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ABSTRACT

A study of the elastic properties of the scheelite
structure crystals CaWO4, CaMoO4, SrMoO4 and PbMoO4 is
presented. The_seven independent components,of the elastic
stiffnessuconstant tensor of.CaWO4 have been determined
between 1.5 K and 300 K by pulse superposition measurements
of ultrasound velocities. A computer fitting procedure has
'been usedftO‘obtain the elastic constants from the velocity
data; ‘this has allowed the elastic constants to be deter-
mined even though large energy flux deviations prevented
the“measurement of the velocities of the quasi-shear modes
propagated in the [100] and [110] directions. Experiments
on SrMoO4 single crystals have shown that similar difficul-
" ties were the cause of inconsistencies in recently- published

velocity data; a new, correct set of elastic constants for
l SrMoO, has been determined.
Scheelites belong to the TII Laue group. The signs

of.ClG'and SlGAdepend on the definition of the sense of the
+2 axis with respect to the atomic arrangement. A conven-
tion previously used for CaMoO4 has been adopted the 2
axis-sense has been found in CaWO4 and PbMoO4 by a novel
spin resonance technique and in SrMoO4 by an x-ray method:
in each material Clé has been shown to be negative. ‘Elastic
behaviour and wave propagation characteristics, and their
orientation dependence in the four materials, have been
comparedcand contrasted. The work has provided a new in-
sight‘into.the acoustic properties of TI and TII Laue group

‘materials; in the latter the naxes of acoustic symmetry"

{n the (00l) plane do not coincide with the <100> ‘and <110>
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crystallographic directions (as in TI's) but deviate
from them by angles which are between 15° and 23° in
the scheelites studied. Knowledge of the positions of

these axes should facilitate further ultrasonic studies.
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CHAPTER ONE

~INTRODUCTION

Scheelite structure tungstate and molybdate crystals

occur naturally and are sources of the elements tungsten
—and molybdenum Scheelite is the mineraldname for Calcium
ftungstate (CaWO ), other. mineral names and other scnee-
lite structure materials are listed in Table 1.1.

Calcium tungstate was used until about 1940 as a
phosphor in fluorescent lamps, and assumed ‘further tech-
nological importance in the 1960's with the discovery that

single crystals could be grown doped with neodymium (Nd )
3+

in'concentrations suitable for laser action. A Nd :CaW04.

laser was the first crystalline laser to give continuous
operation at room temperature (Johnson et al 1962), and
such devices became available commercially. More recently
there has been interest in scheelite structure tungstates
and molybdates for acousto-optic device applications.
Calcium molybdate (CaMoO,) mnd lead molybdate (PbMoO4)
have attracted most attention. The operation of a CaMoO4
tunable acousto—optic filter has been demonstrated (Harris
et al 1976) and PbMoO4 has been the subject of several
studies (Pinnow et al 1969, Coquin et al 197l). Lead
molybdate'beam steering and light modulating devices have
been}produced and marketed (Hobden 1972). For these

devices the acousto-optic figure-of-merié'is proportional

t The figure of merit of a beam deflector may be defined

by the expression

M = n6.p2 / 0 v3

where n is»the refractive index, p the appropriate
photoelaStic constant, p the density and v the sound
velocity (Flinchbaugh 1971).



to the sixth power of the refractive inden and the inverse
of the cube of ultrasound velocity; PbMoO4'is particularly
attractive because it has a large refractive index and
sound velocities ‘in the material are comparatively low.

: These applications of scheelite structure crystals
'haveustimulatedistudies of crystal growth; doping, defect,
thermal and optical vibrational properties (reviewed in

Chapter 2). : Until the present work was begun7investiga—
tions of elastic properties were rather 1imited (see
1asection 2, 4 4), probably ‘becausé of experimental diffi-"
culties. 'However there is a need to understand the ‘
mechanical'properties of technologically interesting
materials,'andﬂthe intention of this study has been to
provide further knowledge of elastic behaviour and wave’
propagatiOn characteristics-—-properties directly relevant
to acoustic device applications. Knowledge‘of elastic
properties can provide information about interatomic binding
in a material. In the scheelites such information was

: xpected to be interesting in view of the unusual structure
and the presence of well defined sub-units (WO or MoO4
groups. Another important aspect of the work has arisen
bécause the scheelites are the only well known materials
belonging to the TII' group — the less symmetrical of the
'two tetragonal Laue groups (TI and TII). Particular
attention has been devoted to the need in TII solids to
specify uniquely the axial set to which the elastic con-

- stants are referred, and to the origin of the experimental
difficulties which arise in studying solids,_' of this Laue

symmetry.  The elastic properties of a TII solid are
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characteriééd by a stiffness tensor with seven independent
componenﬁs.u‘The first ogjective'has been the determination
of‘the compbﬁents of the st;ffness tensor:o'f,CaWO4 single
crystalsfin the temperature range 1.5 k to 300 K by pulse
superpositién measurements of ultrasound velocity. Sub-
sequentlf[experimental work has been extepdéd‘to SrMoO4‘

and PbMoO, to permit comparison between thé elastic éroper—

4
ties of a ééries of scheeiites.

In Chapter 2 the properties of scheelite structure
CrYStals\are reviewed, with particular empﬁasis on proper- -
-tles relevant to the present study. Tﬁe_conventioh for
defining.the'axial set i1s established. Ih Chapter 3, the
formal thgpry of anisotfopic elasticity is applied to
tetragonal crystals and fhe relationships and differences
between the elastic properties and wavé pr@pagation
characteristics of the TI and TII groups aré emphasised.
The principies of the ultrasonics methods used in the work
are‘outlineq in Chapter 4, and in Chapter'S details of the
. measﬁring éystem are givép. The characterisation and
preparation of ultrpsonics sbecﬁmens is aescribed; novel
methods of determining thé sense of 2 axis in a boule are
giVen. VThe results of ultraéound experiments on CaWO4
are preéentéd in Chapter 6 and the elastic behaviour is
.describea.: Related experimental studies on SrMoo4 and

PbMoO, single crystals are described in Chapter 7, and

4

in Chapter 8 the elastic properties of CaWO4, CaMoO4,
SrMoO4 and PbMoO4 are compared and contrasted. Certain
deductioné are made about the interatomic binding. The

phenomena of "acoustic symmetry" is discussed. It is




shown how in TII Laue group crystals,thé origin of. the

experiméntal difficulties in;deterﬁinihg elastic con-

stants, the need tb define a sense as weli as a direction

of‘the 2 -axis, and the relationships between the elastic

properties of TII and,TI cryétals can each'be explained

" in terms 6fnthe deviation of "axes of acbuéﬁic éymmétry"'

'from the conventional cfysta;lbgraﬁhic axes. | |
Computer programmes used in the work are given

in Appendix I, and publications which embody the results

of the work are listed in Appendix II.

H



TABLE 1.1

Scheelite = structure materials

Minerél names of tungstates and molybdates

CaWO Bcheelite

4

Ca_.MoO4 B Powellite

SrHo,

_SrMoO4

?aWO4.
BaMoO4

PbWO,, ' Stolzite

PbMoO4 Wulfenite

CdMOQ4

Other scheelite structure crystals -

NaIO4 ZrGeO4
AKIO4 . HfGeO4
CeGeO4
ThGeO

4




CHAPTER TWO

SCHEELITE STRUCTURE CRYSTALS

In this chapter those propertiesAdf scheelite
structure crystals which are relevant to the present
work are: rev1ewed. Most attention is paid to the
propertles of CaW0,, but details of work on other

scheelite structure tungstates and molybdates are given .

when avaiiéble.



2.1 CRYSTAL STRUCTURE

The'scheelite structure. is ﬁetragonal with a point
group‘4/ﬁ'(see the stereogram in Figure 2.ia) and a space
group I4l/a. The'symmet;y elements of the-space group are
a fourfold $crew axis and a glide plane which.isAnormal
:,tb this axis. The equivalent'points;for'this space group

are

(0 0 0; 1/2 1/2 1/2) + X,¥,2i Xi¥i2i Yi1Xs2Z;
y,%,Zi. %,1/2-y;1/4-2; (2.1)
y,1/2=-x,1/4+z; §,l/2+x,1/4+z

kS

| if an_brigin:is taken at a 4 ﬁoint (International ¢abies
for X-ray Cr&stallography 1952). | | |

In.'the tungstates and molybdatesAﬁith the scheelite
-struéture-the'metal atomé are in "special positions"; they
- are sited at the eqhivaleht points_generated by expression
2.1.on setting Xx,y,z equal fo b,0,0 ﬁfor the'tungsten or
.molybdenum'atoms) and equal to 0,0,1/2 (for the calcium,
strontium, barium, cadmium or lead atoms){ A body-centred
tetragonal unit cell is defined by refefence to the metal -
atom positions (see Figure 2.2). Crystallographic X; Y and
7 axes are conventionally defined paraliel'to the basis
vectors a, b and c of the tetragonal cell, the 2Z direction
being taken parallel to the fourfold symmetry axis. Thus
all the métal atoms lie on planes normal'toAthe X, Y and Z
axes with iﬁterp1anar spacings of a/2, a/2 and c/4 measured
along thése axes. Taken on their own the mefal atoms lie-
on a lattice which has mirror planes of syﬁmetry parallel
£o the fourfold axis and a point group 4/mmm (see the

stereogram, Figure 2.1b).



The-oxygen atoms are sited in "genekﬂl positions"
in thevunit cell. These are giﬁen by the expression 2.1
in terms of coordinates xo,.yo, 25, DeterminationAof these
oxygen atom positions is difficult because x—ray scattering
is dominated by the much heavier metal atoms. However
_ accurate measurements of the oxygen coordinates in CaWO4
have been made by neutron diffraction (RKay et al 1964) and
'xsray methods (Zalkin and‘Templeton 1964). The results are
compared in Table 2.1 and show good agreement. The. positions
of‘the four nearest neighbour oxygen atoms with respect to
a tungsten atom are shown in Figure 2.3a. The four oxygen
atoms are located at the corners of a tetrahedron which is
sllghtly squashed in the direction of the Z axis, to give a
tungstate anion with a W—O distance of 1. 7832 and O—W—0O
angles of 113°27' (twice) and 107°56' (four times). With
respect to each of the calcium atoms in CaWO4 the eight |
neighbouring oxygen atoms form two interpenetrating bisphenoids
with Ca—0 distances of 2.448 and 2.482 respectively as shown
in Figure 2.4. | »

A'projection of the tungstate tetrahedron on to the
XY plane is shown in Figure 2.3b. The tungsten-oxygen bonds
'do not lie within the planes of the metal atoms, nor in the
planes whicn bisect them. The diagonal plane of the
tetrahedrOn»ﬁakes anéles of 31° and 14° with the [100] and
[(110] directions respectively. Similarly_tne axes of the
oxygen framework surrounding the calcium atoms ( shown in
| projection.form in Figure 2.5) are rotated’about the Z axis
~with respect to the bisector of the X and Y axes. A

description of the sense of these rotations depends on the
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: choice.ofrthe sense of the +Z direction with respect to the
atomic arrangement. The +2 and -Z axes are therefore
distinguishable even though the mirror operation of the
point group brings one into coincidence with the other.
The sense of the Z axls must be referred to the positions
-of the oxygen»atoms in the unit cell as it:isAthese atoms
alone which render the opposite-senses nonfequivalent.
-Zalkin and Templeton (1964) recognised this; the oxygen
coordinates given by these workers for CaWO4<define a
sense of +Z axis in the unit cell such that the projections
-of'the oxygen sites on to the XY plane have the forn shown
in Figure 2.3b and 2.5. The necessity for the definition of
a sense'of the Z axis has important consequences affecting
the study of some of the physical properties of scheelite
materials: - the signs of sone tensor properties depend on
the sense of Z axis chosen (Farabaugh et al 1966), and the
crystals to be studied must be uniquely oriented. Some novel
methods devised in the course of the present work for finding
the sense of Z axis in scheelite crystals will be described
in later chapters of this thesis -

Neutron diffraction refinements of the crystal
structures of‘the scheelite materials SrMoO4, SrWO4, CaMoO4,
-BaWO4 (Gtirmen et al 1971) and PbMoO, (Leciejewicz 1965) have
given the oxygen. coordinates in these materials to an accuracy
one order of magnitude better than that of earlier work by,,;
Ssillén and Nylander (1943). The crystallographic data for
each of thesevmaterials is compared with that for.CaWO4 in
Table 2.1.‘ Unit cell parameters,_deduced from x-ray powder

. photograph data (National Bureau of Standards 1962) are ':pj'



‘included . The table also gives the setting angle of the
1 tungstate or molybdate anion in the XY plane. This is-the
angle between the X direction_and the projection of a W—O
or Mo—O bond,'as illustreted-in.FigureA2.3b ; The-orygen
coordinatesland the signs of the-setting'angles have been
'"tabuleted using the sense of +Z‘axis taken by Zalkin and
Teﬁpleton (l§64)4end subsequentlyffoilowed hy Farabaugh'
et al.(1966)&and Gurmen et ai (197li. Throughout this work "
this definition of the sense of Z axis will be taken as the
.established convention. ' |

| The scheelite structure can be considered to be a

.complex layer structure; it has been described as such by
Arbel and Stokes (1965);A Each unit cell may be divided into
fourthorisontai (001) layers‘of equal packing density
(numberedﬁl to.5 in Fiqure 2.2). Cleavage and slip occur
parallel to.these layers in CaWO4._ The.layers'are the
closest pecked planes in»the structure: veach tungsten and
its four associated oxygen.etoms is surronnded by four
calcium atoms (labelled A, B, C and D in Figure 2.2) in
the same lafer. These calcium atoms lie at the corners of .

'a_square‘with side equal to the lattice parameter (a).

L 2.2 GROWTH AND DOPING OF SINGLE CRYSTALS

Large single crystals of scheelites, suitable for
.‘.iaser or ecousto-optic applications, can be grown by the
CzoChralski‘technique of pulling from the melt. Czochrelski
growth of'CaWO4 was first reported by Nassau and Van Uitert
(1960). This method can yield boules of high optical
perfection, several inches in length and up to one inch

in diameter. By using different seed crystals, boules can
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be prbdnced (Nassau and Broyer 1962) with growth axes
‘parallel to the {00l>, <100> and <110> crystallographic.g
directions. Boules growniwith diameters lesstthan'half
that of the crucible containing the melt.have characteristic..
vcross-Sections‘indicating different growth rates (rhkij in |

'the'order:'

*100 * Thos > oor ¢ Ti00 > Fnko ” Tilo°
The'technique has subsequently been used by many
‘diiferent-workers to grow single crystals O£‘most other
'Scheelite structure tnngstates:and molybdates‘(Preziosi et
al (1962),,Bonner and.Zdeik (1970)) with particular
attention being given recently'to'the growth of PbMoO,.
Despite having a comparativelj low melting point (1070 C),

PbMoO is not particularly easy to grow in good optical

4
quality. There is a tendency for the melt to lose PbO and

0,

to anneal the. crystals in air or oxygen for considerable

causing variations in stoichiometry,and it is necessary

- periods (Hobden 1972); Optical perfection is .much improved
' if very high purity starting materials are used (Esashi and
Namikata 1972). |

Crystals of the tungstates and molybdates can be
1grown doped with trivalent paramagnetic rare earth ions in
‘concentrations suitable for laser action. Charge neutrality‘
is maintained either by vacancy compensation or by the
deliberate addition of monovalent sodium (Na») in atomic
‘concentration equal to that of the dopant. The rare earth

ions Nd3 R Gd3 ' Sm3+, Eu 3+ etc. have radii (O 85 to 1. 142)

comparable to that of Ca2+ (0.998) and have been shown to

substitute for the divalent cation in CaWO4 (Nassau and
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Loiacono (1963), Nassau (1963)) No evidence for inter-
stitial substitution was found, presumably because of the

'compact nature of the structure.

_ The sites of the dopant rare earth: ionsbare thus
of the type shown in Figure 2. 5, each is surrounded by
'eight oxygen atoms which dominate the crystal field at the
impurity site Consequently the principle axes of the
crystal field in the XY plane (the “magnetic axes") do not'A
coincide with the crystallographic axes but with the v
: diagonals of the framework of the oxygen atoms which are
Msituated closest to the plane of the impurity ion. This
‘was demonstrated by Hemstead and. Bowers (1959) who, by .
| observation of ‘the extremes in the pos1tions of particular
lines of the Mn?* and Gd3 spectra, found_the deviation of
‘the magnetic axes in theixY plane from the;<110§ axes to be
9% & 2°, |
A determination of the positions of the magnetic
'axes relative to the crystallographic axes in a boule can
therefore be used to indicate the positions of the oxygen
:atoms It has been stated earlier (section 2. l) that it
is these oxygen positions which render the,+Z and -Z directions
non—equivalent, the Figure 2.5 shows the»projection of the
oxygen sites on to the XY plane for the definition of the
sense of the +Z .axis used here, and a right'handed XYZ
ax1al set. The magnitude of the angular deviation of the
magnetic.axes from these crystallographic axes (see Figure 2.6)

- can’ be estimated from the coordinates of the oxygen atoms;

values are85 (CaWO )/ 9° (CaMoO ), 9. f’(SrMoO )y, 9° (PbMoO,,) .
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Location of the magnetic axes in a boule of a doped scheelite-
structure tungstate or molybdate therefore provides a means
of identifying the sense of the +Z axis in the boule. This
method was used in. the present work to orient uniquely boules
of Gd3 doped CaWO4 and PbMoO4, and allowed the relationship-
" between certain direction-dependent properties and the
.atomic arranéements to be determined uniquely for the first

_ time.

2.3 . DEFECT PROPERTIES

For use in laser or acousto-opticvdevices a
material nust be available in high optical quality. Since.
scheelite structure crystals are uniaxial they are optically
anisotropic, and a high degree of optical perfection can
| only be achieved by a correspondingly high degree of crystal
perfection. There have been several studies of the defect
properties of as-grown CaWO4 crystals. Nassau and Broyer
(1962) observed scattering centres which were considered
to be inclusions of solid Or gaseous material but which
could be avoided by careful control of growth parameters.
As-grown crystals were found to be very susceptible to
cleavage parallel.to the (00l) plane, but this tendency
" was reduced if the crystals were annealed-at temperatures
close to the melting point. Many workers have observed the
presence of grown-in dislocations by using etch-pit
techniques (Chadhuri and Phaneuf (1963), Levinstein et al
(1963), Cockayne et al (1964), Arbel and Stokes (1965),
Buchanan and Casselton (1966)). After chemical polishing,

typically by boiling for 5 minutes in orthophosphoric acid
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(Coékayne and,Robertson 1964) to remove sutface'damage,
the;éo;ntsldf émergence~of dislocation lines on the {001},
{lOOL and {110} . planes were revealed by various etches.
On the {001} planes the etch-pits were found to be sduare

with'sides parallel to the [100] and [OlO]ldirections

”='4 j"(Levinsteih~ét al 1963), and on'thé;{loo} and {lloi'planés

-_they-were "lézenge shaped?and-héd mirror symmetry about a
long'axis pafallel to the (001)‘Qlane. Iniﬁhé'present work
(see ChapterAS) the o:ientatibn of these pits has been
Nrélatéd to ﬁhe,sensé Qf the Z axis in the'matérial, and
now providésia~usefui means of identifyiﬂg the seﬁse of
this axis in a boule. |

| vComélementary work on the:plastic~deformation of

CaWo, by Cockayne and Hollox (1964) and Arbel and Stokes’

4
(1965) has yielded information which is reievant to under-

stqnding the interatomic binding in écheelite structure
tungstatés aﬁd molybdates; At 16w temperatufes CaWO4 was
found to benbrittle;and plastic deformatibn did not occur
below‘4od°C.>~From this ;émperature up to 900°C slip on
thé (001) <106> system was thernly deformation mode that
was'obSefvea; The slip plane (00l) is parallel.to'the
-layers of the structure, and Arbel and Stdkes point out
that the siip.di:ection <100>, is in fact the direction in
which slip'éan occur with the least overlap of oxygen atoms
and the.léast distortion of the'WO4 tetrahédra.

| ThéTdefect properties of PbMoO, have been the
subject of two recent studies (Namikata and Esashi (1972),
Esashi and ﬁamikata (1972)). Etch-pits were observed On

the Z and x"féces by etching for three to four minutes in
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a 5% caustic soda solution at room temperature. On the 2
face the_pits were square while: on the X faces they had a
"lozenge" shape. Pit densities were found to be larger in
crystals grown from low purity starting materials. On the
Z faces the etch-pits were found to have edges which were
'inclined at abOnt 30° to the'<loo> axes. ;In~the course of -
the present work:the sense of this inclination has been
determined with‘respect to the conventional definition of

Z axis, and now provides aameans of determining the sense

. of»z axis'in a boule of pure or doped PbMoQ4. Details are

given in Chapter 7.

2.4  THERMAL PROPERTIES

Study of the thermal properties of the scheelites

- was stimulated by the need to develop the technology of the

materials_for device applications. The melting points,
»densities'and Moh's hardness numbers of severa1~scheelites
are listed-in Table 2.2 and the results of’specific heat,
thermal expansion, and thermal conductivity measurements are

detailed below. Vibrational properties are:also discussed.

2.4.1 Specific heat

The room temperature specific heat of mineral
scheelite was first measured over a century ago (Kopp 1865)
Somewhat more recently the temperature dependence of the
.‘éonstant preSsure specific heat (qp) of pure CaWO4 and

CaMoQ4 single crystals has been measured (King and Weller
a9e61l), Weller and King (1963) and Lyon and_Westrum (1968))
from 5 K to. 350 K. At higher‘temperatures'the specific

heat of CaWO4 has been measured by Yakoleva and Rezukhina (1960).

-
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The measurements are compared in Figure 2.7. 'Data obtained
by Klein (1968) from simultaneous thermal conductivity-and
thermal diffusivity‘measurements on a Nd doped (0.5 mol¥Nd)

CaWO, crystal are also shown. A striking feature of the

4
.-resultsis the close similarity of'the'specific heats of

CaWO4'and CaMoO4

10w’temperatures'(< 75 K) do the measured specific heats

over a wide temperature range; only at

differ significantly. In both cases the specific heat
curves deViate from the normal sigmate shape predicted
by.simple_DebYe theory. This will be discussed further

"in Section 6.2.2.

2.4.2  Thermal expansion

' Scheelite structure materials have an anisotropic
thermal‘expansion. The coefficients ay (—a ) and oy (—a )
.which describe the expansion parallel and perpendicular to
the fourfold axis respectively have been measured over a
.wide temperature range for CaWO4 Nassau and Broyer (1962)
quote average values over four regions of temperature between
-196 °c and 1025 C. Yates and Bailey (1971) have reported
values atrtemperature intervals of approxinately 10 K
between BOAK and 270 K. Above room temperature and up to

350°C, @ and o« have been found to obey the]relationships

s, = 5.96x107% + 12.23x107°T + 24.85x10 1212 (2.2).

oy 211.69x10~8 + 22.07x107%T + 21.43x10" 1212 (2.3)
where T denotes the temperature in °c (Deshpande and

Suryanarayana 1972). In Figure 2;8 the different measurements

for temperatures up to 300 K are compared. Considerable
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disagreement is apparent even though it is difficult to
compare measurements which. represent mean- values over
'different ranges. |

Comparison of the room.temperature thermal
expansions of different scheelites (see Table 2.3) shows'
"‘that all the materials exhibit the same type of anisotropy:
u"(—a ) is substantially greater than “i(‘“ ). Deshpande
and Suryanarayana (1969) suggest that the anisotropy of
thermal expansion is’ indicative of weaker binding in the

'direction“parallel to the 2 axis'than in directions normal

to it. This is discussed in Chapter 8.

2.4.3 Thermal conductivity

Thermal conductivity measurements in CaWO4 and -
'other scheelite materials are somewhat limited A room
temperature measurement was made on CaWO4 by Nassau and

Broyer (1962) . Measurements on a c-axis grown, doped

4
while Holland (1962) reported the thermal conductivity of

CaWo, sample were made between 77 K and 360_K_by Klein (1968)
doped c-and a-axis specimens at about 4.2 K, about 40 K

and room temperature. The results, reproduced in Figure 2.9,_
show reasonably good agreement, and between 80AK and 200 K
'-lie on the straight linelKT = 8.22/T fitted by Klein to

his measurements. The curves drawn by Holland (also
reproduced in Figure 2.9) illustrate how the measurements
‘may fit the usual pattern of temperature variation of thermal
conductivity for a doped insulator. The height of the
maximum is determined by impurity scattering of phonons

and is reduced for increasing dopant concentration. Above

the maximum the most significant contribution to the thermal
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.resistivity‘would be expected to be Umklapp séattering,
-‘which_depends only 6n the phonbn spectrum ‘and hot on the
doping. Umklaép pfocess thermal_resistivi%y is generally
found to be proportional totemperature (Klemensll958); the
straight line fitted by Klein between 80 K:and.zoo K agrees
with this;':Avae-these temperatureé Klein's measurementé-
show a-devia£ion1from the linear dependence, but this may
be the reéult of=experimental errér since in this temperature
\?ange the'spécific heat derived from these and simultaneous
thermal diffusivify:measurements'déviates markedly from the
specific‘heat determinations of other workers (see'Figure |
2.7). | ‘The results indicate that the thermal conductivity
does not“have significant anisotropy in CaWO4; Similarly,

almost isotropic thermal conductivities have been measured

for CaMoO4‘(Ka =.0.,0395, Kc = 0.0382 watt qul K-l), and

'SrMoO (Kaf= 0.0404, Kc‘% 0.0416 watt cmql'K-l) by Flournoy

4
-and Brixner (1965) and for PbMoO, (K, * K, = 0.015 watt em™t

k"1) by Pinnow et al (1969).

2,4.4 Vibrétional;broperties ‘

| Stﬁdies of the optical vibrational spectra of the
scheelite structure tungstates and molybdateé have been
extensive.; There have béen infra-red investigations of

(Barker (1964), Khanna and Lippincott

.CaWwo, and CaMoO

4
(1968)), Raman spectroscopy studies of Cawo4; CaMoO,, SrWO,

4

SrMoO,, PbWO, and‘PbM004 (Russell and Loudon (1965), Russell
(1966), Porto and Scott (1967), Khanna et al (1968)). It
has been established through the above wdrk‘tha£ the

vibrationai.modes of the different materials are somewhat
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similar, and tnat in each case the opticalvnodes can be
separated,into two sets. The first set comprises 18
vibrational?modes whose‘frequencies closely‘natch_those of
the_free.tungstate (or molybdate) ion in acueous solution
‘(Scott 1968l; and which are therefore considered to be
“internal“-modes'(vibrationalamodes in which tne centre of
gravity of the WO4 or MoO4 group is not dis splaced). The
second set is made up of lower frequency "external” modes

(in which the Wo, or Moo4 groups vibrate as rigid units).

4
‘Compared with the optical lattice modes, the

acoustical lattice modes of scheelites had. received little

attention when the present work was begun;' Reported work

on CaWO4'was_limited to the measurements of several ultra-

sound velocities at room temperature (Gerlich 1964). The-

: measurements obtained were not sufficient to‘allow calcula-

tion of the components of the elasticity tensor and further

measurements were prevented by difficulties in exciting

certain modes.- For CaMoO4 there were two separate determina-

’tions offthe elastic constants, both at room temperature

(Alton and Barlow 1967, Wachtmann et al 1968). The present

work thus includes the first determination of the complete

elastic constant tensor of CaWO4 and the first investigation

of the temperature dependence of the elastic constants of

any scheelite structure material. Duringfthe progress of

the present 'work the room temperature elastic constants of

SrMoO4

were reported. Experiments have been carried out to com=

(Chung and Li 1971b) and PbMoO,, (Coquin et al 1971)

plement tnese investigations and to permit'the first
comparison of the orientation dependence of elastic properties

in CaW04, CaMoO4, SrMoO4 and PbMoo4



Table 2.1

Crystallographic data

Matérial Lattice parameters

Oxygen coordinates

Anion set-
ting anglet

+ measured from +X axis towards

(1] Zalkin and Templeton (1964)

[2] Kay et al (1964)

(3] Girmen et al (1971)

(4] Leciejewicz (1965)

(5] - Wyckoff (1960)

[6) NationallBureau of Standards (1962)

| | c(g) a(ﬂ) ref. - X5 Yo z, _ref.
caWwo,  11.376 '5.243 [1]'_.0.2415'0.1504.0;0861-tli +31%5'
' caWo, | | 0;2413 0.1511 o.osei (21 +32°3'
CaMoO, 11,43 !5;226 [61 .o.24§8 0.1465 0.0826 (3] +31%'
STWO, . 1;,951 5.417°'16] ©0.2362 0.1395 0.0818 (31 +30°34"
SrMo0,  12.02 5.394 161  0.2374 0.1357 o.oao§ [31° +29°4sf'
BaWo, 12.72 5.613 [6] .0.2332 0.1227 0.0781 [31 +27°45'
BaMoO, 12;75' 5.56 [5] 0.25 0.11 9.675 (51 +23°45'
PbMoO,, 12.qé;v5.41 [5] . 0.2352 0.1366 0.0811 [4] +3o?9f
CdMoO,  11.17 5.14 [5] - - - -
+Y axis



Table 2.2

Material Melting Point Hardness Density . Reference

Oc MOh '_S No. - Cl;n-:34 -.

cawo, 1580 4.5 6.120 ©  1,2,3
CaMoO, - 1480 4.3 . 4.255 4,5,6
STWO, 1535 - . 6.187 . . 1,5
SrMo0, 1490 | - 4.54 4,5
BaWo, 1475 - 6.428 1,3
BaMoO, - 1480 - 4.65 - 5
PbMoO ~ 1070 3 6.95. 7
CdMoO, 1175 - - 8

1. Chéng; Scroger and Philips (1966)

2. Thornton, Fountain, Flint and Crow (1969)

3. Shapolalova, Mikhailova, Gerasimov (1960)

4. Floﬁrnoyvand Brixner (1965)

5. Handbook of Chemistry and Physics (1966-7)

6. Swanson, Gilfrich and Cook (1956)

7. Bonner and Zydzik (1970) |

8.

Brixner (1968)



Table 2.3

Thermal expansion coefficients of scheelite structure '

. tungstates and molybdates at 30 C

!

Material = o X ;06 ac;x 106 Reference
o Kt k!

|  cawo, ,:“ 635 12.38 a1
 CaMoo, | e . m
- SrWo, o l5.86 13.21 " . (1)
.'Baw04 e 4.43 18.35 (1
PbMoO, v_» 10.00 25.00 . [2]
CMoo,, | 6.85 15.13 [1]

“11) Deshpande and Suryanarayana (1969)

(2] Coquin et al (1971)
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CHAPTER 3

ELASTIC PROPERTIES OF TETRAGONAL CRfSTALS

Robert Hooke's publication’ in 1676 of the law which
now bearsnhis name, marked the beg;nning of the classical
theory of élasticity in solids that was later to be extended
to aniéoﬁropic media by Christoffel (1877) and Lord Kelvin
(1904).'.With thé develoément of experimen£a1 techniques
capable of generating clearly defined ultrasound beams —
high'frequency glastic waves — more éxtenéivé study of the
charaéteristics of elastic wave prépagation }n splids‘gecame
'gSsential; :Musgrave (1954), Borgnis (1955) and Watermén (1959)
were émong the first modefn authors to extend the theory of
elaétic wave propagation in anisotropic érystals. Ultrasonics
has now become an importaﬁt tool for the inveétigation of
‘..pﬁysicai-prépérties‘of solids and for the non-destructive
teéting of materials. Ultrasonic wave pfopagation in solids
is used in méhy'applications including bulk and surface wave
filters and delay lines, and acousto-optic.aévicés. Contin-
uing study of the propagation characteriétics of-elastic
-anes is 6f4fundamental importance in ensuring the va;idity
and accurééy of experimental investigations and in devéloping

devices.

'Iﬁjthis’chapter the classical theory of elasticity
is introducea and the propagation of elastic waves in aniso-
tropic solids described. Particular reference is made to solids
of tetragonal symmetry; the relationships and differences
between the elastic properties of the twé tetragonal Laue

groups areAemphasised. This chapter forms the basis for the
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' determinatioh of the elastic constants of such crystals

| by ultrasognd Wave velocity measurements, and for the
‘description of the details of the anisotropy of elastic
wave propégation and elastié behaviour in-CaW(_)4 and other

‘'scheelite structure materials.
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3.1 "ELASTIC PROPERTIES OF ANISOTROPIC MEDIA

3.1.1 _The Stress tensor

, A body which is acted on by external forces, or.
more generally a body in which one part exerts a force on
nelghbouring parts is said to .be in a state of stress. Two
types of forcesmay act on an element of volume within a
body. Firstiy there may be forces such as:gravity which act
throughout.the body on all its elements, andAsecondly forces
which are exerted on the surface of the elementarf volume by
the material surrounding it. These latter forces are propor—
tional to area and the force per unit area:is called the
stress; The six‘possible independent components of stress
g,. form a Symmetric second rank tensor. A component Uij
represents the force in the i direction on unit area perpen-
. dicular to the 3 dlrection, so that the olj (i= j) represent
tensile stresses whilst the Gij (i#j) represent shear stresses.
It is conventional to represent a normal component of stress
acting outmards from the bounding surface,byﬁa positive sign.
In the_case of shear stresses the signs are determined with
respect to‘the conventional axial set in the material as

shown in.Figure 3.1.

3.1.2 The‘Strain tensor

If a body located in a Cartesian reference frame of
three dimensions undergoes a translation, change in orienta-
tion and deformation, a point with coordinates X 1 Xy1 X3

will be displaced according to the linear transformation



X = xgo tolAxgg)xg t gy X ¥ X13 *3
X3 = xp0t xa1 ¥ UMa)¥p g3 % (3.1)
X3 = x30t  x3p ¥yt x3p Xp v (Mxgz)xg

to the new position x;. Here the Xio repfesent the trans-
' “lgti@nal:displacement of the body, and thé Xij are elements
defining a linear transformation. The change in length of each
component of a line due to such a transformation (see Figure
3.2) is given by | |

| Ax] - bx, = X35 B%j | S 3.2)

This expression may be written in terms of the symmetric and

anti-symmetric parts of Xi3

N =

v - .
Axi - Axi = [(X-' +. in) + (Xi' in)] Ag. (3.3)

1] J J
When xij.egqa1s —in’ the linear transfqrmation (3.1) would
represent just a translation and rotation of the element.
Thérefore fﬁe rotation is identified with the anti-symmetric

part of (3.3) and denoted by

wis = 5 Xy = Xg3) | " (3.4)

es5 =3 (gq * X5p) : (3.5)
is directly related to the ;hange in length of the element
and its deformation. | :

Tfansformations involving zerodilétibn are often

termed simple shears when accompanied by non-zero rotation

(Figure 3.3a) and pure shears when the rotation is zero

(Figure 3.3b).
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' The éij form six independent cémpopépts of the
éymmetric secpnd rank strain tensdr, the_diagonal components
representiné tensile stfains, and the off-diagonal éomponents
. shear strains. Twice Eji (j#i) equals the change in angle.
between twa elemahts.drawn_pa?allel to the"Oxi and Oxj axes
'béfore'theldefofmatioh,4and'is positive.if'thé angle decreases
(Figure 3.3). |

Tha‘compohents of strain may be reiated to small
.diSplacemenﬁs, sﬁch as those induced by a small amplitude
elastic wave, by consideration'of'infinitesimal forms of-
relatiohs such as (3.3). 'A displacement ui(xﬁ) will change
an elément-dxi with length ds and |

as? = ax, dx, < (3.6)
1 1 .

to an element with a new length ds' and

(ds )4 = (dxi + ui,j dxj) (dxj + ui,k dxk) (3.7)

Then

2 ‘ ’
= dxi dxj (ui,j + uj,i + uk(i uk,j) (3.8)

(ds")? - ds
In the limit of small displacements and amall_displacement
derivativés;'the product U you j in the above expression
. . ’ ’
may be neglected and the Lagrangian components- of strain

specified-by this relation may be identified with the linear

strains defined above (3.5) so that

= 1 :
=3 (a5 +u5,) (3.9)

eij
By means of. this expression the components of the strain tensor

can readily.be related to the derivatives Qf the small dis-

placements which occur when an elastic wave is propagated

through a medium.
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3.1.3 Relationship between stress and strain in a linear

elastic medium

The application of stress to a deformable body must
result in the body passing into a state of strain. If, on
removal of the external stress system, the body returns to
1ts orlglnal ‘shape, it is said to be elastic. For most
solids it 1s observed that for suff1c1ently small stresses
the amount of strain is llnear1y~proport10nal to the applied
stress. In an anisotropic medium a éeneral~iinear consti-
tuitive relation between stress and strain is_adopted, and

v

usually written as

eij = Sijkl 91 (3.10)

or in its reciprocal form

955 = Cijki k1 o (3.11)

where the. S i3kl are the elastic complfance constants, and the
Cijkl are the elastlc stlffness constants.: These relations
are generallsed forms of Hooke's law and form the basis of
the classical theory of the elasticity of solids. Generally
in an anisotropic solid a single component of stress will

give rise to six independent components of strain described

by (3. lO)

Slnce they relate second rank tensors, each with nine
elements, the elastlc constants S, and C, . themselves
ijkl ijkl
form fourth—rank tensors with 81 elements each. The symmetry
of both the stress and the strain tensors demands that the
"elastic constant tensors also must be symmetrical with

respect to indices ij and k1l so that
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Sijk1 = Sjikl = Sijik T Sjiik (3.12)
Cijk1 = S3ik1 © Cijix T Sjiik (3.13)

and only 36" of the 81 elements are independent.

3.1.4 Matrix Notation

The symmetry of the Sijkl and Cijkl'ln the first two

and last two indices ((3.12) and (3.13)) allows the use of

a matrlx notation in whlch the pairs of suffices are abbrev-

1ated and each replaced by a 51ngle suffix accordlng to the
scheme: !

tensor notation 11 22 33 23,32 31,13 12,21

matrix notation - 1 2 . 3 4 5 6

It is then conventional (Nye 1957) to write the stress and
strain tensor components_ as

, 1

oy | o : g | | £ %56. %65
% 7, o4 and Yeg €. e, (3.14)
LOS 04 03J ‘%55 254. e3J
and the stiffness constanps |
C = C (i,3,k,1 = 1,2,3; m,n = l,...6j (3.15)

ijk1 = “mn
For the compliances, factors of two and four must be introduced

as follows

Sijkl = Smn when m and n are 1,2, or 3
ZSlel = Smn when either m or n are 4}5, or 6 (3.16)
4Sijkl = Smn when both m and n are 4;5, or 6

These factofs, and those in the strain components (3.14) are
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included so that Hooke's law can also be written in the

£

contracted notation as

cy'= Si5 9 - | (3.17)
or _
0 =Ciyey o | (3.18)
The matrices of Sij and Cij are written in squares
511 S12 S13 S14 S15 Si6 | €11 C32 €13 €14 C15 16
S,1 S22 523 S24 S25 S26| C21 C22 C23 24 C25 C26
S31 S35 S33 S34 S35 S3g| and [ C3y C32 €33 C34 C35 36
o ‘ (3.19). .
541 S42 S43 544, 545 Sa6 Ca1 C42 €43 €44 Cas a6
S5y S5y Ss3 Ssg Sss Sse| Csq Csp C53 Csq Cs5 Cse
S¢1 Se2 Se3 Se4 Se5 Se6| - . | 61 62 C63 Ce4 65 Co6

. - .
Musgrave»(l970) has pointed out thé# élthough the
relations (3.14), (3.15)7and k3.l6) listed here are the con-
ventional identifications of the matrix notation they do
not give a symmetrical self-consistent séheme. Such a
'symmetriCai scheme éould~be obtained using a definition of
the Oj which would include factors of a half in the identifi-
cation of the off-diagonal components of the stress tensor,
but would nbt-coﬁform to the established practice which will.

be followéd.here.-

3.1.5 Elastic str&in energy density

The internal energy per unit volume of a strained

elastic body may generally be written in the form

_ ‘1 | 1
o = 9(0) +.2! Cijkl eij €)1 + 39 Cijklmn Eij €1 ®mn + .. (3.20)
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.with each primed term summed over its repeated indices and

the C, denotlng the third order elastlc constants.

jklmn
¢ (0) 1is thellnternal energy in the state from which the strain

is measured#n A requirement of the existence of an elastic
'potentialAis;that theinhernai energy ¢ must be independent
of the path by which the state of strain is reached. This

leads to,the‘expression |

c.. = __EEJL___ = C : (3.21)
13k1 " \Feyg s L k1ij ' :

and results in the furthe}-conditipns

Siskl T . Sk1ij

(3.22)
and o Cijki = Ck1ij
be1ng 1mposed on the second order elastic constant tensors-—
reducing the number of independent components of these from
36 to 21(~a reduction whleh applies to all elastic media,
llnear or non-linear.

In a linear elastic medium the third and hlgher ordes
constants\ege neglected, the generalised Hooke's law applies

and the strain energy density is given by

1
5 Cijkl eij €r1 (3.23)

An elastic body is_only stable when work has to be done to
create a(state.of strain from the equilibrium state; in the
linear'elesticity_appronimation the strain'energy density
(3.23) must be'positive definite. This feéuirement is met
if the prineipal minors of the elestic constant matrix (3.19)

are all positive (Born and Huang 1954).
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3.1,6 Elastic constants of a crystalline medium

Although their appearance in the matrix notation
(3.19) cah be misleading the Sij and Cij are pot'components
of second rank tensors. They, in fact, are just matrices
rep;esenting the Sijkl and Cijkl which are fourth rank tensors.
‘As,such their components transform on change of axes aecording
to the law;f |

ijkl = AiI'n'Ajn Ako.Alp Smnop (3.24)

S

where Aimldenotes the direction cosine of the new i a§ie

with respect to the old m-axis etc. It foilows that each
elastic coﬁstant has a definite meaning and numerical value
only witthespect to a particular reference frame within ‘a
medium. - If in a ecrystalline medium, the reference frame is
chosen to coincide with the thgee cOnveﬁtionally adopted
orthogonel crystallographic axes as specified by the Standards
on Piezoelédtric crystals (1949) then the elastic constants
are known as the "fundamental" elastic constants.

The elastic constant tensors are "ﬁatter" tensors;
unlike the etress and strain tensors which just describe an
applied stress system and the'resulting strains, and are
known as.“field" tensors, the stiffness Cijkl:and compliance
Sijkl tensors are physical properties of the material.
Acéordingly they must obey Neumann's prineiple and have at
ieast the Sfmmetry of the crystal point group. In crystals
of symmeﬁfy-higher than triclinic this leads fo relationships
among the cemponents of the elastic constant tensors, and a
reduction in the number.of independent cemponents.

In fact the elastic properties of e crystal have a

symmetry greater than that of the point group. Under-a



transformation of the type

S,ijkl (3.25) .

§im_6jn 6ko 6lp Smnop
which corresponds to the operation of a centre of symmetry,
the values-of the elastic constants are unchanged, indicating
‘that whétever the Crystal symmetry the elastic properties
will be centrosymmetrical. The e;astic behaviour of a
crystal isttherefore classified according to its Laue group
~rather than its point group. The.eleven possible Laue
groups‘td which a crystal may belong and‘their'cénstituitive
point groups are listed in Table 3.1 |
The conditions imposed on the elastic constant
tensor by the Laue symmetry of the matérial can be deduced
by inspéction. Tables are available (Nye 1957) which
villustraté the elastic constant scheqes for materials of
the~diffefent symmetries. The numbers of independent com=
ponents of the elastic constant tensor for the different
Laue groups are given. here in Table 3.1. This illustrates
hoW the nuﬁber of independent constants is drastically
reduced from 21 in a medium of triclinic symmetry to three

in a cubic, and only two in an isotropic material.

3.1.7 ' Elastic constants of solids with tetragonal symmetry

The'scheelite structute materials have a-point group
 4/m. 1Along with point groups 4 and 4 they belong to the

TII Laue group. Solidé (e.g. tin, indium, InBi) with a
péint'groﬁp 4/mmm, which includes planes of symmetry

parallel to the fourfold axis and those with point groups

422, 4mm and i2m, belong to the higher symmetry ditetragonals,

and to the TI Laue group.
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It is conventional (Standards on Piezoelectric
Crystals 1949) for TII Laue symmetry to dgfine the 2
axis of the right handed aiial set to which éhysical
_propefties are to be feferred as parallel to the fourfold
'symmétry axis. ﬁ‘and Y axes‘are then taken in the plane
normal to Z pérailel to the equal lattice!translation
vectors (a and b) of the tetragonal unit cell. The sense
of the Z-axié must also be definéd in these solids (see
* Section 3.1.11) but no convention was specified by the
Standards on Piezoelectric crystals. The definition used
in this work and described in.Chapter 2 is consistent with
that of Zalkin and Templeton (1964) and Farabaugh et él
(1966) . |

The +X, +Y, +Z axial set so defined will be
'.»ﬁranstrmed in the manner |

1 —2 2 —» -1 3 — -3

by thé.operations of the TII Laue group; which comprise
a fourfdld axis and a mirror plane perpendicular to it.
In the four-suffix notation this will change the indices
in the fashion 11 — 22 22 — 11 33 — 33 23 — 13

31 ——5-j32: 12 ?—) -21 and give a new array of suffices in

the elastic constant matrix:

s

22 21 23 25  -24 =26
21 11 13 15  -14  -16
23 13 33 35 =35 =36
| (3.26)
25 15 .35 55 =54 . =56
24  -14 -35 -54 44 46
- -16  -36 =56 46 66
| =26 %0
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Equating this array, componeht by component with the
4original one (3.19), inspection shows that the conditions
: imposed bylthe TII Laue symmetry are sufficient to reduce

the number of'independent components to seven and the

array to A
S . | I
11 12 13 0 0 16
12 11 13 0 o -16
13 13 33 - 0 o) 0
(3.27)
0 0 o . 44 o -0
o o .0 o 44 0
16 -16 0 0 0 66
L—- —

For TI Laue symmetry crystalé the same convention in

defining the +X, +Y, +Z axial set is used, but +Z and -2

akxes do not need to be distinQUiShed; The presence of the
vertical planes of symmetry in the Laue group imposes the
further condition that Cl6 (and 816) ghéuld be zerc, so

that in these materials the number of iﬁdépendent coefficients

is six, and the form of the elastic constant array is:

"11 12 13 o} 0 0
12 11 13 0 0 0
113 13 33 o o) 0
(3.28)
0 o) o) 44 0 0
0 ‘0 0 o - 44 0
1o 0 0 o} 0 . 66

The non-zero value of C16 (and 516) in the TII
symmetry solids leads to elastic¢ behaviour which may be
Asignificahtly different from that in the corresponding

Crystallbgraphic directions in a TI symmetry solid.



7 3.1.8- Relationship between the elastic constant tensors

.Qf_TII and TI Laue symmetry solids

'Deséite the differenées discussed above, the same
symmetry.p;operﬁies are exhibited by the elastic behaviour
of both grQups'of tétragonals. This intefesting observation,
.ffirSthadé'by Khatkévich (l962)lbefqre any'eXperimental
Ain?estiéations of'TII symmetry_materials‘ﬁadlbeen carried
out, has sdﬁé impo;tant consequences'for»éolids ofAthis Laue
group; it éffects the response of such a solid to certain
applied stfesses and determines the mode of propagation of
certéin acoustic waves. In fact Khatkeviéh pointed oﬁt that
the separation éf tetragonal solids into two groups is not
strictly.ﬁecessary because the difference.between the two
grbups.amouﬁts'éimply to a gpecific rotation of the topology
of the.elastic properties with respect tb thé crystallographic
axes. |

For a rotation about the fourfola axis through an
.angle ¢:the non*—zero_Cij are given byvthe transformation

expressions:

" o A i,

Cll = C22 T Cll + C cos 44 + ClGSln.4¢

o ) ) .

C66 = C6§ C cos 49¢ ?1651n 4¢
' A = A - .

C12 = C12- C cqs 44 C16s1n 4¢ _ (3.29)
T ' . .

_Cl6 = C26 = -C sin 4¢ + Clegos 4¢

 c' —c cl, =c..=¢C cl.=cl.=c
33~ ~33 44 = “55 ~ “44 13°° Y23 ° “Ti3

" where

c =, -c. -2c.)

RO S B RS ¥ 66

C11 €11 7C Cg6 =C66 ¥ C Cr2=C2 %€
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In the particular case of a rotation by an-angle

-1

[¥ tan™" (C,./C)] | (3.30)

the transformed constant Ci6 will become equal to zero. The
number of indepéndent elastic constants of the TII symmetry
Asolid.with respect to the new axial set will be reduced to

six, and the matrix (3.27) will be reduced to the form of

(3.28):
11" 12" 13" 0 0 0
12" 11" 13’ 0 o) o)
13’ 13’ 33’ o) ¢! o)
' (3.31)
o) o) 0 44 o) 0
o) o) 0 0 44" 0
o 0 0 0 0 66"

EQuaﬁion (3.30) has two roots, separated by n/4, in each
quadrant. In a TI Laue material CiG is zero only when ;
equals zero.or n/4 (and for the other directions related by
the fourfold symmetry); the reference axes then coincide
with either the <100> or the <llO> directions of the conven-
tional axial set. Therefore, with respect to a set of axes
rotated by a particular angle ¢ — given by (3.30) — about
the fourfold axis, the elastic stiffness constant tensor of
a TII symmetry tetragonal has the same number of independent
components and the same structure as that wh1ch a ditetragonal
TI solid has with respect to its conventlonal crys;al axes.
Thﬁs with regard to the elastic properties, separa-
tion of.ﬁetragonal solids into the two Laue groups is not

strictly required; in each case the elastic modulus tensor
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mayvbe descfibed in terms of six parametérs which are
inVariahtion rotation about the fourfold_axié. If however
the elastic properties are to be related £o the conventional
"orientatiégfof the crySﬁal——-and this of course is usually
désired-4?then separatiohviﬁto the TI and fII groups is
:ﬁéééssaryL*'The close relationship. of the two Laue groups
has some in;eresting repefcussions‘for sqheelite structure
solids; these will be discussed in the light of the

experimental results given in later chapters of this thesis.

3.1.9 Interconversion between elastic stiffnesses and

compliances

The general reélationship between the components of
the elastic stiffness and the elastic compliance tensors

is the usual one for the inversion of a symmetric. matrix:

_ i\ iti ¢ ,.c
Sij (-1) Aij/A B (3.32)
where A€ is the determinant of the Cij terms and Azj is the
minor of the element Cij' Explicit expressions for materials

of the TII tetragonal system have not previously been given,

and are presented below:

_ 2. 2. V. 2
11 < [Cll 33%6 ~ 13 %66 ~ Ci6 C33] Chq /8
- _ 2 2 c
S1p T [Clz 33%s6 ~ “13 %66 T C16 Cy3) Cqq™/2
‘ ‘ c
S13 = [C13(C15%6 = C11%6 * 216 J R, (3.33)
A L _ . 2 : 2, C
S16° = ~[C16(C12C33 * €11€33 ~ 2Cy3 )] c44 z
T 2 2 2, c
33 _[C66(Cll 120 7 2(C13%120% ] Caq /8
Sgq = 1/Cyy4

= Con 2 A 2,.c
See = [teyqteq, * Cra) 7 203 )(Cyy -ClZ)] Cyq /8
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where

c . , .2 A 2 2
AC = - - -
[((Cyy = C15)Ce¢ = 2C1°) (C13C33 * C15C33 ~ 2€137)]Cyy

TheSe_expressions are symmetriéal in Sij and Cij and can
“be used.tq_Convert compliances to stiffne§x£>just by writing
'S for C and C for S. It is significant that the only funda-
méntal'4iﬁ i' - ! on siqi ﬂ. '

al compliance to depend on the .sign of C16 is 516' ClG

and S alWéys have opposite signs. By making C16 = O the

16
expressions for TI symmetry solids can be_ébtained.

3.1.10 . Physical meaning of the elastic constants
| The elastic constants of a material’ describe ;ts

resistance to deformation, large values of.the stiffness con-
stants indicating that a material is not readily deformable.
It is thus the stiffness of a mediumlwhich is described by
‘the elastic constants, and not the hardness 6r the strength
>of thé maéerial; | |

| Ih.an anisotropic medium a‘singlé stress gives
rise to]many different strains which have magnitudes depend-
ent On the’relafive values of the different elastic constants.
If a generai stress system, arbitrarily ofiented with respeét_
to the stmetfy axes, is applied to a c;ystalline body,
then all the possible strains allowed by the generalised
Hooke's law (3.10) will arise. 'The relative values of the
strains Wiil depend on the elastic consténts Sijkl defined
with respect to the arbitrary stress axes (and obtained from
‘the fundamental elastic constant set by thé tensor trans-
formatiop rule (3.24)).. The resultant strains and their
relation to the applied stress system will be somewhat

complex, but knowledge of the complete set of elastic moduli
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C r S allows the material's response to be

ijkl °F ®ijk1
calculated.

To understand the meaning of individual elastic

'constants, it is useful to consider the effect of simple

stresses applled along or perpendlcular to the symmetry axes.

.For example, if a longitudlnal stress is applied parallel to

the X direction of a crystal with TII Laue symmetry, and all

other stresses-afe zero then the generalised Hooke's law

(3.17) reduces to

1 T Su
€2 = Sy
€3 = S13
84 = (@)
‘65 =:'O
6 = Si6

A single stress oy

%1

thus gives rise to four different non-

(3.34)

zero strains. The ratio of the longitudinal strain parallel

to the applied longitudinal stress to that stress is given

by Sll,Awhile the tensile strains perpendicular t0 the X

direction and parallel to the Y and Z directions respectively

‘are given hy S12 and Sl3’

In a cubic material the Y and Z

directions are equivalent, S12 is equal to Sl3 and the strains

(ezAand e.) -would be equal.

"of the shear strain €¢ (Ze’

how the angle between the X and Y axes is changed from

/2 (See Fig. 3.3).

The value of S

is a measure

in tensor notation) and describes

The constant S33 is a measure of the longitudinal

strain (€3) in the Z direction resulting’from the application

of a single tensile stress (05) in that direction.
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- The meaning of the shear constants 544 and'S66
is{seén by COnsidering the application of parficular shear
stresses. When the shear stress Oy is app;ied to the faces
of a cubeAnbrmal to the 7 axié only oneé strain resglts, a

shear strain €y which is a measure of the change of the angle

‘between the Y and Z axes. The ratio 54/04 equals Sy4° The

constant 866 is given by the ratio 56/06 when Oer @ shear
sStress in»the X direction on a plane perpendicular to the

Y direc¢tion, is the only applied stress. Through the constant
'Sl6 this particular shear also gives rise to tensile strains
in the X énd.Y directions — strains which would not occur in

a ditetragdnél solid.

3.111; 4 The‘31gps‘of Sla.ané ClG

‘The physical meaning of the elastic constant

S 861) was explained in Section 3.l.lO;S61 (equal to

16 <

4S in tensor notation) gives the shear strain €19 which

1211
results from an applied stress 091 and so describes the

change in angle between the X and Y axes due to such a stress.

The sign bffSlG, and thus of Sgp7 determines whether this

angle is increased (as in Fig. 3.4b) or decreased (Fig. 3.4c)

on application of a compressional stress.

For a right handed axial set defined with respect
to the body as shown.in Figure 3.4b, the sign of 516 (=S6l)
woﬁld be pdsitive (because a compressioﬁal stress is conven-
tionally‘given a negative sign, and a strain Eij is taken as
positive if.the angle between ;he Oxi and Ogj axes is

decreased).

For an alternative definition of axial set with the

sense of_the +7 axis reversed, the X axis parallel to the



- 38 -

applied sfress and the +Y axis chosen to complete. a right-
handed_set; then the result of the same applied stress “99,
now gives a decrease in the angle ‘between these +X and +Y
axes, -so that for this definition of ax1al set S16 must have
a negatlve 51gn.n Consequently, the signs of 816 and C16
'depehdth-the sepse chosen for the +2Z axis with respect to
the interhay crystal structure. This was. overlooked in the
Standards on Piezoelectric Crystals (1949). The definition
of the Sense of +Z2 axis with respect to the e;ystal structure,
used in this work, was described in Chapter 2 of this the51s,
it 1s the definition of zalkin and Templeton (1964), and the
one used by Farabaush et -al (1966), the only previous workers
to have emphasised the distinction between +Z and -Z axial

directions in TII symmetry materials.

3.1.12 The response of an eiastic body to hydrostatic pressure

The elastic moduli particularly dseful in the
'study and assessment of interatomic binding in solids are
the compressibilities, volume and linear. These moduli
describe the response of a material to uniform hydrostatic

pressure. Such an external pressure P leads to tensile

stresses

o1 =~ Pdkl o (3.35)

a4 = eii = =P Siikk_ ' (3.36)

so that the volume compressibility Bv is Siikk and thus is
the sum of the nine components in the upper left-hand corner

of the compliance matrix:

Bv = s_ll + s12 + 533 + 2(S12 + 823 + S3i) (3.37)
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The linear compressibility (Bz) of a solid is the

‘relative decrease in length of a line when the solid is
subjected to unit hydrostatic pressure. In all solids of
symmetry lqwer than cubic B2 varies with direction and in
génefal is given by

I 8, = Sijkk'mi'mi‘ " . | (3.38)
- in the direc£ion of a unit vector m. 1In uniaxial crystals
which include all the tetragonal, trigonal and hexagonal
point groups, the linear compressibility depends only on the
angle betwéen the Z axis and the unit vector, and can Be
represented>by just two principai linear cbmpressibilities

B, = Sy * 25,5 | (3.39)

BXY = Sll + S13 +_S12 (3.40)

which represent the relative length changes in the 2
direction and in directions in the XY plane réspectively;
In terms of the stiffness constants (Cij) the volume and

linear compressibilities in media of TII symmetry are giVen

by
© Cyp *Cyy F 2C35 = 4Cy5
By = . 2 (3.41)
€11%33 * C12833 -~ 213 <
8. = ]c A(é 2 _ ¢ 2y _ g +c.ye ?
z 66 (C11 12, 11 ¥ €120C6
- 2 (3.42)
- 2.7 Cas
*+ 2(C13(Cy5C6 = C11C66) * 2C16 )]; G
6 =lc. (C.Con = C.?) = .. 2C.. = C..(CenCan = Cas?)
XY 66 1133 ~ €13 C16 €33 7 ©66 (1233 ~ C13 :
c (3.43)

2 44

2
= Ce C33 * C13(Cae(C1p = Cpy) + 2Cy4 ’] <



where A® has the Qalue given in 3.33 . .The bulk modulus
.(K) is'défined'as the reciprocal of the volume compressibility.
In a uniaxial solid, although a net volume con- |

traction must occur, the application of a uniform hydrostatic
pressurevcan lead to contraction in some directions but
”éxéansion in others. This has been observed in arsenic

(Pace et al 1970) and tellurium (Malgrange et al 1964) whilst
“in some crystals very large anisotropies of linear compres-
-sibility have been found (Akgdz, Farley and Saunders 1973).

1

3.1.13  Anisotropy of the technical elastic moduli

Generally in the technical ‘literature elastic
behaviour is ﬁot discussed in terms of C.j or Sij) but tbe
famillar ‘technical modull-—-Young s modulus, rigidity modulus
bulk modulus, torsional modulus, and also Poisson's ratio —
are used. Ih isotropic materials these parameters have
single values but in anisotropic solids they (with the
i exception of the bulk modulus) vary with orientation and
show at least the Laue symmetry of the material. As described
in Section.(3.1.10), in an anisotropic medium a single
applied stress will give rise to many resulting strains.
Therefore definitions of the technical moduli for anisotropic
media must specify the directions of the stresses and strains
‘ uniquely.f |
| 'Young's modulus ~ describes the ratio of the
}resulting IQngitudinal stfain parallel tobthe direction of
a single appliéd longitudinal stress. In the X direction

this modulus will be equal to (Sll)-l and in any other
" direction will be (Sil)'l; By the tensor'transformation

‘iaw it can be shown that in TII tetragonal crystals the
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anisotropy of the Young's modulus is described by

- v =1 4 4 4 2 2 o
™M (Sll)‘ = (ml + mz)Sll + m3s33 + mlmz(ZS + 866) +
' (3.44)
2 _ .2 _ .2
m3(l m3) (ZS13 4) + 2ml 2(m m2)516

. where ml, mz, m3 are the'direction'cosines of the applied
stress. Young s modulus is a single valued function of the
direction cosines and elastic moduli,and can be represented
by a surface which provides a useful visual illustration of
the'anisotrooy of elastic behaviour of the material, although
it does not describe the whole of the elastic behaviour.
Models of the Young's modulus surface of crystalline mercury
(Grocker and Singleton 1971) and cross-sections of the

oung's“modulus surfaces of the semimetals arsenic, antimony
and bismuth (Guriton and Saunders 1972) have provided vivid
.illustrations of the extreme elastic anisotropy in some of
these SOlids.

cady (1964) following Voigt, defines the torsional

compliance as

o I ' : ‘ .
Th = 3 (844 + 855) (3.45)

for a torsion about an arbitrary Z' axis. This formula is
-used in'thevdetermination of elastic constants by a static
method in which torsion about the axis of a cylindrical
speCimen 1s ‘measured. Elastic constants may also be
determined fromtmefundamental frequencies of torsional

and longitudinal vibrations in thin cylindrical specimens.
Such a method was used by Wachtmann et alv(l968) to find

the elastic tensor set of single crystal CalMoO,.



4z -

The torsional compliance must be distinguished from
the modulns ofrigﬂﬁty which is defined as the reciprocal
of S;4 with respect to axes Y' and z' (Cady 1962), and has
'AanZOrientation dependence given by the~tensor transformation'
law (3 24) The rigidity modulusf and also'Poisson's ratio
fin an. anisotropic SOlld, are functions of more than one

direction and cannot be'represented by surfaces.

3.1.14 Thermodynamic basis of elastic moduli
The elastic constants were introduced[ and their
physical'neaning has.been described, through the empirical-
formulation of Hooke's law (3.10). A more fundamental
significance to the elastic constants arises through their
thermodynamic basis. |
| iIt‘follows from the first law of thermodynamics that
the totai energy of a solid is the sum of,different types
of energy and’may include among others magnetic, electrical,
mechanical and ‘thermal terms. In a situation where other
contributions may be considered to be 1ndependent of strain,
'the increase in internal energy (d¢) w1th strain will arise
due to the strain enerqgy contribution alone. Then.by
(3.21) the second order elastic constants can be seen to be
related to the second differential of the internal .energy
with-respect to strain:
2

_ 3% 0
Cijk1 = 3513 %% k1 (3.46)

From equation (3.20) it can be seen that, in general, con-

stants of the nt order may be defined by

C = ____232@__ (3.47)
ijk1l®°= Beijaskl..f.
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.The elastic constants thus have basic thermodynamic as well
as méchanicél sighificance. In particular the volume com-

preésibility'(3.37), given by

1l _ LK)
= = (=5 |V A : (3.48)

V=VO
is of great:importance in assessing the interatomic binding

in crystals.

. 3.1.15 Relatidn between adiabatic and isothermal elastic moduli
In the usual experimental range-bf frequency and

‘temperature the propagation of sméll amplitude ultrasonic

anés in solids can be assumed to be isehtrbpic; the elastic

constants so determined afe the adiabatic moduli. These

are related to the isothermal elastic moduli by the

expression
I _ ' . aia.T
(555 - (555) L T T e
) adiabatic J isothermal - P

where.ai_and o.. are thermal expansion coefficients, T is
the temperature, p the dénsity and_CP the specific heat

capacity per unit mass at constant pressure.

3.2 ELASTIC WAVES IN ANISOTROPIC MEDIA -

-3.2.1 Elaséic waves in tetragonal solids

if-fhe stfesses in a body are inhdmogeneous then each
element of volume of the body will be subject to forces equal
to the stress gradients in different directions. These com-

ponents of force will be related to the appropriate
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accelerations by Newton's second law:

013,53 = B (= L23) (3.49)

for a medium of density p. Here the indices after the comma

denote differentiation with respect to position (x) and
the dots denote differentlatlon with respect to time. Using

Hooke's law (3 lO) gives

Cijk1 k1,5 - P9 G =1.2.3)

and from the definition of strain this_becohes

C

ijkl (uk,jl + Uy )/2 = puy -(i =1,2,3)

1

Since the stiffness tensor (Ci kl) is symmetrical with
respect'toAiJ and k1l this reduces to
Cijkl‘uk,jl by (1=1,2,3) (3.50)
Plane bulk wave solutions to this equation of
motion are of interest here. for a plane harmonic wave of
-_angular frequency w the components of the particle dis-

| placement»(g) of the wave can be written as

u,
* i
noi exp [l(mt - kmxm)]

u,, SXp [i(wt - k.£)]
(3.51)

‘where u ‘:represents.the maximum amplitude of the
,vdisplace;ent in the direction i; k. (k;, ky» k3$ is the
'wave vector, equal to (w/v)n where v is the phase velocity
and n (nl, Ny, n ) is a unit vector-—-known as the wave
normal or propagatlon vector — normal to the planes of
constant phase. The components ng . n2 and n3 of the

propagation vector are the direction cosines of the

"direction of propagation. ‘Differentiating (3.51) and
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substituting in the equation of motion gives

vaz'uoi = Cijxr 5 Py Yo (1i=1,2,3) (3.52)

This may be written in the form due to Christoffel (1877)

as
v(Cijkl'nj ny - pv dik)_uok =0
" o -2 _ -
or ;(Lik pV éik) uok =0 (14f 1,2,3) (3.53)
where Lik are the Christoffel éoefficients}

The,ChriStoffel eguatidns (3.53) are three linear
.h?mogeneous:Simultanebus equations.in uol,»uéz, u03 which
have solutions only when the determinant-of'the coefficients
is'ééro; the solutions correspond to the piane waves which
can be propagated in a particular direction defined by the
_iwave‘npfmai,(g). The method of solutionvis giveh here for
solids ofltetragonal symmetry.

In a ﬁedium of TII Laue symmetry the éhristoffel
coefficients are given by the expressions:

2 2 2

Lj; = mypm Gy + ny Gy + 037 Cpy 200, Cog
| 2 | 2 2 .
Laa = 1 G+ My G YoMy Cyy 2nyn, Cig
2 . 2 2 '
L = n C + n cC, + n C
33 ° M1 Cuy 2 S 3 €33 3.54)
L-=n2C -nzc +nnA(C- + C_.)
Lyp T M Ce 7 oMy G v My (G * Cee
Lyz = mpg (C3.% Cyy)
Ly3 = mnyng (G5 + .c44)

Fbr the higher symmetry TI Laue group these coefficients

are simplified since C16 is zero.
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Eqﬁation’(3.53) written out in full gives three

linear homogeneous equations in the three unknowns, uol,

u

02

and u.-
°3

, the components of the particle displacement.

These secular equations

Iy

must be obeyed for a bulk wave solution to exist.

2.
DV_)-hol

le u

L

°1

.
0.

+

+ (Ly,

Lo

u

—pvz) u

L

23

u

02
©2

02

+

u

+
O3

Los

» 2
+ (L33 pv ) up3

L u
13 03

have a non-trivial solution only when the determinant of

their coefficients is zero,

that is when

Lis

Las

v 2
L33 pV

‘The determinantal equation is cubic in pV2;

= 0
= 0 (3.55)
= O
They can
= 0 (3.56)

for each direction

of propagation there are three possible modes with velecities

given by the roots of this equation.

The roots represent

-the eigenvalues of the Christoffelﬁequatiohs, and the cor-

'responding eigenvectors, u,. specify the particle dlsplacements

or polarlsatlons of the modes which can be propagated

As a

result of the symmetry of the coefficients in (3.55) the

polarisations of these modes are mutually orthogonal.

‘Thus in any particular specified direction in a

chstal, thtee‘distinct mutually orthogonal modes can be

propagated, each with its own velocity.

generally neither pure longitudinal (for which U, X n

These modes are

0)

nor pure transverse (for which u_.n = 0) as in the general

case the particle displacement direction need not be either
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- parallel or perpendicﬁlar(tc the propagatién_yector.. The
mode for*which the_polarisation is closest to the propagation
directibn (and which will often have the greatest velocity)

' isvknown as quaéi-longitudinal, and the other two modes as
 quasi—shéé;_(o;'éﬁéSi—tr;nsvérse);A Directions in which the
.sheanlanés‘KpUréZOr q&a$i§ prqpaga#e With‘equal velocities

are known as acoustic axes.

3.2.2 Pure modes in anisotropic media

The special directions in which pure modes can
prdpagate héy be diQided into?tWortypes; "Pure mode directioﬁs
of the f;:;t kind" are those directions in which a pure iong-
iéudinal aﬁd henge also twé pure shear modes can be propagated.
Brugger (1965)) using the method of Borgnis.(1955), has given
expreSSioné;by.which these'directions, more of%éh known just
as "pure“ﬁode axes" can be lécated in crysfals of the
orthorhombic,tetragonal, cubic, rhombohedral and'hexagonal
systems. "Pure modé directioné of the sécénd kind" or
"semi-pure mbde directions" are those directions in which a
single pure~shéar modé can be propagated, along with two
vothef impufe-modes.. The existence of these directions in
crystals of §arious symmetries has been studied by Chang (1968).

Pure mode directions of both the firét and second
kinas occur{for‘certain specific symmetry‘directions in ¢
crystals}-bBoth kinds of pure mode direction can also occur
fér pfoﬁagation éxes in which the accidental combination of
directioﬁlgosinesAﬁi, n,, N, and numerical values of the
eiastic constants renders either a longitudinal or transverse
mode puré, Those directions, determined by the values of the

elastic constants and not the symmetry alone, in which pure
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longitudinal waves can be propagated are known as

"accidental pure mode axes ".

3.2.3 Pure modes in SOlldS of tetragonal symmetAx

~In a TII tetragonal material the only pure mode

directlon whose p051t10n does not depend on the values of

the elastic moduli is that along the. fourfold symmetry axis.

For propagation in this directlon the Christoffel equations

(3.55) reduce to

bvz) u

(Cyq 7 01

. -
(C44 pv) u02

. oy
(C33 - pv') u

and the determlnantal equatlon has roots C44, C44

O3

(3.57)

and C33.

2
For pv equal to C33, then as in general C33 # C44, uol and

u must be zero and u_- equal to one;
02, : : 03

displacement in the [001] direction and is:

the mode has particle

-pure longitudinal;,

and the [001] direction is a pure mode axis of the first kind.

The corresponding'pure shear modes are degenerate, each with

velocitles ‘equal to (C44/p)%

Dlrectlons of propagatlon in the (OOl) plane, the

Laue symmetry mirror plane of a TII tetragonal materlal, are

in general semi-pure mode directions.

With the direction .

' cosine n, e qual to O for these propagation directions, the

determlnant of the Christoffel coefficients reduces to

L2 ,
Lll pVv . le
2
L) Lyy eV
0 0

=0

(3.58)
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where for propagation at an angle ¢ measured from flOO]

towards LOlO]

2 . 2 . .

Lll = Cll_cos ¢ + C66 sin” ¢ + 2C16 sin}pcos ¢
L =C "cosz + C in ¢ - ;2C i

22 66 ) 11 Sin ¢ 16 sin ¢ cos ¢

: _ 4 _ , (3.59)
L33 = Cyy
Lyg=ly3 = O

| L;,, =C ”(cosz¢ - sin2 ) + «C + C )'si
¢ 12 ¥ Cgg) Sin ¢ COS ¢

12 16

For all direotions in this plane the root pv2 = C44 cor-
responds to a pure shear mode with particle motion in the

[00i] direction. The other two modes with velocities given
by

2 . .1 - ' 27" | |
pv - = (Lll + L22) t Bpll ) + 4 le ]‘ }3.60).

are quasi-iongitudinal and quasi-shear respectively. It
follows that_the sum of the squares of the velocities of these
modes iS»constant'for all directions in the (00l) plane and

. equal to

(€1 *+ C66)/p | | (3.61)

This rule forns a useful cross-eheck on practical velocity

: measurements. ' y

| - The directions [lOOj and [110] ar_e' not axes of
symmetry in the TII solids, and the longitudinal modes
propagated in these directions are not pure. The only pure
modes of the first kind which occur in the (00l1) plane are
accidental pure modes whose positions depend on the numerical

values of the elastic constantsand therefore may be different
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qu different sdheelite'étructure materiais. Brugger (1965)
has deSigﬁated_these.acCidental pure mode airec£ions at
aﬁgles ¢Kband ¢Y5méasured frém [100] towards [010), « and y
respectiVely and given expreSSibns by which their positions
cén»be”calculated when the values of the elastic moduli are
Abkﬁdwh. ‘TheAﬁwo diréctidns are>n/4 apart, aﬁd‘a similar pair
of dirécfions'océur in eééh quadrant. Accidental pure modes,
designated ﬁ and B by Brugger (1965) alQO'oégur outside the
(Odl) pléne*-in planeé which contain the fourfold and the
k or vy axesf;espect;vely —-as;shown in Figu%e (3.5). All
‘propagatién di:ecti6ns in these élanes a:e_éemi-pure mode
akes'(Chang 1968) . | ‘
In the higher symmetry TI Laue group of tetragohal
solids which have mirror planes perpendiéular to the <100>
-and <1ll0>directions fhe‘Christoffel poeffidiénts are
 Simplified'because C16 is zero andlﬁédes propagated in the
<160> and.éllo> directions are pure. Theié are no accidental
pure modes in thé (001) plane so effeqtiVélyfby virtue of
the TI éxmmefry thé angles ¢K'and ¢Y are gqual to 0®and 45°
respectiveiy (see. Figure 3.5b). . The 7 ahd‘s accidental
pure mode akes then lie in the {100} and {liO} planes, but
| are not symmetry axes themselves. The existence of the =
accidental pure mode axis has been demonstrated for the TI
‘symmetry material InBi. It‘was shown (Akgéz, Farley and
Saunders 1973) that for propagation in the'semi—pﬁre mode
directions in the (100) plane, the deviatiéﬁ'of the particle
disﬁlacement vector of the quasi-longitudinal wave from the

o]

pr0pagation'vectbr becomes zero for ¢ = 53.5  (measured

from [001] towards [100]) in InBi.
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3.2.4 Direction of energy flux associated with elastic

waves

In an ahisotropic medium the éireétion in which
energy is propagated by a plane wave is not necessarily
parallel to the propagation vector. Thié deviation 6f the
energy flux vector =—the acoustic Poynting vector — from the
| normal to the plane wavefronts is boﬁh interesting theoretically
and of importance in experimental work‘aﬁd in practiéal
- devices. |

According to Huygen's principie-a plane wave can
bé considered té be formed as the ehvelope of secondary fronts
emanating from a pianar array of point séurqes. In an isotropic
médium the secondary froﬁts are spherical but in an elastically
anisbtrbpic medium the orientation dependence of the phase
veloﬁities_leadS'to non4§pherical secéndary wavefronts, whose
',shape_is determined by fhe shape of thevwévevsurface. This
is one éf the three characteristic surfaces —the others
»being'the velocity and ﬁhe slowness (indéx) surfaces-—-uéed
to repiesent elastic wave propagation~in‘three dimenéions.

.The inter-relationships between the three surfaces are
discussed-by.Musgrave (1970). Each sﬁrface,has three sheets
which ééirespond to the quasi:iongitﬁAinal and the two quasi-
transvefse modes for all,possiblg directions of propagation
vector. | | :

The phas¢<Velocity surface is obtained as tﬁé locus
of~threé,vectors’drawn‘parallél to the'propaéation vecfor and
,propbrtional in lengthAto the phase vélocities of the three
modes. . Cross-sections‘of'the phase velocity surface of

' CaWO, and other scheelites are given in later chaptefs. The

4
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relatioﬁship between the velocity surface and the slowness
surfaée is a simple one; the three vectors are drawn with
lengthS'inversely proportional to the4velbcity to obtain the
slowness surface.. Geometrically the wave surface is the
'envelope' of the velociﬁy surface, the 'polar reciprocal'
of the slowness surface. Its shape maj be constructed from

the 510wness surface by the following prbgedure:

(1) + for a point on the slowness sﬁrfacé find the
corréspdnding pedal point — the point op.the tangential
plane'whére the normal passes through the origin.
(1i) 14 the reciprocal of the slowness at the pedal point
gives the point on the wave surface cofréspondihg to the
origihéi chosen point.
(iii) ‘1the procedure is'repeated for all other points on
the sloﬁness surface. The method is iliﬁstrated in
Figur¢l3.6;
This construction gives 6nly the shape of the wave surface
‘for aﬂ arbitrary radial scale; the radial scale for the
true‘Wave surface (defined as the locﬁsfof'points of equal
phase'éfter unit time following a disturbance which emanates
from-a'pbint source at £=O) is fqﬁnd by use of the appropriate .
‘multipliér (Musgrave 1970). |

' The direction of energy flux'oan plane wave can be
obtained eithe£ by construction from theH510wness br the~
- wave surfaces, 'or By calculation. Thé ﬁormal tq_theéslpwnegs o
surface for_avérépagation vectoﬁ (n) COincides Qith-the' |
eneréy flux directidn for .a mode with this propagation
,vectof (see-Fng 3.7a). From the wave surface the energy
flux_direction is readily obtained; _the'particular element

of a wave surface which is normal to the propagation vector
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of a plane wave forms the advanCing‘front of that wave after
unit'time (see Fig. 3.7b). The constructions show that the
energy flux must always deviate from the propagation vector
of a mode except when the propagation vector is a radius
Vector of the three characteristic surfaces.

2 The direction of the energy flux may be calculated
using the expression given by Love (1944); the 1th
component (P g) of the energy flux of a mode (g) is given

by the negative scalar product of the components of the

stress tensor (oij) with the particle displacement velocity

of the mode (ug )
. Oj

g _ _ .g o
pS 0yy + 03 (3.62)

“For a plane wave, with propagation vector n, using relations

(3. 9), (3.10) and (3.51) and taking the time average gives

components
pJ - [123913 ]c 299 0% (121,2,3) (3.63)
o ogd  47i3kl T3 Tk 4 e '

.where pg is the scalar amplitude of the mode,’w.is the
angular frequency, dJ dg are the direction cosines of the
particle displacement,'and w9 is the phase Veloc1ty The
direction of ‘the energy flux is thus.independent of the
wave . frequency and amplitude !

By means of this equation (3. 63) the direction of
energy flow can be found for any mode in any propagation
direction Only for cases when the.propagation vector
coincides w1th the radius vector of the wave surface is

the deviation of the energy flux zero. Waterman (1959) has’
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shown that_this must always be true'for.é'pure iongitudinal
mode; For a pure transverse wave he showed that the energy
fluxvﬁust be parallel to the propagatidn‘direction if this
direction is a twofold, fourfold or sixfold axis of

' rotational symmetry or is normél to a plane of reflection
symmetfy. Other conditions sufficientifqr the deviation

of thejenergy flﬁx to be‘zero (“normal propagation") have

been found by Levelut (1969).

3.2.5' Energy flux direction in tetragonal solids

. In a medium of TII tetragonal symmetry the
expressibns for the components of the ‘energy flux may be

Written,out in- full as

2 2 +C,,d 2)

P.. = A {(C +20..d4.d. + C..d

1 e 169192 * Ceeda T Cag%3 ) M1
+ (c a2 +c 4d.d +cCodd, -c.d2)n (3.64
1691 * Ceed192 * C12%1% T C16%2 ) M2 .
+ (C,,dydy * € ydds) ny)
. : ) ] - ,. B 2
P, = A {(Cjgd) +Cpyd1d, + Cgedidy = Cygdy ) 1y
2 ' 2.2 2 ’
b (Cgedy” - 2C16d1d, + €1y = CyudyT) my (365
+ (C44d2d3 + 013d2d3),n3}
Py = A (38,45 + Cpudydy) oy
+ (€ 4d5d, + Cypdydy) my . (3.66

2 2 2 '
+(C44d1 + C44d2 + C33d3 ) n3}

where A = (pgw)?/ﬁvg.
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From these expressions it can:be seen that there
is no.deviation of energy flux for propagation in the
[OOl] pure mode direction. For directions in the (001)
plane, the component P3 is always zero and the energy flux
is'confined to the mirror plane, though for the quasi-
lonéitudinal and quasi-shear modes fﬁincludino those in'
the <100> and_<llO> directions-—-itndeViates from the
propagation vector. For the pure shear mode which can be
excited for all propagation directions in the mirror plane
(as;described in Section 3.2.3) the energy flux path is

parallel to the propagation direction.

3.2.6 - Internal conical refraction,

One of the most 1nteresting and theoretically
1mportant consequences of the deviation of energy flux
from a wave normal is the phenomenon of 1nternal conical
_refraction. This arises for propagation along an acoustic
axis, if the energy fluxhof one or both of the transverse
'waues.deviates from the axis. For such a propagation
direction (which has equal transverse wave velocities) there
is an. infinite set of transverse polarisation directions for
the 51ngle wave normal, and each has a .corresponding energy
flux:direction. When the transverseuwave polarisation is
rotated about that of the longitudinal wave through an
,angle'of 180° the’direCtion of maximumuenergy flux?sweeps
around 360 to form a cone of internal refraction, whose
section denotes all the p01nts at which the wave surface

is tangential to the front of the wave. A c11cular cone

of internal refraction has been predicted and demonstrated
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for pure transverse waves with wave vectors along the [111]
directions'in cubic crystals (de Klerk‘and Musgrave 1955)
and along the [ 001] direction in trigonal crystals |
(Waterman 1959). . | -

In tetragonal crystals the phenomenon arises in
those directions for which the velocities of the two guasi-
transyerse modes are equal, and in general the resulting
¢cone of internal refraction will be elliptical in section
(Khatkeyich 1963). This was first predicted by Musgrave (1957)
for the acoustic axis in the (110) plane of a TI symmetry
tetragonal crystal For such an acoustic axis in a plane
of symmetry, or for one perpendicular to an axis of twofold
symmetry Khatkevich (1963) showed that one of the axes of the
ellipse must also lie-in the symmetry Plane, or in the plane
formed by the acoustic and the twofold~axes. In the case
of an acoustic axis perpendicular to the fourfold axis of
a tetragonal one of the transverse modes is pure and has
‘zero deviation of energy flux (see Section 3.2.5). As a
result’ the cone of refraction must include the acoustic
axis; it has an elliptical section w1th pr1nc1pal axes
parallel to the [001] direction, and in the (001) plane
respectively. For thlS particular acoustic axis the senses
ofArotation of guasi-transverse wave.polarisation and the
corresponding .energy rluxAvector aredthe same (Khathevich
1963); for the acoustic axes previously discussed the |

rotations have opposite senses.

3.2.7 3 Reflection of elastic waves from a solid—vacuum.

boundary

. Pulsed ultrasound experiments involve the reflection
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of a-pléne elastic wave normally incidenﬁ on a stress-free,
SOIid;vaéuum boundary. for polished specimens, the specimen
surface features will be of much smaller dimensions than
the élaStic wavelength and the surface may be regarded as
a plane boundary. |

In the case of an isotropic medium it has been
shown.tnat longitudinal.and shear Waves:normally incident
on sucn é boundary are wholly reflectéd with no loss or
mode conversion (Arenberg 1948). This_is also true for
-any afbitrary infinite plane wave normaiiy incident on the
plane bbundary of'an anisotropic solid (Waterman 1959). .In
such a_sblid the reflection law for theiénergy flux is
- inpoftnntz the energy flux is réflectednback on itself
fromna bnundary which is normal to thefnropagation'vector
of the'wave. This law of reflection means that  in a pulsed
- ultrasound experiment the signal is ref;écted back to the .
sourne’without loss, and single-ended pulse echo operation

is possible.

3.3 -  DETERMINATION OF ELASTIC CONSTANTS OF CRYSTALLINE

-SOLIDS BY WAVE: VELOCITY MEASUREMENTS

3.3:1. Introduction

: The elastic constants of a crystalllne solid can
.be determlned by measuring ‘the wave velocitles of a number
of different modes. Equations relating the wave velocitieS"
to the elastic constants are obtained by finding the eigen-
values”of the Christoffel equations (3;53) for the appro-

priate propagation directions. The determinantal
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equatiOn (3.56) is cubic in pV2. For certain specific
directions (parallel or normal to axeszof symmetry, parallel
or normal to planes of mirror symmetry)_the cubic equation
decomposes to give simple analytical expressions for the
velocities of the three modes that can.propagate. In
other,,arbitrary directions expressions for the sum of
roots and the sum of the squares of the roots. can be
Aobtained by the theory of equations, or if the elastic
constants are known (or guessed) the cubic equation can
be solved numerically.

"' To determine the elastic constants, the number of
E velocities to be measured and the choice of directions
depends upon the symmetry of the material " For a cubic
crystal the three elastic constants can be found directly
from the velocities of the three pure modes which can be
.propagated in the [110] ‘direction. These velocities are

related to the elastic constants by the expressions

. o L
v = ((C,, + Cya + 2C,,)/p)
%1101 11 7 712 . 44
S om
v = (C,./0)° - - (3.67)
10011 44
- -
v =  ((C - C,,)/2p)
$1110] 11 12"‘

1Forilower symmetry solids the elastic'constants cannot
" wholly be determlned by measuring in’ pure mode directions
'alone. Hexagonal, rhombohedral and tetragonal (TI) solids
each have one elastic constant which can only be found by
- measuring the velocity of at least one impure mode In
TII tetragonals only two of the seven elastic constants

can be found by measuring pure mode ve1001ties



- 59 -

Usually the propagation directions for which
measurements are made are chosen because they hq&e simple
direction cosines (e.g. 1, 0, 0; 2_%,’2-%, 0; l5/2, 1/2, 0,
and are directions for which the Christoffel determinant
decomPOSes Comparatively simple relationshlps between
the elastic constants and velocities then hold. Such a
choice is necessary if an analytical solution for the
elastic constants is required. From a practical point of
view however, the directions preferred are those which
make'economical use of small single crystals or for which
modes'are nearly pure and the energy fluxb‘deviation a
minimum. o

“In the next two sections the different choices of
measurement directions and methods of‘solhtion which have
been epplied to TII tetragonal crystais'are described. A
novei method by which the elastic constants of a material
of any'symmetry can be found from velocity measurements in
a. number of known, but completely arbitrary directions is

discussed.

3.3.2 Elastic constants of tetragonal (TII) crystals.

The expressions relating the velocities of several

1

different modes to the elastic constants for a TII crystal
are given in Table‘3.2. Only the elastic constants C33 and

Cyq Can be obtained from single veloc1ty measurements 1n:

pure mode directions. For directions’parallel and normal
to the fourfold axis there are analytical expre551ons for

each velocity (see Table 3.2) but for the propagatlon
)

direction with CQsines.O, ' 2—% only expressions for the
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sums of the roots and squares of the roots can be written
down. :Alton and Barlow (1967) used sﬁqh expressions for
-six different propagation directions to obtain by cross-
substitution a quartic equation in the elastic constant -
Cll'
this;coﬁstant and substitution then gaVe the corresponding

Numerical solution yielded four possible values for

values of the other elastic constants. ‘The choice of the
cbrréct'set from the four is discussed in Section 7.1.
Chung and Li (1971b) héve given details of an analytical’
sblution method for the seven elastic.constants. They have
found»eﬁpressions for each constant in_té;ms of seventeen
elasti¢ wave velocities-;¥those of modes propagated in the '
directioﬁs (cosines) 0,0;l; 1,0,0; 2-5;2_%0; 0,2-%;2-%;
1/2,3%/2,0 (as listed in Table 3.2) plus the direction 3%/2,
1/2,0. Both theée'methods fequire the meésurement of a.
pérticular set of veloCities; | .

. An alternative method enmploying computing techniques'
'has been used in the ?reéenﬁ work. Thefmgthod depends upon
choosing a set of values for the elastic:constants and
adjustiﬁg.these‘values until the magnitudes of the parameters
'Zi célcﬁlated from fhem (by the équations:of Table 3.2) most
“nearly agree with the valﬁes obtained from the measurements.

This is accomp;ished by computer minimisation of a parameter

SUMSQ which is%defined'by the expression

N rcalculated Zil ' 2

Sumse - = 2 measured  Z. - 1.0 (3.68)
i=1

The basis of this minimisation procedure was discussed by

Jeavons and Saunders (1969}. The computer programme used

here is listed in Appendix 1, and its mode of operation
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is outlined below

An arbitrary ‘set of elastic constants (INITIAL
SOLN) is guessed (the use of realistic values increases
the speed of operation) and read into the computer Each
constant in turn is adjusted by increments, referred to in
" the programme as:STEP, until SUMSQ is_a‘minimum. The size
of%sTﬁPﬂis then reduced and the procedure repeated. This
is continued either\for a predeterminedinumber of cycles
(usually 501 here), or until SUMSQ becomes equal to a
prefined;value (SMALL).' The procedure is completed by
printing out the final values of thetelastic constants
(FINAL'SOLN), the corresponding'values of zi for comparison
with the measured values and the finalfvalue of SUMSQ.
In the:absence of experimental error:the4fina1 value of
SUMSQ would be zero, eacnvcalculatedlzi'would then equal
:each measured Zy and a perfect solution"forthe.cij would
be obtained. In the presence of experimental error SUMSQ/N
is a-measure‘of the quality of the overall fit. Local |
minima,are avoided by starting with a large value of STEP
(= O'lycij)' and repeating the search using different

starting values of the elastic constants.

3.3.3. Novel method for determination of elastic constants

from measurements in arbitrary directions

~In many- cases, usually because_of the limitations
of_single crystal size it may not be.possible to measure
the‘velocities of some of the modes required for sclutions
of the types employed by Alton and Barlow (1967) or Chung

and Li (1971b). 1Indeed in the case of Cawo4 the least
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squares fitting procedure described above was developed
beCanse the velocities of certain modes could not at first
be measured. By an extension of the Ieest squares procedure,
a powerful method is available for calCulation of elastic
constants from wave velocity data obtained from a set of
known propagation directions which are chosen for their

'experimental convenience.

t

‘The method uses an IBM Scientific-Subroutine EIGEN
which celculates the eigenvalues and eiQenvectors of a
matrix. The subroutine can be used to calculate, from the
.Christoffel coefficients) the velocitiesiof the three
eiestic waves which can be prOpagatedvin's particular
direction. In the first place the_Christoffel coefficients
wouid'be=obtained»from a‘gnessed set.of'elastic constants
by the'equations

Lik = - Cijkl nj nl- (i,k = 11213) (3-69)

~ for the.directions (n) in which velocities had been measured.
The guesses would then be adjusted to give agreement
between the velocities calculated by EIQEN and those measured.
Either«the SUMsQ fitting procedure or a more powerful
minimisation technique could be used. |

This method should be applicable to solids of any
:Isymmetty. Alweys tbe number of velocities measured in -
»'arbitrary directions would have at least to equal but
preferably exceed, the number of independent elastic con-.
stants of the material. The method may prove invaluable
when.the size of single‘crystal specimens governs the choice
of ptopagation directions. When'ampie material is available,

it provides a means of reducing the erfors which arise owing
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to.misorientation of specimens. 1In caéés'where the
computer search procedure reveals mofe‘than one solution
set which predicts the measured velodiﬁies correctly, then
thevchoiée between.the sets may be made by reference to
the Born stability criteria or by compérison of the cal-
Culated eigenvectors with the transduéér polarisations
Afequiredito gxcite particular modes (sée'for example

Section. 6.1.2).




TABLE 3.1

Laue groups and constituitiye point groups

éroups Point Groups N netante
Triclinic N 1, T o a1
Monoclinic M ‘ 2, m, 2/m' ‘ 13
orthorhombic O mm, 222, mam 9
Tetraéoﬁal TII 4, 4, 4/m . 7
TI 4mm, 42m, 42, A/mmm 6
Trigonal. RII -3, 3 ' : 7
| RI 3m, 3m, 32 :*' 6
Hexaéqnal "HII 6, 6, 6/m B .. 5
o HI 622, 6mm, 6m2, 6/m 2/m 2/m 5
Cubic CII 23, 2/m»3 >_: 3
cI . 432, T3m, 4/m 3.2/m 3

-Isotrqpic I ' 2
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' FIGURE 3.1: The forces on the faces of a unit cube

in an homogenously strained bedy

;:;+ Ox =

x; + 4 + AT + A

(a)

(8)

FIGURE 3.2: (a) Initial position of a line element Axi

(b) Line glement after transla

tion rotation and
deformation

f »a‘,‘:

FIGURE 3.3:
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{a) Simple shear deformation_of-cﬁbe face to
rhombus by x23 invelving strain_ezj and ro;ation “23

(b) Pure shear deformation of cube face to rhombus by c23



&

£ia

+Y

| o +X |
(a) o 15 I (c)

FIGURE 3.4: Shear strain resulting from a compressive stress

01; if 516 is positive (b) or negative (c).

FIGURE 3.5: Positions of pure mode axes in tetragonal crystals
of Laue groups TII and TI (after Brugger 1965)



Slowness Surface

n: &« Proéagation Vector

N
|

\

83 is the~pedal'point corresponding to the point Sj

> + X

on the.slowness surface. W, is then the point on the

, i R
wave surface corresponding to the propagation vector 21.
+Y
J

>+ X

FIGURE 3.,6: Construction of the wave surface from the
slowness surface.
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FIGURE 3.7a: P- is the‘energy flux direction for the mode with .

propagation vector n,. (The slowness surface Sv

3

" is that of Srnoo43

FIGURE 3.7b: The plane normal to the propagation direction n
is tangential to the wave surface at the >l
point W,. PJ is the energy flux direction
"of the “mode with direction:n;. (The wave surface
is that of SrMoO4). -l
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CHAPTER FOUR

. ULTRASONIC STUDY OF SOLIDS

".Ultrasonic methods are in widespread use for the
study of the elastic and anelastic properties of solids,
liquid and gases. For solids pulse echo methods are par-
ticularly important, and are employed both in the study
‘of fundamental physical properties of materials and in
non-destructive testing Pulse techniques are particularly
valuable for measurements at frequenc1es in the range 5 MHz
to 50 GHz. At such frequencies plane bulk waves may be
'generated in samples of centimetre dimensions In a typical
solid (with longitudinal ‘sound velocity equal to say

5x105' ) these frequencies correspond to wavelengths

of io'; to 10-5 cm and are many times greater'than inter-
atomic distances (<10f7 cm). The solid can be considered

to behave as. an elastic continuum and.the classical |
description (Chapter 3) of the propagation of plane waves:
in an elastically anisotropic medium is appropriate In
this chapter the principles:of~the_pulsed ultrasonic methods
used in the present work are described,. beginning in'
Section 4.1 with the simple pulse echo method and continuing
in Section 452»with pulse superposition, a modification of
the-pulse echo method used for more precise velocity measure-
ments. The interpretation of results and the factors which
can cause errors in the measurement of‘Velocity and atten-

uation are discussed in Section 4.3. ‘Details of equipment

and its operation are given in Chapter 5.
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4.1 " PULSE ECHO TECHNIQUES

4'111’ " Basis of the pulse echo method -

| In essence.the pulse echo methed is simple; it
invb;veé excitinq a pﬁlse of ultrasound in a sample with
parallel end-faces and.pbserving the:multiple rgflections
which:Qccur. In practice the precise measurement of ultra-
sound velocity and attenuation is not so simple and can
_invol§e“many subtleties of techniquefénd interpretation.

| A.ﬁacket of high frequency-étfess waves of chosen
polapisation may be introduced into the sample by use of a
suitable tfansducer (séé~Section 5.3;3f which is closely
coupled to one of the end—faces of the specimen. A single
Atraﬁsducer can be used as both the transhitter and receivér
of uitrasound'pulses (single-ended pulsé echo method) or
separate transmitting and receiving tfansduéers can be
usea (double-ended method). A circular-élate'tfansducer
greater than about 0.5 cm in diametef behaves as a near-
ideal'piston source at megahertz frequencies (>10MHz) and
generétes waves which are very nearlyvélane'and have a
wave-normal perpendicular to‘the end-faces of the specimen
(and the.plane of the transducer disc); The transduce; may
be activated by a burst of rf (rf pulse), or by a sharp
rectangular pﬁlse.{ Either'piezoelectric (e.g. quartz
Crysﬁal sliceé attached to the specimen with a suitable
acoustié bond, or evaporated thin films of CdS or znO) or
'magﬁetoStrictive (e.g. Ni film) transducers cén be employed.
In the case of a resonant_transducef an rf pulse is funed

to either the resonant frequency or an odd harmonic of

this.
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The echo train resulting from a pulse of ultra-
sound may be observed.hy exciting the‘transducer with.rf
pulses:short in duration compared to the transit time in
the sample. The repetition rate of the rf pulses is kept
low-enough to ensure that the echoes'arising from each
pulse d1e away completely (due to 1osses in the sample)
before the next is exc1ted. Typlcally for a sample 1 cm
in length, a pulse length of ~1 usec and a repetition rate
of lkHz are allowed.i Each pulse is reflected back on its
own path almost w1thout loss when it is. 1nc1dent on the
sample—vacuum (or sample-air) interface at the end of the
sample (see Section 3.2). When the flrst echo arrlves
back. at the transducer, a small amountlof the ultrasound
energ§ is conVerted back into an electrical signal, the
rest is reflected at the acoustic impedance mismatch and
traverses the sample,agaln. The process repeats many times
to give.a train of echoes which are'amplified and displayed
(often in a rectified and detected form) on an oscilloscope
trlggered at the same time as the pulsed rf generator. A
block diagram of a typical system is given in Figure 5.16
and details of the equipment used here are given in |

Chapter 5.

i

4.1.2 Velocity and attenuation

' An advantage of pulsed ultrasonic techniques is

that the velocity and attenuation of a mode can be measured-

51multaneously. The mode velocity 1s found from the
sample length (&) and the ultrasound transit time (t), the
time for one complete round trip, which can be obtained by

using a calibrated delay to move a time marker into
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coincidence with successive echoes. Corrections, which
may neédAto be applied to the measurement, are discussed
in Section 4.3.

The decay.of the amplitude of:successive echoes
of aitrain is a measure of the ultrasbuﬂd losses dué to
absorpfion and séattering in the materiél-—-so long as
these lbsses are substanﬁially greater'than those due to
refléctipn at the transducer end of the:sample and other
extranéous effects (Section 4;3 ). .Absgrption and
scattering processes each éive-an inﬁenéity loss (dI) per
-pnit iehgth (dx) which is proportional to the intensity
(Tx)) of the beam, and thus |

dI(x) c« I(x) dx

o 4 | | o
so that I(x) = Io e ¢ XA. (4.1)
where a1'is a constant. - The "attenuation” is generally

defined by the relations

1 u :
: a -1 p : -1
e = == = e 1ln nepers cm (4.2)
2 - (u )
np/cm (xp xq). L |
“aB/en T - TREg %10 -Ruq dB om (4.3)

in units which measure respectively the,decéy of ultra-
sound amplitude (u) and of intensity (I) with distance (x).

In units of dB us-l'the attenuation i$ given by

adB/uS = TE;:E;T loglo uq d? us (4.4)

If the receiver is accurately linear, then the echo heights
will be proportional to the ultrasound wave amplitude.
The attenuation can be measured directly by fitting a

calibrated exponential curve to the eché train.
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4.1.3 Precision methods for measuring ultrasound velocity

-Although in many cases,useful, valid measurements

. )
of velocity can be made directly from'thé echo train in the
vway deédribed above, more sensitive techniques are needed

if small changes in velocity are to be observed. Many such
techniqdes have been reported. Pulse methods fof precision
veloéity measurement include phase comparison (McSkimin'(1957),
Williams‘and Lamb (1958)), sing-around kFOrgécs (1960),
Drabble and Brammer (1967)), pulse superposition (McSkimin
1961), pp;se echo overlap (May (1958),'Papadakis (1967)) and

a digiﬁéi éveraging technique (Lacy and Daniel (1972)).
Highly sensitive continuous wave methods including the
sampled?CW technique, are élso us;d. These CW techniques

have recently been reviewed by Bolef'ahd Miller (1971).

When the ultrasound velociﬁieé fo-be‘studied include
those of impure modes With unknown poiarisation and energy
flux difections, pulse methods are advantageous. They allow
a coptintous and'direct observatiOn of-the qguality of the
echo'frain, and it is possible to check that only the
requiréd‘mode is being excited and that spurious reflections
are'being avoided. 1In the present work oﬁ CaW0,, the pulse

superposition method has been used.

t

4.2 - PULSE SUPERPOSITION

4.2.1 '-Superpdsition method

‘The pulse superposition method was introduced by -
McSkimin in 1961 and since then has found widespread use
in ultrasonic studies of solids, partiéUla;ly in the measure-

ment of the changes of ultrasound velocities which accompany
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changes’of environment (temperature, pressure, magnetic
field etc.). The method is a modification of the simple
pulse‘echo technique described above (Section (4.1.1)).

In the“basic form (used here) sensitivities of 1 part in
lO5 are pOSsible on low attenuation materlals, and with

, modifications (McSkimin and Andreatch (1967), Holder (1970))
sensitivities of 1 part in 101° are c;aimed.

'_In pulse superposition, transit times are measured by
increaSing the repetition rate of the rf pulses applied to
the uitresonic transducer until the repetition period T
(equai'to the reciprocal of pulse repetition frequency)
is comparable to a multiple (p=1,2,3...) of the transit
time of ultrasound in the sample. Echoes of increasing
order‘from successiue rf pulses will tnen tend to interfere,
and, when the pulse repetitlon frequency is crltlcally
adjusted so that echoes of successive orders arrive at the
-transduCLr in phase, a maximum will occur in the detected

!

signal} ‘The echoes from many pulses are_simultaneously
;vsuperposed-—-the pulse superposition is.actually a super-
position'of.elastic waves in the specimen——-and‘the
reciprocel of the pulse repetition frequency gives the
wave transit time and ‘the phase velocity. The situation
isvillustrated in Figure 4.la for a cése«with repetition
period equal to the transit time and in figure 4.1b for
N the repetitlon period equal to three tlmes the transit
tlme.< In practice (see Section 5.3. 2) the superposition
is found by omitting several pulses from the 1nput train
and observing the summation of echoes (in detected form)

from previous input pulses. The pulse repetition frequency
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’is'critically adjusted to make the amplitude of the train

.of superposed echoes a maximum.

4.2.29A chle—to-cycle matchlng
At superp051tlon the pulse repetltlon perlod (T)
i‘is'equal to the round trip phase delay (the apparent travel

time) and can be represented by an equation:

T = p§ - py/360f + n/f | ' (4.5)

!

jwnere,r'is the ultrasound frequency, oévrepresents the time
delay in the specimen for p round trips; py/360f is a delay
arlslng from the ohase change on reflectlon at the trans-
4ducer coupling interface and n/f is a term which takes
'account of the fact that a series of superp051t10n maxima
'can be’obtalned. The maxima are separated by integer
multlples of the rf ultrasound period, and the parameter n
represents the number of cycles of mlsmatch To obtain an
accurate measurement of phase_veloc1ty, correct in-phase
cycle-to-cycle matchlng is required, and a correction for

the phase change due to the transduCLr coupling is needed.

(a) . McSkimin AT criterion

| A.method for determining-the'correct cycle-to-cycle
matching (n=0 condition) in pulse'superposition experiments
has been described by McSkimin (1961) and McSkimin and
Andreatch (1965), and is used'also in oulse echo overlap
measurements (Papadakis 1967, l969b).5:The method is
applicable when resonant transducers are used to generate
the ultrasound | |

Transmission llne analysis of the specimen-bond-

transducer system (see Williams and Lamb (1958), McSkimin (1961))
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in»terms of the respective specific acoustic impedances
(Zé, l' 22 in mechanical ohms cm-z) yields an expression
for the phase change (¢) introduced on reflection of a wave

at the spec1men—bond-transducer 1nterface.
6 = -1 -2 1:an-l (Z,/73 ' (4.6
' R ! J?s)' . +6)

On reflection:at the unbounded end of the specimen in a
single-énded pulse echo- experiment the phase change is 7 ,

so that -the net phase shift (v) between successive echoes is

i

D ST : |
C y = 2 tan © (24/3 Zg). (4.7)

The 1mpedance Zd terminates the acousticftransmissioh line

(see Figure 4.2) and is glven by the expre551on
Zl/Z-2 tan B, 12 + tan Bzzz

171 A L
- (4.8)
1 Zl/Z2 tan B.%, tan Blll

2 = j 2

272

" in terms of the bond and transducer thlcknesses Rl and 22
. 4

and the phase shift constants Bl (= 2nf/(sound velocity in

bond» and B, (= 2nf/(sound velocity inAtransducer)). Dissi-

2
'patlon is neglected and Z ' Zl and 22 aré taken as being
real and equal to Pg Vg plvl and 02 z‘respectively For a
bonding material for which the 1mpedance is known, d and vy
can be calculated. The variation of y with bond thickness
and ultrasound frequency is plotted for specimens of various
acoustic impedances in Figures 4.3a and 4.3b (after
v~McSk1min and Andreatch (1962)) - These curves were drawn for
x-cut and y-cut quartz trans&nerswmth 'Dow resin 276-V9
bonds-(for'mechanical impedancesfsee Table 5.4 ). From

these flgures it is- clear that y is only zero at the

transoucer resonant frequency if the bond is negllglbly thin.
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If.the bond has a finite thicknéss, thén‘y will be zero
at a frequency away from resonance. |
It is theﬂ possible to calculate, using equation

4.5,:how the apparent travel time will change witﬁ a
ehange of ultrasound frequency, for différent values of
the mismatch parameter n. The McSkimin,ériterion depends
on a comparison between the calculated and obse?ved changes
(AT)-in the apparent travel time (T)_with frequency for
éach of‘the different superposition maxima. In ﬁhis way
‘the n=0 condition should be identifiable.

. Usually the change in apparentjtravel time is
ﬁeasufed for a decrease of lO%-in the ﬁltrasound frequency

from the transducer resonant frequency. Then

: PY y PY
0.9f . f
1 R 1 R
AT =T - T = —— (n - s ) = (n - .__.—) (4_9)
O.9fR . fR Q.9fR 360 ') fR 3607

If the bond is very thin (Blzlfso), at the resonant
frequency of the transducer (when B2£é=4r) the expression

(4.8) for Zd reduces to

g = jzl tan B;%; * J Z;B;2, - (4.10)
_ S . . |
and (see equation 4.7) s * 0. Under such conditions
. R
AT is given by
R pYb.9£R)
AT = _?; . 0.1;2 n - 30 (4.11)

From thisﬁexpression (4;11) lower boundsion'AT may be
' calq@lated (a finite thickness of bond'aads a small positive
increment to AT) for the maxima corresponding to different

values of n, and the correct maximum (n=0) identified.
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-AlternatiVely by using the full expression (4.9)
values of AT can be calculated as a function ofpbond
thiCkness. Comparison with the measured values of AT will
then yield the correct cycle-to-cycle matching, and may
give an'estimate of the bond. thickness. In Figures 4.4a
and 4.4b,(after McSklmin 1961) . the variation of AT with
bondAthickness is shown for correct cycle—to-cycle
matcnlng‘(n=0) of alternate echoes (p¥2); and different
valuesAof specimen impedance.’ Since (see equation (4.9))
AT is‘iust a linear.function of n and p;Asimilar curves

can easily be drawn:for other superposition conditions.

' - ‘When proper cyclic matching has been cbtained (n=0), "

| the measured transit iime can be corrected for the effect
of the phase change on reflection at the  transducer end
" of the specimen. Either the estimate ofibond thickness
(obtained as discussed above).ls used to calculate the -
correction (py/360f), or the'effect is estimated directly
by observing the change in measured transit time which |
results from bonding a "dummy“ transaucer to the end-face
of the specimen  opposite the transmit/receive transducer.

Although the McSkimin AT method detailed here is

accepted as the primary method for determining the correct .

in—phaSeﬁmatchlng in both pulse superposition and pulse
~.echo overlap.ekperiments, it is not without difficulties_
andpmay fail 1if the bond is 1nsuff101ently thin or |
_excesslvely lossy. Excessave bond - loss is part1cularly a
"problem with Nonaq stopcock grease bonds (H.J. McSkimin,

private commun1Catlon) The method also'breaks-down if

multlmode guided wave . propagation occurs (Papadakis 1969),
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and similar interference effects causedrby beam spreading,
non—parallelism or energy flux deviationiwould be expected
to render the method invalid.
(b) f'.:j Alternative methods

”,' Papadakis (1969) has suggested.a modification of
the pulse echo overlap technique.which can supplement-or
| replace the AT method for establishing proper cyclic
matching in situations where multimode guided wave propa-
gation occurs. Instead of using an rf hurst to excite
the Ultrasound in a:specimen, the transducer is actiuated
by a short rectangular video pulse and ‘an acoustic pulse
is produced in the medium as the transducer rings. By
»adjusting the repetition rate of the video pulses, visual
overlap of the first and secondlechoes;is obtained. The
repetition rate for proper-cyclic matching of echoes from
an rrdburSt is then the one found closest to that giving
theluideo pulse'overlap.‘ This method will also be applicahle
to pulse superposition and to finding the ‘correct in=0)
maximum in the presence of other interference effects
'beSides multimode guided wave propagation, but has not been

"used in the work reported here.

4 A third method of choosing the correct matching
condition depends upon the assumption that the medium is
not dispersive (group velocity equals phase velocity), and
' is applicable in samples with transit tinmes between 2 .and
.lO us. only at low megahertz frequencies (lO to 20 MHz)

‘At these frequencies a mismatch of one cycle of rf at
superposition will change the apparent‘transit time hy.

between O.l‘toAO.OS us. 'By using'an accurate time-marker
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method,the transit time of the echo train to be used in
pulse~superposition can be measured to within * 0.05 us

by measuring the time delay between‘the peaks of the detected
envelopes of successive echoes. The pulse repetition

| frequency is then‘increased to give superposition and the
correct maximum (n=0) is that for whfch the repetition
period is closest to the measured transit time. This
method is essentially that used for cyclic matching in a

~ new pulse echo technique using real time digital averaging,
reported by Lacy and Daniel (1972). These workers use

a computlng counter to measure the delay time between
chosen rf.cycles of two selected echoes. The correct
cycies are chosen by comparison of the;transit time

obtained with that measured between the detected envelopes

of the same echoes.

4.2.3 V.Measurement of temperature variation of transit times

1

Pulse superposition is particuiarly suited to
measurfng the variation of transit times with changes of
temperature; at all temperatures the effects of the
coupling between the transducer and specimen can be
minimised. This is pOssible because'the-pseudo-resonance
.atia maximum is obtained by varying'the'pulse repetition |
‘rate),and the ultrasound frequency canibe'tuned as’ |
required (cf resonance methods where the sample resonance
is found by tuning the ultrasound frequency) ‘This feature
of;pulse superposition is important because bond properties
often vary considerably with temperature. Estimation of
the phase change at the transducer—bond-specimen lnterface

would be tedious if repeated at many temperatures
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A In pulse superposition‘the effect of changes in
bond'properties on ratios of transit_time at different
tempeiatures is minimised by maintaining the ultrasound
frequency at the transducer resonant‘ffequency as this
changes with temperature. When the:transducer is operated
at'its resonant frequency, according to equation 4.10 the
impedance 24 is given by- | |

2g = 3 2 tan Bi&; .

Which for a thin bond reduces to

If B, is written as w/v and Zl as plvl ‘where Vi is the

1
sound velocity in the bond this becomes

Zg = Jwepty (4.13)

The terminating impedance thus takes the form of a mass
'loading and w1ll be effectiVLly 1ndependent of temperature.
Hence as long as the bond is thin and the transducer
malntalned‘at resonance, the phase angle for reflected
waveSh(}) will remain essentially. consﬁant.as temperature
is changed | |

The ratio of ultrasound phase veloc1t1es v/v at two
temperatures is inversely proportional to the ratlo:of“
transit‘timesf(éo/a), which from (4.5A)‘;s g;&en by

EQ ] To/p + yo/360fo - n/pfO
K T/p + v/360f - n/pf

(4.14)

SinceﬂY/360f and n/f are}usdally smail'compared to T/p

this expression.(4;6) may be written as
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R ' . |
So_ofy 4 tle_ o 2L, SCH W 4.15
5 - T 360F_T_ ~ 36OFT ' F,r, T ET| (4.15)

In the conditions described above,

PY,

360f T N 360fT (4.16)
oo

and so long as the same cycle"to-cycle matching is main-

tained throughout a temperature run (i.e; n, = n),
- To o . n ' ‘
CFT 2 T L (4.17)
oo :

. Then 6 /6 is equal to T /T to W1th1n a few parts in lO4
(1f n is a small integer) or. to w1th1n a few parts in 105

if the correct cycle-to-cycle maximum_(n=0) has been chosen.

4.3 '~ EXTRANEOUS FACTORS AFFECTING VELOCITY AND

- ATTENUATION

4.3.1 - The' diffraction field of the transducer

A finite area transducer does not behave as a
perfeCt piston pressure sourCe but has'an associated
'diffractlon field. Such a transducerfdoes'not generate a
perfectly parallel beam of plane waves but excites a slightly
.dlvergent beam whose pressure oroflle varies in .a complex
way across the face of the transducer and 1nto the spec1men
The beam dlvergence can cause gross errors, or even prevent
valid velocity and attenuatlon measurements if 1t causes'
_the ultrasound beam to 1mpinge on the ‘sidewalls (the
effect 1s additional to any energy flux ‘deviation wh1ch
~‘may occur). In an isotropic med ium the beam divergence
angle (8) is given by . o | |

| s = sin} (L.22 /D) . . (4.18)
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for-a'Circular disc transducer of diamerer D and a sound
wavelength A 1in the specimen. -In rhefcase of a small

transducer with a diameter of say 2 mm, generating 15 MHz
ultrasound waves in an isotropic medium w1th longitudinal

velocity equal to leO5 cm s_l, the divergence is about 5°

(see Figure 4.5).

: For anisotropic media the beam is not conical and
the full solution for arbitrary propagation directions is
complex (Kharusi and Farnell 1970). - However a comparatively -
simple nethod for estimating the angular beam width due
to diffraction spreading in anisotropic.media.has been
suggested by Liu and Green (1972). A'finite acoustic
source ‘is considered to have assoc1ated with it a finite
bundleﬂof wave vectors, each with its own energy flux
| direcpion parallel to'ﬁhe‘appropriate gradient vector of
the_slovneSS surface. Acoustic modesdassociated with large
Curvafures of the slovness surface are expected to
experience larger beam opreading effects than those which
occur in isotropic materials (which have spherical slowness
'surfaces), while modes associated wi;h small curvatures will
have a'smaller beam width. AIndeed:Liu'and Green (1975) have
- found an approximately linear: relationship between measured -

angular beam width and slowness surface curvature for-

',narbitrary propagation directions in NaCl quartz crystal

and fused quartz. Beam spreading w1ll be largest for
directions of propagation near the minima on the slowness :

surface, and least for directions of propagation near

maxima.
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Even when the beam divergenoe‘is not sufficient
to caﬁse the ultrasound beam to impinge on the sample
walis; diffraction can have a signifioant effect on
measurements Phase velocity is incfeased siightly
some dlspersion is 1ntroduced and the measured attenuation
'maysbe_increased appreciably,(Papadakis'1966).

(a)’AIQ Velocity measurements |

o The effect of diffraction on'measured velocity
hassbeen discussed empirically by McSkimin (1960, 1964) and
analysed for anisotropic materials by Papadakis (1966).
Papadak;s' analysis was limited to longitudinal waves
propagating along pure mode axes butlis;useful for assess-
menthof the effect of diffraction on pulse superposition
measurements. The phase advance (¢) for a pure longitudinal
wave from a circular piston source of radius a, computed
by Papadakis(1966) as a function of the distance from the
'souroe into an elastic half-space is shown in Figure 4.6
for a- sound wavelength L. For dlrLCtlonSAWlthln a few
',degrees of a pure mode axis the veloc1ty surface is
approx1nated in terms of an anisotropy paramtter (b) by

the expre851on

v(e) v, (1-be%) - (4.19)
where .v(8) is the velocity in a direction which makes an
angle‘e with ‘the pure mode direction‘for which the velocity
is Vo.n For all values of b (see Figure 4.6) the change in'
'relatlve phase shift from the source (S=0) to 1nf1n1ty

(S==) is 7/2 radians. With increasing anisotropy ¢ tends

to approach /2 more rapidly.
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To estimate the magnitude offthe effect of this
phase advance on measurements of phase velocity,:an iso-
tropioimedium can be considered. For’a:typical_sample, say
0.7 cm thick, with a longitudinal velooity of 5x10° cm sL,
the diffraction effect due to- two sizes*of transducer can
be estinated:

(i) Vtransducer radius = 0.5 cm, frequency = 18 MHz.

| The echoes will occur at very'small values of

s (=zl/a2); the twentieth echo corresponding to S:3.
Sucoe591ve echoes are thus separated by different times
which‘depend on the respective phase shifts. The true
'travel'time t between two echoes n and.m,is giyen by the
‘measured time t' plus an increment (At) to correct for

b

phasedadvance, given by
ot = [NS,,X - ey ] - _/aznf - (4.20)

The pulse superposition method sums echoes of all different
orders and many different phase advances. The superposition
‘_measurement of tran,it time thus gives.a weighted average

- of thepdiffraction effects,'the weighting being dependent’
on the ultrasound.attenuation. In a:situation where the
superposition of echoes_from say twenty rf.pulses is
obserued, then the‘error‘in the measureditransit time due.
to diffractiod can be taken as the average error per transit
over'twenty transits-—fgiving in'thislcase an error.of

about 0.01% in the measured transit time.

(ii) transducer radius = 1 mm, frequenoy = 15 MHz
The values of S corresponding to the lst, 2nd,

3rd ... echoes will be 4.66, 9.33, 13.99 ... etc. Thus,
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fromfFigure 4.6 , after the first echo, successive echoes
willlall have nearly the same relativelphase, and will be.
separated by the adtual transit time injthe sample. Measure-
mentfby pulse superposition will thusﬂgive the correct
yalue of the transit time.

| o For a material»such as. CaWd4.where the isotropy
assumption does not hold the error in case (1i) will be
unchanged, while in case (i) it could 1ncrease to a maximum
of approx1mately O. 03% with increasing anlsotropy Papadakis'
analy51s is limited to pure . longitudinal waves. If no
significant dependence of velocities on frequency or trans-
ducer size is observed for shear and impure modes, then
the errors in velocity may be assumed . to be of the same

order‘as those for longitudinal modes.

(b):;.,; Attenuation measurements

‘Diffraction field effects are evident in the
characteristic way in which the echo decay departs from a
true exponential. Usually two or three loss maxima can
be seen in the early part of the echo train, and the decay
tendS~gradually to a near~exponent1al form with 1ncrea31ng
delay (see Figure 4.7).

The diffraction loss has been. computed for.
isotropic specimens by Seki et al (1956).and for anisotropic
' solids by Papadakis (1966). The latte.r -wo-rk shows that,
’-associated with the phase shift due to diffraction, there
is a diffraction loss which can be plotted as a function
of normalised distance S (= zA/aZ) fromvthe source (see
Figuresa.sa and 4.8b);‘ The loss per_nnit travel time due

- to diffraction.(to be subtracted from the attenuation -
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measured by reference to echoes m.and'n) is readily

calculated using these Figures by means of the expression

v[dB(Sn) - dB(Sm)]
22 (n - m)

~aB st (4.21)

for a sample of length & (cm) and phase.velocity

v (cm us 1y,

4.3.21 -~ Non-parallelism of specimen faces

. In a pulse echo experiment a~burst of ultrasound
éenerated by a suitable ultrasonic transducer is reflected
back and forth between opposite parallel faces of a
specimen, and detected by the same or another transducer.

The transducer is a phase sensitive dev1ce H any phase
variatlons which occur over 1ts area lead to interference
and_are a source of error. Such phase variations can ‘arise
if the opposite faces of a sample areVnot perfectly parallel.
Then'tne ref}ected ultrasound wave meets'the transducer at

a smali‘angle and different surface eiements of the

transducer detect different phases of the wave. Errors in

- attenuatlon and veloc1ty measurement. can result and to

prevent these specimens must be prepared to high degrees
of parallellsm, especially for studles at higher megahertz
frequencies. | ‘ _' ;; |

| For a wedged sample with wedgefangle 8, it has been
'shown-(Truell et al 196§) that the echo_pattern will be
f:modulated by a factor | | -

2 Jl(zknéej
2knao

(4.22)

where Ji is a Bessel function, a is the'transducer radius,
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n the echo number and k = 2nf/v. The form of this function
is illustrated in Figure 4.9. Thus the echo train has nodes

(known as the lst, 2nd, ... zero points)_at z (= 2kans)

equal to 3.83, 7.01 ... and maxima at z equal to 5.1, 8.45...

Each echo is reduced in amplitude compared with that it
wouldfhave had if the samplé had been parallel: the
dttenuation usually appears to be increased. In such a
situation the measured attenuation-f-mOSt conveniently
obtainéd by fitting a calibrated expohehtial curve to the
first echo and the maximum at z = 5. l;;—can be corrected

by use of Figure 4.9, u51ng either the known wedge angle of
a sample or an "effective! wedge angle determined by finding
how the position of the first minimum‘depends upon the
'ultresound frequency. As the ultrasound frequency is
increased, this first zero moves neerer the source (because
the velues of z for each echo are proportional to frequeéency)
and_the"correction required (usually_in dB cm-; or dB us-l)
increases. However at high frequencies-it is possible for
the echoes to be so Qidely spaced in‘z;value that the
apparent attenuation may be less than-the real value and
correctlon is then difficult. When measurements are made

- on samples with high intrinsic attenuatlon, echoes beyond
the'zero point at z = 3.83 may not begvisible. In this
 case (z < 1) ‘the modulating factor (4. 22) can be 51mp11f1ed
to e’z /8 and the measured attenuation between the first

' dand the nth echo can be suitably corrected

‘Although in principle the effects of non- parallelism

on measured attenuation can be corrected, in practice there

are several difficulties due to the limitations of the
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theory which (i) deals only with one-dihensional wedging

in isctropic materials éhd‘(ii) cannot take account of
interference which may occur if, after multiple reflec-
tions hetween the misoriented faces, the ultrasound'beam

is sufficiently deflected sideways to hit the specimen

| walls,A Similar difficulties prevent the correction of the
ndn-parallelism errors in measured velccities. The effects
of ndnéperallelism, while not apparent~when the simple'
pulse echo method is used, show up when»more precise measur-
ing techniques are employed. In the sampled-continuous

wave technique, non-parallelism leads tc spurious maxima
which are often as large as the true resonance maxima (Miller
_and Bolef 1970). 1In pulse superposition experiments on non-
péréllel specimens it is sometimes impossible to distinguish
the true maxima £ram their spdrious neichbours (see Section
5.3.2).- Thus a prime requirement for accurate measurement
of velocity.as well as attenuation is an echo train with an
exponehtial decay. Parallelism of theiopposite sample faces
to better than lO"4 radians is required for studies at 10 MHz
— or better than 107’ radians at l'Ghz — and a similar
parallelism of the transducer-sample bond is necessary.
Limits on parallelism are most severe in low attenuation:

dielectric.materials(e.g.'quartz, YAG,. A1203, scheelites)
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CHAPTER 5

EXPERIMENTAL DETAILS

In this chapter details of.ekperimental
techniques and the measuring system afe given.
‘Their application to the characterisafibn, prepara-

tion and ultrasonic study of single érystal specimens

of C9W04

is described.
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5.1 CHARACTERISATION OF CRYSTALS

5.1.1 Preliminary examination

The CaWO, single crystals used in this work were
'grown-at International Research and Development Co. Ltd.,
,Newcastle upon Tyne, by the Czochralski technique of
pulling from the melt. Details of the growth procedure
were given in the IRD Research'Report'66;76 (Buchanan and
Casselton 1966). Single crystal boules of length about
5-cm and diameter about 1.2 cm were produced. Each was
annealed for 72 hours atla temperature of 1550°C in an
oxygen atmosphere. Two of the boules~cleaved parallel to
the-(OOl) plane during annealing, but usually annealed
.crystals were less'susceptible tohfracture during sub-
sequent cutting and polishing All the'boules supplied
had growth axes approximately parallel to the fourfoldaxis
and the characteristlc Ccross- section of c-axis grown
crystals (Nassau and Broyer 1962), illustrated in Figure 5.1.
| Visual observation shoued the'crystals were free
4from obvious flaws, cavities or granular structure except
at the neck where growth had commenced.. Pure}crystals
were . colourless'—-as was a 0.05 at % gadollnium doped boule —
while neodymium doped crystals varled from pale blue
(0.01 ‘at.% Nd) to violet (1.0 at.% Nd). x—ray back reflection
photographs showed that each boule was;monocrystalline The
: c ax1s mlsorientation along the 1ength of a boule, measured
by taklng a series of Laue photographs, was found to be less
than the resolution limit of the technique, estimated to be
"‘l5' of arc. CaWO4'is_soft enough to he'appreciably

susceptible to surface'damage; the texture of the spots
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on Laue back reflection photographs_wss'found to be an
indication of the extent of this damage'rather than of
mosaicistructure. When the x-ray beam wss incident on an
undamséed area, the spots were sharp-and_not split.

To further investigate crystal defects, specimens
with faces outinormél to the fourfold axis were chemically
polished (by boiling for five minutes in' 85% orthophosphoric
acid at 270 C) and etched for 5 to 10 minutes in aqua regia
at 55 C. Square pits with a density of lO4 to 105 cm -2

were:observed. Several tests indicated that the pits marked

the points of emergence of dislocation lines:

(i) . rlthe number of pits remained constant on further
etchihg | |

(ii):: extensive low éhgle grain boﬁn@ary arrays were
observed '

(1ii) _matchiné grain boundary arrays were found on the

front and rear faces of a very thin (v200 micron) speoimen.

5.1.2. X-ray orientation

The crystallogréphio axes ih'the boules were found
by méaosAof Laue back reflection x—raf'photographsil The
7 axis was readiiy.identified by'the foﬁifold symmetry of
the'Laus.pattern obtained with the inciderit beam parallel
‘to this axis éFigufe 5.2). Directioﬁspﬁormal to the 2 a#is
'Acould be recognised by the reflectionisymmetry of the mirror.
‘plaﬁe of.the point group. | | |

Laue photographs taken with.the x-ray beam parallel
to <100> or <llO0> directioos seemed to- exhibit addifional.

symmetfy with an apparent mirror symmefry about planes
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-parallel to {010} and {110} directions,respectively (see
Figures;5;3 and 5.4). This pseudo-ditetragonal symmetry was
first observed by Haga and Jaeger (1916).‘.These workers,
knowingythat mineral scheelite had a form corresponding to
the bipyramidal class concluded that the additional symmetry,
which they observed in "a'number of scheelite crystals of
the best-ouality and from all kinds of'places" was due to

a "polysynthetic" twin structure. In fact the pseudo-
symmetry arises because, as described in Section 2.1, the
calcium and tungsten atoms lie on a framework which has

4 /mmm - (ditetragonal) symmetry, only the relatively low
atomic number oxygen atoms are sited in such positions as

to reduce the overall symmetry to 4/m. The <100> and <110>
axes can readily be identified but not distinguished by the
pseudo-symmetry. The distinction must initially be made

by the stereographic projection method, but subsequently

for CaWO4 the directions are easily distinguished in c-axis
grown'crystals by examination of the boule cross-section:

the <lOC>4and <110> are respectively parallel to the longest
and'shortest diameters of the boule section (Fig. 5.1).

The complete orientation of a boule of a TII

Laue group tetragonal crystal also requires the determination
.iof the sense of the conventional +Z direction in the boule.
.Such a determination has been described by Farabaugh et al
(1966), who used an. x-ray method which depended on a 'visual
tcomparison of the intensities of pairs ({hkt}, {kh2}) of
spots;.~The differences in intensity between spots of such
pairsidepend only on the positions of”the oxygen atoms relative

to the incident x-ray beam. Metal atoms'in general positions
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in the cell contribute equally to each:reflection. Com-
parisdn‘of the observed intensity differences with those
predicted from the oxygen coordinates allows the sense of
the +Z axis to be determined. The method was déscribéd
‘with particular reference to CaMoO4 apd used to orient
specimens used in the deﬁermination df:the elastic moduli
of'that.material (Wachtmann et al 1968);  Farabaugh et al
(1966) féund that the technique could not be applied so
-readily to the orientation of'PbMoO4{<:invthis scheelite the
 différences in the intensities of the_{hkﬂ} and.{khl}
refléctibns are not so easily recogniséd»because of the
large contribution of the heavy Pb‘ion katomic number = 82).
Simiiar problems were encouﬂtered'in=th§'present work when
atteméting to orient CaWO4 crystals. :Thé.reflections due
_tb'tﬁe heavy tungsten atoms (atomic number = 74) dominate
the intensities of the spots. Indeed tﬁe difference in

" intensity between spots of a pair was often less than was
dbserQédjbetween symmetry related spoté,_and the sense of
the +Z axis in a boule could not be deﬁefmined with certaihty.
An alterﬁative.method has been developéd énd.is described
in the next sgqtion.A For SrMoO, the g?ray method has been
"found td,be sétisfactory: details aré given in Chapter 7.

t %

5.1.3 Determination of 7 axis sense. in pure Cawo,,

:.: tA novel‘coﬁbination of electf;n,spin resonaﬁce!‘.
and ﬁlfiésonic orientation'fechniques hés been deQeloped
to find the. Z axis sense in pufe»scheelite structure crystals.
(a) Basis of the method. » | |

An experimentai technique to_find the sense of
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the 2 axis must examine a physical property which is
sensitiVe in a predictable way to. the positions of the
oxygeﬁ'atoms. The intensities of x-ray reflections are
.one such property, the crystal field due-to the oxygen
atoms is another. By doping a scheelite4with a rare -
earth ‘'such as Gd or Nd the crystal field can be probed
by observatlon of the e.s.r. spectra: (see Section 2.2).
Location "of the positions of the magnetlc axes in the XY
plane: w1th respect to the crystallographlc axes provides.
a means of finding the sense of the 2 axis in a doped
specimen.

. The directional dependence of ultrasound wave
‘veiocrties is another property of scﬁeelite crystals which
dependsvon the positions of the oxygenAatoms, though not
in a way which can easily be predicted until the elastic
COnstauts»are;knowm. If ultrasound Ve;ocities are not.
appreciably affected by low levels ofjdoping {an assumption
confirmed in the course of this work) then the Z axis sense
: iu.e“pure specimen can be identified by comparison of
uitrasound velocities with those measured in a previously
oriented,.doped specimen. |

.(b) Experimental details.
| The sense of +2 axis was found in a boule of
0.05 at.% G4 doped CaWO4,(preferred to Nd doped CaWO4 because'

_ the Gd3 O-band resonance spectrum is readlly observable

at room temperature whereas that of Nd3 is not). An e.s.r.

sample,was cut in the form of a rectangular parallelopiped
with'endS'normal to the fourfold axis._uIt was carefully
mounted‘on a short circuiting plunger'yhich terminated the

sample arm of a conventional Q-band spectrometer‘and
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located such that the maghetic field direction could be
fotated-in the XY plane of the sample. The microwave
spectrometer is shown in block diagram fprm iﬁ Figure 5.5.
It utilises a 34 to 35.5 GHz reflex kintron as the signal
source and a magic-tee bridge element with an E-H tuner
énd short circuit in%the balancing arﬁ.’ Field modulation
at lébikHz and phase sensitive detection:are employed.

Use of a.magnetic field sweep and xy récprder gives a
display of the derivative of the resonance line at the
frequency of the reflex klystron. By ioﬁating the magnet
énd pidtting the position of a particular resonance line
ever?ISOIand where necessary every l°,*the extremes of
posiﬁioﬁ.of the linesAweré found. As :equired by the four-
fold site symmetry at the impurity ions, the field maxima
repeatéd every 90° and Weré separated-fromvfield minima by
45°;‘nThe extremes of positionAof thefdifferent'lines of
che épéétrum were found to coincidé well_withih the accuracy
of setting the magnetic field directionﬂ' This is apparent

in'Figure'5.6 where the positions of lines corresponding

to the % - % and % > % transitions, aﬁé¥seme+sate44iees
ei—ehese are shown for magnetic field directiong between - ‘
the +X and -X axes. The magnetic axgs in the XY plane of
the specimen were thus located; they'wére found to be 9?
from the <100> axes with the sense oflrotation shown in
_Figure 5.7. By-reference to Figure 2. [ the'sense of the
"conventional +7 axis in the spec1men, in theAboule fromA
which the specimen had been cut, and in the ultrasonics

sample was determined.

. The velocities of ultrasonic Waveipropagated in
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the direction defined by cosines 1/2,'3%/2, 0 in a sample

cut from the doped boule were found to be

= 5 -1
unasi-longitudinal = 5.12x10" cm s

vqﬁasi-shear 2-00X105 cm S-l (5.1)

2.33x105 em s™1

v
pure shear

Two samples of pﬁre CaWO4 wefe cut from a single
crystal boule to yield ultrasonic samples for propagation
in directlons (np and n ) in the XY plane,60 on elther
side of a chose;_;100>—;;1s as shown in . Figure 5.8(a).
Without knowledge of the sense of Z axis in the boule it
was not known which of the samples (p or q) had direction

- cosines 1/2, —35/&0 and which had 1/2, %/2, 0. The ultra-

sound veloc1ties in the two samples were measured to be:

' Sample p. . B . N
Vquasi-longitudinal +4.53x107 cm s
o B 5 .
unasi—shear = "3.05x10" cm s (5.2)
5 -1

Vpure shear = 2.33x107 cm s

Sample q- 5 -1

vquaSi-lQngitu‘dinal = 5.17x10 cm S
' . -» . 5 _l .
vquasi—shear = 1.98x10" cm s ~ (5.3)
| 5 -1

Vpure sheaf = -2.37x10 cm s

.For the pure sﬁear mode, the Velocity;is'the'same in all
_three samples becaﬁse it must equal (C44/p)% for'ali
propagatlon directions in the (00l) plane. The velocities
(5. 3) of the quasi- longltudinal and quasi-shear modes in
the pure sample q agree well within experimental error with

those (5.1) measured ih fhe Gd doped sample, while the
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veloeities (5.2) measured in the purexeemple p are quite
different. Sample g was thus identified as having direction
cosihes~of the normal to its parallel_end—faces equal to
1/2, 3%/2, O like the Gd doped sample.,.’The'pos.iti.on of the
+Y axis relative to a +Xtaxis ehosen ?érallel to the <lOO>1
axis;of Figure 5.8a was thus deterﬁined, and the 2 axis
sense in the pure boule of CaW'O4 wasvthat required to com-
' plete a right handed set. Thus in Figufe 5.8a the <lOO>2
‘axis 1is in fact the [010] direction (the +Y axis) and the
[OOl]'direction'(the +2 axis) emerges from the plane of the
figure, as shown in Figure 5.8b. Furthermore it can be
deduced that the sample p has a propagation direction (cosines).
1/2, f3%/2, O which is equivalent by feurfold symmetry to
3%/2, l/é,vo and a direction of propegetion at 30° to the
+X axis when measured towards the +Y.‘.The agreement between
the velocities . (5.3 and 5.1) measured indthe pure and the .
'doped saﬁples respectively justifies'the_assumption that’
low'levels of doping do not affect ultrasound velocities
‘eppreciably. Sample g was subsequently‘ﬁsed in the deter-
ﬁination of the elastic constants of:CaWOA (Chapter 6).

| Thiscombihationvof;spinlresonepce and ultrasonic
'orientation techniques‘is applicable to ail the scheelite
structure tungstates and molybdates listed in Table 1. Very"
.accurate knowledge of the oxygen coordlnates is not requlred
t_The Z axis sense in the doped crystal can be found by the
spin resonance method and then found in the pure material
by the ultrasonic technique. Once the elastic modull
(ineluding the sign of.CiG)‘of a material ‘are known then the
yA axis sense in a boule'ean be found by ultrasonic orienta-

tion techniques alone. This will be discussed later in the
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light of the elastic moduli of scheelite crystals measured

in the'course of this work.

5.1.4'7f'Relationship of etch-pit orientation to the sense

of +72 axis

'Etch pits on the {100} and {llbiAfaces of CaWo,
have a unique orientation with respectitobthe sense of Z axis
in the:crystal (see Section 2.3). From-boules in which the
+2 axis had been located in the manner descrlbed above,
spec1mens were cut to have faces normal to the <100> and
<110> directions. Each was carefully marked with a flat
norﬁal'to the emerging +2 axis. They were chemically polished
to remove surface damage by boiling in-SS%;orthophosphoric:
acid at 270 C. After five minutes the {1001 surfaces were -
almost featureless under a magnification of x200 while
the {110} surfaces showed some characteristic.markings.

sSpecimens of each orientation'were then etched in
either | .

(i) aqua?regia (4 conc.‘Hcl : 1 conc. HNO3) for 5 min..at
o 55°c‘(¢ockayne et al 1964), or 'h

| (i1) 1 part saturated NH4C1( 1 part 85% orthophosphoric
acid and52 parts distilled water for 15 min. at 100°C}(Arbel'
and Stokes (1965)). o
Both etchants gave etch—pits on the two surfaces In each
case the pits had mirror symmetry about long axes parallel
_to the (OOl) plane but no symmetry about lines parallel to
the [QOl] axis. ~On the {100} faces the several types of
éit which were evident included many which had a distinct
‘orientation,whereas on the {110} surfaces distinct orienta-

tiohs were not so clear.  Attention was therefore concen-

trated on the {100} faces.
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Examples of the pits obtained with the two etchants
are shown in Figures 5.9 and 5.10. The +2 axis is marked
on these figures so that the orientation of the pits can
" be compared with the sense of that axis ‘in the specimen.
The pits'have a eharacte:istic “lozengeﬁ shape and are -
similar to those observed by Arbel and Stokes.(l965) and
Levinstein et al (1963), with tails Which all point in the
same direction on a particular face. A background of "vees"
_ﬁas also observed on the {100} faces etched in aqua—regia;
These‘cen be seen as a terracing effect in Figure 5.11.
Pits'on other {100} faces have tails which point in the
directions shown in Figure 5.12; the fourfeld symmetry
property of the 2 axis is obeyed. Viewed along the positive
direétiou of the Z axis the pit tails éeint in an anti-
clockwise direction about the axis. o
‘ Checks using samples misoriented from the {100}
,plane by up to 2 and etches of slightly.different com-.
position showed that the orientationﬂqf the pits on these
pianes was not very seusitive to misorientation or etch
concentration. Observation of the etehibits produced by
eitﬁer ef the aqua—reg%e'or NHACl/orthOphosphoric acid
.etches on a {100} face of Cawo, thus‘ptovidés en easy and
reliab;e means of finding the sense of +2 axis in a
specimen. | | ' ;.-

It must be stressed that the orientation of etch.
' pits found here is for two particular etchants on a
.particular material, CaWO4. Extremelcaution must be
exefcised in extending the method to other scheelites, or
to the use of other etches. 1In the-case of the semimetals

arsenic, antimony. and bismuth a partiéular etch can give
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differently oriented pltS on different materlals even
though these are closely related, and different etchants
give different orientations of pit on a particular

material (Akgoz, Farley and Saunders 1972)

5.2  SAMPLE PREPARATION

5.2.1  Cutting

~'Samp1es for ultrasonic study must have parallel
oppOSite faces cut perpendicular to a specified crystal-
lographic ‘direction. Cutting techniques have been developed
to yieid_parallel faces Within l/4°'of'the requisite planes.

A boule is mounted, by gluing'With Durofix cement,
on a Philips Type PW1031 goniometer and accurately aligned
by Laue back reflection X-ray photography to have a crystal-
lographic ‘axis parallel to the x-ray beam The boule is:-then
'rotated on the goniometer through the required angle and cut
with a diamond wheel on a Meyer and Burger Type TS 3 slicing

machine. By obeying certain precautions, and in particular

1

by

(i). . ensuring the sample arms of the x—ray machine are

accurately parallel to the beam

(ii) restricting adjustments of the goniometer to

rotations about its vertical axis

(iii) - covering the head of the goniometer in Durofix to

' preVenta"wobble"-during cutting

it Lé possible to obtain the accuracy of'cutting given above

and a parallelism of opposite faces somewhat better than this.
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5.2.2 Lapping and polishing

‘?Samples for ultrasonics study must be polished to
high standards of surface finish, flatness and parallelism.
-In practice these three'may be conflictiﬁg requirements,
and specifié techniques must be deVelobed for materials of
differeﬁtlhardnesses. Here the methods which have been
found saﬁisfactory for CaWO4 are describéd.

The CaW0O, samples were prepared by use of a

4
Logitech'PMZ precision polishing machine with a PP6 precision
polishing jig. Figure 5.13 gives a verticél cross-section

of the_jig in position on the iapping_piafe of the polishing
"mééhiﬁe., The sample is held in place byra Vacuum»chﬁck which
Consisté pf a small sintered brass areé‘at the centre of a
brass ieference face. A rotary pump is used to evacuate

the sintered region and the sample is then held in place by
atmospheric pressure. The attitude of the'reference face
Qith reépegt to the "Eolishing-plane" ié.éontrolled by three
.adjustmént screws. The polishing piane itself is aefined‘by
‘ .the face of the conditioning ring which~rests on the lapping
plate. :A‘spring hoidé the sample'against the lapping plgte,
with the close fit of the piston within the cylinder main-i

taining the relative attitudes of the reference and polishing

planes, .The load on the sample is adjuéted by a screw tensioner,

The jig rotatesias it is moved backwards and.forwards.aéross ‘
. the rotating lapping p;ate by a reciproéat;ng arm. This .
motion<is illustrated in élanAview by Figﬁie 5.14}” |

'In principle the faces of a sample may be polished
flat ahd_parallel by setting one face against a reference

face, polishing the opposite face on a"lapping plate which
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is maintained parallel to the referencevplane; and then
turning the sample over and polishing the.Other side in the
same way;. In practice many precautions .are necessary if
accurately‘parallel faces normal to the_required direction
are to be obtained:
(i) B :Initial alignment'of the chuck face

To ensure that the reference plane and polishing
plane areAparallel, the chuck face must be aligned parallel
to.the»conditioning ring. A 15cm. diameter optical flat is
placed on the chuck and held in position by the vacuum.
The screws are adjusted until the interference fringes between
the conditioning ring and the optical flat indicate their
mutual parallelism. This parallelism should be re-checked

each time the specimen is reversed.

(ii) ' Mounting of sample

Use of a vacuum chuck av01ds the need for glues
or cements between the specimen and the reference face; such
seals almost inevitably reduce the parallelism attainable.
Prior'to assembly the chuck face and specimen are carefully
cleaned in an ultrasonic bath, and then the contact between
the two is observed by means of the interference bands
between them These bands should open out to a single colour
when the chuck is evacuated. The facesfof the CaWO4 specimens
were usually sufficxently flat and smooth to maintain an
i.adequate vacuum seal against the chuck face, but during '
polishing under high applied loads sideways motion of a small
area specimen (<lcm2) occasionally caused‘leakage and release

of the:specimen. Such breakaway results in extensive damage

to thevlapping plates. It is prevented.by applying a little
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glue.around the edge of a specimen held firmly against the

chnckaace by the vacuum.

(iii)' Lapping and polishing

'fThe polishing action depends on the.relative motion
between the specimen and particles (harder than- the specimen)
which are embedded in the lapping plate " The plates-them—
selves must be somewhat softer than the spec1men and each
must be used for one grade of polishing grit only, as con-=
_ tamination by larger particles causes scratching Transfer
of grit from one plate to another is avoided by cleaning the
jig in an ultrasonic bath before changing plates. Scratching
can also be caused by tiny pieces breaking away from the
edges ofvthe specimen and becoming embedded in the plate.
1f the edges are slightly chamfered hefore polishing this
problem is avoided.

For CaWO4, successive lapping-with 6 micron and 1
micron:diamond grits (or alternatively 600 and 320 grade
Aloxite) ‘on solder plates gave a fine matt surface. Use
of 1/4 micron'diamond powder and progressively lighter jig
loads gave a fine optical finish. By ensuring that the |
mating surfaces between: the specimen and the chuck face
were clean, that the chuck face was maintained parallel to

.‘the conditioning ring, and that the lapping plates themselves
were flat, specimens of CaWO4 were prepared which were flat
to w1thin one wavelength of light across 1 cm and. which
had opp051te faces parallel to better than 3x10 5 radians.
The flatness was determined by examination of interference

fringes between the specimen face and an optical flat, and
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- the parallelism measured by using a high precision dial
gauge. Sample thicknesses were measured at room temperature

to an accuracy of 0.0001 cm by use of a vernier micrometer.

5.3 . SYSTEM FOR ULTRASONIC MEASUREMENTS BETWEEN

1.5 K AND 300 K

The ultrasonic measuring system developed (see

Figure '5.15) has facilities for the followxng types of

measurement:

(1) Simple pulse echo measurement of transit time to
an accuracy of *l% by use of a calibrated delay, at
ultrasound frequencies between 10O and'860 MHz.

(ii)"l' Attenuation measurements, by the exponential com-
parator method, of decays between 0.0lland 4 dB us-l at
frequencies in the 10 to 800 MHz region.

(iii)v’ Attehuation‘meaaurements oh small signals by use
- of a Box-car detector in conjunction_with the attenuation
comparator.

(iv) = Pulse superposition measurement of transit time,
Awith_a eensitivity often better than 1 part in 104, at

" ultrasound frequencies- in the range 10 to 90 MHz.

The’simple pulse echo technique wae‘used for the preliminary
measurements of ultrasound velocities in CaWo, and for the

room temperature measurements in other‘scheelites (detailea
in’ Chapter 7). The meaSurements-of'attenuation in cawo4 -

(reported in Chapter 6) were ‘made using the attenuation

comparator,
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The measurements of the temperature dependence of ultrae- -
sound wave velocities in CaWO4 from 1.5 K to 300 K were
made by the pulse super-positionvmethod;' In the next two
lsections_the ultrasonic equipment and_its operation will
be described. 1In Section_5.3.3 experimental details
regarding ultrasonic transducers and their bonding to
specimens of CaWO4 will be given. In Section 5.3.4 the
system for control and measurement of Sample temperatures

will be described.

5;3ll.y'Attenuation comparator ‘

| - Measurements of types (1), (iiltand'(iii) were
made using a Matec Model 9000 Attenuation Comparator with
plug-ins of Types 460 and 470 for the frequency ranges 10
to 300:MHz and 300 to 800 MHz respectively. This apparatus
(Figﬁre 5.16) consists of a pulsed rf oscillator and a
receiver which can each be tuned to the resonant frequency
of an ultrasonic transducer. A repetition rate generator
(O to 1 KHz) triggers ‘a display oscilloscope and also, on
alternate cycles, either the rf oscillator or a calibrated
delay. The rf pulses (width between O 5 and 5 us) and
amplitude up to 250 volts (peak to peak) drive the ultra-
_sonicbtransducer and generate ultrasonnd pulses in the
. specimen. Echoes detected by the'transducer are amplified
by a superheterodyne receiver with an intermediate frequency
of 60 MHz, detected and displayed on the oscilloscope

| Measurements of both transit time and attenuation

make use of the calibrated delay. After the delay time

A UNIVE: ‘
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(0 to lOOO us) set by a helipot control,_an exponential
generator is triggered and its output displayed A pulse of
.fast rise time but long exponential decay thus appears
superimpdsed'on thelecho patternf By,means of the calibrated
delay the 1eading edge of the pulse may be set to coincide
'1n turn with two chosen echoes and the time between them
measured. Certain precautions are necessary. .The pulsed:
oscillatdr must'be tuned'to the resonantgfrequency of the
transducer (to give minimum attenuation)fand the receiver
tuned to the same frequencyu(to give maximum signal). It

is important to check that:the echoes_are'equispaced; an

o uneven:spacing'is indicative ef interference between echoes,
due to mixed mode propagation or sidemall reflections. |
Backlasn‘error in the helipot control of ‘the calibrated
delay must be avoided. In this way transit times can be
measured;with a»precision of about +1%. Many factors govern
the accuracy;of the ultrasound velocities derived from the
transit time measurements. These hauefbeen considered in
Section 4.3. .

. The attenuation of the ultrasound is found by
adjusting'the exponential decay of the comparator pulse’by
avcalibrated helipot control until theﬁexponential curve
'fitsgthe'decay of the echo pattern. Five ranges. of the
exponential generator permit measurement»of decay rates
-1

_between‘0.0l and 4 dB us To obtain accurate measure-

ments of attenuation it is important to follow certain

- procedures:

(i)-_- the pulsed oseillator and receiver are both tuned

to give minimum attenuation
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(ii) : . the receivervgain is adjusted to maintain a con-
stantyamplitude for the first ecno in case there is any
non—linearity in the display
'(iii)ﬁr;echoes near the front of the train which do not

fit the overall decay pattern are disregarded.

'Measnfements of attenuation obtained‘from-echo trains which
are not*exponential must be treated withtéreat‘caution.
Specimens of CaWO4 polished flat and parallel as described
above gave echoltrainS'which were expOnential even at
750 Mﬁz;(see Chapter 6). |

| .xy In situations where the received echo signal is
barely"distinguishable from noise so that the attenuation
comparator alone . cannot be used, a bon?car detector can be
employed to eliminate noise from the video output of the
‘comparator and give an xy recorder plot of the echo pattern.
In the present system a box-car detector made up of a
'Type.4l$ Linear Gate and a Type 425A Scan Delay Generator
(Biookdeal Electronics Ltd.) is employed with a Type 7035A
xy’pen recofder (Hewlett-Packard) To recover the waveform
of. an echo train from noise the scan mode is employed; in
turn each point on the waveform is sampled many times and’
averaged. Scanning is achieved by slowly increasing the
vdelay time between the trigger and_gateapulses; .at the

output a voltage proportional to the averaged input‘voltage
is recorded. ' A '
.

513.2: Pulse superposition apparatus

"~ The pulse superposition equipment used in tne study

of the temperature dependence of the elastic constants of
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' CaWO, is shown in block diagram form in Figure 5.17. A

4
high,power 930 load is permanently conneoted at the output
of theﬁpulsed osoillator, series attenuators (O to 300 k)
are included between the pulsed oscillator and the simple
TRfjunCtion. This junction is just an_arrangement of
_diodes:as shown in Figure 5.18 which_isolates the oscillator
circuit.from the echo pulses and proteets,the‘preamplifier
from the,high voltage transmitted pulses}‘ The arrangement
of ‘equipment is thus essentially that described by
McSkimin,(l9615 with one important difference : in the
system'used'here the pulse repetition frequency is defined
by=a-frequency synthesiser (Adret Codasyn CS2018) which

has a stability of 1 part in 106.(and-a'long term stability
of 1. part in 10 ). | ' | '

| The pulsed oscillator is operated in the "externally
'modulated"Amode with its repetition'rate‘and_output pulse. -
' widthroontrolled by the unit pulse generator. In this
mode, the large duty cycles necessary.for pulse superposition
measurements are permitted. With a pulse width of 1 us it
is possible to use repetition rates up to 300 kHz (which
gives'the maximum allowed duty oycle.of330%) The unit
pulse generator is itself triggered by the 6 V sine wave .
output of the frequency synthesiser. | y-an appropriate
setting of the trigger level of the pulse generator the
_ -80 V output pulses are triggered by the negative-going
zero crossing of the sine wave, as shown in Figure 5 19a,b.
The rf pulses produced by the external modulation of the
PG 650 oscillator have peak to peak voltage of © to 500 V

and may be tuned to frequencies in the range O to 90 MHz.
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"The ultrasound pulses cenerated.in the sample by
the piesoelectric transducer reflect hack'and forth from
the parallel end-faces of the sample.and are detected by
the Same.transducer. The echo signals.are amplified by
the preamplifier, further amplified and detected by the
wideband amplifier and displayed on the oscilloscope
which itself is triggered by the frequency synthesiser.

. In the initial stages of operation the repetition
| frequency of the input pulses is kept low ( ~lkHz). Then,
w1th the pulsed oscillator and the preamplifier each
carefully tuned to the resonant frequency -of the transducer,
echoes are visible for moderate settings of gain. This
_modeiof operation is just that used'for.simple pulse echo
measurements; the disturbance due to'each input pulse dies
away before'the next pulse excites the transducer (Figure
_5;l9c,d,e); |

To obtain pulse superposition the repetition rate
,must heyincreased until successive echo-trains overlap.
When the repetition period (T) of the rflpulses is very
closelto the transit time in the sample li.e. p = 1), no
echoesfcan be seen in the display;' they are all masked by
the. rf pulses themselves (Figure 5. 20} .It is necessary |
to interrupt the sequence of input pulses so that the.
summation of echoes from ‘earlier pulses can be observed.
This is accomplished by using a facility of" the Tektronic
585A_oscilloscope. The pulses which are to be removed
from"the input sequence are selected and intensified on
the display by use of the "B intensified by A" mode of the

oscilloscope (Figure 5. 21a) "The output from the "Gate A"
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terminal of the 585A oscilloscope consists of a50V pulse
which coincides in timing and duration with the running
of the intensifying A timebase (Figure 5.2la,b). When
this pulse is applied to the trigger input of the unit
‘pulse'generator, it raises the sine waue input to a
leﬁeleOV above ground, so that the input does not cross
zero for the duration of the'pulse, andvdoes not trigger
the generator. Consequently for the duration of the
intensified region rf pulses are omitted from the input
sequence (Figure 5.21b,c,d), and the summation cf echoces
from,the previous rf pulses can be seen (Figure_S.Zle,f).
By suitching to the "A delayed by B" mode the intensified
part of the trace can be seen on its ownt
| ‘The repetition rate-(prf) is then critically adjusted —

»one digit at a time-—-to maximise the amplitude of the .
: pattern of superposed echoes. It was shown in Figure 4.1la
how the superposition pattern is -made up by summation of
echoes of successive orders from the input pulses. At
superpositionvthe repetition period of the input pulses is
related'directly to the transit time of ultrasound in the
'sample (see Section 4.2). ; K

' ,' In cases when the transit time of ultrasound in a
sample is short%(e.gq longitudinal waves-in samples of
’Cawoé'less thaniabout 8 mm thick),‘setting the prf to,give
~a7repetition»period}equal.to~the transitgtimevwould;cause
the permitted duty cycle to be exceeded. In these cases the
prf is‘adjusted to equal the inverse of an integer multiple
(p>l) of the transit time. Superposition can then be

observed by finding the maximum height of the echoes which
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appear;between the input pulses, but it:is still helpful
to follow the procedure of cutting out 'a number of input
pulses ‘as described above, so that a whole "train" of
superposed echoes can be seen.

| For the CaWO4 measurements reported in Chapter 6,
the superp051tion maxima could always be found unambiguously
to 1. part in lO4 and often to 1 part in 105; Figures 5.22a,b
and c'indicate the sensitivity of the method. Figure 5.22a
shows the train of superposed echoes with the prf set to
give maximum amplitude, while Figures 5;22b and c show the
samertrain with the frequency changed.by 1 part in lO4 and
1 part,.-':in'lo2 respectivelyl ‘ -

| 'Such sensitivities uere not easily attained. 1In
the early stages of the work before the, sample polishing
methods had been developed,it was often found that maxima
were . less well defined, or that spurious maxima equivalent
to the-?inhomogeneous responses" found in sampled CwW
measurements (Cottam and Saunders l973), appeared on
changing the. temperature A cause of particular difficulty
for. measurements on CaWO4 was the need to measure velocities
of impure modes in directions for-which the energy flux was
not parallel to the propagation vector‘; Many times as the
temperature decreased, a maximum became' ill defined due to
.deterioration of;the,echo train.~ This would be observed
.first as a gradual deterioration-of the'pattern of over-
lapping echoes; these would get wider and less sharp. "On
switching back to a repetition rate of 1 kHz to observe the
actual . echo train it would be clear that more than one mode

was being excited, or that sidewall reflections were occurring.
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- To measure the variation of transit times with
temperature, these problems had to be avoided by careful
positioning and alignment of transducers. Measurements
were;taken at small intervals (2 K) of temperature to avoid
the possibility of swapping from the maximum corresponding
to: the correct in-phase condition (n—O) to an adjacent
(n=tl) maximum. For each measurement care was taken to
sweep the pulse repetition frequency above and below the
expected'value; this was found helpful;in'avoiding the

spUrious.maxima mentioned above.

5;3l3'~lransducers andibonds
N (a) Transducers

Quartz piezoelectric transducers have been used to
_generate and detect ultrasound in the specimens of CaWO4
and other scheelites. Quartz crystal plate transducers .
have some valuable advantages over evaporated film
transducers; plate transducers can be moved to different
places:on a sample face and the polarisation direction can
 be rotated as required, whereas evaporated film transducers
cannot be moved without being destroyed and take several
hours to fabricate. The: present work has necessarily
involved propagation of impure modes of ‘unknown polarisation_
A and energy flux direction. Many adjustments of transducer
+ position (and of the polarisation direction of shear
transducers) have had to be made to excite the modes |

separately and to ensure that the energy flux deviation

was accommodated.
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. Since the polarisations of the- modes were not
initially known standard "X-cut" and "Y—cut" transducers
‘were used. These transducers are cut as discs with faces
normal to the X and Y axes respectively.» An alternating
electric field.parallel to the axis produces vibration in

'the:direction parallel to the x?axisiin'the first case
(lOngitudinal'transducer)'and normalﬁto:the Y-axis in the
sebond case (shear transducer). The shear transducers
useleere marked with a flat parallel'to=the vibration
direction The resonant frequency of a transducer is
determined by its thickness and the appropriate velocity
' of sound in the quartz; for megahertz_operation,.
transducers need to be thin and are-fragile.

. Two sizes of transducer (lcm or émm in diameter)

Were?used. They had coaxial gold plating as .shown in
- Fiéure15s23. This form of plating aliows contact to be
made to both electrodes from.one side, and gives an
active ‘area approx1mately equal to that of the centre
electrode. In the course of this work transducers with
resonant frequencies 15 MHz, 18 MHz (Brooke s Crystal
Co. Ltd ), 20 MHz and 50 MHz (Roditi Corporation) have.i

been.employed.

(b) Bonds

Crystal.plate transducers mustABe attached to the;
,SpecimenS'under test by use of a suitable bonding-agent;”
fhe-bond formed must be thin, parallelpand must provide
good acoustic coupling for longitudinal‘and shear waves.
Manytdifferent bonding agents are in;use. Permanent

bonds can be obtained by applying pressure to a Au-In-Au
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sandwich (Sittig and Cook 1968), or by use of epoxy resin;
solid»bonds can he obtained by use of low melting point
organic solids including salol, phenyl benzoate, benzocic
acidx(see Pace (1970) for details);_or:liquid bonds may
be made by use of viscoelastic liquids, oils and greases
(é.g. Dow Resin 276-V9, silicone 011:550,000 c.s., Nonaq
stopcock grease). .The specific mechanical impedances of
some of_these bonding materials are given inITable 5.1.
Here the most suitable bonding materials have been found
tO”be Dow resin 276-V9 (Dow Chemical Co., U.K. agents:
‘R.W; Greef Co. Ltd.) and Nonagq stopcock.grease (Fisher
Scientific Co., U.K. agents;Kodak Ltd., Research Chemical
SaleSS. ) . |

" Dow resinvis'veryuuseful at room'temperature; it is
a-highiy viscous liquid.which will form satisfactory bonds
‘with almost any solid. To form a bond a 1ittle resin is
spread over the face of a sample with'arazorblade to giue
a uniform thin layer, and the transducer,is.pressed into
position with light pressure. The ertremely viscous nature
of the resin permits the transducer to be moved about the_
face of the sample as required (an important advantage
of liquid bonds over solid ones). On.cooling below ice
temperature Dow resin freezes, the bond crumbles and-
fails | i -

" Nonaq stopcock grease is less viscous Bonds‘arer
formed by placing a blob of grease on the sample face,
putting the transducer in position.on top of the grease and
then mouing it with a circular motion to expel excess

bonding material. The circular movement is continued
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| until a sudden increase in the resistance to motion
indicates that a good bond has been formed. Ercess Nonag
is removed by cleaning with cotton WOOl, The quality of
a;Nonaq bond will usually improve on cooling to about ice
temperature, a 'cleaning-up' -of the.echo pattern usually
occurs. Below 0°C and down to.1.2 K),Nonaq bonds have
beenlfound to he guite satisfactory and were emploYed
for the studies of the temperature dependence of ultra—
sdund velocities and attenuation in caWO4 (Chapter 6).
The - technique for making Nonag bonds has been found to give
reproduCible transit-time results It can therefore be
assumed ‘that each bond made on CaWO4 has about the same
thickness. An estimate of this thickness was obtained by
.bonding a transducer to a very thin slice of CaWO4 which
- had been polished in the same way as the ultrasonics
samples. From the rear of the slice a microscope was
focussed first on the back of the transducer and then on
: the'adjacent face of the CaWO4; the bond thickness was
estimated to be 3+2 um. o
To provide good earthing contact to the back face
of the transducers via their outer’ coaxial electrodes the
' specimen faces{were heavily painted with high conductivity

;paint (Dag 915, Acheson Colloids Ltd. )

. i

'5.3.4 ‘System for control and measurement of sample

 temperature

’ ' " The system used in this work allowed measurements
of ultrasound velocity and attenuation to be made at either

stable or slowly changing temperatures in the range
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1.2 K to 300 K. In this section the crYostat assembly,
the sample holder and the methods of temperature control

and measurement are each described. .

.(a). The crYostat assembly
i_ A-conventional glass dewar systenvemploying liquid

helium and liquid nitrogen refrigerants has been used
- (see Figure 5.24). The system has an . .inner dewar which
is supported by a spring harness, and vacuum sealed to
the cryostat by a rubber sleeve. With the sample holder
in position the inner space can be evacuated by a rotary
pump, or the vapour pressure of a refrigerant liquid
reduced to produce cooling. The pressure in the inner
space is then monitored by a Pirani gauge (Edwards Type
}MGA head), and mercury and oil manostats. Careful align-
_ment of the non-silvered strips downbthe inner and outer
dewars‘makes it possible to see thehleyel of the
refrigerant liquid in the inner space. An outlet from
the’cryostat head can be used for connection to the helium
collection system. A mercuryaproteCtion valve is included
to ensure the release of any excess preSSure.which could
| develop in the inner dewar. Before cooling is begun, the
jacket around the inner dewar (known as the "inteagace"y
must first be evacuated to 0.05 torr-and sealed off by a
ground glass tap. | .

(b) Sanplevholder |

A sample holder (Figure 5.25) has been designed and
.built such that over the temperature rangevl.S'K to 300 K
it allows the specimen to be rigidly located, provides

electrical contact to the two electrodes of a quartz
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piezoeiectric transducer bonded to thepspecimen (see
Section-5.3.3), but avoids any excesslpressure on the
quartz. The sample is located between'a sprung platform
_and a brass disc — the brass disc making an earthing -
<contact to the outer ring electrode of the transducer via
silver dag paint on the sample face.‘_Inside the brass
disc, a PTFE bush :(recessed slightly to avoid pressure
on the transducer) - locates a sprung:hrass plunger which
sits iightly on the centre transducer”eiectrode. This
assembly (screwed to a brass cylinder of large thermal
capacity) is suspended from the sample holder head by
copper-nickel tubes so that it is heldjnear.the bottom of
vtheginner dewar. A coaxial line oarries the radio-
freguency signals through the centre,tube to the sprung
transducer contact. A small resistance_heater (2009
non-inductively wound constantan) fits-closely_around the
sample and is held in position by three_nylon grub screws.
'.Current supply leads for the- heater pass through the sample

 holder head via a Stupakoff seal.

-‘(c) Thermometry

b " Copper-constantan and gold (+0. 01%unn)—chrome1
thermocouples with ,reference Junctions in dewars of
liquid nitrogen and liquid helium respectively are used
. for the measurement of temperatures in the range 4.2 K

| to 300‘K Both types are made by spark welding in a
nitrogen atmosphere. To avoid spurious thermal voltages,
joinings. other than the sample and reference junctions

have been avoided. At the sample holder head a neoprene
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vacuum seal is used. 1In such a seal fFig. 5.26) the
thermocouple leads are trapped between a ring and a disc
of neoprene, each lightly coated with vacuum grease and
held in place by a brass plate and three screws. A low
temperature varnish (G.E.7031) has been. found useful
for anchoring thermocouples to the sample, it effects
good _thermal contact and prevents shorting to the sample
holder. Elsewhere the thermocouple leads are insulated
with PTFE protective sleeving.

» It is necessary to calibrate thelthermocouples
beforeweach temperature run. A cubicbapproximation,

recommended by White (1959), with the. form
o .
E = AT + BT> + CT> +D (5.4)

has:been agssumed for the‘variation of-thermocouple voltage
'(E)ewith temperature (T). The-procedure:requires the
detérmination of thermocouple voltagesncorresponding to
three calibration temperatures and the measurement of the
'residual voltage (D) with both junctions at the reference
temperature. Calibration points'mustzbe reasonably.well

: distributed over the temperature range for which the
thermocouples are employed. For the copper—constantan
thermocouples, the boiling point of liquid helium at the
'prevailing atmospheric pressure, the triple point of liquid
‘nitrogen (63. 15 K) and the appropriate melting point of ;
.pure ice are suitable. For the gold (+0.01% iron) =
chromel thermocouple (normally only used below 77 K)
suitable calibration points are theltemperature of liquid
'_helium at a known reduced pressure, the triple point of

liquid nitrogen and the boiling point of liquid nitrogen
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at atmospheric pressure.

o dFor the measurement of temperatures below 4.2 K
vapour pressure thermometry is employed. ‘A mercury
manostatiis satisfactory for measuring pressures down to
10 torr,:below which a silieone oil (density equal to
1/12;44ithat of mercury) manostat is'tonbe preferred.

}(d) Temperature control o |

' Sample temperatures down to 77AK»can be obtained

by filling the outer dewar with 1iquid nitrogen. The
sample lS then separated from the refrigerant liquid by
both the'inner space and the evacuated interspace of the
'inner dewar. By adjustment of the pressure of helium or
nitrogen gas in the inner space the cooling rate of the
samplefcan be varied.A Steady cooling rates of ~40 deg K
per hour'down to 77 K can be achieved in this manner.

: By transfer of liquid helium to-the_inner dewar
a samplevtemperature of 4.2 K is attained; Pumping on
the liquid helium can be used to produce lower sample
temperatures. Careful control of the vapour pressure above
the liquid helium by use of a Cartesian manostat gives
stable temperatures ‘in the range 1.2 K to 4.2° K.

After evaporation of the liquid helium the sample.
temperature rises slowly back to 77 K at a rate which
averages 25 deg K per hour, but which can be retarded by
: evacuation of the inner dewar Slower. warming rates can be
maintained by surrounding the sample with activated .
charcoal (which gradually evolves cold adsorbed helium
gas)f'By these methods slouly changingztemperatures between
1.2 Khand 300 K were readily achieved for measurements'of

velocity and attenuation in CaWO4 samples.

Sy
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Stable temperatures between the above limits

can be’obtained with the present system by use of an
Oxford~Instruments Harwell temperature controller. This
- controller is designed for cryogeniC'operations where a
sample to be studied is attached to the liquid coolant
cdntainer via a suitable thermal resistance. The con-
trolier'is a source of current for the"resistance heater
which<is fixed round the sample (Figure 5.25). The'amount
of power supplied to thelheater is determined by an error
voltage'which is the difference in microuolts between the
output of a sensing thermocouple attached to the sample
-and thé control voltage set on a‘helipotddial. This dial
reads‘directiy in,microvolts so that witn the aid of a
thernocouple calibration chart a particuiar temperature
(which must be greater than that of theviiquid coolant
-heatﬂsink) can be "dialled" and the controller then supplies
the heat required to maintain theISamoleuat the chosen
‘temperature within 0. 05.K For operation between room
temperature and 77 K, liquid nitrogen in the outer dewar
provides the heat sink and the evacuated interspace a
'suitanle thermal resistance; steady'tenperatures can be
| readily obtained. Below 77~K, liquid helium in the inner
dewar is used as the heat sink and the sample must be
enclosed in an evacuated can to provide the necessary

.thermal resistance.



TABLE . 5.1

Mechanical properties of bonds and transducers

{11 McSkimin and Andreatch (1962)°

(2} McSkimin (1950)

131 Mcskimin (1957)

. Longitudinal,. Shear Ref.
Nonag stopcock grease 'L=2.7x105 - 1]
25°C, . 20MHz
Dow resin 2,=2.25x10°  2=0.9x10° (1]
276-V9 _ 5 : 5
S .VL=2°4 x10 .VS=1.1x10 12}
Silicone oil z,=1.37x10° - [3)
bc703
Silicone oil 2,=1.20x10’ - (3]
DC200 | ‘
o 5 5
Quartz . ZL=15.3xlO ZS=Ml4xlO (1]
'ZL' ZS - specific acoustic impedances in mechanical:
- ' - ohms cm—2
'VL; vé sound velocities in cm s 1
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(é)_ Frequency synthesiser output, 3v, lkaz

(b) Unit pulse generator output

(

%

(c),LPulsed oscillator output

(d) Preamplifier input

(e) Wideb&nd Ahplifier output

FIGURE 5.19: Pulse superpoéitioni initial setting up with

a low repetition rate.



(a) Frequency synthesiser output

(b) GR1217 output

(c) RF pulsed oscillator output - -

B e e

(@) Wideband amplifier output observed on B time-base of Tektronic 585A

S osilloscope

'FIGURE 5.20: Pulse superposition : operatibn Qith'pulse repetition
‘ o rate approximately equal to reciprocal ‘of transit time.



(a) Wideband amplifier output with 'B’ intensified by A' display to

select pulses to be omitted.

T M H UL

(b) Gate 'A' output of Tektronic oscilloscope

(e) Gate A pulse applied to external trigger terminal of GR1217

(4)

pulse generator

Selected RF pulses omitted from pulsed ‘oscilldtor output

(e)

W‘W‘l&"ﬂ’ﬂ‘fﬂ‘_w ——

Wideband amplifier output. with pulse repetition period approximately
equal to the transit time !

5

()

|

Pulse superposition with pulse repetition period critically
adjusted to equal transit time

ﬂ [T

FIGURE 5.21: Pulse superposition : omission. of RF pulses from.

input train to allow observation '‘of maximum.






L ‘FIGURE '5.23: Quartz crystal trans_ducers showing
the coaxial gold plating.
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CHAPTER 6

 ULTRASONIC STUDIES OF CaWO, SINGLE CRYSTALS

' . In this ‘chapter the results of the.ultrasound
ekperiments on CaW'O4 single crystals are detailed Pre-
liminary measurements made at room temperature by the
simple'pulse echo technique are reporteddin Section 6.1.1.
The set .0of elastic constants obtained from this prelim-
inary ‘work was used to provide details of the wave
prdpagation characteristics and allowed selection

of directions for more accurate measurements and temperature

dependence studies. These further measurements were made

between 1.5 K and 295 K by the pulse superposition ‘method.
They form the main experimental results reported in this
thesis and. are described in detail in Section 6.1.2. The
accuracy and validity of the results are ‘discussed
(Section 6.1.3); details 6f wave propagation characteristics
are giVen. Ultrasound attenuation measurements made in the
course of the work are seported and discussed (Section 6.1.4).
The data obtained furnish details of the elastic

behaviour of CaWO4 - The elastic properties and their

' orientation dependence are described (Section 6.2.1).

The application of the Debye model to Cawo4 is considered

(Section 6.2.2) and the results of the present work are

_ 'taken with. those of previous studies of the thermal

properties (see Chapter 2) to provide some description

of the non-linear elastic properties of the material.
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6.1 ° ULTRASONIC MEASUREMENTS FROM 1.5 K to 295 K

6.1.1 qureliminary measurements of elastic constants -

- at room temperature

- Five CaWO specimens were oriented, cut and

: 4
polished as described in Section 5.2 to have end-faces
normal to the propagation directions listed in Table 6.1
and the dimensions given there. Each'sample was between
75and'll mm thick with a cross-sectional area of about
1{cm2,'7U1trasound transit times were measured at room
témperature using the Matec 9000 Attenuation Comparator
‘atﬂalfrequency of 15~MHz,< Quartgz transducers (X-cut and
Y-cut),:bonded to the specimens with Nonaq stopcock grease,

were used to generate the ultrasound ; For propagation in

: each of the directions 0,0,1 (pure mode direction),
-

,1/2 3%/2 0 (semi—pure mode direction) and 0, 2 ,2 -k (impure
‘ mode ‘direction) the modes: were readily excited and -
distinguished. Good echo trains could he obtained for the
quasi?longitudinal and pure shear modes propagated in the
‘directions 1,0,0 and 2-%,2_%,0 but studies of the quasi-
shear;modes presented difriculties. In neither case could
.the quasi-shear echoes be.observed with certainty, despite
many:attempts using a wide variety of honding materials.
AGreat care was: taken to ensure that the Y-cut transducers
had their vibration direction accurately parallel to the
«u(001) plane, but clean echo trains could not be obtained
(see‘Figure 6.1)., Often it seemed that the pure shear and
the.quasi-longitudinal modes were beind excited in addition
to theirequired mave. Similar difficulties were encountered

by Gerlich (1964) who was not able to excite these quasi-
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shear modes.

!:j The set of ultrasound velocities which could be
measured satisfactorily are given in Table 6.1, and com-
pared_with the six<velocities reported  earlier (Gerlich
1964)}'1The two sets agree well. Internal consistency of
theApreSent measurements was checkeddby_comparing the values
. of Cll:}:CGG obtained (i) by summing the‘squares of the
velocities of the quasi-longitudinaltand'duasi-shear modes
with propagation vector 1/2,3 /2 0 and (ii) from the sum
oﬁ the squares of the velocities of the three modes with
propagation vector 0,2 %,2 5 (see equation 9 of Table 3.2).

The values (Cll-i-c66 equal to 19, 2xlO1l dyn cm =2 and

18.7x10.ll

dyn cm -2 respectively) agreed within experimental
error;‘ Values of the elastic constantjc44 obtained from
measurements in different directions were also found to be
fin good agreement with each other. | |
The room temperature elastic stiffness constants

were then-found by a computer least-squares fit (described
in Section 3.3.2) to the twelve measured velocities.
’:Data“ohtained (using the x-ray density_of 6.120 gm cm.3 at
293 K) are listed in Table 6.2. This elastic constant set
was one of four equivalent solution sets~(each vith SUMSQ
equal to 0. 00037), and was selected because the values were
'the most similar to:those found for CaMoO4 by Alton and
Barlow (1967) . A rigorous Justification for this choice:'
of solution set will be discussed in the ‘next section.

-, Knowledge of the elastic constants allows calcula-
tion of the positions of the accidental pure mode axes,

Aeither by use of the expressions given by Brugger (1965) -
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.or by computation of the eigenvectors of'the Christoffel
equations (as in Section 6.1.3), It was found that the
accidental pure mode axes in the (OOl) plane -k and y -
should'make angles of +21.5° andf+66,5' with the (100]
direction; when measured from this direction towards the [010].
Thus it appeared that in specimenvs,.icut at +60° to the
[lbol,-the propagation direction was within 10° of a pure
mode axis, while in both specimens 2:and 3 the propagation
directions‘(l,o,o and Zf%,i_%,o respectively) were more than
20° éwgy from such an axis. '

6,1,2f ~ Temperature dependence of‘the elastic constants

(al‘Measurements

To measure the‘temperature»dependence of the
elastic-constants six propagation directions were selected.
' These‘directions were the five used in'the preliminary "
measurements plus one making an angle of +21.5° with the
[lOO]‘axis .cut for propagation close to the k accidental
. pure. mode axis (specimen 6). Initial experiments using the
pulse superposition equipment established that "clean"
echo trains were essential_for high=precision, and that .
these were most nearly achieved with~very carefully polished,v
parallel and roughly cylindrical (thickness less than
diameter) specimens. Accordingly the specimens used 1in the
previous work were re—cut,_and all six’ specimens polished
'using the vacuum chuck technique. Thicknesses, measured |
with a precision micrometer to an accuracy of iO 001 mm,
‘: are given in Table 6.3. '
The ultrasound modes were encited by use of X-cut

and Y~-cut quartz transducers bonded to the specimens with
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.Nonaq stopcock grease, and the temperature variation of
transit‘times was measured using the pulse superposition
system.. Nonag proved to be a satisfadtory bonding material
over the whole temperature -range. There~was a small decrease
in-apparent attenuation———probably assoc1ated with the
hardenin§ of the bond-—Qon cooling from room to ice
temperature. First the'room temperature‘yelocities of the
l,modes labelled Vir Vor Vyr Vor Vgu V16;~Yll' Vige v14, Vig
Vie' V17
consistency tested by means'of'the cross-checks on C11+C66

“in Table 3.2 were measured, and their internal

- Then the transit times of the modes labelled

.and C44

vl; v2,1v4, Var Vg vlo, Vipr Vi3 Vygqr Vyq Were measured

" 4in the:range 1.5 K to 295 K at interuals7of about 2 K.
Measurements were repeated until satisfactory and continuous
temperature runs over the whole range were obtained. This
was necessary because, particularly in the case- of impure
_modes, there was a tendency for the echo train to deteriorate
on cooling, leading to spurious superposition maxima. Many
trials were then needed-to'establish the'most suitable '
transducer size and position (and orientation in the case

of Y—cuts) required to give the cleanest edho trains over

-a complete temperature run. The difficulties in using the
McSkimin criterion of cyclic matching when Nonagqg bonds are
employed were also apparent though it was not always possible . .
to. conclude whether failure of the criterion was due to the |
lossy bond material or to the difficulty in obtaining
perfectly clean echo trains. Measurements were made at

15 MHz or 18 MHz; it was therefore possible to use the
second'of the alternative methods of cyclic matching dis-

cussed in Section 4;2.2.' Despite the above difficulties the
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final measurements were of high precision; a sensitivity
of about 1 part in 105 was_achieved. ' The lack of scatter
on the ekperimental points in Figure:6,2'to 6.11 attests
'to thisf- These figures show the temperature variations of
the pulse repetition frequencies required to achieve super-
position for each of the modes listed above.

| The corresponding ultrasound velocities were
calculated at 5° intervals using the measured pulse’repetition
frequencies, the known values of p and the specimen lengths.
The lengths were correctedifor'change'due to thermal
expansion by use of the linear thermalpexpansion coefficients
ay and o, reported by Yates and Bailey (1971). Velocities
at l;S»K'and 295 K are given in Table 6.3 and the

temperature dependences are presented as velocity ratios

v, (T)/v, (0 K) in Figure 6.12.

(b) Computation of elastic,constants at 295K
_ The elastic constants were obtained froﬁ the
velocity data by use of the computer least-squares fitting
procedurer 'The method was first used-to'determine the room
temperature elastic constants from the velocities vy v2,

Vgr Vg Vgr Vlo' Viyr Vy3r Vy4 and vl7 listed in Table 6.2

and'the x~-ray density (6.120 g cm-3 at 295 K). A series of

widely'different starting points produced four equivalent
SOlutions P, Q,'R and S to the measured data, each with

. SUMSQ equal to 0 00013 after 501 cycles (see Table 6. 4)

In some cases, when equivalent solution sets a;e

obtained, the correct set can be chosen by reference to the

Born stability criteria. For a TII tetragonal the conditions
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A.‘C

- , . ) |
‘ Cll € 12| C11 12)C55 > 2916 i (6.1)
: ’ l 2
and o »C11C33>Cl3 ,(cll+c12)c33 > 2013

muét.beiobeyed for a crystal to be stable. However only
the set S can be eliminated in this way.

a 'A The four solutions each yield values of the
.quantities Zi equal to those which were;measured. However
numerical solution of the cubic determinantal equation for

the (i'J>,2'-;j,2"!5 propagation direction gives the individual

: velocities, Vg vio‘and vll. These are

Set P v9 = 4.48 'vlo = 2.32;w Avll = 2.89
}SetuQ v9 = 4,48 lev=-2'32-""'vll = 2.89
: : }‘ (6.2)
Set R v9 = 4,41 vlo = Q.99: : vll = 3,02 :
'§et S .5Y9 = 4.4l ‘ vlo = O.99e~_ vll = 3,02

in unitsiof 10° cm s L. Only sets P and Q yield velocities
'which‘agree with those measured (vq = 4.49, v, = 2.32,. |
Vi1 = 2 83 in units of lO cm s ),;and the sets R and S
must be eliminated. |

| ‘ The remaining solution sets P and Q differ only

Ain the“value of the constant C,,. 1In fact the correct value

of C. -cannot be found from just the values of the velocities.

13
This was ‘indicated by ralculation of the eigenvalues of the

“ Christoffel equations for each of the solution sets P and Q
For propagation directions at l intervals throughout one
quadrant of a sphere both sets yield the same eigenvalues
.and velocities. The reason for this is fundamental, in

tetragonal crystals the elastic wave velocities do not depend
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on-C13 itself but on (C + C“)2 This can be shown by
‘ solving the cubic determinantal equation for a general
direction. The velocities of the three .modes which can
‘be'propagated in such a direction are'giyen by functional
relationships of the form: - | “

T I L2 -
PV = B UG ¥ )T €y Crar Cpgr G330 Cyyqr Cog) (6-3)

Such‘a relationship can be satisfied by two possible values
DR '
ofjcl3.given by

where M»is known once‘the other elasticpconstants and
velocities.vi have been found. Here it can be deduced

for CaWo, that M has the value 7.27lell.dyn cm™? since Ci3

could be either 3.92 or -10.62x10*

dyn cm 2. Consideration
of'the‘expression 6.4'shows-that_it.is‘not necessarily
possible?to'distinguish between the eguiValent roots hy
' means of the Born stability~criteria for tetragonals.

o The correct solution can be identified by calcula-
tion of the eigenvectors of the modes . propagated in a
chosen-direction outside the (001) plane,'and’comparison
with the_transducer polarisations used to excite thesed
modes:in'practice. For the propagation direction (cosines)
0,2 %,2 & the eigenvectors were calculated by means of the
- IBM Scientific Subroutine EIGEN. The components for
solution sets P and Q are’ given in. Figure 6. 13 .and the

1

particle ‘displacement vector for the mode with the highest

| velocity (v9 = 4.48x105 cm s ) is compared with the

propagation vector of the mode. For C13 3. 92x10ll dyn cm-2

. (set. P) the fastest mode is quasi longitudinal with the
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deviatiqn of the particle displacement vector from the
propagation vector somewhat less than_5°,'whereas if

2

C éf;19.62xloll dyn cm “ (Set Q) the mode would be quasi-

13
-%’2-5

tranéverse; In practice the fastest mpde'in the 0,2
directibn was excited by an X-cut transducer. Clearly
this‘mode is quasi-longitudinal and the correct value of

11 2

C13 dyn cmf .

, is 3.92x10
(c) Temperature‘dependénce

' - fj.AThe temperature dependence 6f the elastic stiff-
neés constants was obtéined from the velocity data by using
the leaét squares fitting procedure af.a.series of temperatures
vdoWn t§ 1.5 K. Solution éet P‘was uSéd as a starting.point
for thé search, and the density was coffécted for change
with temperature by use of thé volume:ekpansion coefficient
¢;1cuiAt¢d from the data of Yates and Bailey (1971). Values
pﬁ'thefcij at temperatures between 1.5 K and 295 K'ére
given_in Table 6.5 and the temperature.dependences shown

iﬁ‘Figures 6.14 and 6.15. The constantﬂc16 is negative

in“sign.

65l.3.; . Accu:acy'and validity of results

Ultrasound experiments on lbw'symmetry materials
inVolvefpropaga;ing and studying impuréimodes. It is |
' thereforé, particulail§ important,tofestimate the accﬁracy,
~and to check thé;validity of the result;———e:roneous énsweré
can bélébtained if impure modes have not;been éorrectly -
assigﬁéd or if energy fiux deviation ﬁéé resulted in the
'ultraéoﬁnd beam impinging oﬁ the sampléf&alls.

The internal consistency of the measurements of

CaWo réported here was checked by cdmgaring the values of

4
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+C_, and C obtained from different directions. Agree-

1l 66 44
ment in each case was found to be within experimental error.
From the room temperature elastic stiffnesses
(Table_6.5) the three wave velocities were calculated for
propagation directions at 1° intervals around the (ool),
(100) ahd (110) planes by compﬁtation of the eigenvalues
of thedChristoffel equations. The program EIGEN was used
(seelAppendix 1).. The three cross-sections of the velocity
surfaces_(Figures 6.16 a,b; and c) exhibit the Laue symmetry |
of'thefmaterialt' Figure 6.1l6a shows'clearly the existence '
of -acoustic axes (directions in which:the pure shear and
.'quasi-shear velocities are.eqﬁal). These'axes lie in the
(001l) plane making angles of +49° and"+é§° hithuthe [1001]
direction (measured towards the [010]),‘and do not coincide
'withjthe accidental pure mode axes. The cross-sections
allow an estimation of the possible errore in each velocity
owihg,to'specimen misorientatioh.. The uncertainty arising
from a misorientation of ii/2° is tl/2§ in velocity'\}14
"(the-duaSi—shear mode propagated;in the direction
1/2, 3*/2 0) and is less than this for other modes .
, Particle displacement vectors can also be com-
puted\from the elastic constants. The modes propagated in
the [QOlJ direction are pure: particie?displacement is
parallel and perpendicular to the propaéation direction
for the 1ongitudinal and shear modes respectively For
the quasi-longitudinal wave’ propagated in the 0,2 %,2'%
direction the deviation of particle dieplacement vector
from the wave normaf hasiaiready been shown to be small
(<5°)..'The'modes propagated in the (00l) plane are

particularly interestdng. pIn;th#s plane there is a pure

i

{
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shear-mode.which has a particle displacement in the (001l
direction for all directions of the anesnormal; and two
impure.modes with particle displacement yectors which lie
atfrightiangles‘to each other in the (00l) plane. The
deyiation of the particle displacement yector of the mode
with greatest velocity has:been computednat 1° intervals
around the plane (see Figure 6.17). 'Aluays the magnitude
ofﬁthe'deviation is less-than 11° and%thus the mode is guasi-
1ongitudinal. For directions making angles of +23.6° and
+68.6? with the X axis theldeviation is zero. These
directions are the'accidental pure mode axes and lie within
3°'of'the positions predicted from the-preliminary measure-
ments (described in Section 6.1.1). Thus specimen 6 had
been cut for propagation very close to the « accidental
pure mode axis.

o Knowledge of the ‘elastic constants and the particle

' displacement vectors allows calculation of the energy flux
~direction of any mode (by use of equations 3.64, 3.65 and
3.66).-'For modes propagated in the XY~plane the energy

flux direction lies in that plane. Angular deviations from
the prOpagation direction are given 'in Figure 6.17. The
energy flux vector of the quasi- longitudinal mode is never

- far from the propagation direction:; the ‘maximum deviation
is 16 + and for the modes labelled: v4, v7, Vi3 and Vi6 it

lsflza, -14°, ~6°

and +4° respectively,. Such deviations
were readily accommodated in the-specimens used. The quasi-
shear mode is much less suited to ultrasonic pulse echo
studies;' the energy flux deviation varies from +45.5° to

-45.5°% and is close to these maxima for the two propagation
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directions, {100] and [110], for which the quasi-shear
velocities could not be measured in the'preliminary measure-
_ments reéorted here (Section 6.1.1) or~in earlier work
(Gerlich (1964)). Clearly the difficulties associated with
propagating these modes arose from this;considerable energy
fluxsdeyiation. The difficulties may,have been compounded
\by theboccurrence of internal conical.refraction since both
propagation_directions are within a fewldegrees of the
‘acouSticvaxes in the (001) plane. Foripropagation of the
quasiéshear mode along an acoustic axis the energy flux
vector will only lie in the (0O0l) plane if the Y-cut
transducer polarisation is accurately normal to the [001]
direction. A measurement_of-v5 has now been made using a
thin samplebspecially cut so as to avoidhwall'refleCtions
and a'velocity consistent with that predicted from the
elastic stiffness constants of Table-6. 5 has been measured
(2.48xlO5 cm s -1 at 295 K). For propagation along the
‘accidental pure mode axes the enerqgy flux deviation of all
three modes is zero, but on eadhfside of these axes the
energy flux deviation changes very rapidly with ‘changing
propagation vector (NS degrees per degree)

In the absence of gross errors, which would affect
the validity of; the. results, an assessment can be made of’
-the uncertainty in each elastic constant arising from |
Asmall errors in each measurement of velocity. These small
‘errors in_velocity will be made up o£ contributions due
. to misorientation (<k%), diffraction effects (0.1%) , measure-
ment of sample length (0.03%) and thejuncertainty in transit
”time which arises from the phase change on reflection at'

the specimen—bond-transducer interface (O 2%). This last
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error5Was estimated by means of equations 4.7 and 4.8
for a quartz transducer bonded to a CaWQ4'sample with a
3 um thick Nonag bond and operated at its 15 MHz resonant
frequency. An additional error of about l% would arise
iniany velocity for which the recordedtpﬁlse superposition
ﬁakimﬁﬁ corresponded;to n = il cyclic’metching.rather than
~to ‘the required n =0 condition. The internal consistency
of {the velocity data and the excellent fit of the derived
eléstic‘constant set to the measurements (see below)
demonstratedthat such errors did not erise. An estimate
ofiidtgs; made up by addition of the above contributions
can‘therefore be taken as the worst-case error in each
velocitv; - In comparison, the uncertaihtv>in the x-ray
densitv'(p) is negligible (<0.05%).

| . The resultihg error limitslonethe stiffnesses
Cyy and <,
constents extensive computation has been necessary. The

can be estimated‘directly'bUt for the other -

’least—sQuares procedure was employed-to find the elastic
constants corresponding to many different velocity sets

in. which different combinations of measured velocities were
adjusted -to the limits allowed by their experimental errors.
Initially each of the velocitieSfin_turn was adjusted up
and then down while keeping the othersfet their measured
values. Next all the quasi—longitudinal velocities and
then all the quasi—shear velocities were adjusted together
to-their-respective ‘1limits. Finally ‘all the quasi- '
longitudinal velocities were increased while all the
guasi-shear were decreased, and thennvice-versa. From the

thirty sets of elastic constants so obteined the maximum
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‘deviation of each constant  from its initial value was

takenfas the experimental uncertainty, giving errors of

+ 2% Co,p t 7% C,, £ 20% " Cig t 3%

€11 12 Gzt

t 2% CGB

Cqyq t 2% Cy4 + 4%
'Uncertainties in the compliance cpnstants»and the technical
'moduli:were calculated by the same.methodf(theseAwill be
quoted where appropriate)

The degree of scatter of the points in Figures 6.14
and 6. 15 indicates that the errors in ‘the temperature -
dependences of each elastic constant are-somewhat less than
the uncertainties in their absolute values. This reflects
the relative accuracy of'the measurements of temperature
dependence of the'velocities (see Section 4.2.3). It was
found that the quality of the overall fit improved slightly
at lower ‘temperatures (see Table 6. 6) Over ‘the whole
range (1.5 to 295 K) the measured quantities Zi were each
predicted to be better than 1% Dby the elastic constants

btained ‘from the fitting procedure. - The velocities cal-
culated from the elastic constants agreed with each of

thoselmeasured to better than 1s.

6.1.4 Measurements of ultrasound attenuation

‘ In the course of the velocity measurements it was
found that at low megahertz frequencies (15 to 20 MHz) the._
attenuation of each of the modes appeared to be almost
independent of temperature. Measurements at higher
frequencies were made for the purelongitudinal and pure

shear,modes propagated~in_the"[0011 direction (using
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specimenfnumber 1). The‘end-faces offthe specimen were
accurately parallel, there was no tendency for mixed mode
propagation, and the echo trains obtained were near-
exponential at frequencies up to 750 MHz.‘ Measurements of
' longitudinal wave attenuation were made at this frequency., .
while shear wave attenuation was measured at 740 MHz. In
both.cases the Matec Attenuation comparator was‘used and
‘the attenuation recorded between 1.5 K and 295 K. From
1.5 K upAto iceftemperature no,change_in»the attenuation
ofteither mode was observed. Above ice temperature there -
was-a small increase in attenuation-—-believed to be due
to deterioratiOn of the bond. Figures’d.lS and 6.19 are
photographs of the longitudinal and shear echo trains at
4. 2 K“and 77 K. The exponential curve nas fitted to the
echo trains at 77 K and clearly in both cases it fits
equally well at 4.2 K. The measured attenuations of the
'tuo modes were 0.380 and 0.205 dB us l,»equivalent to
0.825 and 0.870 dB cm -1 respectively .'By consideration of
the uncertainty in fitting the calibrated exponential curve
to the echo pattern it was estimated that the maximum
change in attenuation between 4.2 K and . 77 K was less than
0.03 dB cm -1 (longitudinal) or 0. 06 dB cm -1 (shear).

‘e f_i The absorption of sound is often a factor which.
limits the high’ frequency performance of practical ultrasonic
devices (bulk or surface wave filters and delay lines,

.acousto-optic devices),l In_good quality dielectric |
.materials the absorption has in many cases been shown to
arise from an interactionAéf the ultrasound wave with the.

thermal phonon population. Recent attenuation measurements
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at 1 GHz in CaW’O4 have been reported to be in agreement
with the theory of such phonon-phonon interactions (Lewis
1972) " The precise nature of the interaction depends on
the relationship between the angular frequency of the ultra-
sound beam (w) and the relaxation time (1) of the thermal
phonons.i If w1>l (which is true at low temperatures when

T is long) the interaction. can be considered to be a

h microscopic process (Landau and Rumer~(l937), Maris (1971)).
| In;tnisaregime the attenuation is proportional to ™. When
wr%<l.(this holds at high temperatures when phonon |
scattering'is increased) the attenuation‘occurs by a
.procesS'knomn as Akhieser damping and:can;be calculated

bylanfexpressionv(MarisA1971) which infsimplified form is

. .2 2 , -
e = 22 g T “ztzp' nepers cm ! (6.5)
o 20 v° l+w?t |

where <f} is an averaged Gruneisen constant, C is the
'specific heat per unit volnme and T tne absolute temperatnre.
The phonon relaxation time is the mean free time between
collisions and can be related to the lattice thermal con-

ductivity (KT) by the kinetic theory expression

L .
E " Ky = eV L (6.6)
4 | ! : o ,
'where'G'is the Debye‘mean sound velocity. For the condition
wr<<l these equations give _ _ ‘ f; f" _
_ » 3 KT T <y> 2 2 o B ,A;l. ' -
e 20 v v L _

| Over the range of temperature for which»the thermal con-

ductivity is proportional»to p-l (see Section 2.4.4) the

attennation will be roughly‘temperature independent. Thus
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by meens’of equation 6.7 an estimate can be made of the
increaee in attenuation from that at low temperatures
(when'pnonon interaction effects are frozen out) to the
temperature indépendent valne. |
1, For CaW'O4 at room temperature the oensity is~

6. 120 étcm-a,the thermal conductivity KT is 0.04 watts cmnl K
The Debye mean sound velocity has been found to be
2. 75xlO5 cm s-l.and the value ‘of Yy can be taken as 1.1 by
avéragingvthe components YL and Yy ofvthe Gruneisen tensor
(see Seotion 6.2). For longitudinal wates (with velocity

v 2 4;563105 em s~ 1, frequency = 750 MHz) the expression
predicteian attenuation increase of md.B dB cm-l, and for
| shear waves (velocity = 2.3§x105 cm sfl,‘freqnency = 740 MHz)
and inorease of &5 dB cm-l. Such changes have not been
'obserVed here. At 1 GHz the reported'changes of ultrasound
attenuation (Lewis 1972) are somewhat larger (2.1 dB em_

for longitudinal waves and about three times this for the
shear), and for the longitudinal wave~are-in excess of

the Value.predicted by the theory; Thueethere ie,a conflict
between the experiﬁental resultS»reoorted here;.those given
by . Lewis (1972) .and the simplified. theory .Furtner experi-j
ments are needed— at frequencies in the microwave region
and higher than those possible with tne present system. |
- The calculations could be improved.if a more detailed

aseessment of the value of <w3 were poSSible. This requires

~ knowledge of the third order elastic.oonstents.

6.2  ELASTIC PROPERTIES OF CaWo,

6.2.1 Elastic moduli

The temperature dependences of the seven independent

-]




. for temperatures between 5 K and 295 K. The signs are
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components of the elastic stiffness tensor are shown in
FigureSGil4 and 6.15, and values at 25 K intervals are
'listed,in'Table 6.5. Below rocm temperature each of the
constants increases in magnitude, indicating the increase
offstiffness with falling'temperature that is found in most
crystalline materials. The»elastic constants have their
: maximum values at O K and approach these values with zero
slope. .The temperature dependence is free from evidence
offphase'transitions in agreement with specific heat
'(Lyon and Westrum 1968) and thermal expansion (Yates and
Bai&ey 1971) data.

d Knowledge of the elastic constants allows the
determination of the response of a single crystal to any
;applied stress system. The response to particular static
loads can be calculated directlg by using_the elastic
‘compliances (Sij).;~?alues-for Cawo4, conputed from the

stiffnesses by means of equation 3.33, are listed in Table 6.7

,significant.» Sll' 833, 544 and 566 are all positive;
thiswislrequired by the Born stability criteria. S, and -
S14 are both negative. These compliancesidescribe how a’
tensile stress applied in the X-direction leads to_tensile
strains in the Y[and:Z directions respectively. If the
material were isctropic, a-compressive stress in the X
'direction would be expected to lead to expansion in the Y -
' and Z directions. This expansion does. occur in Caw04, but
' the responses in the two directions are not equal. the .
expansion in the Y-direction is more than twice that in

the Z-direction. iThis may be deemed a consequence of the
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layered nature of the structure. -Sls'is positive (it
must-have the opposite‘sign t°'C16)' Thus an applied
tensile;stress in the XAdirection (oli.positive) induces
ahdecrease'in the angle between the +X and +Y axes (see
Figure 6.20).

‘:'Relationships between certain‘simple stresses and
.sﬁrains arelgiven.by the technical moduli (see Section 3.1.13).
The ?oung's modulus of a'crystal can be represented by a
surface} here cross sections of the CaWO4 surface have
been computed for applied tensile stresses in three major
crystallographic planes — the (00l1), (100) and (110)~
using_eguation 3.44 and a computer program listed in
Appendik 1. The cross-sections at 295 K are given in
Figure-dtzl. Computation:at a series of temperatures
_sh0wed no significant change of orientation dependence,
~ though the average Young s modulus does increase slightly
on cooling (see below). In the planes containing the 2
axis Young's modulus is‘comparativelj isotropic with a
makimum value in the Z direction. However in the XY plane -
therefare pronounced maxima and minima;along directionsA.
which coincide with the accidental=pure‘modeldirections.“
The ratio of the maximum Young's modulus in the XY plane
to the minimum value in this plane is about 2.1 at 295 K.
This anisotropy will be discussed further in Chapter 8 in
comparison with ‘other scheelites .

| Particularly important in assessing the interatomic
binding in a crystal are the bulk modulus (KV) the volume
compressibility (B ) and the linear compressibilities (8

and B,,). Values calculated at a series of temperatures

x'Y :
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between 1.5 K and 295 K by means of expressions 3.37,

3.39 and 3 ,40 are given in Table 6.8. Qver'the whole range

'of temperature By = 1.5 BXY' under an’ applied hydrostatic

pressure the crystal has an anisotropic response. It con-
tracts about 1% times as much in the Z direction as in
directions in the XY plane. This anisotropy is similar to
that observed inAthe thermal expansion (d“>a1) and confirms
thé‘suggestion (Deshpande and Suryanarayana 1969) that the
bindingtbetween the layerséof_the structure is_somewhat

weaker.than that within the layers. However it needs to

, be}emphasised that the layer structure of CaWO4 is not

eXCeSsiVely pronounced; much larger anisotropies of linedr
compressibility occur in, for example,indium bismuth,
arseniC~and graphite (Akgoz, Farley and'Saunders 1973).

The temperature dependence of the bulk modulus is

' plotted in Figure 6.22. It has the characteristic -shape

usually_found in crystalline-solids: a maximum value at
0 K approached with zero slope and approximately‘a p~1
dependence at higher temperatures (see Section 6.2.3).

Once the single crystal elastic constants of a

material are known it is: possible to predict with reasonable

accuracy, the elastic constants of a polycrystalline

aggregate of the material (Anderson 1965). The poly-
i

rystalline aggregate must have zero porosity and randomly

‘ oriented<grains. Then it can be assumed ‘that either the

strain”(Voigt'approximation) or the~stress (Reuss'approxima-A'

" tion) is uniform throughout each grain. . The two approaches

Yieldpupper and lower limits for the isotropic Young's,

bulk and shear moduli, given by
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ER =A5044(cll-c12)(c11+2c44)/
. 44 (8C 1%C ) +(Cy1=C1,) (Cq 42C, ) (6.8)
Kp = {(2sll+s33)+2(slz+2sl3)}“ (6.9)
GR = ”15/{4(2511+S33)'4(312+zs 143(25,,+5, )} - (6.10l
Ey = ._( 117C12%3C,,) (cll+2c12)/(2c11+3c12+c44) (6.11)
'KVA= {(2cll+c33)+2(c12+2c13)}/9 R (6.12)
Gy = {(zcll+c33) (C 12-2c13)+3(2c44+c66)} (6113)

b : : '
The averages of these Voigt and Reuss limits can usually
be'takehfas the values of the isotropic elastic constants
(Ahderson 1965). . For CaWO4 the temperature dependence of

these parameters is shown in Figure 6. 23

6.2.2 - The Debye temperature

"The Debye theory assumes a solid to be a non-dispersive,
isotrOpicAcontinuum. Phonons, the quanta of lattice vibra-
'ticns; are considered to travel~with'the”saﬁe velocity what-
ever‘their wavelength and‘propagation'yector. This velocity
isAtakencequal to the mean velccity cf sound in the material
and can be computed by integration cver the whole velocity
surface, or alternatively can be calculated to a good
approxiﬁatidn (Anderson 1963) frcm theiiSOtropic elastic
cohstants which'themselves are averages over all possible .
crystallographic directions. . The mean sound velocity is -
related to the isotropic bulk (K) and shear (G) moduli byj

the expressions

v, = {(K+ 4G/3) /o) . ~ (6.14)

v, = (G/p} Y | 1 (6.15)
1/ 1 2 }-1/3 - | N

v /i, 2 o : (6.16)

m {3<V13 vs3) . | .
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wbere'p is the crystal density. From'the‘elastic constants

and density extrapolated to absolute zero, this gives a

Debye'mean sound velocity in CaW‘O4 equal to 2.798xlO5 cm s-l.

The value falls with increasing temperature to 2.747x105 cm s-l‘
atT2951k, and is estimated to be accurate to $1%.

| . From the mean sound velocity and density, the
Debye temperature (e ) can then be calculated by the
expression: |

No 1/3

= b lnp © A
eD Tk 4T mM . Ym , (6.17)

where;hrand k are_Planck'sgand Boltzmann's constants
reSpectively, N is Avogadrofs number,‘and.M is the gram
formula mass” The theory treats the'solid as being com-
posed of a number of "vibrating cells."_ ‘The number of
these cells per formula unit is p and - the number of degrees
of freedom of each is n. In a monatomic lattice the values
‘of m and n are unambiguous (each atom is counted as a
vibrating cell) but in a polyatomic lattice or in a glass
(Anderson 1959) there may be more than'one choice of
vibrating cell. | | | ‘..A.
| ‘If the Debye distribution is taken to represent the -
entire phonon density of_states, thenieach atom must be
considered to be a vibrating unit. For CaW'O4 with
= 287. 9, p = 6 and n = 3, this gives a Debye temperaturej
value of 354 K at absolute zero. However as seen in .
Figure 2 the experimental heat capacity curve deviates |
considerably from the normalnsigmate shape_and as 1s often
the case“in polyatomic crystals it may be better to model
only part of the phoénon density of states by a Debye

' distribution, and to treat the excluded modes separately.
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’ .bptical modes usually have only a small variation
of freqnency (w) with wave vector (k) and often are better
represented by single frequency Einstein oscillators, since
the Debye dispersion relation (w~vk) does not apply. The

CaWO specific heat data has been treated in this way

4
(LYon and Westrum 1968). Group theoretical analysis by
Barker (1964) showed that for a CaW’O4 primitive cell (con-
taining two formula units and thus 12 atoms) the:. 36

vibrational degrees of freedom were distributed as follows:

- Number of
degrees of Type
. freedom
3 ~ Acoustical lattice
9 Optical lattice
6 ' Torsional oscillations of WO4 groups
18 'Internal' vibrations of WO, groups

InitiailysLyon and Westrum used Einstein functions with the
characteristic frequencies obtained fromvthe work of
Scott,(1968) to represent just the 24 degrees of freedom
associated with the torsional and internal vibrations of
the Wb% groups. The contributions of'these modes were
suﬁtracted from the total measured heat,capacity to
leavefa "lattice-only" heat'capacity, wnose variation with
temperature was found to be typical of a diatomic ‘ionic
solid.- The corresponding Debye temperature was calculated by
allowing (3+9)/2 =6 degrees of freedom'and two vibratingl
units per formula unit, and reported to be ~235 K = 10 K
at 0 K. Recently Yates and Bailey (1971), have analysed

the specific heat data_more rigorously., They converted the

. measured Cp values to the CQ values needed in the Debye
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theory by use of the expression

o sz'r _ ,
| 3 CP - CV = BV R (6.18)

in‘which C, and C;, are specific heats per unit volume, T

P v
iS‘absolute temperature, Bf is the volume compressibility
and B is the volume coefficient of thermal expansion. The

v
~11

bulk: modulus of CaMoO4 (7.95x10 dyn_cm -) was used since

1 dy'ncm"2

the value for CaWo, (found here to be 8.0 x 10
and very similar to that for CaMoO,,) was .not then known.
From'thefresulting CV values the variation of the effective
eD(dietonic lattice onlyf with temperatnre was calculated:
(see-FiQuree6.24). This effective Debye temperature can
be’calculated directly fron the mean souno velocity obtained
in this work. The‘value‘obtained is 246 K + 2 K at absolute
zero;andfdecreases with increasing temperatnre to 241 K at
295 K; :Thus the velocitf of»sound 8D (diatomic lattice'only)
agrees with the less accurate specific heat result of

264 K t 20 K (from Figure 6.24) only in the limit of very

low temperature. vThis is usually found to be the case

(Alers 1965). The o) (diatomic lattice only) obtained from
sound velocity measurements will therefore prédict the con-
tribution of the acoustical and optical lattice modes to -
the'total heat capacity oniy at very 1ow'temperatures

=, 2o x) B S

" - It may be preferable to represent Just the acoustical .
mode‘lettice vibrations hyja Debye distribution.: To do

: this Lyon and Westrum (19635 subtracted'eppropriate
Einstein'contributions (frequencies obteined from the work
of Barker (1964)‘end Porto_and Scott (i967))-for the six

optical lattice modes from:the'"lattice-only“ specific
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heat_to(give the "acoustical mode only",heat capacity,
and calculated the corresponding effective Debye temperature

(éb(aconstical mode only) by allowing 3 degrees of freedom
per primitive cell. The value so obtained was 155 K + 10 K
atgabsolute zero. From the Debye mean sonnd velocity
obtained‘here, taking 3 degrees of freedom per primitive
cell gives a eD(acoustical node only) equal to 155 K + 2 K
at zero kelvin and in good agreement with the specific heat.
value.- This result is also consistent with one obtained
from:spin-lattice.relaxation time measurements. The
temperature dependence of the spinelattice relaxation
time'inde doped CaWO4'has'been found-to_agree well with
the tneory of a Raman process (Kiel and Mims 1967) in the
temperature range 4 K to 8 K. To fit the theory to the
experimental data the Debye temperature was used as an
adjuStaBie parameter. From values of §C; 80, 100, 120,
140, 180 K much the best fit was obtained with a bebye
temperature of 140 K. The similarity=of this result to the
. aconstical-mode oniy op found here‘(lsstxi may be expected:
at_veryjlow temperatures acoustical phonons dominate the

phonon population.

: 652.37'Nonlinear elastic'properties

‘_ The discussion in Chapter 3 was restricted to linear
elasticity by the adoption of a 1inear relationship-—
'Hooke s ‘law — between stress and strain in a medium. 1In
real crystals Hooke's law does not hold‘exactly and
deviations which may be represented by_third and higher

. order eiastic constants are observed for large strains.
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The non-linearity is a consequence of=anharmonic terms
(i.e. terms of order higher than quadratic) in the crystal
potential energy and is the origin of many properties of
solids,including thermal expansion, the volume dependence
ofithe lattice vibration frequencies,'phonon interactions
and the temperature dependence of the elastic constants.
VThe volume dependence of the 1 h lattice vibration
frequenCy-(Q‘) can be expressed in terms of a parameter
Yy (= d(En(vi))/d(ln(V)) which is known as the Gruneisen
mode parameter and assumed to be constant (the quasi-
harmonic approximation) An average of these parameters
is defined by the expression _
| = Z"Yi Y o (6.19)

in which the Weighting factors (Ci) are_the relative con-
tributions of each mode to.the total'specific heat capacity
Cv.'~The,weighting factors depend on temperatnre and hence
-Y does too. By consideration of the,equation of state of"
a quasi-harmonic solid it can be shown that the Griineisen
parameter Y is important in relating the elastic properties
and the thermal expansion. If the solid is anisotropic vy
is direction dependent (Key 1967) and in ‘a uniaxial solid
is represented by a tensor with two components given by

;41':# {(c, +C12) al + C13 a"}:/pcéf; A - (6.20)

Yo = {2C;5 @y 4 Cyyay) /oCp o (6.21)
where CP»is the specific heat per unit mass at constant

stress, the Cij are adiabatic elastic constants and

“l(= aa) and ay (= ac) are the linear thermal expansion




- 143 -

coefficients. The temperature dependence of y, and vy for
CaWO4.has been calculated‘for the temperature range 30 to
295 K_using the elastic constant data of Table 6.5, the
specificiheat data of Lyon and Westrum.kl968), and thermal
expansion data of Yates and Bailley (1971). Fiéure 6.25
indicates that down to 100 'K the Gruneisen parameters are
similar in value and remain almost constant. Below 100 K
| both ylfand vy decrease, but YL does so rather more rapidly
and thedanisotropy Yn/Yl increases. Without thermal
expansion data at low temperatures it is’ not possible to
predict the limiting values at absolute zero.
The dependence of elastic constants on, temperature
is. also a consequence of the anharmonicity oq the crystal
potential energy. Lakkad (1971) has recently derived an
expression for the temperature dependence of elastic

constants by assuming a ‘linear chain, anharmonic oscillator

model~ofva Debye solid. The expression he obtained is

E = Eo.(l - LYF‘(T/GD)) "-" . : i6.22)

where Eé is the value of an elastic constant E at Zero
kelvin, eD is the Debye temperaturef 'L is a constant and

- F (T/8,) is the function

' ' s . 9. T :

‘F(T/SD) = 3(T/6D) ‘[ {x [enp(x) - 1]}dx - (6.23)
. o .

Good fits to the temperature dependences:of the elastic
constants.of certain metals (hakkad 197ll, and semi-
conductors (Cottam and Saunders 1973) ‘have been obtained.
Figure 6.22 indicates that the expression is also suitable

‘for representing the temperature dependence of the bulk
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modulus 9f CaW04. In the figure the éélid, dotted and
‘dashed lines are the fits obtained (using points at O K
and 295 K to find the constant L) for Debye temperature
values 155 K, 246 K and 354 K (see Section 6.2.2)
respeciively. Clearly the fit obtained using the
"aéodétiéal mode ohly" Debye temperature -(155 K) is much
the bes£§ This would seem to indicate“thét the acoustic
mode vibrations dominate the mean:displééeménts of the

atoms and thus the temperature variation of the bulk

modulus.



Table 6.1

-Preliminary measurement of ultrasonic velocities

in CaW0, at room temperature

4

!

Boule Specimen Thickness D;rectioh- vi+ Measured vel-

reference number (mm) cosines of ocities
r re ¢ . . -
mumber® S mmlre 0ob e eh
’ : ' Present Gerlich
work (1964)
142/ 1 7.06  0,0,1 v, 4.56 4.60
v, 2.34 2.34
ul/100 @ 2 10.10 1,0,0 . vy 2.36 2.35
v, 4.90 4.90
Vg - -
U1/110 3 8.755 27%,27%,0 v, 2.36 -
v,  4.92 4.89
Vg - -
143/ 4 9.0  0,27%,27% v, 455 4.48
 ( o , A ' ' | " Vli 2.83 -
143/Y 5 10.00 -1/2,3”/-__2,0 vy, 2.37 -
; ‘  . ; . | _ 3 Vi3 5.17 -
' V14 1.98 -

'* The first part of the reference number is that used by.
IRD Co: Ltd. to refer to the as-grown boule. The'letters'
or numbers‘afﬁer the obiique'line refer'to the portion of
the boule after initial cutting. '

t The°sﬁffices (1) refer to the modes:listed in Table 3.2




Table 6.2

'~Préliminary determination of the elastic

constants of Cawo4 at room temperature .

11
12

13

16 .

14.3
5.54
5.04

=2.21

C 12.8

.

33
Cai ;%40
Cgs | ’4.45

11 @?n cm

Unitszlo




Table 6.3

Ultrasound velocities in Cawo4 at 1.5 K and 295 K

i

Boule_ '»Specimen Thickness

Direction vi* Measured vel-
reference. number (mm) cosines of ~ ocities
number* normal to &105 m s-l)
e end-faces - ¢
: S 1.5 K 295 K
142/C 1 7.065 0,0,1 vy 4.64 4.56
0,0,1 v, 2.39  2.34
b
ul/110 © 3 8.733 - 2’*,2'5,0;' v, 4.99  4.89
143/ 4 8.688 o,2'*,2*5je vg 4.57 4.49
' ' -5 =%
0,2 ,2A Vio 2.37 2.32
o,2'5,2f*3:_ v, 2.87 - 2.83
143/Y 5 7.081  1/2,3%/2,0 vy3 5-23 - 5.15
| 1/2,3%/2,0 vy, 1.98  1.96
143/c 6 5.050  cos:(21.5%), vy, 3.17 3.1l

sin(21.5°),0

{

*'The“first part of the reference numbeffis that used by
IRD ‘Co. Ltd. to refer to the as-grown boule.
. or numbers after the obligue line refer to the portion of
the boule after initial cutting.

The letters

+ The suffices (1) refer to the modes listed in Table 3.2-



Table 6.4

. Equivalent solutions found by éomputer least-
~ mean squares fit to the CaW0, ultrasound
velocity data at room temperature.

C,. C C C; C SUMSQ

11 ‘1 13 16 33 a4 Ces

14.6 . 6.26  3.92 -1.52 1;.741  $.35 3.87  0.00013
14.5;' 6.26 -10.62 -1.92 12.74 :‘3.35 3.87  0.00013
11;54 -3.86  3.92 =-5.20 1;.74-<A3;35 6.92  0.00013
;i,sﬁ -3.86 =-10.62 =-5.20 ig.74i' é.as 6.92 0.00013

. Units : lO11 dyn ‘c'm-;




Table . 6.5

66

Temperature dependence of C, 3 of CaWo,

.. 15K 25 K 50 K 75 K 100 K
c,;  15.23 15.23 15.21 15.16 15.10
c,, 6.5 6.52 6.51 6.50 6.48
C,; - 4.08 4.07 4.06 4.04 4.02
Cig . -2.04 -2.04 =2.04 -2.04 -2.03
Cys 13.24 13.24 13.22 13.20 13.16
C,y  3.52 3.52 . 3.52 3.51 3.49

66 - 4.03 4.03 4.02 4.01 4.00

r g * | ' | -

125 K 150 K 175 K 200 K 225 K
Cyq 15.03 14.96 14.88 14.81 14.74
Cip  6.46 6.43 6.34 6.36 6.32
€y 4.00 3.99 3.98 3.97 3.95
Cijg  =2.02  -2.00 -1.99 ~1.97 -1.96
C;3 © 13.11  13.07  13.01  12.96  12.90
Cqq = 3.48 3.46 3.44 3.42 3.40
Ceg -  3.98 3.97 3.95 3.93 3.91
250 K 275 K 295 K
Cjy . 14.67 14.61 4.5
C., = 6.28 6.24 6.26 UNITS :
C,p . 3.94 3.95 3.92 | ) yn cm

B o - - or 10%° § ™2
C =1.94 -1.93 - =1.92 ; :
C33 ~ 12.85 12.79 12.74
C,q 338 3.36 3.35
C 3.89 3.87 3.87




6.6

SUMSQ =

- \ Table
4 = 295 K . T = 200 K
| ‘Measuéed Calculated Measured Calculated

'ﬁ_ - 2.08x10!!  2,08x10!! 2.11x10tt  2.11x10!
z, 5.484101°  5.48x10% 5.57%10'0  5.57x10
z,  _2.44€1011 2.44x10!! 2.47x10 - 2.47x10!
2, 2.39x10!!  2.39x10!! 2.43x10'0  2.43x10
Z - 3.34x10'!  3.37x10!! 3'.39x1011 ~ 3.42x10!
Z, . 4.98x1022  4.98x10%2 5.12x1022  5.12x107
Z,;  2.65x10'l 2.63xl0'! 2.67x10*"  2.67x10!
zs  -3.83x10'% 3.83x10'0 3.84x1010  3,84x10'0
AP 9.64x1010  9.65x1010 9.82x10!%  9.81x10"

. suMsQ = 0.00013 SUMSQ = 0.00007

1 = 100 K T = 200 K -
ﬁeﬁsured' Calculated 'Megéu;ed Calculated

1 “ 2.14x10'!  2.14x101! 2.15x10'1  2.15x10'1

,  5.68x1010 5.68x10'0 5.73;&101Q 5.72x100
7, 2.52x1011  2,51x101! 2.54x1011 | 2.53x10!!

, 2.47x1011 2.47x101! 2.49x1011  2.48x10!

o 3.45x1011 3.47x10%} 3;4§xioll 3.50x10}!
zloA 5;28x1022 5.28x1022 . 5.37x1022 5.37x10%2
z, 2.71x10'! 2.72x10}} 2.73x1011  2.74x10%
z. - 3.87x101°  3.87x1010 ,-3.9?x101° ©3.92x10%0-

. fi}doxidll"i.ogxloll‘ L.oixio! ' 1.01x10!!

| .SUMSQ: = 0.00007 0.00005

Units of:_'Zi (1

Units qf Zi (i

1,2,4,7,9,13,15,16) are cm’ s’

10)~are'cm4 s

~4
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Table 6.7
'I_'eniperature dependence of S 13 of Cawo‘1
1.5 K 25 K 50K 75K 100 K
1f 410.12 +10.13 +10.15  +10.19 +10.23
s, -1.60 -1.60 - 1.60 = 1.59 - 1.60
s, +7.62 +7.63  +7.66 ~ +7.70  +7.73
S5,  + 8.54 + 8.54 + 8.54 +.8.58 + 8.57
S,4  +28.4 +.28.4 +28.4 +28.5 +28.6
Sgg | +32.5  +32.5 $.32.6  +32.7 +32.8
a 125 K 150 K- 175 K 200 K - 225 K
s;;  +10.28  +10.32 +10.36 +10.39 '+10. 42
s,, - 5.3 =505 =-505 =506 -5.06
;3 - 1.60 -1.61 -1.63 - 1.63 = 1.64
S1g *7.75  +1.76 +17.76 -+ 17.75  + 1.75
S, +8.60  +8.64 + 8.68 + 8.72 + 8.76
S,  +28.8 - +28.9 +29.1 +29.3 +29.4
Sgg  +32.9 +33.0 +33.1 433.2 +33.3
250 K 375 K 295 K ERROR UNITS
s;;  +10.45 41048 +10.49  * 2% 1o-13
s, -5.05  =-504 =507 &4 em?® ayn!
:-._ o S or.
S;3 - 1.66 - 1.67 - 1.66 +208 1012
S16 .. -+ 7.74 +7.74 + 7,71 t 4% mzN-l-.
33 + 8.80 + 8.85 + 8.87 + 5%
e - +29.6 +29.7 . +29.8 2%
s +33.4 +33.6 +33.5 '+ 6%




Table 6.8

. 4 .
~ Temperature dependence of bulk modulus, volume
‘and linear compressibilities from 1.5 K to 295 K
~for CaWo, single crystals. o

ﬁ": 'Bulk Modulus Compressibiiities
: Volume - - Linear
| Temp,' KV - By | éz-" Byy
1.5 7.981 12.53 5.34 '3.60
25 7.977 12.5¢ . 5.34 3.60
50 7.963 12.56 5.35 3,60
75 7.939 '12.60 45.35, 3.62
100 7.909 12.64 isgéé 3.63
125 - 7.875  12.70 5.40  3.65
150 7.843 12.75  5.42 3.67
175 7.813 12.80  5.43 3.69
200 17.781 12.85 5.45 3.70
225 7.743 12,92 5.47 - 3.72
S 250 o 7.711 <12.97;A | 5;495A 3,74
275 7.687 - 13.00  5.50 3475
205 7.664  13.05 5.54 3.75
CError(s) 4 x4 " s6 +4

Units;  lolldyn cm-2 _ -10- em’ dyn-
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Components of particle displacement for:ptopééation direction n

(cosings),o, 2-5, P )
 set P : . -set @
- " -2 " -2 .
’(CIBV- 3,92x10 dyn cm ) (C13 s -10.62x10° dyn cm )
Y, -'0.0§4 ’ ou = 0{984
u, = 0.752 . ‘ uz's 0.752
S Uy = 0.653 . ' . u3---0.653
~ i.e. Set P predicts mode  1i.e. Set Q predicts mode is
is quasi-longitudinal . - quasi-shear. ‘ .

(as shown in the figure)

FIGURE,S.i3: -Disﬁinctién between solution seﬁé P and Q by.
computation of the eigenvectors .of the fastest

mode (propagation in the directioﬁ.o, 2-5, 2-5).




-3

ELASTIC STIFFNESS CONSTANTS, UNITS:IO dyne cm

o o . =P S —_—. e

|32L ¢ -
Ca3
13- F ’ )
- 130F ° -
129} . -
,|2'BJ" : o
- —
o : -
3s0r . .
1 Cas :
34s} ' :
3-40} -
3’-35#- o "
o) 50 oo ~ iso - 200 250

TEMPERATURE, °K

FIGURE 6.14: Temperature dependence of the elastic stiffness
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FIGUSE,6.15= ‘Temperature dependence of the elastic stiffness

- constants cll' C12' C13, c66 gnd -C16 of Cawo4

single crystals.
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FIGURE 6.20: To show the sense of the reépénse‘of a

single crystai of CaWo, to.a tensile stress

4 ~
-3(all,+ ve) applied in the X-direction.
S16 (= 281112).13 positive, and the angle

between the +X and +Y,axe§'dec;¢ases (612' + ve)., -
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FIGURE 6.22:

100 200 . 300
TEMPERATURE , K

Temperature dependence of bulk modulus of Caw04.
Solid points (@) are experimental data.. :
The lineg ==--, <-... and are Lakkad fits
using effective Debye temperature values of

354 K, 246 X, and 155 K respectively. The fit
obtained using the "acoustical-mode only" .
Debye temperature (155 K) is clearly the best

of the three.
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CHAPTER 7

' RELATED EXPERIMENTS ON OTHER SCHEELITE

STRUCTURE CRYSTALS

j koom temperature valueé of thé:elastic con-
stéﬂté_of several scheelite structﬁfe'crystals have
nowfbéén measured (Alton and Barlow (i§67)} Wachtmann
et é;:(l968),.Coquin et al (1971), Chﬁnj and Li |
(1971 a;b), To provide aibasis for comparison of the
elaéfic properties 6f Ehe.differeht géheelites with
thosevbf CaWo, the reportéd data ha?é'ﬁeen éarefully
éxamined and reassessed. . Soﬁe furth;rfexperimental

work ¢n~SrMoo4 anvabMoOA'has been undertaken.
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7.1 ° CALCIUM MOLYBDATE

-~ The elastic constants of CaMoO, were first deter-
' mined'hy:Alton and Barlow‘(l967).by an'ultrasonic phase
comparison technique at 230 MHz. These workers measured
the room temperature velocities of the modes numbered
vy to v14 in Table 3.2 and obtained the data reproduced
here in Table 7.1. The fourteen equations relating these
velocities to the elastic constants do not have a purely
.analytical solution, but combine (see Table 1t of Alton
and Barlow (1967)) to form a quartic which must be solved
numerically. Corresponding to the four roots of the-
'quartic.there are four equivalent solution sets to the
rvelocity data. For CaMoO, one solutionfset could be elim-
inated*because it did not obey the Borndcriteria for crystal
: stability, and from the other three Alton and Barlow chose
the- set which predicted the polarisation vectors of the.
modes v4 and Ve to be most nearly pure and concluded that
the elastic constants had - the values given here in Table 7.2a.
| o ' The minimisation: technique employed in Chapter 6
to find elastic constants from ultrasound velocity measure-
ments gives the set of constants which yield the best
overall fit to an overdetermined velocity set. Using this
technique the CaMoO4 elastic constants.have been reassessed,
, giving the values listed in Table 7. 2b.‘lIt was found that
the parameter SUMSQ — a measure of the quality of the over-
all fit 'of the elastic constant solution}set.to ‘the measured,'
velocity_set — was reduced from 0.0dddlc(the~value found -
t This table contains some typographical errors. The last
two lines of the right hand column should read
”"c33/4 + 5c44/4 + A/2 + B'/4" and "cig + B' + D' /8 + 3%F/2"

respectively.
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using'the data of Table 7.2a as a starting point for the
search) to 0.00009 after 501 cycles of the minimisation
procedure. This small value of SUMSQ is an indication of
theiuery good internal consistency in Alton and Barlow's
measurements, a consistency which is4also apparent from
theuencellent agreement in the values of Cll + C66
obtained by summing the sguares of the<§elocities of the
quasi longitudinal and quasi- shear modes for the different
propagation directions in the (001l) plane that were
employed (see Table 7.3).‘ Values of the compliances, the
bulk modulus and the linear compressibilities calculated
.from‘the elastic constants are given infTable 7.2b. Cross-
sections of the velocity surfaces and of the Young's
modulus surface have been computed; these are presented

- in Figures7.1 and>7.2.. Computed values;of the deviation
- of energy flux Vector,‘and~quasi—longitudinal particle
'displacement vector from the propagation direction for modes
propagated in the XY plane are given in Figure 7.3.

f More'recently the elastic constants of CaMoO4~have
been measured‘by Wachtmannet al (1968)-using resohance
methods; These workers measured the Youngls and”torsionalr
moduli of 21 rod specimens of different. orientations, and
found the elastic compliances (S ) by a least squares fit.
In the crystals studied the sense of the Z axis'—-defined
| Ain accordance with the convention outlined here in |
Section 2. l- had been found by the x-ray method of
dFarabaugh et al (1966) and therefore the signs of the
elastic constants C16 and SlG could be determined. 816 was
found to be positive, and C16 to be negative The basic

agreement between the elastic constant data from the two
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sources indicates that the choice of'solution set made

by Alton and Barlow was indeed correct; }Both methods of
measurement are capable of giving verypaccurate values
for.the directly determined stiffnessessor compliances,
but in'each case. the constants obtainéd only from combina-
tions of many measurements are subject to relatively large
uncertainties. The difference in the signs of C16 and S 16
found by Wachtmam et al and Alton and Barlow indicates
that the arbitrary choice of Z axis made by the latter

workers was opposite to that defined here as the conventional.

7.2 -_  STRONTIUM MOLYBDATE
"4The first deternination of the.room temperature

elastic constants of SrMoO4 was reported by Chung and Li
(l97la; l97lb) These workers used pulse superposition at
~45 MHz to measure the velocities of " the seventeen modes
-listed in Table 7.4 and ‘obtained the values given there.
From this measured data set the elastic constants were
obtained by an analytical solution method .Details of the ;
‘method of solution ‘are given by Chung and Li (197lb), {
expressions are obtained for each constant in terms :of the
'measured velocities. ‘The elastic constants which were

thus determined are listed in Table 7 5

In the course of the present work it became.apparent
that there were incon51stencies in the velocity data
-'reported in the above study. It was . stated earlier
(Section 3.2.3 of this thesis) that- there is a useful
- cross- check on the measured velocities’ of modes propagated

in the XY plane of tetragonal crystals:” for all such
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' propagation directions the sum of the squares of the wave
.velocities of the quasi- longitudinal and quasi- shear modes,
multiplied by the crystal density must egual Cll + C66'f
This rule is not obeyed'by the publishedlvelocities (see
Tablel7;6)-;-the equality does not hold within the bounds

permitted by the possible experimental error (z* 4%).

A 7.2.1 - Experimental study'of SrMoO4'

-To discover the origin of the inconsistencies and
.to proyide a corrected set of elastic constants further
-measurements of ultrasonic velocities in SrMoO4 were required.
Dr. Chung very kindly offered the loan of his spec1mens,
and - thus made it possible for the measurements reported .
;here,to be made. A systematic experimental study has been
conducted to find the cause of the errors, to find the
correct values of the elastic constants and to determine
the signs of the constants C16 and 816

: :: The specimens were those used in Chung and Li's

.original work. They had been cut from boules grown at the
National Bureau of Standards to yieldfrectangular parallel-
opiﬁsds,with.endbfacesnormal'to.thefrequired propagation
directions.‘ They were nominally pure;‘colourless and had
the dimen51ons given in Table 7 7. Laue back reflection
| photographs were obtained using 40 kV radiation from a Cu
target,_ spots were sharp and no splitting was apparent.v
vThe photographs showed the pseudo ditetragonal symmetry
'also observed in CaWO4 . It was confirmed that each
.specimen was monocrystalline. The orientations were checked

by back reflection techniques and found to. be within +1° of
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the directions specified by Chung andtLi,and listed here
in Teble 7.4. One possible cause of'the'inconsistencies
in the published velocity data -gross misorientation of
some of the specimens — was thus excluded

The original work had not taken .account of the
sense of the 2 axis in the crystal specimens, and therefore
could not have given the signs of the constants C16 and

S Only in samples E and F (each cut to yield propaga-

16"
tion‘directions in the XY plane, GOo‘apart and 30° on either
side of the X axis) do the sound velccities'depend on the
signsfbf these constants, and thus on;the,sense of the 2
axisg:vIt was possible to orient these'SfMoO4 samples
uniqﬁely by the x-ray.methcd of Fafabaugh et al (1966);
cleafvintensity differences were obsefved-between pairs of
spots thz) and (khg) and were compared with intensity
'differences predicted by nsing the knewn atomic coordinates
for SrMOO4 (see Table 2.1)‘and the structure factor equations
for the I41/a space group of the scheelite structure.

- The structure factor (F) is given by (International

Tables of x-ray Crystallography 1952): .

: PN . ,-‘__ - . g . . 2 < x, B ) 2 % R
F(hkl) f{[ frA?] + [ frBr]- }p (7.1)
where £ are, the atomic scattering factors )' '

‘A Gr cos k2k+2) )

r =
) - 2k+2
S r : +
and . . 'G-r = ,8[cosz 2"(_1_1_4—_121&] E:os 2n.(hx+ky)cos 2w (lz-zg 2)

+ cos 2n(hy-kx)cos 27 Zz k+9]
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For SrMoO4 the summations are taken over{the three typesh
of atom present. Coordinates X 0 Yoo z,. are the atomic
coordinates of any one of the equivalent positions at which
a;particular atom is sited. The expressions for Ar and B
are obtained by summing ‘over all the equivalent positions
in a unit cell. In the experimental 51tuation where an
x—ray beam directed parallel to the Z axis is normally
1ncident on a flat crystal face, the relative inten51ties
of_a<pair of spots (hkg; kh2) are predicted directly by
the ratio of the squares of the structure factors for the
two reflections.' In such a case the absorption, Lorentz*
and polarisation corrections are the same for the pair of
reflections. . »

Farabaugh et'al (1966) found for CaMoO4 that the
biggest differences of intensity were: observed in the pairs
(1,3,18), (3,1,18), (1,2,11), (2,1,11), (L,2,13),. (2 l 13);
(2,1,15), (3,2,15). The relative intensities. of these pairs
were tberefore calculated for SrMoO,. -Since the atomic
_scattering factors (fr)'are themselves functions of the
Bragg'angle (6) and the x-ray wavelength'(k), it was first
necessarv to .calculate the interplanar spacing (d)
'correspondlng to the reflections listed above. The scattering
factors are tabulated (International Tables for X-ray
.lCrystallography 1952) for different atoms as functions of
5%?3 (equal to l/2d by the Bragg law) Appropriate values
.of f can therefore be obtained by interpolation, and the
relative values of |F| can be computed from equation (7.1).

A programme written for this purposefislincluded in

Appendix I.
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The computer4programme was first checked by
repeating the calculations of Farabaugh'et al (1966) for
CaMoO4, u51ng in turn three different sets of atomic
coordinates for the oxygen atoms, namely (i) those for

CaMoO determined by Sillen and Nylander (1943), (ii) those

4
for CaWwO, found by Zalkin and Templeton (1964) and

4
(iii)dthose found by Glirmen et al (1971) in their recent
onEutronidiffraction study of CaMoO4r(see.Table 2.1).. It
Was,found that the intensity differences predicted by |
set"ki),did not completely agree'with those which were
obseryed by farabaugh et'alA(1966) whereas'those predicted
.by sets (i1) and (1ii) &id. o
'. For SrMoO4, using the oxygen atomic coordinates

determined for this material by neutron diffraction (Girmen
et al- 1971) it was calculated that the intensity differences
(T (3, l 18) < I(1, 3 18), I(2 1,13) > I(l 2,13), I(2 1, ll) >
I(1,2 ll), I(3,2,15 < I(2 3,15)) should be similar to those
which are seen for CaMoO4 The sense of the Z axis which
.emerged from an {001} face on which an x—ray beam was
normallywincident could therefore be identified by comparison'
.of the observed intensity-differencesrwith-those4predicted
by the calculation In this way, samble E was found to
have an orientation 35/2, 1/2 o} while sample F was 1/2,
”/2, 0.
. ' Ultrasound velocities were then remeasured by the
' single ended pulse echo technique at 15 MHz using 5 mm
diameter quartz transducers -Dow re51n 276-V9 proved to
be a satisfactory bond at ‘room temperature for both X-cut

and.Y%cut transducers. With this bonding material it was

‘possible to slide the transducer to different positions on
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the “endffaces“ of the specimen; transit times were
measured for different transducer-positions. The velocities
of the modes numbered vl;-vz, Vyr V4 yGi Vor Voo Vigr Vip4
viz,.vi3, Vigr Vg and Vll were found to agree within the
combined_experimental errors with those reported previously
(see Table 7.4), but for the quasi-shearvmodes numbered
'vg, védéﬁa Vg it was found that reproducible measurements
of transit times could not at first be:obtained. The
sampleS*B, C and E used for measuring-these velocities had
each been cut as shown in Figure 7.4 so. that the shortest
edge of the parallelopiped was parallel to the [(001]
direction, the longest edge was parallel to the propagation
: direction n, ., n,, O used in the initial measurements and
the third edge was parallel to the direction =N,, Ny, 0
(equivalent by the fourfold symmetry to nl, N, 0). For
4.each of_the samples B, C and E it was- found that for
different positions of Y-cut transducers on the smallest
end-faces, different sets of echo patterns with different
transit times could be observed. The magnitude of the
'energy flux deviation which had beentencountered in CaWO4
(see‘Figure 6.17) for propagation of'quasi-shear modes in
the XY plane suggested that these different echo patterns
might have arisen due to the ultrasound beam 1mpinging on
the sample walls, suffering mode’ conversion and finding
41tS way back to the transducer by various different routes.
Indeed the geometry of the samples was such that an energy‘
flux.deviation greater than about 20 was bound to give N

riselto:wall reflections if 5 mm diameter transducers were

used.
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Transducer/sample configurations were then
devised so as to allow for such large energy flux devia-
tions;' This was poss1ble without re-cutting the specimens.

Quasi-shear waves were excited by bonding transducers to

| the, long and narrow faces of the three ‘specimens. By

| positioning the transducerstowards the appropriate ends

of such.faces the energy flux deviations could_be accom-
modatedg as shown in Figure 7.5. Indeed_experiments using
separate transmitting and receiving transducers showed
that‘only for a position of the transmitter which accom-
modatedythe relevant deviation of energy flux was it not
possible to detect the ultrasound beam with transducers
sited ‘on the side-walls (the ends of: the parallelopiped)

of the.sample, Reproducible values of the velocitie54v5,
Vg and.vl4'were thus obtained. Theseyvalues (see Table 7.4)
_were quite different, and in fact somewhat larger.than
thoSe‘reported by Chung and Li (1971). - The reassessed
velocities were found to give good agreementlfor the cross-

checklOn the value of Cll + C66 (Table 7.6).

7.2;2] -Corrected set of elastic constants
‘Elastic constants were then obtained from the
velocities of all seventeen modes by use of the least--

AsquareS‘minimisation procedure ‘The velocities used were

Vi’ Vz' V31 Vi Vgr Vqu Vgr Vigr Vi’ Vlz' V13' Vis Vygr
v17 as measured preViously by pulse. superposition (Chung
and.Li 197lb) and the velocities v, v8..and_v14 reassessed
| heregby the simple pulse echo method. - The density value

p =.4.54 g cm-3 was used. A good fit was obtained; after
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501 cycles SUMSQ had the value 0.0036}3_Velocities calcu=
latedhfrom the elastic constants which were obtained agreed
with  the measured velocities to within * 2%. By using
drfferent starting values of Cij for‘the search procedure
it Was.possible to obtain four different, equivalent
sdlutions. In the same nay;as was used i’or:.CaWO4 (see
Section .6.1.2 ‘all but one of these wer'e eliminated. The
values of the elastic constants obtained, with the cor-
responding compliances and compressibilities are given in
Tabie 7f5' The large discrepancies between the values
reported by Chung and'hi (1971a, b) for C16' C66 and some
of the ‘derived constants and the' values found here are
1mmediately apparent. This present work has allowed the

' signs’ofethe constants C16 and 816 to be determined for
the conventional sense of the Z axis. i916 is negative and

S is_p051tive. The signs of these constants are therefore

16
the same as those found for CaWO4 here ‘and for CaMoO4

(Wachtmann.et al 1968).

:Cross sections of the velocity‘surfaces and of the
Young 's modulus surface-—-each computed as described in
Section 6.6 from the new set of elastic constants-— are
presented in Figurq;7.6 and 7.7. From'the elastic con-
_ stants‘the energy flux direction of any mode can be found.
Knowledge of the energy flux directions affords an immediate
check on the validity of the present’ experiments and on
the’ conclusions drawn as to the cause of the inconsistencies
in the original work. For the modes of interest here —
the guasi-longitudinal and‘quasi—shear‘waves propagated

in the (001) plane — the energy flux vector lies in that
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plane but may deviate from the . propagation direction
Computed values of this deviation, along with the deviation
of the particle displacement vector,_are shown in Figure 7.8.
The energy flux vector for the quasi;longitudinal mode is
never far from the propagation direction, the maximum |
deviation being +13°, However for the quasi -shear mode
.the‘deviation can be much greater: indeed for the propaga-
tion'directions 1,0,0; 2-%,2_%,0; 35/2}1/2,0 (modes Ve
Vg and v14)‘it is +34°, ?370, and -34° respectively. These
deviations, though not so large as those found in CaWO4
(Figure 6 17) were bound to cause wall reflections in the
original transducer/sample configurations employed to find

and v 4’ buti they do not cause the ultrasound beam

Vs Vg 1
to impinge on the sample walls in the new configurations
’used here. -It is also clear now why measurements on
1sample F presented<much less difficulty; ’the propagation
direction -1/2, 3%/2 0 — coincides almost exactly with the

accidental pure mode direction at 60 15 to the +X axis.

-

'i.zﬁsﬁ James' analysis of Chung and:Li's original'velocity
‘ During the later stages of the'experimental work
on SrMoO4 described in Section 7.2. l, a new analysis of |
Chung and Li's (1971b) ‘velocity data was published
(James 1972) James noticed the indonsistencies (see :
Table 7 6) in the velocity data reported by Chung and Li
'(197lb) and observed that they are associated with-measure-

-ment of the velocities of impure modes propagated in the

XY plane. In view of the difficulties reported by
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" Gerlich (1964) and ourselves (Farley and Saunders 1971),
in exciting the quasi-shear modes for.the(lOOland 2-%,2_%,0
directions of propagation, James suggested that it was
plausihle that Chung and Li's measurements of the quasi-
shear'mode velocities Ver Vgr Vi and'vl7,were in error.

- The analytical solution method devised by Chung
and Li to calculate the elastic constants cannot be used
unless all seventeen velocities are hnown; However, James

Obtained the elastic constants by usingxour SUMSQ minimisa-

tion technique to fit the constants to the thirteen velocities

V1 Vé' Vyr Vg V5'1V7' Vi Vigr Vi1v Vig: i3+ Vis 3md Vg
the quasi-shear veloc1ties Ver Vgr v14 and Vi7 being
completely omitted from the fitting procedure. As must be
expected in the light of our experimental results above
(Section 7.2.2) a good fit was obtained, with a small value
of SUMSQ (equal to 0.00196) indicating the internal con-
51stency of the thirteen veloc1ties.‘ The elastic stiffness
constants found are listed in Table 7. 5 they are in good
agreement with the values found herer |

| :In conclusion it should be remarked that our
experimental work of Section 7.2.1 provides the only complete
Justification for James' decision to choose to omit the
velocities of quasi-shear modes propagated in the XY~plane
from the least’ squares fitting procedure In fact the
measurement of the veloc1ty V7 (the velocity ‘of the quasi-

"shear mode propagated in the 1/2,3 /2 O direction and equal

to 2.l7.x lO5 cm s_l) was correct and need not have been

omitted.
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7.3  LEAD MOLYBDATE

- The elastic constants of single crystal PbMoO4
have been measured by Coquin et al (197ii during a study
of physical properties relevant to the use of the material
in aconsto—optic device applications. -Eight velocities,'
listedAin'Table 7.8 were measured by the nltrasonic pulse
- echo technique. The constants C33 and C44 were calculated
directly,”and the others found by an iterative method. The
| values obtained are given in Table 7.9.° Although Coquin |
et al were fully aware that signs of the7constants Cls-and

S depended on the choice of the sense of the Z axis with

16
resoect_to the crystal structure -—thedchoice also affected
the signs of certain photoeiastic constants which they
measured — they do not appear to havedknown of the work of
Wachtmann et al (1968) on CaMoO4. Theyvstate that "In the
absence'of a convention for selecting.the positive sense of
- axes for non- piezoelectric crystals they will somewhat
arbitratily chose +2Z such that the: elastic constant C16 ts
positive." The crystals were then-oriented with respect

to this "convention“ by sound velocity measurements. The
sign qnoted for C16 was thus referred.to;a completely
arbitrary sense of 2 axis whose relationship to the crystal
structure was n%t determined. On the basis of this data
alone comparison of the orientation dependence of the
elastic behav1our of. PbMoO4 with that of other scheelite
materials is not possible, and further experlments have been
_necessary. Details are given.in Section_5.3.lr

)Following Coquin et al (1971) there have been

studies —referred to in Section 2.2 —of the optical and
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crystalline perfection of PbMoO4 and of the anisotropy of

the acoustic wave velocities in the material (Namikata and

H

Esashi (1972), Esashi and Namikata (1972)).. It was repcrted o

that etch-pits, produced on (0O01) plane eurfaces by
immersionAin a 5% aqueous solution of caustic soda at room
temperature for 4 to 5 minutes, were équare but had sides
whichfwere oriented at angles of about 309 and 60° to the
<100> cryetallographic axes. By relating the orientation
of the etch-pits on a particular specimen to the anisotropy
of'ultrasound velocities, Namikata and Esashi were able to
relate the etch-pit orientatlon to the arbitrary sense of .
Z axis chosen to make C16 positive. It appears that the
edges of the etch-pits were very nearly parallel to the
directions in the XY plane for which theiquasi—shear mode
velocity was a minimum. In the second beper (Esashi and
Namikata 1972) it ie suggestea that the orientation of the

etch-pits "may be related with the tetragonal structure of

in PbMoO

MoO and especially with the Mo-O-Mo chain."

4 4
This suggestion cannot be substantiated unless the relaticn-
ship of the Z axis to the crystalsstructhre,is known.
Etching experimente‘carried out here.aretreported in the
.next-section;f o

i
1

7.3.1 . Experimental stﬁdies:of PbMoO,’ single crystals

!
’

"h‘Experimentq‘have been carried:out to find the sense
ofhthe;Z axis in a single crystai of PbﬁoO4 and then to
determihe the signe of thelelastic constants C16 and SlG‘
.The etch pit orientation on faces normal to the Z axis,

and its relationship to the atomic arrangement have been

studied;
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o A boule of Czochralski grown PbMoO4 doped with
0.05 at%'gadolinium was purchased from‘lRD Co. Ltd.,
4 Was required because the spin’
resonance method of locating the 2 axis—— devised in the
present work on CaW04-—-was,preferred to the x-ray intensities
method in view of the difficulties noted by Farabaugh et al
(1966) The boule had been air-annealed for ten hours and
was slightly yellow in colour on the outside, but colourless
within. Laue photographs, which exhibited the pseudo- '
ditetragonal symmetry observed in other scheelites, were
3 used to locate the [00l], <lOO> and <llO> directions, the
.'latter two being distinguished by comparison with similar
photographs of CaWO4. The,magnetic axes in the XY plane
were located using the method.described-in Section 5.1.3 by
finding the extremes of the 33.8 GHz resonance spectrum
which was’ readily observable at room temperature with a
specimen 4 mm by 3.5 mm by 2.5 mm. The magnetic axes were
found to lie at an angle of 8. 50 1 0. 5 ‘to the crystallo-
graphiC-<lOO> axesT. The-agreement of this measurement
- with the value of 8°55' calculated (Section.z 2) from the
‘ oxygen coordinates determined by Leciejeiwicz (1965) attests
to the validity of the method. By reference to Figure 2.6
the sense of the conventional 7 axis in the specimen and in-

the boule from which it had been cut could readily be

: determined.

* The experiment has been repeated by observation of the.
‘X-band resonance spectrum at room. temperature (J. Hodgson,

| private communication) Using a simple microwave bridge
.spectrometer with crystal-video detection and 50 Hz field:
modulation the magnetic axes were found to make angles of

lQ.-i2A with the <100> axes.
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(a) f‘ :UltraSOnics experiments "d' y

: hn ultrasonic sample was cut*from the boule to
yleld- end-faces which were normal to a ‘direction defined
by the cosines 1/2, 3%/2 0. This particular direction was
chosen because it was one of two directions at 30 on either
.side of’ the <100> axes in the XY plane for which velocity
measurements were made by Coquin et al (1971), and a
'directionnin which the velocities of the impure modes are
dependent on the sign of C16 (equations relating elastic
~constants and velocities for these directions can be
obtained from equations 14, 15 and 16 of Table 3.2 by
.replacing the angle 21. 5° ‘with 30° and so in turn). The
velocities of the pure shear, quasi- longitudinal and quasi-
shear modes in the 1/2,3 /2 O sample were measured by the
single~ended pulse echo method and found to be

1.960 x 10° cm 57}

Vpure shear

4.300 x 105 —

- Yquasi longitudinal

'vquasi shear = 1.300 x 105 cm~s'1

" The velocity of the pure shear modefis'thus very similarfto
that measuredby .Coquin et al (1971) for the pure shear mode
prOpagated in the (100] direction; for directions in the
XY plane ‘the pure shear mode with polarisation vector
’parallel to the Z axis has a velocity given by (C‘M/p)!s
The velocities of the impure modes were: then compared with
those of Table 7 8 for propagation in the directions
described as 1/2 35/2 0 and 3*/2 1/2,0.. The velocities
-'for the second of these directions are in good agreement

with~those measured here, clearly the direction denoted
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Li/2 1/2 O by Coquiniet al with respect to their arbitrary
definition of the 2 axis must be denoted 1/2 3%/2 0 with
respect to the conventional sense of Z axis. The sense of
z axis which was chosen to give C16 positive is therefore
the opposite of that defined here for scheelite materials,
and. with respect to the conventional axes the stiffness -
constant C16 will be negative and the_corresponding compliance
S16 positive. Thus for the same definition of axes these
constants have the same signs in PbMoO4 as in CaW04, CaMoO4

and SrMoO The elastic constants of PbMoO4, with the sign

4'.

of C now determined are given~in Table‘7.10 along with

16
values of the bulk modulus, the compliances and the compres-

'sibilities computed directly from them.:

| "'Major plane sections ((001), (100) and (110)) of
the velocity and Young's modulus surfaces have been computed
Vfrom the elastic constants and are. presented in Figures 7.9
and 7. 10. Now that the Z axis direction can be related to
the crystal structure the orientation dependence of elastic
behaviour can be related to the -atomic arrangement The
deviations of the sound energy flux and the quasi;longitudinal
_polarisation vector from the'propagation direction have
been computed for propagation directions in the (001l) plane
(see Figure 7.11). The energy flux deviation is comparable
Vinrmagnitude with that of Cawo4 It is apparent from the
figure that the 1/2 3 /2 0] propagation direction used here _

is very close to an accidental pure mode direction (v).

(b) _1 Etching experiments

Thin slices. were cut with faces normal to the
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fourfold axis. Each slice was marked to:indicate the sense
of the 2 axis, which had previously been - found by the
magnetiC‘anis technique. After polishing with 1 micron
diamond‘grit on solder metal laps the specimens were etched
for 2% minutes in 5% caustic soda at room temperature and
examined under the optical microscope.H1With a magnification
of x4OO an -‘array of flat bottomed pits covering the whole .
‘slice: was observed (Figure 7.12a). . Under a higher magnifica-
tion. (xlOOO) somewhat smaller, well defined sguare pits
with pointed bottoms were seen (Figure-7. 12b) The
appearance of the etched samples was very similar to that
reported by Esashi and Namikata (1972) for PbMoO4 crystals
| grown from low purity starting materials Pit densities
were large and estimated to be of the order of 10 +8 cm-z.

' Both types of etch-pits (flat and pointed bottoms)
‘had sides which as reported previously (Namikata and Esashi
1972) did not lie parallel to the simple crystallographic
directions <100> or <110>. The orientations of pits on the
- +2 and Z faces were observed to be related by the mirror
plane symmetry of the 4/m point group.A As shown in Figure
7.13, .~ on the +2Z faces (+Z axis emerging from the face)
the pit sides have been found to make angles of 64° 1_20
and 26 i+ 2° with the +X and +Y axes respectively while on
the -z faces these angles are reversed. Thus in a sample.
in which the positions of the <100> axés are knomn the
}conventional sense of the Z axislcan easily be found by
‘observation of the orientation of the etcn-pits. As .
discussed earlier (Section 5.1.4) it is important to use

onlyfthe etch specified for a particular~material. For
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PbMoO4 the etch is alkaline (see above) and the Z axis
determination is by observation of the etch-pits on the Z
faces.-lFor CaWO4 the etch to be used islacidic (see
Section 5'1 4) and the 2 axis determination is by observation g
of - pits on the X or Y faces. Further worh to attempt to
~ find a general etching method for all scheelites has proved
‘fruitless, pits could not be produced on. Caw04, PbMoO4 and
SrMoO4 with the same etch (J. Hodgson, private communication).
| By relating the etch-pit orientation on crystals
of‘PbMoO4 to the conventional sense of 2 aXis in the crystals,
the relationship between the etch-pit orientation and the
atomic arrangement has been established.' A comparison of
Figure 7 l3a with Figures 2.2, 2.5 and 2'6 indicates that .
the etch-pit sides lie within 12 of the <120> crystal- -
lographic directions. It appears that neither the edges nor
the diagonals of the pits are parallel to any of the
anHJMoo4)periodic bonding chains found to be important
(Vesselinov 1971) in determining the growth form of mineral
specimens of wulfenite (PbMoO4). The <120> directions in
, fact'make'angles of 53°8' ‘with the directionsq {(120), of
the projections in the (00l) plane of thenveryjnearly ?
straight Mo-0..0-Mo chains (see Figure 7. 14), the tentative
explanation of the pit orientation given by Esashi and

Namikata,(l972)nis not substantiated. ;




-TABLE 7.1

Ultrasound velocities in CaMoO, (sftér Alton
_ahd Barlow 1967)

Speéimenl . Mode Veiocity
| vyt (Units : 10° cm s 1)
1 v . ‘ 5.4531

o v, : 2{5448
2 v C 2.9433
v, | 5.8629

ve ’  | ’3.2;95

:'3 v6'_ : 2,9155
v, 5.9771

- vg 2.9834
I vg | 5.4910
Vi 2.9953

Vi - 13;2330'

s* vig _ 2,9483‘
Vi, 6.1473

2.6000

*for the arbitrary sense of +2Z axis chosen
by Alton and Barlow the propsgation
. direction in this specimen was. described
- as having direction cosines 3%/2 1/2 O. .

'“'*the subscripts (1) refer to the modes listed
in Table 3.2 : '




TABLE 7.2

Elastic constants of CaModi.

(a) (b) - (c)

Alton & Barlow Alton & Barlow Wachtmann et al
(1967) (reassessed (1968)
. here)
Cyy +14.47 t 0.28 +14.4  +14.50
Cip’ + 6.64 £ 3.32 + 6.48 + 6.18
Cs + 4.46 £ 0.09  + 4.48 + 4.96
Cy3 +12.65 * 0.28 +12.6 +12.82
Cyy +3.69 t 0.006  + 3.69 + 3.674
. Cee #4.51 0,22  +4.61  + 4.558
Sy, +9.89 - +09.92  +09.74%0.05
Sy 422 4.4 + 4.33 £ 0.1
s33f -+ 9,29 : + 9.4 + 9.58 * 0.04
Seq +27.10 #27.1 . +27.22 * 0.09
See +24.68 . +24.4 +24.71 t 0.22
‘Bulk Modulus ~ 7.94 7.92° 8.19
- Compressibilities: _ , : :
Volume 8, ~ 12.59 12.6  12.23
Linear 8,  5.37 5.3 | 4.98
J:Linea; Bxy 3.61 . 3.6 3.64
Units: stiffness moduli bulk modulus lOll dyn cm-2
compliance moduli, compressibilities 10 =13 gmz dyn_




TABLE 7.3

_“Propagation ~ : - C

+C
. direction 1;' 1166‘ -2
"~ {cosines) , © (Units : 107" dyn cm )
' 1,0,0 19.036
_ 2-%12-510 . 19.090
1/2,3%/2,0 |  18.956




TABLE .

7.4

'Ulirasonic velocities in SrMoO4 at 25°C

Sample Propagation

Mode

Polarisation v, T Measured veloc ties_

Code direction -1 4n units of 10%cm s~

(cosines) Chung & Present
Li 1971b work
A 0,0,1 . pure longitudinal  [001] ‘v, 4.77* 4.68
A 0,0,1  pure shear [001] v, 2.77* 2.80
B 1,0,0 quasi longitudinal  (001) v, 5.10% 5.07
B 1,0,0 pure shear ’ [001] v4 2.77* 2.75
B 1,0,0 ° quasi shear (001) v,  1.64 2.96
¢ 27%,27%,0 quasi longitudinal  (001) vg  5.55* 5.37
C 2-¥,2-%,b"pure‘shear {001] ;v# 2.77* 2.77
¢ 27%,27%,0 quasi shear (001) ;ve. 2.56 2.41
p  0,27%,27% quasi 1ongitudina1 - vg  5.00% ' 4.90
D 'o 2"% 2% guasi shear Vo 2.61* 2.54
D 0,2 ¥,2 &j-quasi shear vll 3.08* 3.09
Eé‘ 3%/2.1/2.Q-pure‘shear (0011, . . Vi 2.78% 2.76
E : 3%/2,1/2;05quasi longitudihal (001) .v13 5,12% 5.08
E  3%/2,1/2,0 quasi shear (001) v, 1.86 © 3.01
F## 1/2,3§/2,0 pure shear. - [001] vlS 2.77* 2.79
F  1/2,3%/2,0 quasi'longitudinal  (0O1) v 5.52% 5.42
F . 1/2,3%/2,0 quasi shear (001) vy, 2.17* 2.16

s+, *, # see over

2




: Notes'relevantAto Table 7.4

t The subscripts (i) are those used -in Table 1 of Chung
and Li (1971b). :This‘tahlevgives the,equations which
relatev the seventeenivelocitiesdto'the elastic con-
_stants but oontains several typogfaphical errors:

(i) the right-hand sides of equations 3 and 5 must be
'interchanged, (11) the right-hand sides of equations
13 and 14 must be interchanged with- the right-hand

.:sides of equations 16 and 17. With*these changes the

equations given by Chung and Li for velocities vy to
Vi1 and Vs to v,, are the same as those given here in

Tabie 3.2 . The equations for v12' vl3 and v,, can

be obtained from equations 14 15 and 16 of Table 3.2

by replacing 21 5° with 3O

These velocities, measured previousiy by Chung and -

Li 1971a,b have been found here to be correct.

:f¥ Samples E and F are respectively samples 6 and 5 of
.the original work. By determining the sense of the
z axis in the crystals (see Section 2.3.1) it was
found that sample 6 (E) had direction cosines

35/2,1/2,0 and sample § (F) had direction cosines

1/2,3%/2,0.




Elastic constants of SrMoO4

TABLE 7.5

at 25°C. .

Stiffness moduli

and bulk modulus are in units of 10;1_dyn cmuz, compliance
constants and compressibilities in units of 10~ 3 cm2 dyn-l.
Chung and _ Present James
Li (1971 b) - work (1972)
Ci) '+12.75 ~+11.9 +11.5 |
. X ) \
_¢12 .+ 8.87 + 6.2 + 6.0
C13 + 5.01 ;+ 4.8 + 4.4
- %46 0.40 | - 1.2 1.2
: Cas +;O.3 "flo.4 +10.4
c. C44 + 3.47 + 3949 ) + 3.50
¢66 S+ 2.13 _ +'4.2  o+ 4.7
Sll +16.4 '»3f13‘6 -
S13 : f'2.9 -f3f4 -
S33 +12.5 N . +l?.7' -
344‘ -+28.8 f28.7 7-
SG6 ‘+48.9 +27.1 -
:éulk Modulus +17.8 i+ 7.2 -
Compressibilities:
~ Volume 8, +12.8 +13.8 -
Linear 8, + 6.7 '+ 6.0 -
Linear QXy + 3.1 + 3.9 -




TABLE 7.6

11 -2
, Cll. + Coe (in upi_ts of 1077 dyn cm 7)
_ Propagation ' Previous " Present
. direction ‘measurements '~~~ measurements
~ (cosines) _ Chung and Li
1971 b
11,0,0 13.05 15.8
o 27%,27% 0 16.95 - 16.6
- 3%/2,1/2,0 13.49 16.0
1/2,3%/2,0 ~16.00 16.0




TABLE 7.7

5Diménsions (in mm) of the strontium molybdate specimens

'Length Width< Thickness

| A - 3!42'1\ S )
B 6.18 | . -
c 7.27° 6.54 - - 3.42
f:D | 5.97 4.57 4.20
E 7.34. s;ip » 'A 3.40

F 6.94 5.47 . 3.10




TABLE 7.8

Ultrasonic velocities in PbMoO4

Direction cosines L Measured velocity
of prgg:ggﬁ#on Mode Polarisat;gn in units of lecm s-l»
L o (Coquin et al 1971)
0,0,1 pure long [oo1l - 3.632
1,0,0 pure shear [0o1j - - 1.961
1,0,0 . quasi long (o1): 4.003
0;25%;2_% ‘quasi long f  ' 3.860
3%/2,1/2,0  quasi long (001)“.A, 4.339
3%/2,1/2,0  quasi shear = (001) - . 1.312
'1/2,3*/2,0 quasi long . (001). - ' 3.970
1/2,3%/2,0  quasi shear - (0O1) = 2.198

t defined by Coquin et al with respect to an
arbitrary sense of Z axis. o




TABLE 7.9

Elastic cdnstants of PbMoO,-.

(Coguin et al, 1971)

11

12

13

16

= 10.92 , C33'?.9.;7
= 6.83 . C44;='?.67
= 5.28 - C.= 337
= 1.36

Units: 10 ayn qm‘?,"




TABLE 7.10

Elastic constants of PbMoO4 at room temperature.

Stiffness moduli and bulk modulus are in units

of 101l dyn cm-z, compliance constants and

compressibilities in units of 1073 cn? ayn”t.
"qi; +10.92 - 511 _ }21.0
| Cié +6.83 sy, -z
‘ci3 + 5.28 | - 5,5 ¥1L_4.9
 'ci6 - 1.36 | Si6 {1;,5
;953 + 9.17 833:‘: +i6.6
'Afcgé | + 2.67 Sy : f37.5
: &§6 +3.37 - Se6 © +40.6
 Bulk Modulus S - ‘i5.15‘
i Volume Coﬁpéssibility By | 1  14.0
: Linear COmpressibility B, ;3 '6.7

-Lihear-Compressibility Bxy 3.6
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FIGURE 7.4: Form of SrHoO4 samples B, . C and E.

Directions n., n_ , O and =n_, n., O

1l 2 2 1
are equivalent by fourfold symmetry.
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'”'o”'yo

A'EIGURE'7.5:i,Trahsducer/sémple configura;ion used to
‘ ' . avoid wall reflections due to. energy

flux deviation.
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‘e MOLYBDENUM
OOXYGEN

'FIGURE 7.14: Etch pit orien»tation‘on +2 face relative
) to the atomic arr'angement -E-tojeéted on to
an (00l) plane. Etch-pit sides are pérallel
to the <1205 directiéns. T:he projecf_@ons of
the Mo=—0 :++--O—Mo chains zig-zag along
the <120> directions. . "
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CHAPTER 8

CONCLUSION

In this chapter the elastic properties of
Cawo4, CaMoO4, SrMoO4 and PbMoO4 are compared and
contrasted. haracteristics of wave propagation in
the different materials are discussed AAit is shomn
how ‘the apparent differences in elastic and ‘acoustic
behaviour between TI and TII symmetry solids can be
‘ attributed to the deviation of "axes of acoustic
symmetry" from the major crystallographic axes in
the later group of solids. Interatomic;binding in
the_scheelite structure tungstatesand molybdates is
vdiscussed; a simple ionic model is snown to be

i

inadequate.
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8.1 . COMPARISON OF ELASTIC PROPERTIES OF THE SCHEELITE

. STRUCTURE CRYSTALS STUDIED

8.1.1 - Elastic constants

| Vl5‘The room temperature elastic constants of Cawo4,
CaMoé4,‘SrMoo4sand PbMoO, (collected from-the experimental
results;of Chapters 6 and 7) are listed in Table 8.1.
Elastic constants measure the resistancesof a medium to
elastic deformation. A comparison of<the values in the
tablefwith’published‘data on a variety of other solids (see
for example Musgrave (1970)) indicatesithat the scheelites |
are someWhat stiffer than most alkalifhalides, many metals
' and nater soluble oxides, but do not resist deformation so
strongly as- diamond, or high melting point oxides and metals.
. It is clear from the table that while there are

differences in the magnitudes of the’constants between the
materials, the scheelite structure tungstates and molybdates
form a group of solids with similar elastic properties. Both
the bulk moduli and the volume compressibilities are equal
within the limits of experimental error (see Table 8 2). The
- anisotropy of linear compressibility is about 1 5 in CaWO4,

CaMoo and SrMoO4, and about 1 9 in PbMoO ‘ In each material

4
the elastic stiffnesses and compliances have the same signs

as were "found for CaWO4 and discussed in Section 6.2.1. This
is particularly interesting in the case of C16 and 316 The
' present work allows a comparison of the signs of these con-
o stants since the same definition of Z axis sense has been .
used in each material. In each case Cl6<has been found to

be negative and 316 positive._ Thus an'applied tensile stress
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.in'thepx‘direction (oll positive) induces.in each material an
identical.sense of response with respect'to the atomic
.arrangement, namely a decrease in the angle between the
planes normal to the +X and +Y axes. ln*each material §,, .
is greater in magnitude than 813; this indicates that the
cross¥1inking within the layers of the structure is greater
| than between them. | |

More detailed examination of the. magnitudesof the
compliances listed in Table 8.1 shows that.in the molybdates
'there is a definite trend of increasing: resistance to elastic
deformation with increasing molecular weight, and that the
two~calcium compounds (CaW’O4 and CaMoO4) have very similar
elastic moduli. In units of 10713 cm‘?':d‘y'n-1 the shear '
'compliances 344 and 866 have similar values in Cawog, CaMoO4
and Srﬁoo4v(29.8 and 33.5, 27.1 and 24.4, 28.7 and 27.1
' respectively) but are larger in PbMoo4 {(37.5 and 40. 6) 11
and S33 are very similar in CaWO4 and CaMoO4 (10 5 and 8.8,
9. 9 and 9.4), larger in SrMoO "(13.6 and 12.7) but much larger
“in’ PbMoQ4.(21.0 and 16.6). The constants S, ;and 813 are .
"greater.in magnitude in PbMoO4 than in'SrMoO4, and greater

in SrMoO than in either CaW’O4 or CaMoO4 SlG has'Values in

4

CaWO and CaMoO4 which are somewhat different (7.7 and 4.4),

4
but within the group of molybdates it follows the same trend

as the other constants (5.7 in SrMoO4, 13.5 in PbMoO ).
The. similarities between the two calcium compounds and the
,trends in the stiffnesses of the: molybdates are also apparent

in the values of the isotropic Young s and shear moduli

listed in Table 8.2.
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' Empirical relationships

11 ,-0.8 11 40 8 -2

M GH- 6.9x10 dyn cm (8.1)

By=. 15, 5x10

have been found between the isotropic Young s (E ) and

shear (GH) moduli and the molecular weights (M) of the
molybdates by means of the_logarithmic-plots of Figure 8.1.
These'relationships allow the isotropicfmoduli of other
scheelite structure molybdates to be estimated They are
not applicable to tungstates as. shown by the Cawo, data
points in the figures. This was to be expected, the elastic
constants of CaW‘O4 are very similar to those of CaMoo4 but
the molecular weights are quite different. An important
conclusion of the present work is therefore the finding that
' the elastic properties of scheelites depend much more on

the nature of the cation than on the anion. The elastic
constants of SrW‘O4 can thus be expected to be similar to
those of SrMoO4 and the elastic constants of the tetragonal
form of PbW’O4 should be similar to those of PbMoO,. _Some
other implications of the finding will be discussed in
Section 8.1.5. ' '

‘ . The orientation dependences of the Young s moduli :
of the .four materials studied are shown in Figures 6 21,
7.2, 7 7 and 7.10. 1In the major crystallographic planes
({100} and {110}) containing the 2 axis the Young's moduli
change only saowly with direction, but for stresses in the
XY plane the parameter has pronounced maxima and minima.
'In each material the maxima lie between ‘the <100> and <110>

directions and the minima are. 45° ‘away between the <110> and

<010> directions. The ratio of the maximum Young 8 modulus
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in the XY plane to the minimum value varies between the

materials. It is 2.1 in cawo4, 1.6 in CaMoO,, 1.7 in SrMoO

4
and Z;S.in'PbMoo4. The directions of the maxima and minima

4

vary between the materials. This is discussed in Section 8.1.4.

8.1.2° Characteristics of wave propagation

Cross-sections of the wave velocity surfaces of CaWO4

CaMoO41,SrMoo4 and PbMoO4

7.1, 7.6 and 7.9 respectively. 1In each material the quasi-~

have been given in Figures 6.16,

longitudinal wave velocity is comparatively isotropic; it
is slightly larger for directions in the XY plane than for
the Z direction. One of the qguasi- shear modes is also nearly
isotropic ih velocity in all four materials, and is completely
independent of direction for:propagatioh in’ the XY plane.
The secohd quasi-shear'mode»is more anisotropic, particularly
in theefoplane where it has pronounced[haxima and minima of
velocityr These extrema occur between the <100> and <110>
and;the«<110> and <010> directions respectively. In each
" material there are acoustic axes i(directions in which the
shearAvelocities are equal) in the'(OOl)'plane and within a
few degrees of the <100> axes. _ |

The (00l1) cross-sections of the velocity surfaces now
provide a'ready means for the identification of the sense
-of the conventional +Z axis in pure. or doped boules of any
of the-scheelites studied here. An ultrasonicssample can be
cut for propagation at a measured angle 6 to the X axis in
the XY plane (the sense of © will not be known at this stage),
and the ultrasound velocities in the sample measured. The
direction of propagation and the sense of the angle 8 can then

.be'foundlby comparing the measured velocities with those
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predicted by the appropriate (0O0l) plane cross section, and
the sense of the +Z axis in the boule identified The most
suitable directions for the velocity measurement can be.
'established by reference to the energy flux diagram of the
material (Figures 6.17, 7.3, 7.8 and 7,llY. If the sample
is small; it is important to check thatdthe velocities
measured obey the cross-check on the value:of Cyy * C66'
The similar shapes of the velocity surfaces in the

four scheelites exemplify similarities in all the details of
‘wave propagation. These are further demonstrated for propa-
gation vectors in the (00l1) plane by comparison of Figures
6.17, 7.3, 7.8 and 7.11 which show the;deviations from the
propagation direction of the particle displacement vector of
the'quasi-longitudinal wave; and of the'energy flux vectors
of the quasi longitudinal and quasi-shear modes. In each
material the fastest mode is always quasi—longitudinal and
has only a small deviation of energy flux from the propagation
direction. The large variations of the quasi-shear mode
velocity with direction lead to large deviations of energy
flux for this mode. The maximum deviations occur for propa—
gation along the acoustic axes. The deviations are largest
in PbMoO4 for which the ratio of the maximum quasi—shear '
mode velocity to the minimum is 1.88 , and smallest in CaMoO4
for which the ratio is 1.42. Only for a few degrees (about
13 ) on each side of ‘the « and Y accidental pure mode axes
are the deviations less than 10° in any of the ‘materials.

| The mean velocities of sound in each material at room
: temperature have been calculated by the method due to
Anderson (1965) which has been used earlier for CaWO4 (Section

6.2.2). The values (listed in Table 8 2) show that the
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velocities are highest in CaMoO, (which has thealowest
density of this group ofAmaterials) and:lowest in PbMoO4
(whichvis the most dense and least stiff). The velocity of
the quasi-shear mode propagated along the y accidental pure
mode axiS'in the (00l) plane of PbMoO4 is the lowest in any
direction in any of the scheelites studied here, this is
the mode which is particularly useful in some acousto-optic
device applications (Coquin et a1_197l).

hAn empirical relationship betweenithe mean velocitiles
-of sound (vm) and the molecular weightsA(M) of the scheelites
has been found by means of a suitable logarithmic plot
(Figure78;2). The expression.

5 -0.8 -1

v ® 6.1 x 10 M cm S : {8.2)

holds sufficiently well to predict the 'velocities of sound

in each of the materials studied to better than $5%, and

should allow the mean velocities of sound in other scheelites

to be estimated to the same accuracy Estimates so obtained

are listed in Table ' 8.3. 'In the two scheelites so far

employed in acousto—optic devices the velocities are respectively
4the highest (CaMoO ) and among the lowest (PbMoO ) of those
likely to be found in any of the scheelite structure tungstates
or molybdates. The table shows that the sound velocities in

both Bawo, and PbWO -are likely to be lower than those found

4 4

in PbMoO The potential of PbW’O4 as an acousto—optic device

4
material has already been examined (Pinnow et al 1969 ) but

PbMoO, was preferred for reasons which have not been reported.

4
If the slightly slower velocities in Bawo4 are accompanied
by significant-changes in other parameters which contribute

to the appropriate acousto-optic figure-of-merit this material
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might'give improved efficiency in some tYpes of device.

8.1.3 o iDebye temperatures

Debye temperatures calculatedlfrom the mean sound
velocities at room temperature are given in Table 8.4. The
small differences between the values ohtained for Cawo4 from
the room temperature and absolute zero:elastic constants and
densities indicate that the errors involved in using room

_ temperature data for CaMoO4, SrMoO4 and PbMoO4 are for many
purposes insignificant ( <2%) The different Debye temperatures
which are listed in Table 8.4 correspond to representing

(1) the whole phonon density of states (6 )

(ii)_«.the lattice-only'vihrational m°d¢5~‘eo(diatomic lattice

.only))

(iii) the acoustical m°de5~(eD(acoustical mode only)’

by a Debye distribution, in the manner discussed for CaWO4

n Section 6 2,2, The results for CaW’O4 showed that a Debye
istribution can be a useful representation of the acoustical
modes in scheelites, and perhaps of the lattice-only modes,
" but will not be valid. for the whole vihration spectrum. The
significant differences in the Debye temperatures between the
materials indicate considerable differences in the phonon
populations at a particular temperature. The effects of these'
,different phonon populations on spin-lattice relaxation times

in some Nd, Gd and Cr doped scheelites are'to be the subject

'ofha separate study.
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8.1.4 ;'.0ccurrence of acoustic symmetry;

4'__The relationship between theﬁelastic constant
tensors of Tl and TII symmetry solids was discussed in
| Sectionf3.l.8., It was pointed out that, with respect to
an axial set (Xx'Y'Z) rotated about the fourfold axis by an
angle'q (given by equation 3.30) from the<conventional axial
set (XYZ), the elasticity tensor: (Ci ) of- a TII Laue symmetry
crystal:takes the form of that of a TI Laue symmetry solid:
the constant Cis-is zero and the tensor‘cij has just six
independent non-zero components. For both the tetragonal
Laue groups the symmetry properties of the elastic behaviour
are-the‘same and are those.of the 4/mmm point group (see
Figure 2 1b ) In a TI'material the elastic properties have
fourfold symmetry about the 2 axis and mirror symmetry about
_planes whose intersections are parallel to the <001>, <100>
and <llO>crystallographic directions. In a TII crystal the
elastic ‘behaviour has the same symmetry properties but the
intersections of the mirror planes which contain the Z axis
“with the mirror plane normal to the 2 axis are parallel to
the axes &, Y and their equivalents. - These axes (x and y)
'are rotated from the <100>: directions by angles ¢ and ¢
respectively. Values of ¢ and ¢?, ‘given by the roots of
equation 3.30 for the scheelites studied here, are listed '
in Table 8. 5. The axes «x and y can be termed "axes of
"acoustic symmetry " They have the same acoustic symmetry
properties as the <1l00> and <110> directions of a TI
tetragonal, and coincide with the accidental pure mode .axes
in the (001) plane (hence the designations K and y) |

The existence of the acoustic symmetry axes is

clearly_demonstrated by the crossfsections of the velocity
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and Young's modulus surfaces (see Figures 6.16, 6.21, 7.1,
7.2, 7 6, 7.7, 7.9 and 7.10). These surfaces have the
ditetragonal symmetry of the TI Laue group. The {100} and
{110} plane cross=-sections exhibit inversion symmetry and'
‘the mirror plane normal to the fourfold axis. The (0O0l)
planejsections show clearly the fourfold axis of rotation
andethe'mirror symmetry of the planes 2t;‘27 and their
equivalents. Comparison of the different?(OOI) cross-~sections
shows that in each material studied the «x axis is a direction
of. minimum Young's modulus, minimum quasi-longitudinal velocity
andlmaximum quasi-shear velocity. In theudirection of the
y.axistthese extrema are reversed, The_anéles 6, and ¢*
“are poSitive in each of the scheelites studied but their
magnitudes vary somewhat. As a result}ualthough in all four
materials'the Young's‘modulus surfaceslhave similar overall
shapes, they are rotated by different amounts with respect to
the crystallographic axes and present quite different cross-
..sectionssin the <100> and <l10> directions.

:To.compare just the anisotropy of the elastic
behaviour'but not ‘its relationship to theqatomic arrangement
then the elastic constants'transformed to the axial sets -

X' =«x, Y =e+mn/2, 2' =2 or X' =y, Y =y +1/2,

z Z are appropriate. Values are given in Table 8.5.

Knowledge of these transformed constants can be useful for.
computational purposes;: programmes and expressions derived,
 for TI solids can be used for TII solids if directions are
lreferred to the new axial set.

The difficulties encountered in the ultrasonic
studylofythe elastic properties of scheelites (referred’to in

Chapters 6 and 7) are a.direct consequence of the deviation
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of the:acoustic symmetry axes from the {100} and {110}
crystallographic directions. The « and Y axes of acoustic
symmetry are pure mode axes of the first kind; furthermore,
4they,are.directions normal to mirror planes of acoustic
symmetry, and directions in which bothflongitudinal and shear
modeslpropagate without deviation of energy flux (Waterman's
conditions'(1959) hold for axes and planes of acoustic
symmetryj A ditetragonal TI crystal‘can be regarded as
a special case of tetragonal in which ¢ is zero and the
acoustic symmetry axes (and thus the pure mode axes in the
(oo1). plane) coincide with;the crystallographic axes; in
these materials the acoustic symmetryfaxes can therefore
be found by x-ray orientation techniques alone. For propa-
gation in these directions there are no difficulties caused
by energy flux deviation.. In TII symmetry solids the
acoustic symmetry axes (and thus the pure mode directions in
' he XY plane) do not coincide with the crystallographic
axes and can only be located by studies of elastic properties.
The directions [(100] and [110] which can'be readily found
by x-ray methods are well away from the acoustic symmetry
axes, and in scheelites are directions for which the energy
flux deviation tends to be rather large. The crystallographic
-axes [100] and [llO] are directions in. which velocity
_measurements must be made 1f the elastic constants are to
be found by the methods of Alton and Barlow (1967) or Chung
' and Li (l97lb). The methods developed in the present work
for determining elastic constants from velocity measurements
in arbitrary directions (see Section 3.3. 3) are therefore

particularly appropriate for TII symmetry solids.
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" The need to describe elasticfand acoustic

'properties with respect to a particular sense of Z axis

in TiI crystals is very obvious when considered in terms

offacoustic symmetry.‘ Toldescribe the positions of the

K.andly,axes, it is necessary to describe-the magnitude
and sense of their rotation from the <100> crystallographic

axes;-iIn the scheelites studied here this rotation is

clockwise about the Z axis when viewed in the +Z direction.

The sense of the rotation can only be defined for a
particular sense ofvthe Z axis which must be referred to
the atomic arrangement. In a TI crystal however there is
no-rotation of the « and y axes from the <100> and <110>

axes and no need to define a sense of %z axis to give a full

. description of the elastic and acoustic behaviour.

" From the elastic constants of the scheelites the

positions of the pure mode axes in the (001) plane are given

by the values of ¢, and ¢Y isee Tableyg;4). Knowledge of
theseopositions~will be useful if a material is to be
employed in devices, or to be the subject.of further study
(e. g.:ultrasonic attenuation, measurement of third order
elastic constants or photoelastic constants) It would-

facilitate work on other scheelites if the positions of

-the axes of acoustic symmetry could be:predicted, at least

approkimately. lThejpossibility of sucnspredictions is

. discussed below.

The deviations of the « and Y acoustic symmetry

axes from the crystallographic axes (measured by the value

. of ¢ ) vary somewhat between the materials (see Table 8.5)

and increase with increasing values of the setting angle
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of the anion. This 1s demonstrated in.Figure 8.3. Data
points for the materials studied lie on a smooth curve.
By reference to this figure it should be possible to
'predict~the positions of the axes of1acoustic symmetry
~in other scheelites whose oxygen atom‘coordinates are

accurately known.

'8.1,5:” ' Interatomic binding in scheelite structure

tungstates and moiybdates

._:_ From the work reviewed in Chapter 2 there emerges
a- general description of the interatomic binding in CaWO4
~-and the other scheelites. The studies of crystal structure,
_vibrationai spectra,.deformation by slip, specific heat
and thermal expansion each provide‘some-information about
the nature'of the-interatomic forces. ~It appears that the
tungstate and molybdate groups - behave as rigid structural .
units, and that they are negatively charged and ionicly
) bound'to positive metal cations. The’ work-on slip deforma-
tion (Arhel and Stokes 1965) and thermal -expansion
(Deshpande and Suryanarayana 196§) has-suggested that the
scheelites may be regarded as having a complex layer
structure and that the binding between the 1ayers (parallel
to the (OOl) planes) is weaker than that within the layers.

:. Some ‘of the findings of the present work are con-
sistent with the above description of the binding, others
are not. 1In particular the layered nature of the. structure‘
has,heen‘confirmed: in all the-scheeiites studied the -
linear compressibility in the 2 direction (normal to the
'layers) is somewhat larger (between lk ‘and 2 times) than

that parallel to the layers. The cross-linking within
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the layers is stronger than that between them (|812|>|Sl3|).
The present results also show that the binding between the
layers is not especially weak compared with that found in
some other solids which have pronounced layer type struce
tures and which exhibit very much largeranisotropies of
linear compressibility (Akgoz, Farley and Saunders 1973).
i‘ | In the_earlier'stages of the‘present work it was
ihtended to test quantitatively the simple'ionic model of
the binding and with this in mind a Madelung constant for
CaWO# was calculated. It was assumed that under hydro-
static pressure deformation would occur by a relative
movement of the cations with respect to.the anions,
and that the latter. (WO ”) would remain undistorted. The
vMadelung constant was calculated by the EVJen method
(Evgen 1932) for a lattice with doubly-charged spherical
ions (assumed to be point charges) at the Ca and W atom
sites. :After counting ouer five shells each the shape of
the unit cell,the sum had converged to the value 1. 615+
sufficiently rapidly tolgive an accuracy of +1.2%, During
the7suﬁmation proce%s an unusual feature of the simple
ionic model became-apparent:' aCcordinglto the model there
is no net attractive Coulombic force betWeen adjacent
layers”of the structure.~ With'respect to a particular
reference ion (take for example a cation sited at the Ca
site in layer 3 of the unit cell shown in Figure 2.2), the

ipns in an adjacent layer'(e.g. layertz) are arranged

The Madelung constant is defined here with respect to the
nearest neighbour distance (Ca * to- WO4 "). The value
agrees well with the estimate of 1. 623 made by Hoppe (1956).



- 179 -

as}foi;ows:

2 anions at a distance of {(?)2 + (%)2}
2 cations at a distance of {(g)2 + (%)2}%
. Y 215
4 anions at a distance of ,.{%f» + (%) }
C fen2 2k
4 cations at a distance of {%f +'(§) }
g 2 0t
6 anions at a distance of 1%3 + (%) }
' B a2 X
6 cations at a distance of {l%i + (%)2}
etc.’
etc.

Thefenére similar arrangementé of ioﬁs oh succeésive
.'evén»nuhbered layérs. Thus according to the model there
_ wili_bé;no-net Coulombic attraction between parallel layers
which are separated by distances(®F094ﬁhere n is a positive
or ﬁegaﬁive integer.. This:feature of;tﬂe model may explain
why the binding ié weaker betﬁeen thé'layefs'thah within
them}_but it also suggests  that the moaei is inadequate.

: : Thekvalidity 6f an‘ionic model can be checked
by cbmpéring the theoretidalécohesive'energy (calculated
' fromjfhé'MaAelung energy,  the measured:bﬁlk modulus and:
thevunit>Ce11 pérameters) with an expeéiﬁentél cohesive
enerévahich is determined from electfdéhemical data by
means of.a Borﬁ-Habér cyclé. For alka;i halides thé good .
égreeﬁént which obtfinsyis taken as cphfirmation that the
"b;ndihg is tonic. Howeve?‘for CaWOa'(aﬁd indeed for any
of thelofher scheelités) there is nof;;ﬁfficient electro-

chemical data available to allow this test; the electron

affinities of the wo, and'MoO4 groupé‘are not known.
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N Some of the present experinental results do

providehfurther evidence that the simpleuionic model is
: notla_yery good representation of the binding. If the
binding‘were pnrely ionic~with doubly charged spherical
ions located at the sites of the metal atoms, then the
array of charges in the lattice would have a point group
4/mmm, ‘and the elastic properties of the‘material would

have;TI‘symmetry with acoustic symmetry axes parallel'to
the<<lbo> and <ll0> crystallographic‘directions. The
oXygen.atoms in the WO,  and Moo4-'-ions would have no
preferred‘positions and there would he no means of
defining_a sense of 2 axis. In fact theianion setting
anglesiappear to be such that each oxygen atom is sited
closer.to a pair of metal cations than would be the case
if thefsetting angles were zero. This'indicates that there
may'he'short range binding directly between the metal
(Ca,;sr, Pb etc.) cations and the oxygen atoms. The
Suggestion'is substantiated by the experimental. finding
(see Section 8.1.1) that the elastic constants of the
scheelites depend much more on the cation than on the anion.
The relative strength of the additional binding forces .is
indicated by, firstly, the significant dependence of the
isotropic‘Young!s and shear moduli on the cation and,
secondly, by the orientation dependence,of the elastic
properties. The large deviations of the acoustic symmetry
'axes from the <100> and <llO> crystallographic directions
which have ‘been found in each of the scheelites studied,
and the pronounced extrema of the Young s modulus and

quasi—shear velocities which occur in these directions are
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. a direct consequence of the significant effect of the
‘additional binding forces. These}findinés provide a
'cleaffdemonstration tha§ the simple 'diatomic' ionic

model is not an adequate description of the binding.



Table 8.1

Compa:;bon of the room temperature elastic constants

of CaWO,, CaMoO,, SrMoO, and PbMoO,

Cawo CaMoO, SrMoO PbMoO,,

Stiffness. constants
11 -2

(Units:10™" dyn cm ) A
¢y, +14.6  +14.4  +11.9 - +10.9
S 3 +6.3 465 462 +6.8
€13 +3.9 445 +4.8 453
C6 - le -14 -2 -1
Cys +12.74  +12.63 +10.4  + 9.17
€y +3.35 +3.69. + 3.49 + 2.67
c +3.87 4+ 4.61  + 4.2 4+ 3.37

66

Compliance constants
-13 2

(Units:10 cm dyn“l

).
+10.5  + 9.9 . +13.6 _ +21.0

Sin
'.5853_ + 8.8 + 9.4 ~+12.§ | +16.6
W . $+29.8  +27.1 _ ¥28.7  +31.5
 S¢e +33.5° +24.4  + 27.1° +40.6
'Sy, S -5l - 43 - 6.3 -12.4
Sl3 - l.7 - 2.0 - 3.4 - 4.9
s, + 7.7 + 4.4 +5.7 +13.5

16




TABLE 8.2

Room temperature elastic propérties

CaWo CaModd- SrMoO, PbMoO

; 4 4 4
Bulk moduius,xv ) o 79 1.2 7.1
| Volﬁme,éphpressibility, B, 13.0 12.6 . 13.8  14.0
| Linear,coﬁpressihiiiﬁies,-sz 5.5 . 5;;'1 6.0 6.7
| o By 37 '?76  | 3.9 3.6
Isotropic Young's modulus 8.6 9.0 7.6 5.4
-isotr§pi§:8hear modu1us 3.7 'A,Q‘ '3.3 2.4
Debyg;mé$n velocity ) 2.74 5.42 3.02 2.11

" Bulk, Young's and shear moduli- are in units

_of 10+ dyn om™2.
. Compressibilities are in units of 10713 cm? ayn”t.

'Velocities are in units of 10% em's™t.




TABLE 8.3

V’Eétimates of mean sound velocities in some
" scheelite structure tungstates and molybdates,
obtained by the empirical relationship (8.2)

Vi = 6.1 x 105 u©-8 cm g™t
BaWwo, . 2.0x10° -cms
BaMoO, 2.5 x 10°  cm s'l
1»1:>wo;1 - 1.8 x 10° emst

5 -1

CdMoO4 2.7 x 10 cms




Table 8.4

' Comparison of the effective Debye temperaturés of

| CaWo,, CaMoo,, SrMoO, and PbMoO,

(1) (1) (111)

) 9D(diatomic , eb(acoustical

lattice only) mode only)
cawo,® 354 K 246 X 155 K-
cawo,® 348 K 241 K 152 K
“caMoo,® 433 K 300 K 191 K
Srio0,” - 363 K 252 K - 159 K
PbMoO,° 264 K 183 K 115 K

2 Calculated from'eiasticicénéfants and density 

extrapolated to absolute zero.

b calculated from room temperature elastic

constants ‘and density.
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Plat ¢to show the relationship between
the positions of the "acoustic symmetry
axes" and the anion orientation ip
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[100) axis and the rAacdﬁstic-symmetry

:; axis; the Ssetting angle of the anion
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ithe Projection of a W-0 or Mo-0 bong
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. APPENDIX I : COMPUTER PROGRAMS

1. Least squares fitting procedure for determining"elastic constants of
- TII czystals from sound velocity measurements. .
ASTIC FFAQTANTQ nF TFTQAGONAL F2yYySTAI S MuD %/

1% FLASTIC CONSTANTS NF TETRAGONAL CRYSTALS K2 #/, e

FLASTIC: OPOC ﬂDTIﬂNQ (MATN): ,
(/% . &/

P DFL((SOLM.QTFD,MAY MIN, Hnunvt7).(CAL COFEE, WP )(13),SMALL,Q
SUMSQU2)VFLOAT:
DELIVELEXT14))FLOATS -
NCLISTESL{TIIFLOATSY
- N FNDFT[F(QVQIN’QTDP, , . :
/% . T | */
GET LIQT (MAX ;MIN, P, SMAll.l'QTFPI.QGLN$' ) ~
A PUT PAGE LTST (*INITIAL GUESSFD cnlurtﬁu-'.sﬂtmv-
TEMPGET LTST (T,N,VELEX); :
PYUT SKIN(I) FOTR (' TEMPRRATIRE=", 'UFN¢TTY-',D)(A(17),F(B),
X(2) 4 ATRY FLA, 3y : 3
12 ‘ s A
s FAIFULATION NF COFEFTCTFENTS FROM MEASURED VFLACTTIFS %/
pn =1 Tn.a:
COEFF(T)= VFLrX(Y)**?'
ENDs
COFFF(9)= VFLFX(Q)#*4+VF1Fxllﬂ!**h+VFlFxlll)**&.
COEFF(10)=VELEX(9) ##24VFLEX {10V %% 24VFLEX(] 1) %223
COEFFLIYY=VELEX(12) %423 ‘
COFFFI12)=VELEX{13)%%2;
CCOFFFII3)=VELEX(14)%%2;
SN0 I=1.TN 145 S : -
L PUT SKIP EDIT (CVELEX?,1,7=0  VELFX(TYI(X(3),A16),F(2),A(1)
‘:gF(10,3))' - o ‘ - :
. ENDT
CPUT SKTP LIST (*NATA CROSS-CHFCKS'); - o
PUT SKIP LTIST (*C1L4+C6630,0.70T,0.707, ,D*(Z*CHEFFtlo)—
COFEFF(1)=3%CNEFF(2))) : A :
PUT SKIP. LTST ('C11+C&670.85,O.5,Owé'9”*1CDEF?(1?)+CQFF¢(IZ)$’
7 S o : L SR Y/
A : (AUCULATYON NF WFIGHT ancrrrrFMT< A S ¥
b . pOT=1 TO 13 v :
oo WT)I=1/P(TYs

_ ~ FENNDY _ S 4 '

/x0T ' A

i - _SYSTFMATIC AHJUSTMFNT Ne SNLUTTINN rn MVNIMISF SIMSQ */
‘O .7 HOLD=SOLNY . o '

CALL FQUATE: : : A
PUYT. SKIP(2) -LIST (‘IMYTIB! VALUES NF CALCOEFF,RATIO") S
PUT SKIP EDIT (*CAL', 'CNFEFT, VCAL/CAERFL)INIT) A ¥ (TY A X(5),
A,a ’ .
D0 N= 1570 4,e6,7,9 TN 133 :
: PUT SKT1P EDIT (M,rAL(M).rnEFF(N).rAltw)/rnFFr(N))
(FU240),2(E(12,2)),FL10,3) )¢
. FND?S
PUT SKIP {-1ST (*INTTTAL SUMSO=',0V;
PUT SKIP LIST (*SEAPCH TNTTIATEN?); : :
o L PUT SKIP EDTT (0110, 00120, 10 20 00140 10330, 0C40 0, 90661,
ool 'SUM%hl','CHMCG”)lY(1$. (XTI, AT ) WX 1T g ALA) o XIS, A(6) )
St STEP=STEP1: ‘ - ' '
cyrir Qs ' - : : ) 4 ~ ,
nn wHILF(FYClF< LI o T R
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ASTIC. CONSTANTS .OF TETOAGONAL CRYSTALS M« #/

P

TN DN r=1 T T
ST suMS Y =0 | | o
SR o IF sunso(1)<quA'1 THEN 60TQ £XTT:.
’ H ,v co
;nn HHllcl(QﬂLN(I)sMIN(I))E(QOLN(I)(MAX(I)))‘
SALN(T)=SOLNITY+HESTEPCTY S~
CALL FQUATE: '
SUMSNI2).=0¢
TE SUMSO(2)>SIMSQ(1) THEN 1€ H=i THEN DO
S SOUNCI Y =SOUNIT)-STEP(T) 3
H=-1t
SHOTO SEARCHS.-
. ' ENDS -
'F!SF GOTN NFXT;
SUMSQI1)= SUMSO(2) 5.
, SEARCHIENDS
NFXT SHLN(T)= %nLN(!)-H*sTFDtI)-
‘CALL EQUATF:
JEND
N K=1"TD 73 : :
S A (%0LN(K)>(HOLD(K)+§T¢P(K)*D 1))|(<OIN(K)<(HHIO(K)-
STEP{K %0, 1))THFN 6OTO NAT
“ENDS

PUT 0T (‘F!NFR SEARCH !NYTIATFD FVFLF'.CYFLE)(SKYD A(?B)_

RSZESEER
pUT EDIT. (FVFLE ﬁﬂLN'QHMQﬁ)(SKID E(?)'X(?! 7 F(10, 1’,!(4)9
F(l@yq’ Y(?‘,F(lo 5)’9‘- - . .
- STEP=STEP%0, 253
Noﬁﬁvcus=cYﬂLE+1:
HD[” SN
FND:

V£ FYNAt ﬁﬂ!UTIﬂN AND QUALTITY ﬂF FIT Tn MFASUQFM:Mrc %

FXTT PUT SKIP LIST (*FINAL SOLN CYCLE=1',CYCLFYS
PUT ENTT (CYCLE,SOLN,SUMSOY ISKID,FI3),X12),7 F{10,3),X{4),
F(}Oq%),X(?)yp(’ﬁ S))s
PUT SKIP ENTT ('CALv,'anFF'.-CAL/cnsti)(xrjy.a,x(7).a.x«5).ﬁ
)5 . . : ’ .
DO N=1.TD 4,646,749 T0 13
PUT SKTID® FENTT (N,CALIN), CDEFF(N),CAI(N)/rnFCF(N"
‘(F(7y0) 7(F(1? 211,5(10,3)) s
FND,_'

”4?
’
1

/é_“ | o o 7

60 TO TEMP;

/* QUQQHWTINF TN CALCULATE SUMSO FNe FAfH GUFQSFH QQ!UTION o #/v

FQUATE PROCEDURE: .
CODCL{ALTY, ZU13))FLOAT:

A=SOUNY
CRT=ALIYRE24A T RED4DEA(L) %D
DI=A(2)&X2=A1)%%222%A 0TI (ALY +A12));
X1=SORT{IALIV4ALT)) A2 4% (ALY RA(TI=A(4)%%2) )
X2=S0RTU{A(2)+A( 7)) %%244%(A(4)%%2))
X3=SORTL(ACI)/2-A(T)/24A14)XSORT{3)) €%+
LE(TATAYI/24(SORTIR) /Y *IA(2)4A(T)) ) %%2) )2
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LASTTIC CNANSTANTS NF TETRAGNNAL C'?.YQTAL'%\ MK D %/

701)=0A15))/D3
7(2)Y=(A(R)) /N
7(3)=(A(A)) /D2
704)=(A{1)+A1TI4XT )/ (D22

DA WY ESRWAE o : _
TETI=CALI #A(T)#X2)/(D%D ) o

~~7(o»—((\tﬁ)**?»/4+(=*A(Av~*7v/4+(ntﬂ)**?+ﬂ(6)#(&(1)+At<)¢nt*) S

, +2%(A(3))Y)/24(RY)/4Y/DE%D S .
7(1”)'(A(1)+A(7)+A(6)+1*A(A))/(’*n)‘?'

711 =ALAY /D ‘

. 7(1?)-(&(]\+A(7)+Y%)/(?*ﬂ‘
7U13)=(AL1) +A0T)=X3)/{2%D)
CAL=7% .
O={(CALITY/COEFE(1)=1,0) 2l 1)) %32

 #({CALI2)VJCOFFEFI2)=1.0) %WID) ) 5%)D

' +{{CAL(2)/MAFFF(3)=1,0)%W{3) ) %%
FUICALILY/ONEFF(4) =1, 0V AW I 4) Y& %D
+(UCAL(B)/COEFF(6)=1,0) %W (A ) 22D
+U(CALITY/CNEFF(TI=1 (DY %W T) ) %%

AL{CAL(Q)Y JCNEFF(O) =1 ,0) %W (Q) ) %%x2 . :

+({CAL(IN)/CREFF(I0)=1.N) =M {10) ) %22 "

+UICALILL) /COEFF(11)=1.0) %L1 T) ) 522

+{{CAL(1I2)/COFFFR{12)1-1.0) %W (12) %%

+EICALT13)/CNEFFIT3)-1, 0 %W 13) ) %40

END. EQUATF: - .
Al , S . x/

‘ . CEND FLASTIC: o _

s e
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2.“ Calculation of eigenvalues and éigenvectérs of
Christoffel equations,

FCOMOTLF

C  APTL  J.M.FAPLTY

C CALCULATED FoM™ C1J AND DENSITY
RE AL L(%),P(ﬂ)5L11,LEZ,L73,L32,L23,L31,N1,N2,N3
INTEGEE PHI, THFTA

CC READ ELASTIC CONSTAMNTS,TEMP,AND GENSITY, FOR 4/MMM PUT Clé=TERD

3ORPEAC(5,300) T,00l,CL2,C17,C14
100 FORMAT(FIO T, 4VJO.J)
S RFADIS,L01) 033,044 ,CF6,P
12 FOFMAT(5E.0.3,F10,4)
C PRINT QUT TNPUT DATA
WRITE(A,0T2) T,01%,C22,C:2,C1¢
102 FORMAT(YTEMD= ,F5,1,/4510,3)
WPITF((‘vlC?, CEBQC’Q‘"C@"WP
N3 FORMAT(3E LG5/ CENSITY=? ,F10.4) :
THETA IS ANGLE (JF PROPLGATION OTRECTICN MEASUREDAWAY FROM THE+7~-AXIS
PHI IS AMGLE IN X=Y PLANE MFASURED AWAY FROM +X AXIS TGWARDS +Y AXIS
CO -1 1224445445 . :
PHI=I-1
WRITE(&,104) PHI

- iCa FOPMAT('PHI='y14)

‘ WRITE(&,107) :
107 FORMAT (0 ANGLE Vi v2 - V3 VM vInT
1) :
PO T THETA=1,SG
A=THETA/ST.293¢6
R=PHI/5T,255¢L
N3=(CNS(a))
N?=(§Ir(A))*(SI“(P))
o =(SINCA)) = (COST3)) o
C CALLUL TE THE COMPONENTS OF THE CHRISTOFFEL DETERMINANT
LIV=ORD =2y 0L L+ (NEFRD ) 2CAO+ (NBXR2 ) ECH4+2ANTANZHC1E
L2e=(NE#*x2)xCRG+H(N2RM¥D)XCLT 4 (N3HX2 ) 2C44=2#NIEN2*(C16
ng—(N7‘*’)PFQA*(ﬂ’**L)FC44+(N°**2)*C3? :
L23=N22N3%(C123+4(044)
L3i=N1AN2x(C13+4C44)
L12=(NTx*Z2 ) *CY e~ (ND%22 ) 1E+NIxN22(Clc+046)

fC‘STGRc THE COMPONENTS AS A DIAGCNAL MATRIX,  STCR AGE MCCE 1

L{ly=Lil

L{zy=0L12

Liz2)1=L2?

L{&)=L21

L(s)=L23

Lle)=L7>2

CALL FIGUEN(L,yRy34,0)
CALCULMTF THE VELCCITIES FOrk THE EIG SENVALUES

VIi=SQRT(L(1)/P)

Ve=SCRIL(L(Z)/P)

vi=SCRT(L{A)/P)

O

2 WIITE(4,03) R
33 FORMAT(IX,3315.4)
1 CONTINUE

G TR 2

STOP
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3. Program to calculate particle displacement directions and
energy flux directions in (00l) plane of TII crystals.

"$COMPILE .
C CHARACTERISTICS NF ELASTIC WAVE PROPAGATICN IN THE (J01) PLANE
o OF TETRAGONAL LAUE T2 CRYSTALS
-~ C IN THE (00U1) PLANE N3 IS ZERD
C P IS THE CRYSTAL DENSITY
- C WAVE VELOCITIES IN T2 LAUE CRYSTALS
. C PROGKAMME TO CALCULATE THE TWC VELGCITIES ‘IN THE (001) PLANE
N o ~ OTHER THAN THAT UF THE PURE- SHEAR MODE
I REAL NI{260),N2{360),A(360),L11(360),L12(360),L13(360),L22(360),
. 1L23(360),L33(360)4R{360),C(360),D(360),E(360),V1(360),V2(360) '
2 REAL C114C125C134C16,C33,C44,C66,4P
3 REAL P411(360),9212(?60),P213(360)yQP211(360),QP212(360)v
10P213(360),0PX211(360),QPX212(360),QPX213(360)
4 REAL CEGAI(360),X1(360),X2(360),AX1{360), AX2(300)
5 REAL DEV1(360),DEV2{360). °
o C P IS THE DENSITY
& READ(S5,7) Cl1,C12,C13,C16,C33,C44,C66,P
7 FORMAT(8ELN,3)
8 WRITF(6,1) C11,C12,C13, rle C33,044,C66,p
9 . , FORMAT(RE1243)
- C AL{I) IS THE PROPAGATION DIRECTION IN THE (001) PLANE
.C A1(1) IS MEASURED FROM THE +X AXIS (AN ANTICLDCKNISE ROTATION
o ABOUT THE Z-AXIS FROM THE +X AXIS) _
10 Al(l)=0,001
il DO 2 1=2,360
12 AL{I)=A1(I-1)+0, 01745 :
13 DO 3 [=2,360 - ' .
_ 'c DEGAY(I) IS AL(I) IN DSGREES
14 DEGAL(I)=AL({I)*57.2956
XTCNSION* FN=¢&
BSCRIPTS ON RIGHT HAND SIDE OF STATEMENT FUNCTION
15 NI(I)=COS(AL(I))
i6 N2 (TI)=SIN(AL{I))
17 LLLCT)=(NLCT ) *%2 ) %CLI+(N2{T)%%2) %C66+2, D*NI(I)*NZ(I)*(lb
18 L12(T)=(NI(T) %2 )%CLo=~(N2(I ) *#%2) %CL6+NL{T)I%NZ2 (1) %=(C12+C66)
19 L13(I)=0 ,
20 L22(1)=(NL{I)®*2)xCO6+(N2(T)*%2)*C11-2,0*N1(I)*N2(1)*CL6
21 Lz3(1)1=0 : y
22 L33(IV=(NL(T)%%2)%C4e+(N2( 1) %x2)%Ch4
c SOLUTICN NF THE QUADRATIC STARTS HERE-
23 B{IV=LI1(1)+L22(1) '
24 COIY=={L12(T)%%2)+L11(1)%L22(1)
CC ONE SOLUTION IS CALLED D(I) AND THE OTHER E(I)
.C THESE ARE IN PVxx2
25 . , DOI)={BII)+SQRT((R(T I *%2)=4,0%C{I))) /2,
26 ECIN=(B{I)=SQRT((R(T)*%2)=4,0%C{1)))/2, o
- - C . THE V$S ARE THE TWO REQUIRED VELOCITIES IN THE (001) PLANE
27 - VI(I)=SORTI(D(T)/P)
28 - V2(1)=SQRT(E(I)/P)
- C " THE X$S ARE THE RATIO UN1/0U02 FROM THE CHRISTOFFEL EQUATIONS
C - X1{1) REFERS TN THE WAVE WITH A VELOCITY Vi(Il)
¢ X2( 1) REFERS TN THE WAVE WITH A VELOCITY v2(I)
29 X1 ==(L11(I)=D(I))/LL2(T)
30 X2(I)==(L11{I)=ECI))/L12(]) .
o NGW THE X$S MUST BE TRANSFORMED TO AN ANGLE ' _
C CALL AXY THE POLARISATION VECTOR ASSOCIATED WITH THE WAVE WITH
C A VELOCITY V1 AND A RATIO X1
o SIMILARLY FCR AX2
31 AXLOI)=ATAN(X1(I))

32

AX2 (T )1=ATAN(X2(I))
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©. QPX211 IS THE ANGLE BETWEEN THE ENERGY FLUX VECTOR ASSOCIATED

(xvi)

AXL{I)=AX1(11%57,2956

AX2 (I1)=AX2(1)%57,2956

DEV1y2 ARE DEVIATICNS OFPARTICLE DISPLACENENTS FRO

- PROPAGATION VECTOR

-DEVI(I)—AXI(I)-DEGAI(Il

DEV2(I)=AX2(1)=-DEGAL(T)

ENERGY. FLUX VECTORS

P211' 1S THE RATIO P2/P1 FOR MODE l

. P212 IS THE KATIO P2/P1 FOR MODE 2 :
P2IL1(I)=(NL{I)*(X1(I)*Co6+XL(1)*C12+4C16~(X1(1)*%2)%C16)
T4N20T )% (CO6+IXI( IV %%2)%C11=2,0%X1(1)%C1hR) )/
2INLII)*(CL1420%XL (1) *CL164{X1(] ) %x%2)%C66)
I4N2CTI=(CLO+ X1 (T 2CO6+XLITI*CI2=(X1(])*%2)%C16))
P212(I)=(NI ()= (X2(T)*C664X2( 1) *C124CL16~(X2{])%=%2)%C16)

CLEN2 (T E(CE6+(X2( 1) %22)%C11=-2,0%X2(1)%C16))/

2(N1(I)*(Cll*Z.G*XZ(I)*C16+(X2(I)**2)*C66)'

3¢N2 (I =(CLE+X2( 1) *C66+X2(1)=*C12- (XZ(I)**Z)*C16)) .
CALL QP211 THE ANGLE BETWEEN THE ENERGY FLUX DIRECTION AND THE
+X -AXIS MEASURED TOWARDS THE +Y AXIS
QP211(I)=ATAN{P211(1))

S QP212(T)=ATAN(P212(I))

3
8
4

QP211(1)=QP2Lr1(11%*57,2956
QP212(11=QP212(1)%*5742956 .

"WITH THE MODE 1 AND THE PROPAGATION VECTOR
QPX211(1)=0P211(1)=DEGAL(I)
QPXZIZ(I)-QPZI:(I)*DEGAI(I)
D0 4 I=2,360
FORMAT(1F12.492E1545)
HRITE(b,Bi DEGAI(I’vVl(I)oV?(I)

10-C

D ELEMENT IN. AN OUTPUT LIST

3 .
4- .
- C
C
5
6 -
C
C
,
8
c
C
' .
)
2
LC
- C
3, .
>
5
>
7
QSION*
3
3.
)
NS TON*

9
6

DO 6 1=2,360

FORMAT (1F10, 4.2514.5)

WRITE(6,9) DECAl(I’qDEVl(I)vDEVZ(I’
10~C

D ELEMENT IN AN OUTPUT LIST

:
4
J

ISTON*.

18

DO 17 1=2,360
FORMAT(6F10,4)

17 HRITE(6918) DEGAI(I)voPXZII(I)yQPXZlZ(I} 

10-C

D ELEMENT IN AN OUTPUT LIST

J
i

STOP
END
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4. Program to calculate Sij from Cij, bulk modulus, volume:.and
linear compressibilities, isotropic moduli. and mean sound velocity,

$C(N4PI[.E and.the orientation dependence of the Young s modulus, -~ =

1 REAL KV yCVeKR yGRyKEgCHyVL VS, VM,]FFTAL PL.N
2 F{"AL’:r,F—V -
3 REAL V1,V24V3,P
4 REAL "L1gL2yL3gYMyNYE9h
5 REAL LZ,LXY
& REAL TyX
7 REAL €~
8 4 KEAC(S5,105,END=92) X, T
9 105 FORMATAFR10.14F10.1)
10 - WRITE(E,106) - -
11 - 105 FORMATY' MATEFIALX  TEMP')
T 12 WRITELEY155) X, T
13 . REAC(S5,7) C11,C12.,013,C16,033,044,(¢8
14 7 FORMATITELID3) o ‘
15 : WRITE(&,131) ,
16 131 FORMAT (? 1l C12 c12 . C1le (22 C&4
B Cort) S ‘ DR
17 WRITE(E,102) Cl1,C12, Cl’,Clé.(BB,CéA ChHos .
18 102 FORMAT(T7EL1D.3)
19 C=C44*C o445 (CLY-C12) »(H6-2% Clé*Clb)f(rll €33+4(C12%C33-2%C13%C13)
20 o S11=(C11%#C23%Cep=(124C12%Cre~ClexClex33)xC4awCaa/(
21 $12==((12#C33% (66~ Cl’*(l’*((‘+C1(*f164C’3)#Cqu»(@é/(
22 S13={C12%C60-Cl1%CoE+2.0%C16%5C1¢) %01 37Cua%Cas/C
23 . S1e=-(C12%(C334C114C32-2 O*r13¥Cl?)¥CI£ 2C L a4 /0
24 $33=(Cen*(C11%CL1- rlzfc1z’—2.0*(C11*C12)vc16*c16)#cnaxcqalc
25 T S44=1/044 ) o
26 S66= (C33#(C114612)-2*F13vf13)*(c11 c1c>*cc4 Ce4/C
27 . . WRITE(&,125)
28 . . 125 FORMAT(/' SIJ IN FNQ**Z/DYNF')
.29 : WRITE(E,132) , s
30 132 FGPMAT(' S11 Cs12 S13 . Sl . %33 S44
SR | Se6t) ' '
31 : NRITC(6'102) S11,4812,513, $16,533, 54u,<se
32 . BM—l/(Z*Sll+833+2*51<+w¢51%) 4
33 . WRITE(6,1256) BM ‘ '
34 12¢ FORMAT(S5X,*RBLLK MCDULLS-‘,fl(.3,'CYAC/CN4*2'}
35 LXY=511+4512+513
36 : LZ2=533+42,0%5113
37 VCOMP=L 2424 0%L XY
38 WRITE(&,127) LZyLXY : g
39 © 127 FORMAT(5X,!' LINEAR CONP, Lz=1, 510.3.'va='.510.3)
40 WRITE(e,128) voOMe
41 128 FORMAT(5X, 'VOLUME CGMPRESSIRILITY=! WE1C a3y 1CHm=2/DYNE )
42 EV=((C11-C1243%C44)%(C1142%C12))/(2%C1143%C12+4C44)
43 _ CER=(5%C46%(C11- c12)1(c11+2*c44))/(c~4m(=%c11+c1?)+(c11 -C12) =
. L2C11+42%C12 ) : . ,
44 WRITEL 6, 150) ERLEV -
45 150 FORMAT(*ER?, €103y EV'EIN.S)
46 CORVETL25CI14C33)42%(C1242%C130 ) /%
47 GV-((2+L11+L33)—(C1?+2*C1’)+3#(2vC44+(of))/l;
48 , KR=1/70(S11%245S33)424(S1242%512))
49 . GR= 15/(4*(2v<114333)—q=(<12+2*°13)+3x(24544456ﬁ))
50  KH={KR4KV)/2 :
51 GH«(GR+FV)/Z
52 D=4, 255
53 - VL=5GRT((Kti+le 323nch)/c1
54 VS=SORT(GH/D) -

55 VM= l/((4.3335*(2/(Vc**’)+l/(VL**3)))ﬁ““ 33333)
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58

59
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61
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69
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78.
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YCUNG'S MODULUS IN 001 PLANE,L3=0
WRITE(6,1(9)
FORMAT (! (3D 1)PLANE s X=Y PLANE®)

DC 6 T=1,360

a=1

R=A/57.2556

L1=COSLR)

L2=S IN(F)

L3=0 '
MY = (Ll**4+L2*”4)*SI1+L?“*4v533+(L1“"2)4(L?*‘Z)*(2”‘]2*565)*

LTUL3#22) = (1-L3%%2 )% (2% S 134544 )42 1xL 2% (L1542 ~L2%%2)=%516
yYM=1/MY
FORMAT(FSe1451743)
WRITE(E,2) Ay YM
YM IN 105 PLANE
WRITE(6,110) .
FORMAT (' 100 PLANE,Y=Z PLANE')

DO 14 1-1,363

14

112

A=1

R=A/57.2356
L1=0
L3=CCS(R)

L2=SIN(R)
MY=(L1xx4q4l 2%n4) > 511+L3**4“)33+(L1* 2)*(L2¥*z)*(/‘<12*300)+

L(L3%%2)%(]1~ LSﬂ*Z)*(2*513+<44)+2*L1 LZ*(LI**? L2%%2)*816
yM=1/MY _
WRITE(E.8) A, YM
'¥YM IN 110 PLANE

CWRITE(6,112)

FORMAT (110 PLANE')
DO 15 I=1,360

A=1 '
" R=A/%7.255¢

. L3=CCS(R)

L1=(SIN(R)) /1414

L2=L1 '
MY=(L1%x44L2%34) S 1141 3%%4%5 5’+(L1**7)¥(L2*«Z)#( 31245660+

1L3%%2)=( 1~ L3**2)*(2“<13+¢44)+2*L1 QZ*(LI*NZ -L2#%21%516

- YM=1/MY

15

99

WRITE(64B) A YP
GO TO 4 :
STOP

END
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5. . Program to calculate the intensities of pairs {hkl}, {xh1}
of spots on a Laue back reflection photograph taken with
the x-ray beam parallel to the 2 axis,

FACTC PROC CPTICNS ‘VAIN'-
DCL((X0Y97)(3))FL0AT0
DCLIKEy Ky L)FLCATS
DCL((AQR:F’(3))FLCAT

CCLIFY(3VFLOAT

pCtL (LyAlpCl)FLUAT‘
GET LIST (ClyAl’ol

PUT EDIT (*C=*,C1,*A=*yALI(2(A,F(Ty6))) 5

PLT LIST (*Al - A2 : A3
DO . I=1 TC 33 '
GET LIST AX(I)yY(I)yZ0I))35
END3

NEW:GET LIST (H, K,L).
PUT SKIP ECIT (FyKoL D)3 F(4)):

D=SQRT(L/ ((HE#24KE#2) /(AL #2204 552/C1#¥2) )5

OIN=1.0/(2%C) 3 A
PUT EDIT (' CINYHODINI(A,FI543))3
Do 1=1 TC 3;

32

GLI)=ar((COS(2%3, 142*(H+K+L)*u.2ﬁ))**2)*(Cr5(2*5 la2%
(H2AX D) 4KV (T ) ) V) 2CDS (2530 142% (L2 {1 )=(2%K+L)/5))+CNS( 2%
3 14?“(H*Y(!)-K*(X(I))))*CWQ(Z*B IAZJ(L"7(I)+(7*K+L)/P)))

A(I)=’(I)*CDS((2«K4[)/8)‘
B(I!=G(')*SIN((2*K+L)/8).
END3

PUT FDIT (A(l),A(Z’,A(3’yB(1)QB())pﬁ(j)’(t F(1b91)’v

DO I=1 79 335~
GET. L IST (F(I)!:
ENDS

0= ((F(IJ*A(I)+F(2)*A(2)+°(3)*A(3)) ¥E2 )4

((F(l)‘°(1)+F(2) B(2)+¢(3)4B(2))*V2).
PUT SKIP LIST (OZ),

60 TO NEW3

ENDS '

B3');
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APPENDIX II
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“THE ELASTIC CONSTANTS OF CaWo,"
' J M Farley and G A Saunders' (1971) 'Solid State
Comm. 9, 965-9

WEFFECT OF CURRENT BLACKENING ON THE ELASTIC CONSTANTS
OF YTTRIA STABILISED ZIRCONIA" =

J M Farley, J S Thorp, J S Ross, G'A Saunders (1972)
..J. Mat., Sci. 7, 475-6

"CONVERSELY ORIENTED ETCH PITS IN A7 STRUCTURE

SEMIMETALS“
Y C Akgoz, J M Farley and G A Saunders (1972)
J. Mat. Sci 7, 598—600

“ULTRASONIC STUDY OF THE ELASTIC BEHAVIOUR OF CALCIUM

' TUNGSTATE BETWEEN 1.5 K and 300 K"

~J M Farley and G A Saunders (1972) J. Phys. C:Solid
State 5, 3021-37 : '

“THE ELASTIC BEHAVIOUR OF InBi SINGLE CRYSTALS"
Y C Akgbz, J M Farley and G A Saunders (1973)
"J.APhyB. Chem. Solids.34, 141-9

"ACOUSTIC SYMMETRY OF SCHEELITE STRUCTURE CRYSTALS"

~J'M Farley and G A Saunders (1973) Paper read at .
' Institute of Physics Solid State Physics Conference,
' Manchester

_"THE ELASTIC CONSTANTS OF STRONTIUM.MELYBDRTE”

~J M Farley, G A Saunders and D Y Chung (1973)
'J. Phys. C: Solid State 6, 2010-9', : ' ;
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