gamma/km 

These values have been corrected to epoch 1968.5 from Aero~agnetic 

Survey Data reduced by the Geol.ogical Survey to epoch 1955.5, by 

assumi.ng a constant secular variation of + 25 ~ per year across 

the area. 

A comparison of the sets of data shows a close correlation 

of field values at the selected false origin and of fiel~ gradients 

in a northward direction. Altho~gh all ~egionals show a decrease 

in the field in an eastward direction the ~agnitude calculated from 

the present survey is. greater than those calculated from previous 

work. The reason for this is evident from the contour map (Plate 2) 

which shows that i~ general the western area of the bank has 

noticeably ~igher magnetic field values over it than the eastern 

area. The difference in eastward gradients between the world 

~agnetic r.egional for the area and this survey is - 1. gamma/km. 

Cha.nges in anomaly values produced by usi.ng this different r.egional 

over the survey area, which is only 80 km wide,i \vould not signifi-

cantly ch~nge the interpretation of the area. 
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2.3.2 ~~~~~~~~~~-~~-!~~-~~~~!~~-~~~!~!~~-~~-!~~-~~~!~~-~~~~ 

The ~agnetic anomaly chart shows that the Faeroe Bank has 

a highly variable magnetic field associated with it and that 

north-south m_agnetic trends predominate in the area. The_ general 

pattern is complex with a number of ~gh frequency, ll:igh amplitude 

anomalies superimposed upon broader ones. The majority of the 

short wavele_ngth northerly trendi_ng ~agnetic features are confined 

to two areas; one on the western e_dge of the bank and the other 

on the eastern part. This is in contrast to the central area of 

the bank where the ~agnetic field is less disturbed. 

There is no symmetric anomaly over the bank as observed over 

the adjacent extinct volcano, Rosemary Bank (British Admiralty 

Survey, 1967; Cann, personal communication), and the seamounts in 

the Pacific Ocean (Bullard and Mason, 1963). This confirms the 

bathymetric evidence that the Faeroe Bank is not a simple_ guyot 

or extinct volcano. 

One stro?g linear feature is obvious in the north of the 

Bank, striki_ng north-northwest. It has a stro_ng positive anomaly 

of_ greater than 1200 ll associated with it and continues from the 

e_dge of the survey area for 20 km. At this point it is truncated 

by a northeast trendi?g feature. Another prominent feature is the 

broad positive anomaly of + 1,000 lS amplitude situated on the south 

east e_dge of the bank. It is elo_ngated in an east-west direction 

and can be traced for 30 km. There are a number of high amplitude, 

h_igh frequency anomalies associated with this 'h_igh', but their 

~agnetic characters chB:Jlge rapidly between profiles (.see F_ig. 3), 

and appear different from the linear feature observed in the north 
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of the bank. The character of these anomalies shows the abundant 

presence of h_ighly m_agnetic rocks close to the sea bed. This 

bears out the s_ll:ggestion made by Bott and Stacey (1967) from the 

results of ~ gravity and ~agnetic traverse, that the Faeroe Bank, 

like the Faeroe Islands, is made of basic _igneous rock. 

A quantitative analysis of some of the above magnetic features 

will now be described and usi?g the results obtained a more detailed 

interpretation· of the nature of the Faeroe Bank will be made. 

2. 3. 3 P.!~_!!!lE~!'!'!~~~- ~L!!!~-!'~!!1'!~~~!-~~g~~!!~'!;!~~-~f __ !~~Q~~ _!'Q£~~ _!~

~~g~~!!~- !~!~!'E!'~!:~!:!.Q~ 

The interpretation of ~agnetic anomalies in terms of the 

bodies causi?g them is based on a contrast in the ~agnetisation 

between agjacent rocks. This ~agnetisation contrast, however, is 

not solely due to the difference in susceptibility of the rocks, 

but also depends on the permanent magnetisation of the rocks 

(Green, 1960). The ~agnitude of this remanent ~agnetisation is 

commonly_ greater than the induced magnetisation of igneous rocks. 

The KHn_igsbe_rgEr Ratio, Q, is defined as the ratio of remanent to 

induced ~agnetisation of the specimen and is typically between 2 

and 10, while values of up to 100 have been measured in recently 

erupted lavas (~agata, 1961). When an _igneous rock is cooled 

in a magnetic field thro_ugh its Curie temperature it acquires an 

tntense ;res,-tdual m_agnetisation, called the thermo-remanent ~agnet

isation, in the direction of the ambient_ geo~agnetic field. The 

~agnitude of the remanent magnetisation in _igneous rocks is la_rgely 
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due to their acquisition of this thermo--remanent ~agnetisation 

(Nagata, 1961; Opdyke and Hekinian, 1967). Basic _igneous rocks 

tend to be more ~agnetic than the more acidic rocks, owi_ng to 

the presence o~ greater amounts of iron oxides in the former. 

Much research work has been done recently in determini~g 

the susceptibilities and remanent ~agnetisations of both continental 

and oceanic basalts (Matthews, 1961; Cox and Doell, 1962; Bullard 

and Mason, 1963; Ade-Hall, 1964; yogt and Ostenso, 1966; Opdyke 

and Hekinian, 1967; Larson et al., 1969). It has been generally 

found that oceanic basalts have very much h_igher Q values than 

the continental counterparts. In general, intensities of remanent 

magnetisation increase in inverse proportion to the_ grain size of 

the ~agnetic minerals (Cox and Doell, 1962; Bullard and Mason, 1963; 

Larson et al., 1969) . Since rapid cooling encour_ages fine_ grain 

size, submarine lavas are likely to have higher remanent magnet-

isations than continental lavas. It has also been demonstrated 

by Shandley and Bacon (1966) that susceptibility decreases with 

increasing_ grain size, so a combination of these two effects results 

in a h_igher Q value for oceanic lavas. Typical values of remanent 

~agnetisations for oceanic basalts as deduced from the above 

references are between 0.0005 e.m.u./cm3 and 0.3 e.m.u./cm3, with 

3 a mean of about 0.008 e.m.u./cm and a mean Q value of 20. Continental 

basalts possess a similar r~nge of remanent magnetisation, but have 
. 3 

a lower mean of 0.005 e.m.u./cm and a mean Q value of 3. Hence 

from the above evidence it can be ,-seen that the resultant ~agnetis-

ation of basic rocks, in particular oceanic ones, is primarily a 

function of the remanent ~agnetisation, ~egardless of whether the 

inducing field is reinforci_ng or opposed. 
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The igneous activity associated with the Faeroe Bank is most 

probably of Tertiary age. This is s.ll:ggested by the presence of 

northwest ~agnetic trends similar to those observed in the Tertiary 

igneous areas of northwest Scotland and also by the similar 

~agnetic character of the two areas (Aero~agnetic Map of Great 

Britain and Northern Ireland, Sheet 12, Geol.ogical Survey). In 

addition, the adjacent Faeroe Islands have been proved by radio

active dati.ng to be of Tertiary .age. 

In order to estimate the direction of ~agnetisation of 

Tertiary igneous rocks it is necessary to know the position of the 

geo~agnetic pole at the time of cooling. A study of the remanent 

~agnetisation of igneous and sedimentary rocks by Hospers (1955) 

revealed that the amount of polar wanderi.ng in Tertiary and 

Quarternary times was small, at the most about 5° to 10° from the 

present pole position. He concluded that the ancient field approxi

mated to a dipole field and that the mean position of the ~agnetic 

poles coincided with the geocentric poles, at least back to the 

beginni.ng of the Tertiary Era. Irvi.ng (1964) has compiled a 

fairly complete record of the palaeo~agnetic field directions since 

the Pre-Cambrian which supports this hypothesis. Opdyke and Henry 

(1969) also found supporting evidence from an investigation of 

deep-sea sedimentary cores of up to 2 million years in .age. 

Palaeo~agnetic work by Abrahamson (1967) on the lava pile in the 

Faeroe Islands has indicated that the mean position of the palaeo

~agnetic pole, deduced from nonnal and reverse polarity lavas, 

.agrees closely with data published by Irvi:ng (1964) for Tertiary 
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igneous rocks from the British Isles and lower Tertiary rocks from 

Eurasia. This s_Ll:ggests that there has been no movement between 

the Faeroes and Europe since early Tertiary time. Thus, in the 

interpretation of the observed anomalies over the adjacent Faeroe 

Bank it should be valid to use the_ ge_ographic pole as the mean 

position of the_ geo~agnetic pole duri_ng the Tertiary and Quarternary. 

Since the remanent ~agnetisation exceeds the induced ~agnetisation 

for basic _igneous rocks the direction of the resultant total 

~agnetisation can also be r_egarded as the direction of the ge_ographic 

pole. 

2 .. 4 The Magnetic Interpretation of the Faeroe Bank 

on the bank 

This anomaly has been correlated across nine profiles from 

I to Q where the survey ends. Because of this_ good cove~age it 

has been possible to define accurately the strike of the body 

as 343° to true north. The anomaly is continuous for 20 km and 

has a maximum amplitude of 1200~ . 

One problem in the interp:reta.tion of this anomaly is due 

to an inherent amb_iguity of the ~agnetic method. In h_igh latitudes 

in the northern hemisphere a sharp positive anomaly can be caused 

by a body having a positive remanent magnetisation contrast with 

its surroundings formed when the earth's field was of normal 

polarity. A similar anomaly would be produced if a body were 

suErounded by material havi~g a greater remanent ~agnetisation 
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than itself, acquired when the earth's field had reversed polarity. 

However, la.rge uniform areas of h.ighly ~agnetic material are 

rare; normally they are dislocated or contain material of different 

~agnetic properties. As no other sharp h.igh amplitude anomalies 

are present al~ng the ~agnetic p~files adjacent to this main 

positive feature, the former alternative seems the more probable. 

The narrow, linear nature of the anomaly made it suitable 

for a two-dimensional interpretation usi~g the ~agnetic inter

pretation pr.ogram 'MAGN' (a modified version of a pr.ogram or.iginally 

written by Smith, 1961). The p~ogram computes the ~agnetic anomaly 

produced by a body of polygonal cross-section and infinite extent 

in the third dimension, having any direction of ~agnetisation. 

In the computation each side of the polygon is treated as a slope 

and the effect of each slope is calculated from the horizontal 

and vertical magnetic anomlaies of a slopi:ng face,. given by 

Heiland (1940). The total effect of the body is obtained by 

summi_ng anticlockwise around the polygon, payi_ng a;t;tention to s.ign. 

The p~ogram requires the co-ordinates of the pol_ygonal faces, the 

total intensity of ~agnetisation and the dips and strikes relative 

to the body of both the present earth's field and the ~agnetisation 

of the body, which in this case has been assumed to be in the 

direction of the_ ge_ographic poles. 

Two traverses across the feature were used in the inter

pretation, one on profile 0 and a second alo.ng profile K. The 

magnetic anomaly has a marked symmetry about the centre and it was 

assumed to be produced by a vertical dyke. The ~agnetic anomalies 
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Fig. 7 Interpretation of a Magnetic Anomaly Profile across the North of the Bank 
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resul ti_ng from model dykes. of various; ~gneti~s-ati~ons:, wi~tfis 

and depths were computed, fixi_ng the bottom of the dyke at a 

depth of 5 km. The model anomalies were then compared directly 

to the observed anomaly al~ng profile 0 to obtain the best fit. 

It can be seen from Fig. 7 that a vertical dyke of width 85 m, 

havi_ng a top close to the sea bed and with a m_agnetisation contrast 

of 0.008 e.m.u./cm3 with the surroundi_ngs_ gives a very close fit 

to the observed anomaly. The fit between observed and calculated 

anomaly is rather poor at the e_dges of the anomaly, where the field 

caused by the dyke no lo_nger dominates the irr_egular field produced 

by other local bodies. The same dyke model with the depth to its 

top decreased to correspond to the shallower sea bed under profile 

K, was then used to calculate a theoretical anomaly. As can be 

seen from F_ig. 7 there is _again good agreement between the observed 

and calculated anomalies, which s_u_ggests that the body causi_ng this 

anomaly may be represented by a vertical dyke extendi_ng from 

depth to the sea bed. The ~agnetisation contrast is well within 

the limits for both continental or oceanic basalts. A Tertiary 

marine dyke has been located striki_ng in a northerly direction 

in the Minch. This has been interpreted from its observed magnetic 

anomaly by Buttler (1968) as a dyke over 1 km in width. Another 

dyke has been traced off A?glesey trandi_ng towards the Tertiary 

centre af. Mourne, from a m_agnetic survey by Al-Shqikh_ (_1969), and 

has been interpreted as a vertical d:yk:e 70 m wide. Tertiary dykes 

of this width are unconunon on land, and unfortunately, the marine 

dykes have not been traced on to land, so their compositions are 

not known. The ave~age width of dykes in Arran is only 3.5 m 
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(Tyrrell, 1928) and there are no dykes of comparable width on the 

Faeroe Islands (Abrahamsen, personal communication). A close 

inspection of some of the traverses across the dyke on the Faeroe 

Bank indicates the presence of secondary features associated 

with the main dyke. It is probable that this dyke is a multiple 

dyke which the ~agnetometer cannot resolve because of its he.ight 

above the body. 

This dyke is interesti.ng as it appears to have been intruded 

when the earth's field was of normal polarity. In the Thulean 

Province all Tertiary lavas, except part of the lower series in the 

Faeroe Islands, and all but a few of the dykes from the Mull and 

Skye swarms, have been shown to be ~agnetised in a reversed sense 

(P,agley, personal communication). One dyke in Buteshire (Smith, 

1966) which has been found to be normally ~agnetised, has been 

dated us~ng K-Ar techniques as 51 ! 6 million years. 

Tertiary dykes in Scotland date from between 34 and 57 million 

years (Smith, 1966), so they cannot have been intruded during one 

reversed polarity period of the earth's magnetic field. Using 

the. geo~agnetic time scale of Heirtzler et al. (1968) duri.ng the 

interval between 35 million years and 60 million years the earth's 

field has been of normal polarity for 9 million years and reversed 

for 16 million years. The ratio of normally to reversely ~agnetised 

dykes should therefore be far higher than has actually been reported, 

if the rate of activity hae been constant. ~f it can be assumed 

that unbiased sampli.ng of the dykes has been carried out, and that 

any self-·reversal mechanism is unlikely, then it appears that dyke 

intrusion was. greater duri.ng periods when the earth's field was of 

reversed polarity. 
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The linear magnetic anomaly observed in the northern 

area of the bank has been interpreted as a north-northwesterly 

multiple dyke rising to the sea bed. It implies that there 

was intrusive activity in the area probably synchronous with 

Tertiary dykes in Northwest Scotland. 

The dyke appears to be truncated by a northeast-s-outhwest 

trending feature which crosses it at 6l 0 N 8°40'W. The termin

ation of the dyke anomaly may not be connected with this feature, 

but simply due to the dyke entering material '"ith which it has 

no magnetic contrast. This possibility seems unlikely, as the 

dyke possesses a relatively ~igh magnetisation contrast with 

material only a few kilometres to the north, and any sudden 

change of magnetisation contrast should produce similar large 

amplitude anomalies nearby. These, however, are not observed. 

The strike direction is different from the north-south trends 

observed elsewhere on the bank, which su_ggests some degree of 

faulting. The wavelength of the anomaly produced is short, which 

would indicate that it is of shallow origin and not produced by 

the basement. A normal fault could p~oduce such a feature where 

rocks of different magnetisations are juxtaposed. The magnetic 

contours indicate the probable presence of another fault with 

the same trend 8 km to the southeast. The proximity of the 

area to the parallel trending Mid-Atlantic Rift system also 

favours the idea that the feature represents a normal fault. 
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Anoth.er feasible solution is that it represents a portion of 

the bank which has been fissured by movement alo~ng an old 

structural direction and which has resulted in the intrusion 

of a dyke into the space. This is supported by the apparent 

extension of the 'fissure' for a further 40 km to the south, 

where it intersects a north-south trend which can be interpreted 

as a dyke. There is no bathymetric evidence to support either 

idea, therefore no definite conclusion can be reached on the 

nature of this ~agnetic feature. 

of the bank 

This feature is characterised by a broad positive anomaly 

trendi_ng in an east-west direction, on top of which are super-

imposed a number of h_igh-frequency, large amplitude anomalies. 

In order to make an interpretation of the main broad feature it 

was necessary to remove the shallower features from the profile. 

The structural trend is east-west, and in order to make a two-

dimensional interpretation it was necessary to construct the 

~agnetic anomaly profile in a north-south direction, i.e. at 

right angles to the direction in which the survey was carried out. 

One method of constructing the north-south profile was from 

a contour map. The 'smoothed' contour map (F_ig. 8) was produced 

from the original magnetic anomaly profiles. The mean magnetic 

anomaly value of ten equally spaced points, 0.3 km apart, was 
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calculated to produce field values at 3 km intervals along 

the whole length of each profile. This had the effect of filter

ing out the short wavele_ngths with north-south trends. It was 

not possible to filter alo_ng a north-south direction and eliminate 

the short wavelengths trendi_ng in an east-west direction, as the 

track spacing was approximately 3 km. However, the preliminary 

survey established that there were few high frequency anomalies 

with this trend. The contour map indicates the deeper ~agnetic 

features of the area, since ~agnetic anomalies with wavelengths 

less than 6 km have no physical significance. It must be 

stresses that this filtering technique is not meant to be rigorous 

and is used purely to separate the broader features from those 

of shallower origin. This is evident when th~·' second contour 

map is compared with the original contour map. A magnetic profile 

was drawn from the contour chart at r_ight angles to the strike of 

the body from 60°51.2'N, 8°7.l'W, in a direction of 343° to 

geographic north. 

A second method was used around the immediate area of the 

feature. This consisted of fitting by least squares a third 

order· Fourier series to the eastern half of the nine profiles 

south of track H. These smoothed profiles were then used as 

a basis for a contour map of the anomaly. This map could then 

be used to provide further field values along the constructed 

north-south profile. Using the data from these two sources a 

smoothed anomaly profile was drawn and is shown in F_ig. 9. 
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The program MAGOP, written by Al-Chalabi (in press) 

was used to interpret this profile, which incorporates the 

non-linear optimisation routine P300 developed by the Imperial 

Chemical Industries. This program minimises an objective function 

defined as the sum of the squares of residuals between the observed 

anomaly and the calculated anomaly starti.ng from initial estimates 

for the n-sided pol.ygon, using the formulae incorporated in MAGN. 

This objective function is non-linearly dependent on the body 

co-ordinates, while the magnetisation vector and r.egional back-· 

ground may be treated linearly. The strike and azimuth of the 

body relative to the earth's ~agnetic field, and also initial 

estimates for the body co-ordinates, are required. The linear 

parameters are first determined by a linearisation routine. Usi.ng 

these calculated values, a direct search optimisation technique, 

called the method of rotating co-ordinates (Rosenbrock, 1960) 

is used to reduce this objective function to a minimum. The 

search is carried out parallel to each of n mutually orthogonal 

directions and the minimum thus located becomes the current point 

xi. The co-ordinate system is then rotated by al.igni.ng one axis 

in the direction xi-1 - xi and orthogonality restored. The whole 

process, starti.ng at the recalculation of the linear parameters, 

is iterated until convergence is reached. Any of the body co

ordinates can be fixed. This decreases the number of non-linear 

parameters and the search is then carried out in a reduced hyperspace. 
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The basic model used was a flat-topped open polygon with 

four sides (Fig. 9). Model A was. given as the solution if no 

constraints were imposed on the depth of the horizontal top, 

and model B was given if the depth were fixed at 200 m below 

sea-level. The residuals resulti.ng from either model are small 

· in relation to the inherent errors in the original smoothed 

profile. From these interpretations it is evident that the 

body produci.ng the broad h.igh anomaly has a width of 10-15 km 

and extends to at least a depth of 4 km, while its le.ngth is 

probably in excess of 30 km. It must also maintain a relatively 

large ~agnetisation contrast with its surroundings, and is 

unlikely to be a granite. 

A value of 0.004 e.m.u./cm3 is not inconsistent with the 

findings of Jakosky (1950) that 21% of basic plutonic rocks 

3 have m.agnetisations above 0.002 and up to 0.005 e.m.u./cm . 

The depth to the top, however, is impossible to determine with 

confidence, as the short wavele.n~th components which might have 

supplied information have been filtered out of the profile. 

This broad anomaly might also be produced by a shallow 

tabular source close to the surface of the bank. A lava sheet 

would be a suitable. geol.ogical body. However, the character-

istic magnetic anomalies recorded over lava sheets such as 

the Antrim basalts (Aerom~gnetic Map of Great Britain and 

Northern Ireland, Sheet 7, Geological Survey) are of low 

·amplitude, and very complex, quite unlike the h.igh amplitude 
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broad anomaly localised close to the e_dge of the bank. From 

the ~agnetic evidence it is unlikely that this anomaly is caused 

by a surface lava sheet and that a la_rge basic intrusive is 

more probable. 

This interpretation implies a weakly magnetic lower 

structure to the bank below a depth of 1 km. This is difficult 

to correlate with a known 3 km lava pile comprisi_ng the Faeroe 

Islands to the east. An average value of 0.002 e.m.u./cm3 is 

reported for· the m_agnetisation of surface Faeroese lavas (Abrahamsen, 

personal communication). However, the remanent magnetisation 

of a lava flow is known to decrease markedly with the depth of 

the sample below the upper surface (Cox and Doell, 1962) so 

that the mean value:. for the whole lava pile may be s_ignificantly 

less. Large positive Bouguer anomalies are_ generally observed 

over Tertiary plutonic pempJexes. A profile by Tuson (1959) 

over Ardnamurchan, showed an anomaly of + 22 _mgal above the 

regional bac_kground for the area, while anomalies of up to 

+ 60 _mgal have been recorded over Rhwn (McQuillin and Tuson, 1963). 

A maximwn anomaly fur the pluton, usi_ng the infinite slab formula, 

gives an anomaly of + 22 _mgal for a density contrast of 0. 2_ gm/cm3 

or + 15 _mgal by approximati_ng the body to a vertical cylinder of 

5km radius. However, the two closest gravity traverses across 

the bank do not pass closer than 20 km from the centre of the body, 

so the problem remains unresolved. 
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Tn.ere is. ample evidence of th.e pre~ence of sh:allo~_er features 

from the Ill:agnetic anomaly profiles:. These anomalies· are ve.ry· 

numerous and appear difficult to correlate from profi:le to profiJe 

unlike the north trendi_ng dyke observed on th.e banR:.. One anomaly 

23 km from the eastern end of profile E. :i:.s sufficiently· is·olated 

to enable it to be interpreted usi_ng tli.e MAGN pr_ogram descrioed 

earlier. It is apparent from F_ig. 10 that the anomaly i.s not 

completely· due to one si_ngle body. This: feature i.s· open to s·everal 

interpretations, but one geol_ogical con~iguration which. fi.ts: tfi.e 

observed anomaly well is a pair of dykes. Both dykes extend from 

a depth of 1 km to the sea bed, having widths of 50 m and 16 m 

respectively. The ~trikes and direction of Ill:agnetisation have 

been assumed to be coincident with that of the north trending dyke 

and contrasts of 0.014 e.m.u./cm
3 

and 0.004 e.m.u./cm
3 

respectively 

have been att·ributed to the dykes. It is probable that many of the 

other h_igh frequency, h_igh amplitude anomalies in the region of the 

pluton are caused by similar shallow basic intrusive material. 

The Ardnamurcha.tl _igneous complex in northwest Scotland shows a 

2,000¥ central Ill:agnetic anomaly associated with it (Aeroiii:agnetic 

Survey of Great Britain and Northern Ireland, Sheet 10, Geological 

Survey).of a similar character to that observed over the bank. 

Geological mappi_ng of the area has revealed three independent centres, 

each of which represents a complex _igneous cycle of ring dykes, 

volcanic vents, radial dykes and cone-sheets. A similar _igneous ri?g· 

complex may be present in the southeastern portion of the bank. 

This would explain the apparent intense igneous activity in th.e 

area localised over the centre of the pil;.uton. Short arcuate ri_ng 

dykes and volcanic vents of basic material would produce h_igh frequency, 



Fig. ll A Section of' the Aeromagnetic Survey of the Norwegian Sea 
around the Faeroe Islands (after Avery et al., 1968) 
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lB:rge amplitude m.agnetic anomalies which would be difficult to 

correlate across such widely spaced profiles. If, as is the case 

with Ardnamurchan, the elongate structure of the pluton is due to 

the ~igration of the focus of activity, the shallower m~gnetic 

features would be further complicated as the concentric intrusions 

of one centre are cut by those of a later centre. 

~-~~~~~~~~~~-~~-~~:-~~!~~=~~~~~-~~g~:~!~-~!:~~~ 

A further ~agnetic feature which deserves attention is the series of 

north-south lineations across the bank. These can be related to 

other trends in the area by reference to the results of the aero-· 

m.agnetic survey of the Norw.egian Sea flown by U.S. Naval Oceano

graphic Office Project M.agnet aircraft duri.ng 1958 and 1959. 

(Avery, Burton and Heirtzler, 1968). The portion of the survey 

around the Faeroe Islands is shown in F.ig. 11. This is a total 

magnetic intensity contour chart of the field, measured at an 

altitude of 1,000 ft. Avery et al. commented on a narrow band of 

short wavelength anomalies at 60°30'N, 6°W trendi..ng northwards 

towards the Faeroe Islands. This anomalous band coincides with 

a topographic bank, and is interpreted as a southward extension of 

the north\'lest-southeast fissure system from which the lavas observed 

in the Faeroe Islands were extruded. Similar north trendi~g bands 

of ~agnetic anomalies can be seen over the Faeroe Bank and Bill 

Bailey's Bank. By anal.ogy, it is possible that these also 

represent fissure systems. The trends over the Faeroe Bank seem 

to divide into tw~ groups about the parallel 61°N. These are also 

evident on the magnetic anomaly contour chart of the 1968 survey, 

and probably represent two independent dyke swarms. 
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Lavas from these dyke S\varms have probably flowed out, 

possibly at different times, to form the topographic feature of the 

Faeroe Bank. There is a possibility that only one dyke swarm was 

active, and that subsequently it was divided into half by a 

transcurrent fault. This, however, is unlikely as a displacement 

of over 40 km at a late st_age in the bank 1 s formation should leave 

ample bathymetric evidence. The magnetic features do not su_ggest 

the presence of any central volcano as the feeder for the plateau 

basalts, similar to that exposed in Mull, but are linear in character, 

rather more indicative of a dyke swarm. This, however, does not 

discount the possibility that the central pluton of the ri_ng complex 

was once a volcano, addi?g to the plateau basalts from the fissures. 

The 1 background 1 magnetic field o'ler the bank, excludi_ng 

the main features so far discussed, is very similar to that observed 

over Antrim, which s_ll:ggests the presence of extrusive plateau lavas. 

However, it is not evident whether the bank is entirely covered in 

plateau basalts similar to the Faeroe Islands. 

It should be possible to test this by approximati_ng the bank 

to a uniformly m_agnetised pile of lavas and then calculating the 

magnetic edge effect and compari_ng it to that measured. This, 

however, is not conclusive, as ~vas of ~agnetisation 0.005 e.m.u./cm
3 

only produce a 150 ~ anomaly which would be masked by the h_igher 

frequency, h_igher amplitude anomalies (Fig. 12). 
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From the smooth.ed contour anom~ly· map (fig. 81 tt :i:s· pos:s;ilUe 
it into 

to delineate). two zones. Th.e one to tlle w.est is predom:i:nantly 

positive, while the eastern one is predominantly ~egative. These 

coincide with the areas of the two proposed fissure sys·tems, and 

it is therefore tempting to explain them as areas of lava extrusion, 

which have given the bank its elongate shape. One would have been 

active duri_ng a normal field epoch and the other duri_ng a reversed 

epoc!lj.. There are instances where n_egative anomalies_ greater than 

-1000 1{ are recorded, indicating that there is probably material 

magnetised in the opposite direction to the present magnetic field 

of the earth present on the bank. However, these zones could 

equally well be due to some features of the deep basement and any 

theories m!-Jst remain highly speculative. If basaltic lavas do 

outcrop on the bank surface as indicated from bathymetric data, 

then polarity measurements from drill samples -may help solve this 

problem. 

An attempt was made to compare the ~agnetic field over the 

bank with that of the directly surrounding area, in order to determine 

whether the bodies causi_ng the high frequency field were confined 

solely to the bank or whether similar bodies extended elsewhere 

under a greater depth of water. .If the potential field measured 

at one level is upward continued a distance of 1 km this is equi-

valent to the field measured at the o~iginal level produced by a 

body 1 km deeper. 
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The method of upward continuation used was for the simplified 

case, assumi_ng that the anomalies were two dimensional. Each 

magnetic field value measured at the surface can be represented by 

a surface distribution of poles. TI1e total effect at a point 

above the surface is obtained by summing the contribution at that 

point of each surface element along the entire profile. 

Two shipboard magnetic and bathymetric profiles made in June 

1967 by a party from Durham University Geol_ogy Department on RSS 

John Murray were used in the interpretation, and are shown in 

Fig. 13. Profile I ran eastwards from the Faeroe Bank to the 

Faeroe Islands, and its effective length was extended by the addition 

of part of profile H from the 1968 survey. This profile ran 

perpendicular to the main north-south lineations and closely 

approximated a two-dimensional case. Even after the field over 

the bank has been upward continued to a height of 2 km there is 

still a s_ignificant difference in character between anomalies over 

the bank and over the Faeroe Bank Channel. TI1e maximum water 

depth in the Channel was measured at 900 m, so the quiet magnetic 

field across the Channel cannot be solely the result of deeper 

water. This agrees with the conclusion of Bott and Stacey (1967) 

that the highly magnetic rocks which underlie the Faeroe Bank and 

shoal around the Faeroe Islands are either much deeper or absent 

under the Channel. 

Any ~agnetic profile running obliquely to the main trends 

should actually be upward continued using three dimensional methods. 

However, upward continuation of a. profile from the aeromagnetic map 
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of the Norwegian Sea would be unsuitable as the track lines '"ere 

flown 20 km apart. A two dimensional upward continuation procedure 

will not take into consideration short wavelengths p@~endicular 

to the profile and hence they have not been sufficiently filtered out 

to represent the true UP'"ard continued profile, but are more 

equivalent to one at a sl.ightly lower height. This limitation, 

however, does not measurably affect a qualitative comparison of 

upward continued profiles. The second traverse, Profile II, which 

extended southeastwards from the edge of the bank, was combined 

with similar trendi.ng profiles measured over the bank in 1968. 

This total profile was then upward continued to a he.ight equi-

valent to the maximum difference between the depths of water 

over the bank and that further south. The ~agnetic character of 

this upward continued profile and that of the measured profile over 

the deeper water showed a certain similarity. Thus it is probable 

that the material of whichthe Faeroe Bank is composed also extends 

further to the south, close to the sea bed. This profile borders 

the eastern. edge of the Wyville Thomson Rise. It .agrees with 
. .. ····· 

previous gravity and ~agnetic work on the rise which i:r:tdicates 

that it is composed of dense magnetic rocks which are probably 

basalt lavas (Watts, personal communication) and that any sedi-

mentary cover is slight. Bottom dre.dgings have revealed glacial 

moraine embedded in sandy boulder clay (Robinson, 1952) not 

basalt, but this is probably due to the rise impeding the ice 

sheet as it moved westward, resulting in a thin covering of 

dumped material. 
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These two magnetic profiles show that similar m_agnetic material 

occurs on the bank and close to the seabed to the south of the bank, 

while any strongly ~agnetic rocks occur at least 1 km below the 

bed of the Faeroe Bank Channel. This latter level may indicate 

the depthto the basement upon which the volcanic piles of the 

Faeroe Islands and Faeroe Bank were built, or may represent an 

area of faul ti_ng or subsidence. 

2.5 Seismic Refraction Work in the Area 

No seismic refraction measurements have been carried out 

over the Faeroe Bank to determine whether there is any layering 

present, but the two adjacent islands, Iceland and the Faeroes, 

have been studied in some detail. Palmason (1965:) determined 

three seismic layers in the Faeroe Islands. The upper basalt 

series has a P-velocity of 3.9 km/sec, while the second seismic 

layer, with a P-velocity of 4.9 km/sec coincides with the middle 

and lower basalt layers. The ~ubstratum, whose nature is l~rgely 

unknown, has a P-velocity of 6.4 km/sec. 

The upper part of the crust in Iceland has been studied 

extensively by refraction measurements (Tr_ygg.vason and B&th, 1961; 

Palmason, 1963 and 1967). A. characteristic layering has been found; 

in the neovolcanic zone a surface layer (layer 0) with an average 

P-velocity of 2.8 km/sec is interpreted :as Qua:·ternary volcanic rock. 

This is underlain by the Tertiary flood basalts which form the 

surface rocks on both sides of the neovolcanic zone. The upper part 
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of the Tertiary basalts (layer 1) has an average P-velocity of 

4.2 km/sec, whereas the lower part (layer 2) has a P-velocity 

of 5.0 km/sec. These seismic layers probably correspond to those 

interpreted in the Faeroes as stratigraphic boundaries within 

the Tertiary flood basalts. At a depth which varies between 

l. 5 km and 4. 5 km layer 3 occurs, with a P-veloci ty'" ra_ngi_ng 

between 6.0 and 6.7 km/sec. Palmason (1967) found two groupings 

about 6.2 and 6.5 km/sec for the upper part of this layer, and 

there are indications that it increases to 6.7 km/sec at depth 

(B~th, 1960). Btldvarsson and Walker (1964) have discussed this 

layer, and have interpreted it as a heter.ogeneous mixture of basalt 

lava and intrusions. TI1is is supported by sonobuoy refraction 

\~ork on the Reykjanes Ri.dge (Talwani et al., 1968) where a 6. 5 

km/sec layer was found. In typical profiles across the Mid-Atlantic 

Ri.dge the 'oceanic layer' found in ocean basins of P-velocity 

6.7 km/sec normally thins progressively towards the crest, together 

with a corresponding thickening of the 'axial crust' which has 

a velocity of 7.4 km/sec. Le Pichon et al. (1965) found a thin 

layer of oceanic crust close to the axis of the Mid-Atlantic Ridge 

at 30°N. So it appears that it may not pinch out completely on 

reaching the ri.dge crest, if the 6. 5 km/sec layer is identified as 

the 'oceanic layer'. 

Ewi.ng and Ewing (1959) from six refraction profiles in the 

eastern Atlantic Ocean basin found a mean value of 6.4 km/sec for 

the 'oceanic layer', in contrast to a value of 6.7 km/sec for 

stations in the Western Atlantic Ocean basin. From work on the 
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eastern seaboard of Canada it is also found that a P-velocity of 

6.5 km/sec is typical of continental crust underlying the continental 

margin (Fenwick et al., 1968). It seems that the nature of the 

6. 4 km/ sec layer underlyi_ng the Faeroese lavas remains in doubt, since 

crustal layers with the same velocity are found both under the 

oceans and the continents. 

A 4.9 km/sec layer identified in the Faeroesislands and 

Iceland as the lower part of the Tertiary basalts is also recorded 

on the Wyville-Thomson Rise between Scotland and the Faeroe Bank 

(Ewi_ng and Ewi_ng, 1959) which sll:ggests the existence of basaltic 

material between the two Tertiary areas. Unfortunately, owing 

to system troubles at this station, it was not possible to determine 

the velocity of the underlying strata, so it was not known wh~ther 

the 6.4 km/sec layer was also present. 

Data on the lower crust of Iceland indicates the presence 

of a layer of P-velocity 7. 4 km/sec (B3.th_, 1960; Tr_y_ggvason, 1962) 

at a depth of 15 km. It could extend to a depth of over 200 km. 

(Tr:yggvason, 1964; Francis, 1969) and may be composed of low 

density partially fused upper mantle (Batt, 1965a and 1965b). 

This layer is also found in the crustal zone of the Mid-Atlantic 

Ridge (Le Pichon et al., 1965) at a relatively shallow depth, 

though its vertical extent is very much less. Profiles in the 

Nor~egian and Greenlf:!.nd seas (Ewing and Ewi_ng, 1959) show the 

presence of a 7. 5 km/sec layer supporti_ng the evidence that the 

ri_dge system extends north of Iceland, and essentially occupies the 

entire Norw_egian Basin, modified at the edges by contact with 
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continental rocks. This is supported by the ~agnetic lineations 

observed in the Norwegian Sea (Avery et al., 1968) \'llhich extend 

to the Norwegian continental shelf. Although the seismic results 

in the area are difficult to interpret, they do emphasise the 

importance of basaltic material on the islands and adjacent 

marine areas of the North Eastern Atlantic. 

2.6 Discussion 

The magnetic results seem to indicate that the Faeroe Bank 

is composed mainly of _igl}eous rocks. The evidence suggests that 

the bank is composed of an unknown thickness of basaltic rocks 

and that a possible r~ng complex may exist in the southeast. It 

is proposed that the bank or_iginated by the extrusion of basalt 

lavas thro_ugh north-south orientated feeders in early Tertiary times. 

The geophysical data in the Faeroes-Scotland r_egion is at 

present unable to distinguish the nature of the crust _underlyi_ng the 

Faeroe Bank. The bank may have been formed by ~he extrusion of 

risi_ng magma through pre-existi_ng continental crust. An alternative 

is that the Faeroe Rise has been built up by the extrusion of 

basaltic material from a number of vents upon a base of oceanic 

crust and that the Faeroe Bank represents a local centre of activity. 

The Faeroes-Shetland Channel which separates the continental 

shelf and slope north of Scotland from the Faeroe Islands is 

characterised by a r_fllgional Bo_uguer Anomaly h_igh. This has been 

interpreted as most probably due to a thinni_ng of continental type 

crust beneath the channel (Watts, 1970). 
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Preliminary results from gravity work on the Iceland-Faeroes 

Rise have been interpreted as a sharp ch~nge in the nature of the 

crust just north of the Faeroe Islands (Stacey, 1968), indicating 

an overall lower density crust on the Faeroes Block. This could 

mean that there is continental crust under the Faeroe Islands which 

is detected s~ismically as the 6.4 km/sec layer. 

Recent research on the Rockall Plateau seems to indicate that 

it has continental affinities. Aeromagnetic profiles flown between 

Greenland and Rockall Bank (Godby et al., 1968) show a marked symmetry 

about the Reykjanes Ridge from the Greenland Continental side to the 

2,000 m bathymetric contour borderi_ng the northwest edge of the 

Rockall Plateau. This symmetry ends at anomaly 23 ~ated by Heirtzler 

et al. (1968) as 58 million years. This boundary could well mark 

the westward limit of the British Continental crust. 

Thus the Faeroe Bank, and a number of other shoals on the 

Faeroe Rise, are probably Tertiary _igneous centres supported on 

continental crust anal_ogous to those observed on the Scottish 

mainland. Typical basaltic oceanic islands are isostatically 

unstable and have a life of about 20 million years before becoming 

sea-mounts. The fact that the Faeroe Islands and Rockall Bank 

are still about sea-level supports the idea of a foundation of 

continental type rocks (Miller, 1965). Avery et al. (1968), 

using the results of the aeromagnetic survey and marine profiles 

in the Norw_egian Sea, have traced anomaly 24 to the e_dge of the 

continental margin of Nor\11ay. This s_uggests the date for the 

initiation of sea-floor spreading between Norway and Greenland as 
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60 million years .ago. This is in striking .agreement with the 

estimate of 58 million years from the 1~agnetic lineations furthe1· 

south, abutting the Rockall Plateau. The Tertiary igneous activity 

appears to have commenced between 55 and 60 million years ago, 

and was therefore probably contemporaneous with the beginni.ng of 
-

crustal drift. There may have been a number of tensional weaknesses 

set up in the sialic crust by this separation of the continents, and 

these fissures were then filled by magma rising from beneath, by 

the release in pressure. 
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Fig. 14 'rhe Correlation of Magnetic Profiles along Two Adjacent Tracks 
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APPENDIX A 

Note on the Correlation of Magnetic Field Measurements , \etween Profiles 

As none of the traverses intersected in regions of'. constant 

~agnetic field it was not possible to estimate the accuracy of 

the m.agnetic field measurement. However, duri:ng the repei ;ted survey 

of the area, in which the magnetometer fish was lost, two . •.ets of 

closely overlappi_ng profiles were made. These are shown in'. F.ig. 14. 

Each pair of profiles was displaced laterally relativtlto one 

another until the best fit to the anomalies was obtained. hi the 

case of the K profiles, the la_rge positive anomaly was used t•l al_ign 

the tracks, since it was evident from the ~agnetic anomaly con1tour 

chart (Plate 2) that the strike of the body causi_ng it was at :~.ight 

angles to the direction of the profile. The M profiles were also 

al_igned by assumi.ng that all the ~agnetic t~ends were as closely 

perpendicular to the direction of the profile as possible. 

There is_ good correlation between each pair of profiles, 

showi?g that the difficulty in correlati?g ~agnetic features across 

the profiles (F_ig. 3) is due to·the la_rge track spaci_ng relative 

to the wavelength of the measured anomalies. If the survey had.been 

carried out with closer spaced traverses then there is no doubt that 

the instruments would have been accurate enough to disti.nguish a 

large number of smaller trends, though this, of course, would have 

been impossible in the time available. 

To obtain a best fit the M profiles had to be displaced 

100 m an~ the K profiles displaced 125 m from the calculated points 

of intersection. These figures agree well within the navigational 
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errors already calculated. Profile M M1 also needed a base line 

shift of + 100 for the best correlation with profile M111 M". 

This can be traced to the difference in diurnal variation bet\lleen 

the two profiles, as Lerwick Observatory recorded a difference in 

field stre_ngth between the times when profile M" 1 M" and profile 

M M1 were measured of between 105 ~ and llO ~ . In contrast 

profiles K K 1 and. K" 1 K" were both measured duri_ng magnetically 

quiet periods and no base line shift was necessary. 
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APPENDIX B 

The Loc~tion of Profiles used in the Magnetic 

Interpretation 

The legend for Fig. 15 is as follows: 

Profile a is the part of Profile 0 interpreted 

in section 2.4.1 

Profile b is the part of Profile K interpreted 

in se'ction 2. 4.1 

Profile c is the location of the broad high 

interpreted in section 2.4.2 

Profile d is the part of Profile E interpreted 

in section 2.4.2. 
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Fig·. 15 The Location of Profiles used in Magnetic Interpretation 
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MMREDB PROC OPTIONS lMAlNl 
I* .. t~ARINE M-AGNETIC RED.UCT ION PROGKAM MMRED B 

. -I*" 
I* DATA CARDS NEEDED ARE AS FOLLO~S 
I* 1 SUMMlNG INTERVAL (KM) OF SHIP'S TRACK 
Flf . - - . AN rNTEGER ENDlf\IG 1 N COL BO 
I* 2 MIN NO. READINGS PER SUMMING INTERVAL 
~h( AN INTEGER END. IN.G IN COL 80 
l'rr 3 FIRST RES I DUAL TO -8-E(-PiJtict:fED .OUT 
I."! .. AN INTEGEif ENDING IN COL 80 

.1* 4 NUMBER OF CARDS TO B~-PUNCHED 
I* AN INTEGER ENDING IN COL sa 
I* 5 INTERVAL IN GA~MA O_Fc THE RE.SIDU.ALS 
/it .. - ~-N tNTEG_ER_ ENDING IN COL 80 
I* 6 LENGTH OF MAGNETOME-TER CABLE (METRES l 
/it . AN INTEGER ENDING IN COL a·o· 
I* 7 MAG.DECLINATION CLOCKW.LSE .FROM T.N. 

CI* . . . AN INTEG!=K ENDING IN COL 80. 
I* 8 :GRID CONVERGENCE CLOCKWISE FROM T.N. 
I~ . - . AN IN1EGER_ END.iNG IN"" C'OL. ·s·o 
I* 9 MAGNETOGRAM BASE LINE lN GA~Ml 
I* . AN rNt~G~R ENDING 1~· COL 80 

I* MAGNETO.GRAM DATA CONSISTING OF A LIST QF TIME IN D.AYS 
·I* AND fOTAL FIELD VALUES IN GAMMA~ 
I*· 
I* NAV-IGATIONAL DATA ON THE POSITION OF THE SHIP IN LIST 

.·l* FORM GIVING · TI·ME tN .D.AYS,LATfTTiDE.,.L.ONGITUDE.,.,-, ... :·_· .. 
i ... GRID NORTH"iNG <KMr,-c-RrD EAs··r-r··NG CKMl.,SHif>is H""EAbtN-G. 

- -- - -

I * THE SURVEY M .A G NET I C F I E L D VAlUES ARE N E x·T . READ D 0 W N 
I* FROM A PRE-EXISTING ~ILE:STOkED ON ~60 PJSK._~ 
I* 
I* 
I* 
I* 
I* 

'* 

IF A .SJ~.~Ll_ NUMBER:: OF READI-N-:GS ARE ·uSED TO CO:McPUTE 
tHE R~GIONAL FIELD THlS MAY BE R~PLA~ED BY 
A 'G!=T LISJ' STA-fEMENT-.AND AN 'ON END_FILE (SYS-HJJ•: 
STATEMENT. 

.*I 
*I 
*I 
*I 

*' *I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I. 
*I 

*' *I 
*I 
*I 
*I 
*I 
*I 

. ~-cc*~/"'". 
*I 

*' *I 
_ .. ./-
*I 
*l 
*I 

I* THE ___ FORMAT IS AS SHOWN. IN THE .PROGRM( AND THE DATA *I 
t T E M S AR E · - · · " . · .- . -- . . . · .. - . . if I -·. 

DAY,HOD~;~~~ 0~ THE ST~RT OF THE DIGITI~ED BLOC~ *I 
DAY,HOUR,MIN OF THE .ENIJ ·.··d"F iHE·· DIGITISED BLOCK ~*/ 
F:IELD VALUE IN GAMMA .. AND iTS PbSIT(ON FROM--THE-'STARf'- .... / 
OF HiE -BLOC.~· AS A..·· FRACTION OF TH-E BLOC,K LENGTH. . . . *I_ ---. ------- -* ,-

"*1 

·-

.-=...=-"---,:- _____ - --- -- --- --- -~ -- --~ _-..:.. .. ::.: ____ ----~==--- :..__-=..,.:.:...._--
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O:CL ,(P-INT, PNPTS, PICARD, PNCARD, PPUNl CHAR (40) 
-DtL CPCAB, PDEC, PCCN, PSTr -C-HA-R (40) 

-0-CL (f{ESG (·2l;RESN -(2),RESE (2l,REST (2l,RELA 1"2l,REL0_(2l,RFG.L\--12!1 
-DCL (T,U,V,\~,XX, INCARD, -r'li-CARD, NPTSI FIXED 
O!;:.L C:P!JN, TNT, SST) FLOAT DEC (15) 
DCL ~T 17001, STT (7001 
DC_L_ F _!40_0.,31_, D (3,3l, E 131; G (4_00), TN (4001, EA (40-0) 
D"cL. !Tl,T2,RLAl,RLA2,RL01,RL02,RNl,RN2,RE1,RE21 FLO.AT DEC (15) 
DCL (CARD) FILE ·ouTPUT" STREAM 
OCt (ANY) FILE INPUT STREAM 
DCL JAUXI FILE RECORD SEQUENTIAL 
DCL t H,2 TT.FLOAT DEC (15), 

2 L AT F L OAT_ fJE C · ( 1 5 -, , 
2 LON F L 0 AT DEC n 5 l_ , 
2 GAM FLOAT DEC Cl51, 
2 NORTH FLOAT DEt 115}, 

_2 EAST FLOAT DEC !151 
DC[ A CISOOI,SLA !1500·),-SLO (1500-l;B !1500r;c rrs-cm-·l,LH.ED 11500) 

~N=O 
- - ..: -P-UT PAG-E 

PUT SKIF 12} 
GET EDIT !PINT) CAC40ll 
PUT EDIT (PINT) ( A(401 l 

PUT SKIP (21 
G .E T 1: D I T ( PN PT SJ . ('"A I 4 0 J ·l 
PUT E D I T ( P N P T S ) ! A ! 4 0 ) I 

PUT S K 1 P ( 2' l 
GET ED)T (PICARD) CA!40Jl
PUT EDIT (PICARDI CA(401) 

PUT SKIP (2) 
. G E T E D I T ( P NCAR D l ·( A ("4 0 ) ) · 
PUT EDIT (PNCARD) (A(40Il 

PUT S.K I P ( 2 ) 
GET EDIT (PPUNl (A(40)} 
PUT EDIT IPPUNl (A(40l )· 
PUN -:: PUN/1 o--

·p·_UT -SKIP_ ( 21.. - - . 

-GET EDIT CUHl CF!40.ll 
PUT E.D IT ( IN T l ( F ( 40 l l 

GET EDIT (.N-PTSl ·lf ( 4-0l I
p·u T EDT"r - ( N P T S l ( F ( 4.0 I l -

GET EDIT (INCARDl "(F(40ll"
PUT -EDIT ( lNCA-RD"l . IF ( 40 I l 

GET-EDIT (NCARDl (F('t0)1 
PUT EDTT" ( NCARD l- -fF f40) ) 

G.E T ~ D rT ( PUN l ( F ( 4 0 l ) -
PUT ED IT __ !_p~N)_" ~(_F( 40) )_· 

- . . . 
-_.;:._.:: __ ..:....._. 

G ET . E D I T ( P C 1.\fi---;--c'A 0 L E- l 
P U T ED I T ·c PC A B , C A 13 L E ) . 
CABLE=CABLEI1000 -. 

(A(40),F(4·0)) 
!A(40),F"(40)) 

--·PUT ·sKIp· T2T --
GET -ED'i-T CPDEC,-LDE'Cl- -(A(4.0l-,F(40rl 
P GT ED I T ( POE C , L D E C ) ( A ( 4.0 ), F ( '' 0 l l 

PUT SKIP (21 
.GET EDI-T (-PCON,LCONl- (A(40frFC'tOrl 
PUT - E b-'i' T fpC-0 N , L C ON l ( A ( 4 0 l ; F ( 4 0 I l 
G-ET· EDIT (PST! '(A(4Qj I GET EDlT !SST) tFT4orr 

7 ***"** * *"*** *** ** * **-* ** * * ** -~•***** *** * ** * *************I 
I* *I 
I* READING IN MAGNETOGRAM CARDS n-1 

~ST = 0 
LS1 IST=fST+1 
_ GET LIST CST! ISTl ,STT! IST) l 

-- ~~TliSTl=STT(ISTl-~ST 
IF ST!ISTl 0 THEN GO TO LS2 
ELSE GO TO LSl 

TEMP PROCCTT,ST,STT,G~Ml 
DCL ST 1700l,STT 1700) 
DCLCtt,GAMl FLOAT DEC_ 115) 

-·. JST=O 
Pt· J·sT~·Jst+l. 
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lF ASS (ST(JSTl-TTt-D~OOOl THEN GO TO P2~ 
ELSE '-u= -TT sTtJsT> THEN Go·ro Pl 
EI:SE DO 
DST. ::s'TT I JST l-STT I JS l-1 l 
-SFR=~TT-STIJST-1) 1/fSTlJSTl-~TIJSl-lll 
R s T = s r r t J s r- i r + t s ,: R * D s n " 

. · -G:A·r~f='='t-AM"--=Jrs r-
Go TO P3 

~- - . -:. --
7 

:, --~ -:E~N'r5-

P2 GAM=GAM-STT!JSTl 
P-3 RET-URN 

I 
l 

END TEMP 
GR (D. -PROC! Rrn, A, B ,C, ~LA·,_Sl.O,,RLA;-RLO, ~N, RE l 

DCL A (1500·),13 -!1500),C!l500i,SLA (1500l,SLO 11500) 
-DGlCR:RT,"ON,qE,_DLA,DLO.,_FR;RN,RE~,RLA,RLOl FLQAT DEC" (iS) 

J=O - . 
G.1 - J=--J+ 1 . 
. IF ABS (AlJl-RRT) 0.0001 THEN GO TO G2 

ELSE I F .R R T A ( J l THEN G.O TO - Gl --
El5E IF RRT A(J) T~EN DO 
DN=BIJl-I:HJ-1) 
DE=C I Jl-C ( J-1) 
'D"L A =-S LA ( J ) -$ U\ (. ~- U 
DLO=SLO(J)-SLbtJ-1) 
FR="r-RRT-A ( J-1) l I (A( J }-A ( J-1")-.)
RN=B(J-ll+IFRttDNl 

' -RE=C-( J-"!) + ( FR*·9E:_) _ -
RLA=SLA(J-lf~t~RttDLAl 

- _ R~LH=.SLO I J-1 l +-( FR*DLOJ 
GO- TO G3 
END·.-. 

RlA=SLA(J) 

:.-:. 

. G2 RN=B(J) 
G3. RETURN 

END GRId 
LS2_ PUT SKIP (2) 

PUT EDIT (PST) !A(40)) 
IST=IST.:..l -

PUT SKIP C2) --
.PUT EDIT tlS·'r,•MAGNETOGRAM CA:RDS __ RE-A.Efi:-l··(F(8l,X12l,A122ll 
'*****************..--~~**-****;***-*~********************1=-- --. 
I* . ··-· _ ·--- *T 
j * -R_ E AD I NG 1 N GFf_I:O - p~o-=·sJ·T -1"-CrN c·ARO S -*I . ----=---- ____ ;~ - ---. - - -
I* AND 'CORREc-rtNG. -F.9J{- [J""i S_"f.-ANC~ ~~ttf~:O SHI~~ ~-oF~-'- -~, '~T:· --
1* THE M-AGNETOMETER -- *F 

. I* tt/· 
--i ** * ** * ***** ****il: ttiititt **-**~**** * *-* * * ~i ~***:*...:* **~ ****"/ . 

PUT- P-A'GE 
I = 0 · · I 1· I·= ·a -. - . -

L S 3 -I ~·I +--1 - - -
GET LIST !A !"I l ;sLA(i"l ;SLOc-1 l ;--B·(.rf,C! i l ;ui"E:o-(n l 
LHEb I Il-=LHEO I ll +L DEC- LCON -
Bl I l=B! I )-(CABLEttCOSD! LHED! Ill) 

·C.! t) =C.(! r--t CABLE*S IND! LHED.I I l l·l 
IF A( I >=o & SLA( I l=o & SLO( I l=O THEN D:d 
PcUT E D IT ( ' DAY ' , F L OOIH A (I - ll l ,I I f, 1 N A V I GA TI 0 N F lX:E S REA o-. •: )·. 
1 s K r P ' 2 >-, X"( i o-> , A t 3 1 , F ' 3 > , x i 6 r, F r 1 > , A 1 -z 3 -,-,- · · · · 

Gd TO LS4 END 
ELS-E IF I=l THEN DO 
III=III+l .G.O TO LS3 END _ 
ELSE IF IFLOORIA!Ill-FLOOR!A!I-llll=O THEN DO 

___ lti=III+l GO TD.LS3 END ---------·----='-------- ----rua: oo -· ---- --- - - - ------------------------
~--- --~~::o<~·-:.:'e.Ot--ED.-IT I'DAY 1 ,-FLOQRJATJ-1=)_-),Ili;' -NAVlGA~rtON -FIXE:$ _-R··EAU.t:>_ -. ··-· 

- ·-----:~-:--:--~. _...,_. . -------- ------- -·--·-----===--~=---- ..,-- ~--
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:-
1 
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(SKIP ( 2 l, X ( 10 l 1 A ( 3), F I 3 l .:X-( 6 l; F ( 3 l 1 A ( 23)) 
111=1 GO TO LS3 END 
~~~***•**~*******4**~'*****************~**~*****~***1. 
I* - - - - - *I 

I* LOCATING _0-R INTERP:O:LA-TIN-G POSITION FrX *I 
I* ·wTTH _T-IfvlE MARKS ON VARIAN RECORD *I 

--r*- --- *I 
I**-******************* It********* ~Ht * * ~.-* * * * * **********I 

L'S4 -PUT PAGE 
PUT SKIP EDIT (•M

7

EAN TOTAL FIELD', 'MEAN NORTHING', 'MEA}.J-EASTING' 1 

' Bt uc K N 0 ~ I ' I 1\10 • 0 F p 0 I NT s ' ) 
I X ( 2 ) , A ( 16 ) , X ( 8 ) , A ( l 3 ) , X ( 1 0 l 1 1\ ( 12 l , X ( 8 ) 1 A I 9 ) , X ( 7 l 1 A ( -~ 3 ) ) 

-oN: ENDFI LF (ANY l GO TO LS9 
LS5 D-N=O DE=O DD=O SG=O SN=O SE=Q_- LL=O 
L_$6 lL=O-
LS7 GEf FILE IANYl EDIT ITD1,H-Il,T1'1l,TD2 1 T-R2 1 TM2 1 GAM 1 FRAC) 

r F- <- 3 1 1 F 1 3 > 1 F 1 s , 1 1 , r r 3 1 , F < 3 > , F 1 5 , 1 1 , F n > 1 XJ 2 l , F ,, a , 6 -, 1 
- 1F GAM=0&1FRAC-O.dOOb01 Ol THEN GO -Td l~i -
T1=TD1~THli24+TM[I14~0 

T2=TD2+TH2124~TM211440 
TT=T1+((T2-Tll*FRACl 

CALL TEMP(TT,ST,STT 1 GAMl 
- LL=Ll+l· _ 

CAL L G R I D ( T 1 , A ; 8 , ·c , -s LA , S L 0 , R LA 1 , R L 01 , RN1 ; RFU 
c ,1\'t:L -G:R r-o 1 T 2 1 A , B, c , s LA , s--L o _, ~ LA2 ; R-Lo-z~ RN2 , R E 2 1 

LS 8 i'fOR TH=RN 1 +I FRAC * ( RN-2-Rt-f(l -, . 
EA·ST=R'E1+·( FRAC*IRE:2-RE1) )_- -- -- · 

_- i.. AT=RLA 1 + ( FRAC * ( R [Ai.::.-R-c--A I-) l 
LON= R l 0 1 + ( F R A C -* ( R L 0 2-R L 0 l ) T - -
IF ILAT 3601 ILON'-360-r !NORTH 10000) lEAST 10000) 
THEN GO TO- HELP -

1 * * ****** *** ** *** *** .;.--..-=.;-**-*-*** ** **** **-** * ********·*..;**I 
- 1* -- - - *-1 

/*-P-RODUCING A MEAN VALU-E F'OR THE-TOTAL MAGNETfC -----~I 
I *-FIELD WHEN SUMMED OVER A F IXED---DTs:r-ANCE OF THE *l 

-'-'--~Ti--~c - SHIP 1 S COURS-E~ ~- .- -'rN"T-EiV i( = -TEN KMS ---- . *I 
.. 1* ----------- - ·---=-- -- -- -- -It/ 
--l*~_,_;****-* ~:** ** ** * * ** **·* ******-*** ** **.**************-**I 

WRITE F-ILE ( AUX l FROM"- ( Hl 
G rLI-) =-GAM--'-

-_. -~=--- :-- ~ --- ~ ~-:T~N-{oLL- r = f\fD:ftl H 
·- -- . - E A ( L L. J ::: E A ·s T 

SG'=--SG+-G ( Ll) 
SN-=SN+TN!LLl 

-s_e-=s:E + E A (L L cl 
TFLL=l THEN DO 
GO TO L$7 END 
~LSE DO DN~!TN!ltl-TN(LL-1) l*-*2 
DE;=_(,EA(LL l-EA (-LL-1) l **2 
l:H.)::l)b+SQRT! DN+DE l END 
-1 F.· -DD I NT THEN--o·o- -
G 0 -T 0 L S 7 EN D 
ELSE D9 
IF-LL-NPTS THEN DO 
P u 1 s K 1 P Eo 1 T 1 1 T no F E w Po 1 NT s To suM ovER • > 1 A r 2 6 1 > 
GO TO. Ts 5 END 
NN~NN+1 
F(NN,l)=SG/LL 
F ( N N- I 2- ) = s N I L L 
F(NN,3l=SEILL 
PUT SKI P E 0 1 T ( F ( N N , 1 ) r F ( N N , 2 ) 1 F l N N , 3 l , N-N , L L ) ( F ( 1 2 ) , X ( 1 7 ) , 
F ( 7, 2) , X ( 16) IF ( 6 I 2) ')(( i 3) 'F (4) 'X ( 16) 'F ( '•) ) 
GO TO LS 5 END-

- i 
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~--- :.-

LS9 NN=NN+l 
F(NN,1l=SG/LL 
F(NN,2l=SN/LL 
F"(NN,3)::i:SE/LL 
CLOSE FILE (AUX) 
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PUT SKIP EDIT (F(NN,l),F(NN,2l 1 F(NN-,:ll,NN,LL) (F(12) 1 X(l7l 1 

FJ 7 ~- 2 l , X ( 16 ) , F ( 6 , 2 l , X ( 1 3 l , 'F ( 4- )- -~- X ( i 6 ) , F ( 4l ) 
!*****~*-~****~~***********~************************! l* - - -- . -- - - - - * I 

. . 
I* COMPILING THE NORMAL EQNS. TO PRODUCE *I 

1* A REGIONAL FIELD •I 
I* *I 
!****~***~*~***************************************~! 
D=O E=O II=O 

LS10 DO 11=1 TO NN 
D( 1, U=D( 1,1 )+1 
0(1,2l=D(i;~)+F(Ilr2l 
D(1,3l=D(1 1 3l+F(II,3) 
Dl2 1 1l=D(2,1l+F(Il,2) 
D12r2l=0(2 1 2-l+IFIII,2l**2l 
D ( 2 I 3 ) ~ [j ~~ ' 3 ) + ( F_ ( 1 I ' 2 ) *:F ( I I ,-3 ) ) 
D(3,ll=D(3,l)+F( I 1 1 3) 
o-c 3, 2 ·1 = D- < 3 1 2 > + 1 F 1 II , 2 > * F 1 1 i', 3 > -, 
D(3 1 3)=D(3 1 3l+(F(II,3l**2l 
E _( 1 l = E ( 1 l + F ('I I , 1 i 
E(2)=E(2)+(F( I I rl l*F( I I ,2) I 

__ E J 3 >·:; E (-_3 > + 1 F 1 n 1 1 > * F LI 1 , -3 > > 

END 
N=3 _ 

CALL STMQfDI 1,1 l ,EI 11 ,N,KSl. 
PUT PAGE-

PUT SKIP DATA IKSl 
P!JT -SKJP E"bit (.ii"JORM_AL ~Qt,;N •. OBTAINED fF KS=Q' ) __ !A_(p~l~)l""- -. 
PUT_E_b.IT ('REGION-.4L J.\T FALSE biUGIN=', E(11l"IA<25)-,-FT9,3l-lSKIP 

- P\}T ~OtT ('REGIONAL GRADIENT_ NOf{THWAf~'D'S=· ,-t(il li-A(_~9ht=t·8,.3-HSKI"P 
- PLJT- EDIT ('REGIONAL GRA"Dil:i\ff EASTWARDS=' ,E!3l) CA(2-8T-;F-(8-;3l IS-KIP 
I~-***** jt: *-~-~ 11-)tc ****it****~*~-:!!'·*~~ if'!"~-* :1< *~*'*-* ** **:***~** * * *_**.!"!-'I _ ___ _ 
i* - --- 11-/ -

_ /-t; WORKING OUT THE- RI:SlD.UA-L!:I AND--PftiNffNG- OUT -*/ 
I* vALuEs AT SET INtnrvALs·-- -- ·unERPOLA-liNG --*; 
I* - -ti= ~:E~E-?.?:'\R._¥ ~--- -"_- · ---- *I_ 
I• *I 
·"I-ii-***~*-**** -11: #.* ~* * *-** * ** * ** *-* *'-* * * **:-li-·**-.*:*'*'*"*-*·A--:SV* ** **·*-* l --

PUT PAGE 
Dd M=1 TQ"NN _ _ 
R ELM$= F ( M , 1 I - I E I 1 ) + E C 2) ~·-F "( M ~ 2 I + E I 3 ) * F I M , 3 l I 
PUT SKIP E-D-IT C'F ( M; 1 i, R-ELMS, M l IF ( 12} ,.F I Fo·,-3-"F ;-i=-(1'-)'') END ___ _ 
ON ENDFILE IAUXl GO TO FIN 
J<Jt=o 

LS11 -READ FiLE IAUXl' IN"fO -(H) 
K-j i =KJ I+ 1 
IF KJI INCARD THEN GO TO LSi1 

PUT PAGE 
P.UT SKIP EDIT I' TIME ' 1 'LATITUD'E•·,•u)NGITUDE','GRiD NORTH', 
'GRID EAST', 'RESIDL)AL 1 

1 · 1 TdTAL FIELD' l _ 
( A ( 8 ) , X ( 4 ) , A ( 8 ) , X ( 4 l , A ( 9 ) , X I 4 ) , A ( 1 0 ) , X ( 4 l , A.( 9 } , X ( 4 f , 
A(8) 1 X(4) 1 A(l_l)) 
RC=EI1l+E(ZiiNORTH+E(3l*EAST 
RESG(1l~GA~-~C RESNili~NORTH RESE(ll=EAST R E S T ( i-) ·= t·T 
RELAI1l=LAT - REL0(1l=LON REGA(1l=GAM 
Pl:JT FILE (.CARD) EDIT .LRES:T I 1 ). , HELA ( 1 l, RELO ( 1), RESN(U_--,-H.ESE ( 1 l, _ 
RESGCl·l·;-RE.GAI 1) i - --- -_-:c_-_- =- . . ----- _·_....:,_-----· -----o=·-"-::=...-=--_:_-,--" -------

. ' 

=---==---=----=-= -T f:JJ! ~ $)JFI1 _9£5 f_i ~-!1-o_, .? 1 !:f·Lnh -4 l , 'F (1 o ,- ~ l , _F < ~l• i=J9l) ___ _ " -,--------- 7 -=-' 



v-= 

L 
I 

-~P,UT SKIP EDIT IRE ST ( 1], RELA ( 1 l, RELO r1l, RESNtl l:; RE~S.£=1-:tc-=l-:;--- --- o- -~ 
R E S G I 1 l , R-EG A ti r l - - - - - ---- - - - -:- - . 

,- TFl 8 , 5 l ; FD-2 ,, 5 ) .; .F -1 1 3, 5 ) , F :{: _r 3', 4 l -, F I 13 , 4 ) , F I U l , F (-12 l l _-
V'=2 -· W=l - -- I JK;,-0 J I K= (NCARD --- . -

CS12 J IK=-J:IK+-1_ - __ . 
[f IJK =NCARD-THEN GO TO LS13 
ELSE GO- :Hl ~F !N _ 

LS13 READ FilE IAUXl INTO (Hl 
'R€-=Er-1 l +ET2 l *NORTH+E I 3 l *EAS1 
R-ESGIVl==GAM-RC - - P:f:SNfVf~i,fbRTH RESEIVl=EAST REST(V)=TT 

.RELAI_Vl=LAT RELOIVl·=LON R_EG_ALVl=GAM , 
iF lFLOO~ (REST1Vl*1000)-FLOOR IREST(~l*l006l l==O THE~ GO TO LS15 

. E:L:S:·E __ ·· 
T;~v- u~·w -- - --- - - ------ ·- ·-I[ -~ - ·- -

I 

If ABS (_f:L:.O_OR I.RESGIWl/10_)-FLOORIRESGIVl/10) )_ =PI:JN -THEN DO 
- -"rF -RESGf-() RESGI U l TH_E_N ·no-- ----

-R:E S~G-G = F L OOR- I R E S.G- (: T .) /1 0 ) * 1 0 
G--o -·frj- -L -St'it- - EN·o··- ---- --- --

. - -:ELSE IF -RESG H l R:E$-G ( U l- THEN DO 
RES-GG= (FLOOR-., n'(scfr,; 10 Y+ll""* .1 0 

·G·o· T 0 ·L S 14~-- - __ - _~E N.O - -
ELSE PUT EDIT ,-,Er~ROR IN 'SEL-ECTING PRINTOut---v~li.L-'LiPr 

-.-LSKlP:t2_l-_,JU-lOJ_,_.A_-I_).~J-:t · ·- -.: _ _ : . _ 
L sT 4=-:-o.- -rfF'f~~A=-c-,;-=tR·E~s-<:;· (-f)--RE's G-G~)f!RE SG ft f::.R""ESG rD l l 

! :..:. - -=-= . --
--~·-·...:._-: ==--- -. --=. -------- ---=---:· -- - - . 

- :--~8-E:SEE-=RESFI T l- I I RES E IT l -H._ESE I Ul l *RFRACT 
-'RES-NN=H E SHI Tl- I I R ESN IT l ·-RESN:ruT-l *'R"Fl~AC 'l 

~.~-- -~-·-- -- - ~R";E~srr=~R-E-s~n ·TT .:...-rrR~ESTTTT-RES"TTU.l T*-ltn{~ACl-~ :- -------- -- ---_- --- ---- . 
-- ~---=- . - '-R:""E: LA A-d: R E.-(A I T ., - I ., Rf-L A I T l-R E'l-A-'c' U r) *-R FR.AC l . --'-·"" ·.--- --- =c=-:.. ··---· 

R:E·L 0 0. '=R E L 0 ( T l - ! ( R Et 0 ( T ) ·- R E LO I U l l *RF R AC l 
.RE-G~A=REGA IT l-- ( O~EGA"In-=-·RE_G_A I UTl*R-FiACT -------- -- --- - -· .. - -

--FQ'T -FilE. TCAR-D l FOTT fRE:ST-T ,-RTLAA·,-RE Lno ~ RESNN, RE S'E E-,-RESGG·, RFG_A_A r 
( F ( 8 , S l , F r(o , 5 l , F ( i 0 , 5 l , F I 1 0, 4 l , F ( i 0, 4 ) , F ! 9) , F ( 9} l . 

f - --- -l?tJT SK I:P: --ED IT. I RFSTf, -RE LA A, R: E L DO, I<'E SN N-t RES-FE'.; R.~E-SGG ;~R-EG A. A r 
\ ·- -- (F ( 8, 5 r, F 112, 5 l , F ( 13, 5 l , F( 13, 4l, F-1 i3-; 4 r, F-1 11 f; i= 1"12 l ( -
~--------=- -_-_ ::.y:-~rK·---rJ·K~l--- -- · -- -- - ----------- · ------- -- -- --- ~:::=-:~~- ~ ..:.__- -
~· ~:~~ ---" -~U '~o. LS1-S END- . - .- . -· . . . 

Fl-.·-~=--< -.--l,~Sff5~.'·'--·-RES-G:TW.r:.==o.:.-:_---:REcS:NtW"'l==:e~- ~RESEHfl==O-c -.-'. -RES"'H-Vrr-.:;:o:------=·--.-- -
- · 'R.ELA!w>;,ci .--- R.E'Lorw>.=o- · REGAtw>;;-o ·- - ··. · -

!..c-=::-_··.- -· · xx::w· __ . W:=V - ,_- V==XX. · GO, TO L·Sr2- . . .: ·- - _,..--= ----=--, -- --· --·--
==-=----=---. H{LP p·ur SKTP EDIT-.·( iERRO'R iN CO-MP-UTATION' l-!Af'2o-rl 

Jl{JT ._:SKI B__,.Ei.U T LJ_,_I(;,LL} ( FJ8.)~;.F (B L.,-i=·t8Tl' - -:_ ---.-_ · 
-'--·~--· ---- -P·ur- sKlP.- -E·o-iT- Ti"_D-I ;-;-H-1 ,-n·IY;-rbi, Tf~i,-rM-2 ,-c;"A-f'·f;F·trACl __ -=: _---

1---:--:--.---
r·--
I 

p -_
l-

~ -

! F ( 3 l , F C 3 ) , F ( 5 , 1 l , F ( · 3 l , F ( 3-, , F 1'5, 1 f , F 11 l , X I 2 ) , F ( 8, 6 ) ) 
P U T S K l P E"D f y· - I A I J l ; $ L A I J l , S L 0 I J l ,"tH J l -, Cf J l l · - ·. 

~ {F (8, 3 l , F-{Hf, ~)') ; F·-r-to, 5-l-, F rrcr, t{) ; FTto ;4 ·,- l. 
P-UT- SKi P E-D l T I A I K l , S U\ I K ) , ·s L 0 ( K l , B O<l , C I K r ) 
(f(8,3l,FI10,5),F(l0,5l,Fil0,4),F(10,4ll 
PUT SKfP LIS l I LA l, LON, NOFtfH, EASt) . 
Gd TO.l$7 

~IN . PUT SKIP EDIT ('LAST CARD TAKEN FROM FILE AUX=•~JlKl 
· . (A( 30-l , F ( 5 l l . 

E N-0 - tJ; M R E DB 

-- --
--
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