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ABSTRACT 

Seeds of ~ ~ (L) become fully mature in about 130 days from 

the fertilization of the ovule. After an initial phase of cell division, 

storage protein is synthesised in the cotyledons. During the stage of 

storage protein synthesis, rRNA synthesis occurs concomitant with 

synthesis of ER, suggesting that storage protein synthesis is mediated 

on membrane bound ribosomes by mRNA(s). Analysis of the nucleic acids 

during cotyledon development did not lead to the identification of any 

non-ribosomal RNA species. 

A fourth rRNA was identified, which had a molecular weight of 52,000 

daltons and was hydrogen bonded to the 255 r~~ species. 

Attempts to identify rRNA precursor molecules in cotyledons and roots 

were unsuccessful, though in the latter the bacterial precursor molecule 

to the 165 rRNA was identified. 

Isolated polyribosomes, from cotyledons at various stages of develop­

ment, had similar profiles and their constituent nucleic acids were 

degraded, indicating that they were cleavage products of larger in !!!£ 

units. The rRNA cleavage products arising during polyribosome isolation 

were characterised by their molecular weights. 

The properties of diethylpyrocarbonate as a nuclease inhibitor were 

reinvestigated and it was found to be incapable of effectively inhibiting 

high concentrations of nucleases. The extraction of polyribosomes in the 

presence of diethylpyrocarbonate effectively protected the polyribosome 

against RNase dw.~ing the later- stages of' the extraction pr-ocedure, but not 

during the initial stages resulting in marked rRNA cleavage and the 

formation of ribosomal subunits. 

The use of antilegumin as a method in the identification of a mru~ 

is discussed. 
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1 

INTRODUCTION 

Nucleic acid was first isolated in the 19th Centur,y by Miescher 

(1844-95) who obtained a compound of high molecular weight, with a 

phosphorus content of 9.5~, from nuclei which he termed nuclein. It 

is now known that nuclein was nucleic acid; a term coined by Altmann in 

1889. 

Following the chemical analysis of nucleic acid by Miescher, Kassel, 

Neumann, Levene and others, two types were recognised. One was character-

istic of thymus nucleic acid and contained the sugar, deoxyribose and 

the bases, adenine, guanine, cytosine and thyamine. The other, character-

istic of yeast nucleic acid, contained the sugar, ribose and the bases, 

adenine, guanine, cytosine and uracil. Both types contained phosphoric 

acid. These nucleic acids have been termed deoxyribose nucleic acid 

(DNA) and ribose nucleic acid (RNA) respectively. As the nucleic acids 

isolated from animals resembled DNA, and those from plants RNA, the 

assumption was made that the distinction represented a valid classifica-

tion. This classification, however, did not last long when it was found 

that RNA had a widespread occurrence in both animal and plant tissues, as 

had DNA, which was localised in the nucleus. The possible connection 

between DNA and genetic inheritance had been realised soon after the 

original discovery of nucleic acids by Miescher. However, it was not 

until 1944 that positive proof linked DNA to genetic inheritance. Avery, 

Macleod and McCarty (1944), following up the work of Griffith (1928), 

showed that the transformation of non-encapsulated pneumococci to a 

capsulated form could be brought about with an extract from capsulated 

pneumococci, and that the extract was chemically identical to DNA. 

Further proof was forthcoming in 1952, when Hershey and Chase demonstrated 

that virtually only phage DNA entered the bacterium and was responsible 
A:t~tiJi:.R';.-;~ . ._...... ,uur.J~ f '\ 

11 7 M.AR. 197.2, · 

·~ . ·~~~' ~<f1 
... ' 
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for the production of new phage particles. The chemical explanation of 

the ability of DNA to store genetic information and to divide and so 

duplicate the information was formulated by Vfatson and Crick in 1953 

(a and b). 

The intracellular distribution of nucleic acids was first investi­

gated by Brachet (1940), using RNase coupled with basophilic qyes, and 

by Caspersson (1941), using ultraviolet photography in conjunction with 

the Feulgen reaction (Feulgen and Rossenbeck, 1924). They showed that 

DNA was localised in the nucleus, RNA mainly located in the cytoplasm, 

and that the concentration of RNA was greater in dividing cells. The 

RNA was localised in basophilic granules which, when isolated by centri­

fugation, consisted of phospholipid ribonucleoprotein complexes. These 

were termed microsomes (Bensley, 1937; Claude, 1941). Tracer experiments, 

in which Hultin (1950) used young chicks and glycine; Borsook ~ a1.,(1950) 

used guinea pigs and glycine, histidine, leucine and lysine, Keller (1951) 

used rats and cystine, showed that, following the injection of the 

labelled amino acid, the microsome fraction of the liver had a higher 

specific activity than any other fraction. These experiments identified 

the microsome fraction with the site of protein synthesis. In 1955, 

Littlefield !1 !!· demonstrated that the microsomes were separable into 

1'1. deoxycholate-soluble fraction and a deoxycholate-insoluble fraction. 

The latter consisted of particles having a diameter of about 240 A0 and 

a RNA to protein ratio of approximately 1. These ribonucleoprotein 

particles, or ribosomes, were the initial site of amino acid incorporation 

into protein. Prior to the description or messenger RNA the occurrence 

of ribosome complexes (Watson, 1959) was ascribed to the non-specific 

aggregation of ribosomes. The importance of the ribosome aggregate in 

protein synthesis was then demonstrated (Warner £i &·, 1962; Marks ,!!! ~·, 

1962; Gierer, 1963), and the concept of the polysome arose (Wettstein 

,!i!!1,., 1963; Marks !1 al., 1963). The mechanism of protein synthesis is 



now well documented (Konings, 1969; Boulter, 1970). 

Ribosomes, now accepted as characteristic organelles of the living 

cell, fall into two size classes. Those of prokaryotic organisms have 

a sedimentation coefficient of about 70S, while those of eukaryotic 

organisms have a sedimentation coefficient of about 80S (Taylor and 

Stork, 1964). An exception to this occurs in the eukaryote Dictyostelium 

discoideum, whose ribosomes have a sedimentation coefficient of 70S; 

though they do resemble eukaryotic ribosomes in their magnesium stability 

(Ashworth, 1966). Eukaryotic cells, in addition to the cytoplasmic 80S 

ribosomes, possess 70S ribosomes. These are localised within the 

mitochondria and chloroplast. They are typically bacterial-like, not 

only in their sedimentation coefficient, but also in their magnesium 

stability (Boardman 21 !!•, 1966; Kuntzel, 1969) and other properties. 

All ribosomes consist of two unequal subunits, 30S and 50S in 70S 

ribosomes (Tissieres and Watson, 1958) and 40S and 60S in 80S ribosomes 

(Chao, 1957). 

Most of the early techniques used in the isolation of RNA resulted 

in the degradation of. the molecules to fragments of lower molecular 

weight. As the isolation techniques improved, so the molecular weight 

of the RNA obtained increased (Grinnan and Mosher, 1951; Kirby, 1965). 

The early analysis of bacterial rP~~·s resulted in Midgley (1965, a; b; a) 

suggesting that the 305 ribosomal subunit contained a 165 ~~' while the 

50S ribosomal subunit contained a 16S RNA dimer having a sedimentation 

coefficient of 235. This was apparently supported by the work of Godson 

and Butler (1964), who observed that the 165 RNA became labelled prior 

to the 23 RNA. However, in 1965, Stanley and Bock showed that both the 

23S and 16S RNA's were single polynucleotide chains. It is now generally 

accepted that one large RNA molecule is localised in each of the two 

ribosomal subunits. 



The classification of ribosomes on size and magnesium stability 

into two groups also reflects the size of their constituent RNA molecules. 

The two major RNA's present in the ribosomes of prokaryotic organisms, 

mitochondria and chloroplasts, have molecular weights of 1.1 x 106 and 

0.56 x 106 daltons respectively. The rRNA's of eukaryotic organisms, on 

the other hand, show some variation in size. The larger of the two rRNA's 

in the animal kingdom for example, is in HeLa cells 1.75 x 106 daltons; 

Xenopus 1.51 x 106 daltons and Drosophila 1.40 x 106 daltons. In the 

plant kingdom, the size of the larger of the rRNA's is relatively constant 

at 1.3 x 106 daltons. In most eukaryotic organisms the smaller of the 

two rRNA's is approximately 0.70 x 106 daltons; except in Amoeba and 

Eug1ena, whioh have values of 0.89 x 106 and 0.85 x 106 daltons respect­

ively (Loaning, 1968). 

The presence of a low molecular weight RNA of approximately 5S, in 

ribosome preparations from Escherichia ~' was first described by Rosset 

and Monier (1963). Since then it has been shown that the 5S RNA is a 

natural component of both the 70S and 80S ribosomes, being located in the 

large subunit (Comb and Katz, 196~; Combe and Zehavi-Willner, 1967; 

Marcot-Queiroz et al., 1965; Bachvaroff and Tongur, 1966; Brown and --
Littna, 1966; Knight and Darnell, 1967; Li and Fox, 1969). However, 

Lizardi and Luck (1971) have demonstrated that the ribosomes of Neurospora 

crassa do not possess a 5S RNA molecule. The complete sequence of the 5S 

RNA from !· ,2ill (Brownlee !i !!• , 1968), and from human carcinoma (KB) 

cells (Forget and Weissman, 1969), is known, though as yet the exact 

nature cf' ~~~ction is unclear. Siddique and Hosokawa (1969), have 

suggested that the 5S RNA may play a role in the specific binding of 

transfer RNA to ribosomes. 

Transfer RNA's were first postulated by Crick in 1957 and were sub­

sequently demonstrated by Hoagland !i al. (1957). Transfer RNA has since 

been purified from a wide range of sources and there is at least one 
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specific tRNA for each of the 20 common amino acids used in protein 

biosynthesis. The first primar,y structure of a tRNA species to be 

elucidated was alanine tRNA from yeast (Holley !i al., 1965). Since 

then the nucleotide sequence of a wide range of tRNA species has been 

determined (Dayhoff, 1969), and all are very similar; having a molecular 

weight of approximately 25,000 daltons, and containing a large proportion 

of unusual bases, the majority of which are methylated. From the many 

published secondary structures, X-ray diffraction studies have indicated 

that the most probable model is the clover leaf model originally suggested 

by Holley!! al. (1965), and that the tertiary structure is a compact 

elongate molecule, the axis of which is a double helix, the loops being 

tightly accommodated against the central axis (Abraham, 1971). 

Prior to Jacob and Monod in 1961 (see later), the template upon 

which specific proteins were made was envisaged to be rRNA. This would 

necessitate a high rate of turnover for the cellular RNA, and for rRNA 

to be heterogeneous. The evidence against rRNA being informational was 

that it was not heterogeneous, and that its base composition was relatively 

constant, having a high cytidylic and guanylic acid content, which did 

not reflect the base composition of DNA; and further that it was stable 

(Davern and Meselson, 1960). In 1961, Jacob and Monod proposed that 

genetic informf.ltion was transferred from the genes to the ribosomes by 

' 
transient molectlies of RNA, which they termed messenger RNA. Evidence 

for the existence of such RNA's had previously been published by Volkin 

and Astrachan (1956), Brenner et al. (1961), Gros. et al. (1961) and ,--
Yeas and Vincent (1960). A critical appraisal of the papers by Brenner 

et !!• (1961) and Gros'!! !!· (1961) is given by Harris (1968). Volkin 

and Astrachan (1956) identified a rapidly labelled RNA fraction in T2 

infected !· ~which had a base composition similar to T2 D~~. This 

was later shown to be complementary to T2 DNA by Hall and Spiegelman (1961). 

Yeas and Vincent (1960) detected a rapidly labelled RNA fraction, with a 
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base composition similar to DNA, in yeast. They suggested that it may be 

a primary gene product acting as an agent for the transmission of genetic 

information from DNA to protein. However it would seem more probable 

that it corresponded to rapidly labelled nuclear RNA, rather than 

messenger RNA. 

Since this early work, the occurrence of transient molecules which 

are involved in information transfer has been established in bacterial 

and phage infected bacterial systems. However, in eukaryotic cells, 

although messenger RNA is an accepted concept, the position is more 

complex than in bacteria, due to the presence of a nucleus and the 

rapidly labelled nuclear RNA's, from which cytoplasmic messenger RNA's 

must be distinguished. 

First attempts to characterise messenger RNA activity in eukaryotic 

cells were by using experiments designed to demonstrate the ability of 

separated RNA fractions to stimulate amino acid incorporation in a cell-

free system. Using this approach, so called messenger RNA has been 

demonstrated in rabbit reticulocytes (Drach and Lingrel, 1964-; Arnstein 

~ !!•, 1965), rat liver cytoplasm (Hoagland and Askonas, 1963; 

DiGirolamo ~ !!!•, 1964-), nuclei (Barondes at &·, 1962; Brawerman !l .!!!·, 

1963; DiGirolamo~ !!•, 1964-), sheep thyroid (Cartouzou ~ al., 1965) 

and calf lens (Konings and Bloemendal, 1969). It is clearly evidentfrom 

these and other papers (see review; Konings, 1969), that RNA will enhance 

amino acid incorporation in a cell-free system: (a) if it has a lower 

guanylic-cyti~lic acid content than rRNA, and (b) if it has been extracted 

0 at either extremes of pH or at temperatures greater than 30 C. In other 

words, any RNA which does not possess, or has lost, a highly ordered 

secondary structure will enhance amino acid incorporation. Such RNA does 

not code for specific proteins, but either codes for heterogeneous 

peptidyl material, or enhances the endogeneous activity, natural or poly-U 

directed, of the system (Drach and Lingrel, 1966; Hunt and Wilkinson, 1967; 



Konings, 1969). 

Rapidly labelled RNA, following precursor incorporation, which 

becomes associated with polysomes has been ascribed to messenger RNA; 

though in some cases it has been termed DNA-like RNA (DRNA) owing to 
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its similarity to DNA in its base composition (Loaning, 1965; Lin !i !!•• 

1966). This type of rapidly labelled RNA is polydisperse (Kumar, 1968) 

and can be accounted for by the view that it represents nuclear RNA 

which has been released into the cytoplasm from nuclei damaged during 

the preparation of the polysomes (Plagemann, 1969). It is only in a 

relatively few cases that specific rapidly labelled RNA's, isolated from 

polysomes, have been implicated in the synthesis of specific proteins. 

Probably the best characterised of these are the messenger RNA's for 

haemoglobin which were first isolated by Marbaix and Burny (1964; 1965). 

The physical characteristics of these messengers seem dependent upon the 

isolation procedure used. Marbaix and Burny (1964; 1965) assigned to 

them a sedimentation coefficient of 9S and a molecular weight of approxi­

mately 150,000. Labri (1969) proposed values of lOS and a molecular 

weight of 190,000. Gaskill and Kabat (1971) and Bloebel (1971) assigned 

to them a molecular weight of approximately 220,000 corresponding to a 

sedimentation coefficient of 11.35. Marcoun !i ~· (1971) showed that 

there were two forms of the messenger RNA's; one with a sedimentation 

coefficient of 175, the other being 9S. Both apparently had the same 

molecular weight and therefore only differed in conformation (see 

Bra~1ell and Harris, 1967). There is little doubt now that these 

particular RNA's, when added to a reticulocyte cell-free system, code 

for the protein haemoglobin (Adamson !i al., 1968; Zucker and Schulman, 

1968; Housman~~., 1970; Gilbert !i !!•, 1970). Although Laycock and 

Hunt (1969) claimed the synthesis of haemoglobin in an !• ~ system, it 

would appear that the system made a haemoglobin-like protein, rather than 

haemoglobin itself. They claimed protein initiation was by N-acetyl-valine 
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tRNA, whereas, _!!! vivo and in the reticulocyte system, initiation is by 

methionine - RNAMET.F (Wilson and Dintzis, 1970; Gonano and Baglioni, 

1969; Housman et al., 1970; Jackson and Hunter, 1970). --
Another messenger RNA which has been characterised is the 26S RNA 

coding for the large subunit of ~osin, (He~vood and Nwagwu, 1968a; 

1968b; 1969) which was isolated from the heavy polysomes, containing 60 

to 80 ribosomes. The light ~osin chains are produced on light polysomes, 

containing 4-9 ribosomes (Low !i al., 1971), though the characteristics 

of the RNA coding for the light chains is not yet known. Heywood and 

Nwagwu demonstrated a 10-12~ RNA associated with the light polysome 

fraction but were unable to demonstrate that it directed the synthesis 

of light ~osin subunit chains in vitro. 

The haemoglobin and ~osin messenger RNA's are the only cases, so 

far, in which a eukaryotic cytoplasmic RNA has been shown to direct the 

synthesis of a specific protein in a cell-free system. Other claimed 

messenger RNA's are those coding for the light and heavy antiboqy chains 

(Kauchler and Rich, 1969a, b), and the messenger RNA(s) coding for the 

histone proteins in sea urchins (Nemer and Lindsay, 1969; Daigneault 

~ !!•, 1970; Kedes and Birnsteil, 1971). In both these cases, the 

identification of the RNA with a messenger function is based on circum-

stantial evidence, rather than their ability to direct the synthesis of 

a specific protein in a cell-free system. 

Indirect evidence for the existence of messenger RNA's in eukaryotic 

cells comes from the use of the antibiotic actino~cin D, which inhibits 

RNA transcription though not template translation. There are numerous 

reports relating to cases in which the synthesis of a protein has been 

initiated in the presence of actino~cin D, or in which synthesis of a 

protein persists and continues to be regulated in the presence of this 

antibiotic. A review of the animal literature is given by Harris (1968). 

Actinomwcin D has also been used on germinating plant embryos to 
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demonstrate polysome formation and the synthesis of protein in the 

absence of detectable RNA synthesis, thus indicating the existence of 

preformed messenger RNA in the dry seed; which must have been synthesised 

during embryogenesis (Dura and Waters, 1965; Ihle and Dure, 1969; Holloman, 

1969). In the absence of actino~cin D, similar conclusions as to the 

presence of a masked messenger RNA in plant embryos, which is activated by 

imbibition, were reached by Marcus and Feely (1964, 1966), Chen !1 ~· 

(1968) and Weeks and Marcus (1971). Actino~cin D is in itself a toxic 

compound causing changes L~ cell metabolism, some aspects of which are 

directly linked to protein synthesis (Soeiro and Amos, 1966); also it 

causes a differential inhibition of the synthesis of different RNA species 

in some cell types (Ellem, 1967; Kay and Cooper, 1969) and may induce 

degradation of the RNA (Wiesner 2i ~., 1965). The experiments which 

purport to demonstrate messenger RNA by using actino~cin D are open to 

the above criticisms and also that the inhibitor did not reach its 

suggested site of action (Neumann, 1964; Abdtil-Baki, 1969). It is 

concluded that, in general, the evidence for long-lived messenger RNA 

in seeds is unreliable, though it is still possible that the drugs main 

~ vitro effect on DNA transcription may be its ~ ~ action. More 

reliable evidence for the existence of stable templates has come from 

the study of enucleated cells, such as Acetabularia, sea urchin and 

amphibian oocytes (Brachet, 1967). It would therefore seem reasonable 

to conclude, firstly that, whereas the messenger RNA's of bacteria 

exhibit a rapid turnover, there exists in eukaryotic cells a class of 

messenger RNA's which are relatively stable. And secondly, that the time 

at which a particular gene is transcribed into RNA has no immediate 

connexion with the time at which this RNA is translated into protein. 

Yet another technique which purports to separate messenger RNA or at 

least the rapidly labelled RNA in eukar,yotic cells, is methylated albumin 

kieselguhr chromatography. The rapidly labelled RNA's are normally 
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eluted after the ribosomal RNA and consist of three fractions, which 

have been termed Q1-, Q2-, and TD-RNA. Q
1

-RNA has been identified as 

ribosomal precursor RNA (Yoshikawa-Fukada et al., 1965; Yoshikawa-Fukada, 

1967) whereas Q2- and TD-RNA are DNA-like in their base composition 

(Yoshikawa-Fukada ~ ~., 1965; Bllem, 1966), and have mean sedimenta­

tion coefficients of 50S and 16S respectively. Q2-RNA would appear to 

be a precursor to TD-RNA on labelling kinetics, the latter according to 

Ellem (1966) being messenger RNA. Therefore, Q2-RNA would represent the 

polycistronic nuclear precursors of the messenger RNA; the existence of 

which has been suggested by Penman ~ ~· (1963) and Scherrer and Marcaud 

(1968). Rapidly labelled RNA associated with polysomes (see earlier 

discussion) elutes with the nuclear Q2- and TD-RNA 1 s (Miller~!!·, 

1968). The elution factor therefore, cannot be size, as nuclear Q2-RNA 

has a mean sedimentation coefficient of 50S while polysomal Q2-RNA has a 

mean sedimentation coefficient of 16S, but is more likely base composition 

anq/or secondary structure. Miller et al. (1968) suggested that polysomal 

Q2-RNA represents the cytoplasmic fragmented counterpart of messenger RNA 

present in the nucleus as giant polycistronic molecules,which is contrary 

to the precursor-product relationship suggested to exist between Q2- and 

TD-RNA by Ellem (1966). It would therefore appear, that to draw any 

analogy between the fractions eluted off methylated albumin kieselguhr 

columns and cytoplasmic messenger RNA would be hazardous. 

There are in the cell, in addition to rRNA, tRNA and mRNA's, 

ribosomal precursor molecule~an example being the Q
1 

fraction of methy­

lated albumin kieselguhr chromatography. These RNA's form the major part 

of the nuclear RNA's in eukaryotic organisms and also occur in bacteria 

(Marrs and Kaplan, 1970). They are now well. characterised in maiiiiilSlian 

cells (Craig at al., 1968; Amalric ~ ~., 1969; Ab and Malt, 1970; 

Quagliarotti ~ ~., 1970; Egawa £! !!•, 1971), Xenopus laevis (Loaning 

!1 !!•, 1969), Chironomus tentans (Edstrom and Daneholt, 1967), sea urchins 
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(Sconzo !,i al., 1971); Urechis caupo (Dus et al., 1970), Amoeba proteus 

(Goldstein, 1971), Dictyosteliurn discoideum (Iwabuchi ~ !l•, 1971), 

yeast (Taber and Vincent, 1969; Van den Bos and Planta, 1971), Gyrodinium 

cohnii (Rae, 1970), Tetrahymena pyriformis (Kumar, 1970) and higher 

plants (Leaver and Key, 1970; Rogers !,i !l•, 1970; Gheng and Hagen, 1971; 

Chen ll &·, 1971). 

In eukaryotes the synthesis and the subsequent processing of the 

ribosomal precursor molecule occurs in the nucleolus (Birnsteil, 1967). 

The precursor is transcribed in the nucleolar core (Macgregor, 1967; 

Simard et &·, 1969; Amalric !,i &·, 1969; Dus !.!, &·, 1970) and trans-

ferred to the nucleolar cortex concomitant with the cleavage of the 

molecule and its association with protein; following which the immature 

ribosomal subunits are transferred to the cytoplasm, where they mature 

by a process involving the loss of protein (Perry, 1967; Vaughan ll ~., 

1967; Izawa and Kawashima, 1968; Liau and Perry, 1969; Chen!.!,&·, 1971). 

The site of rRNA synthesis and the mechanism of ribosome assembly 

and transport from the nucleus to the cytoplasm is now relatively well 

understood. In contrast, little is known concerning the mechanism of 

mRNA transcription and its subsequent transport from the nucleus to the 

cytoplasm which is partly due to the elusiveness of mRNA in the first 

place. Ribonucleoprotein particles or particle complexes have been 

identified in various types of cells (see Table 1) and have been associ-

ated by these authors as involved in mRNA transport. Spirin and Nemer 

(1965), and Nemer and Infante (1965) have also described discrete cyto-

plasmic ribonucleoprotein particles containing rapidly labelled RNA, 

which have been termed informosomes. In contrast, the nuclear 30S 

particles have been termed inforrnofers by Samarina!.!, ~· (1966, 1968). 

Similarities between the protein components o.f' nuclear and cytoplasmic 

particles have been established by Lissitsky ~ &• (1970) and Schweiger 

and Hannig (1970), though a definite precursor-product relationship has 



TABLE 1 

Ribonucleo~rotein Particles. 

RNA RNA 
Particle mean ~ /t. Reference Source characteristics S.value G+C pro el.n Comments 

Henshaw et al. t :Rat liver 
45S lBS l.lJ stimulates E. coli cell~free 

(1965) -- cytoplasm system 

McConkey and Hopkins, HeLa cell 
(1965) cytoPlasm 455 15-16S - - represents 40S ribosomal subunit 

precursor with mRNA attached 

Samarin& et al. , Ehrlich 
(1966) -- carcinoma JOS 12-lBS - - pre-existing particles bind newly 

nuclei transcribed mRNA 

Samarina et al. , :Rat liver JOS 8.5s 1.26 1 : 4 particles for.m polysome-like 
(1968) -- nuclei 180 :X 180 :X 80 j comp!e:xes with RNA 

Moule and Cheuveau, Rat liver 
40S 3.45 1.00 1 : 8 (1968) nuclei 

Perry and Kelley, :L-cells Polydisperse '10-128 1 : 1.5 (1968) cytoplasm -

Cartouzou et al., Sheep Poly disperse stimulates E. coli cell-free 
(1969) -- thyroid - 1.25 1 : 4 system 

nucleus 158 monomer? 

Ishikawa !!_ !!•, :Rat liver 
45S 145 1.05 1 : 5.6 (1969) :nuclei 

Lissitzsky et al., Sheep 400-lOOOS 125 
(1970) -- thyroid to 1.25 

cytoplasm Polydisperse JOS 



not yet been demonstrated to exist between any of the nuclear and 

cytoplasmic particles described. The RNA of these ribonucleoprotein 

particles stimulates amino acid incorporation in a cell-free system 

(Cartouzou et ~., 1969; Henshaw et al., 1965) and exhibits a base 

composition different from that of ribosomal RNA, and therefore has 

been identified with mRNA (see earlier). Criticism of experiments 

purporting to demonstrate ribonucleoprotein particles involved in mRNA 

transport can be based on: (1) a confusion with ribosome subunit pre-

cursors; (2) RNA contamination from disrupted nuclei and mitochondria; 
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(3) the ability of native RNA to form stable complexes with basic 

proteins (Perry and Kelley, 1968); (4) on the fact that until it can be 

demonstrated that ribonucleoprotein particles contain an RNA which acts 

as a template for the translation of a biologically functional molecule, 

their status must remain in doubt. 

Experiments designed to dissociate reticulocyte polyribosomes and 

release the haemoglobin mRNA have not clarified the informosome problem. 

Holder and Lingrel (1970), using tetra-sodium pyrophosphate, localised 

the haemoglobin mRNA on the 4-0S ribosomal subunit (CF. McConkey and 

Hopkins, 1965). Temmerman and Lebleu (1969), Burny et al. (1969) and --
Lebleu !1 !!• (1971), using disodium EDTA, characterised the haemoglobin 

mRNA as a discrete ribonucleoprotein particle. Bloebel (1971), using 

KCl and puromycin, demonstrated that the haemoglobin messenger RNA was 

a native molecule. Complete identification of the released RNA fraction 

with the haemoglobin mRNA was not attempted in any of the above experi-

ments~ and therefore identification of the haemoglobin mPJL4 w~st re~~L~ 

in doubt. 

In the developing seeds of ~ ~~ Payne (1968) has shown that 

rapid RNA synthesis precedes slightly the initiation of protein synthesis. 

This developing system, in which the synthesis of two characterised 

proteins, namely legumin and vicilin, is switched on at a precise time 



in seed development, would appear to offer excellent experimental 

material for the search for mRNA. 
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Before any attempt to identify any mRNA could be made it was first 

necessary to separate and characterise the types of RNA molecules present 

in the developing bean during its different stages of developmen~ and 

secondly to identify all the ribosomal RNA breakdown products, either 

occurring naturally in the developing bean or produced during the 

extraction of subcellular particles. Separation and characterisation of 

RNA molecules forms the major part of the work of this thesis in which 

the highly resolving technique of polyacryamide gel electrophoresis has 

been employed. Attempts to identify an RNA involved in legumin synthesis 

were based on tracer studies, and the use of antilegumin to specifically 

precipitate labelled polysomes engaged in the synthesis of legumin 

polypeptides. 
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MATERIALS 

1. Biological materials 

Seeds of ~ ~ (L) var. Triple White were obtained from 

the Tyneside Seed Company, Gateshead. 

Seeds of Phaseolus aureus were obtained from Anglo-Continental 

Supplies Ltd., Grove Street, Newcastle. 

2. Chemicals and Reagents 

With the exceptions listed below, chemicals were obtained from 

British Drug Houses Ltd., Pbole, Dorset; and from Hopkin and Williams 

Ltd., Chadwell Heath, Essex. They were of analytical grade when neces­

sary. 

p-Dimethylaminobenzaldehyde 

Trizma base 

Torula RNA; Grade VI 

DNA; Type III, highly polymerised from salmon 

DNase I; stock No. DN-EP 

were obtained from Sigma Chemical Co. Ltd., London. 

1,4 - Di ~- (5-phenoxazolyl~ benzene 

2,5 - Diphenyloxazole 

DNase I; 450 Kunitz Ul1its/mg 

were obtained from Koch-Light Laboratories, Colnbx•ook, 

Buckinghamshire. 

D~E-cellulose; DE52 (Whatman Ltd.) 

True-touch gloves 

were obtained from Macfarlane Robson Ltd., Blaydon-on­

Tyne , Durham. 



Sephadex; GlOO and G75 

were obtained from Pharmacia Ltd., Uppsala, Sweden. 

Zeocarb 225 (200-400 mesh) 

was obtained from Permutit Co. Ltd., London. 

Sucrose; RNase-free 

was obtained from Mann Research Laboratories, Liberty 

Street, New York, U.S.A. 

DNA; A grade 

was obtained from Calbiochem Ltd., London. 

Lyphogel 

was obtained from Hawksley and Sons, Lancing, Sussex. 

~2P] -orthophosphate 

was obtained from the Radiochemical Centre, Amersham. 

Diethylpyrocarbonate 

was a generous gift from Bayer Chemicals Ltd., Richmond, 

Surrey. 
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AntUegumin; purified by molecular sieve and affinity 

chromatography, in O.lM-phosphate, pH 7.0 was a generous 

gift from Dr. T.A. Graham, Department of Botany, The Queen's 

University of Belfast, Northern Ireland. 



METHODS 

1. Growth of' biological materials 

(i) The developing seed. 

Seeds of' ~ f'aba (L) var. Triple White v;ere grown in the 

University of' Durham botanic gardens; in the open during the summer 

and in heated greenhouses during the winter. The seeds were sown in 

heated greenhouses in February and the young plants planted out at the 

end of' March. Flowers were labelled on the first day on which they 

were observed to be fully open, the age of' the developing seed being 

calculated from the day of' labelling. For the age required, beans of' 

an average cotyledon weight were used (fig. 1). Plants grown during 
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the winter period were subjected to an artificial regime of' 12 hours of' 

light and 12 hours of' dark; within the temperature range of' 13°C to 20°C. 

Pod set and bean development were extremely variable under these con-

ditions. 

(ii) Germinating seeds. 

(a) Method I 

~ !!£! seeds were imbibed in running tap water for 24 

hours. They were then surface sterilized by washing in freshly prepared 

and filtered lQ% (w/v) calcium hypochlorite for one minute. The seeds 

were then washed in distilled water to remove the calcium hypochlorite 

and sown in seed trays in vermiculite. 0 The seeds were grown at 25 C 

for periods up to 2 weeks in a growth room. 

(b) Method II 

~ ~ seeds were surface sterilized by washing in absolute 

ethanol for 1 min, followed by soaking in lQ% (w/v.) calcium hypochlorite 

for 10 min. The seeds were then imbibed overnight in distilled water. 

The testas were removed from the imbibed beans, and any seed with an 



Fig. 1. 

The average increase in fresh weight of developing 

cotyledons collected during the 1969 season. 
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infected cotyledon was discarded. The seeds were then washed 10 times 

in distilled water and sterili~ed by immersion for 1 min in absolute 

ethanol, then for 2 min in lQ% (w/v) calcium hypochlorite. The seeds 

were then washed 6 times in sterile distilled v1ater, and planted in 

sterile vermiculite under sterile conditions. The seeds were allowed 

to germinate for a period of 3 days in a sterile inoculating room. 

2. Preparation of lithium lauryl sulphate 
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The method used to prepare LLS was as previously described (Noll 

and Stutz, 1968). The resin, Zeocarb 225 (200-400 mesh) was regenerated 

by stirring overnight in hot 2M-NaOH. The resin was then washed with an 

excess of distilled water. It was then resuspended in distilled water 

and the pH adjusted to less than 1 with concentrated H2so4 and equili­

brated overnight. The sulphuric acid was removed and the resin washed 

with distilled water. The resin was then resuspended in 2M-LiCl and 

equilibrated for 3 h. The resin was washed with an excess of distilled 

water and following resuspension in distilled water, was packed into a 

2 em column, to a height of 15 em. The column was washed with two column 

volumes of distilled water prior to the application of 150 ml of 2Q% 

(w/v) SDS. The column eluant was monitered with a sugar refractometer 

(Bellingham and Stanley Ltd., London) to detect the schlieren produced 

by the ion front. The first 250 m1 was collected, and diluted to 300 ml. 

The resulting solution was stored in a dark bottle at 4°C. A sample was 

compared with a solution of lQ% (w/v) SDS with regard to its cooling 

properties, to determine wheth~l' the t::xchange of Na + for Li + had taken 

place. 

3. Preparation of sodium bentonite 

The sodium bentonite was prepared by a modification of the method 

of Watts and Mathias (1967). 100 g bentonite was suspended in 2 1 of 

distilled water by stirring overnight. The suspension was centrifuged 
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at 230 g max. for 20 min in the 4 x 380 m1 rotor of the MSE Mistral 4L. 

The pellet was discarded and the supernatant was recentrifuged at 

2,100 g max. for 30 min. The pellets were made up to 700 m1 by suspen­

sion in distilled water; and allowed to stand for 30 min. The sediment 

was discarded, and the remaining suspension was centrifuged at 1450 g max. 

for 30 min. The supernatant was discarded and the pellet was suspended 

in 350 m1 O.lM-disodium EDTA. This was then diluted to 700 m1 with 

distilled water and stirred overnight. The suspension was centrifuged 

at 520 g max. for 15 min and the resulting pellet discarded. The super­

natant was recentrifuged at 1,450 g max. for 30 min. The resulting 

supernatant was discarded and the pellet was suspended in 350 m1 distilled 

water and stirred for a minimum of 2h. This washing and pelleting was 

repeated 4 times. The final pellet was suspended in 10 m1 distilled 

water, and the sodium bentonite concentration determined by drying 0.5 m1 

aliquots at 105°C till constant weight was attained. 

4. Extraction of nucleic acids 

(i) Extraction from whole tissue. 

The material, normally 2 g, was homogenised in 5 vol. of Kirby's 

buffer: 1% (w/v) TNS, 6% (w/v) sodium 4-aminosalicylate, ~ (w/v) NaCl 

and 6% (v/v) phenol-cresol (Kirby, 1965; Parish and Kirby, 1966; Loaning, 

1969), in an itiSE homogeniser for 30-60s at 14,000 l'Elv./min. An equal 

vol. of phenol-cresol (redistilled phenol, 500 g; redistilled cresol 

70 ml; 8-hydroxyquinoline, 0.5 g; and distilled water to saturation) 

was added and mixed, using a whirlimixer (Fissons Scientific Apparatus 

Ltd., Loughborough). The phases were separated by centrifugation in an 

MSE Mistral 4L centrifuge at 4,000 g max. or an MSE Minor centrifuge at 

2,750 g max. for 15 min at 4°C. The phenol phase was removed and 1/10 

vol. of 5M-NaCl was added to the interface material and aqueous layer, 

which were then extracted with an equal vol. of phenol-cresol. The 
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phases were separated by centrifugation, as previously detailed, and the 

aqueous layer was then removed without disturbing the interphase material 

and re-extracted with an equal vol. of phenol-cresol. The final centri-

fugation was for 30 min. The nucleic acids were precipitated from the 

aqueous phase by the addition of 2 vol. of absolute ethanol and by over­

night storage at -20°C. The precipitated nucleic acids were pelleted 

by centrifugation (as previously detailed); the supernatant was decanted 

off, and the residual pellet was dried under vacuo. The nucleic acids 

were then taken up in a small vol. of O.l5M-sodium acetate•acetic acid, 

o.~ (w/v) SDS, pH 6.0 and precipitated by the addition of 2 vol. of 

absolute ethanol and by overnight storage at -20°C. The precipitated 

nucleic acids were pelleted by centrifugation and the pellet washed twice 

with 8~ (v/v) ethanol, lOmli-NaCl and stored at -20°C under absolute 

ethanol. 

Rat liver RNA was extracted from livers, obtained from freshly 

killed female rats (kindly supplied by the Department of Zoology, 

University of Durham), by the above technique. 

RNA was also extracted from Brame Grass Virus by the above method. 

The virus was a generous gift from Dr. J.B. Bancroft (Department of 

Botany and Plant Pathology, Purdue University, Lafayette, Indiana, U.S.A.). 

All solutions were normally kept at 4°C. The sodium salts, chloride, 

acetate and dodecyl sulphate were later replaced by the corresponding 

lithium salts. The advantage of this change wasan increase in low tempera-

ture and ethanol solubility. 

The nucleic acids prepared by this method were extremely stable 

during storage, appearing unchanged in electrophoretic mobility after 

0 1 year at -20 C. 

(ii) Extraction of 65° RNA. 

After extraction of the total nucleic acids outlined in section (i), 



the first two phenol phases, including the interphase material, were 

combined and an equal vol. of extractant, O.J% (w/v) SDS, O.l4M-NaCl, 

5~!-sodium acetate•acetic acid, pH 5.0 (Floyd !i al., 1966), was added. 

The mixture was shaken for 1 min and then incubated at 65°C for 10 min 

in a water bath; this was followed by shaking at 20°C for a further 
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30 min. The phases were separated by centrifugation at 4,000 g max. for 

20 min at 20°C. T.he aqueous layer was removed and re-extracted with an 

equal volume of phenol-cresol for 15 min at 20°C. The phases were 

separated, as described above, and the nucleic acids precipitated from 

the aqueous layer by the addition of 2 vol. absolute ethanol. The method 

was continued as described in section 4-(i). 

(iii) Extraction from the mitochondrial pellet. 

The nucleic acids were extracted from the crude mitochondrial pellet 

(see section 7-(ii)) by a modification of the above method. The pellet 

was homogenised in an MSE homogeniser with 1 vol. pH 5.0 extractant for 

1 min at 14,000 rev./min. An equal vol. phenol-cresol was added. The 

mixture was shaken for 1 min at 20°C; incubated at 65°C for 10 min and 

then shaken for a further 30 min at 20°C. The phases were separated by 

centrifugation at 16,000 g max. for 10 min at 4°C in the 8 x 50 ml rotor 

of the ~~ High Speed 18. The aqueous phase was removed and re-extracted 

twice with phenol-cresol; the nucleic acids being precipitated from the 

aqueous phase as described in section 4.(i) above. 

(iv) Extraction from polysomes and supernatant fractions. 

(a) Method I 

This procedure was apPlied to the post-mitochondrial supernatant, 

polysome suspensions and the ~igh speed supernatant fractions. The sus­

pended polysomes (section 7.(ii)) or the supernatant fractions (section 

7.(ii)) were made ~ (w/v) with respect to LLS, and an equal vol. of 

phenol-cresol added. The phases were mixed by shaking for 1 min and then 



separated by centrifugation at 4,000 g max. for 15 min at 0°C. The 

aqueous phase was re-extracted with an equal vol. of phenol-cresol, and 

the nucleic acids precipitated from the fihal aqueous phase as detailed 

in section 4.(i). All the operations were at 0°C. 

(b) Method II 
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This procedure was a modification of the method described by 

Oda and Joklick (1967); it was used on DEP-extracted microsome and poly­

some suspensions. The suspensions were made ~ (w/v) with respect to 

LLS and 0.2M with respect to LiCl; shaken for 1 min at room temperature 

and then precipitated by the addition of 2 vol. absolute ethanol and by 

overnight storage at -20°C. The precipitate was pelleted at 4,000 g max. 

for 15 min at 4°C. The pellet was resuspended in a mininrum vol. of 1 m1 

(1~5 mg particles) 50mM-sodium acetate•acetic acetic, 1~1-Na2ED~, 

pH 5.1, and made ~ (w/v) with respect to SDS and O.SM with respect to 

sodium perchlorate. An equal vol. of chloroform-isoa~l alcohol (24:1) 

was added, and the mixture was shaken for 1 min. The mixture was then 

chilled for 15 min on ice. The phases were separated by centrifugation 

at 4,000 g max for 15 min at 4°C. The organic phase was removed, and 

the aqueous phase was re-extracted with chloroform-isoa~l alcohol. After 

the second extraction the aqueous phase was removed and made 0.2M with 

respect to NaCl. The nucleic acids were precipitated by the addition ot 

2 vol. of absolute ethanol and overnight storage at -20°C. 

(v) Extraction from nuclei. 

The nuclei prepared as described (section 7.(i)) were extracted by 

the method outlined in section 4-(i). 

(vi) Extraction for the subsequent isolation of low molecular 

weight RNA. 

To obtain milligram quantities of ~~ RNA species, large amotmts of 

tissue were necessary. The tissues used in the extraction procedures 
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outlined below were either etiolated stems and leaves of 14 day ~rminated 

seeds, 2-day germinated seeds, or 50 to 60-day old developing cotyledons 

of Vicia ~(see methods I.(i) and (ii),(a)). The extraction procedures 

described are listed in their order of development and use. 

(a) Method I 

Approximately 1 kg fresh weight of tissue was blended in a 

Townson and Mercer top drive macerator for 2 min with an equal vol. of 

redistilled 9Q% (v/v) phenol and extractant, O.lM-Tris•HCl, 24mM-KCl, 

3mM•MgC12 , pH 7.5, in the ratio of 2 vol. phenol to 1 vol. extractant. 

The homogenate was stirred in an ice bath for 1 h. The aqueous phase was 

separated by centrifugation at 2100 g max. for 15 min at 4°. The aqueous 

phase was removed and the nucleic acids were precipitated by the addition 

of 2 vol. absolute ethanol and by overnight storage at -20°C. 

(b) Method II 

The procedure was a modification of Method I. The extractant 

was supplemented with 1% (w/v) disodium naphthalene-1,5-disulphonate, 

and used in a 1:1 ratio with the 9Q% (v/v) phenol. After the initial 
. 1 

phase separation, the aqueous phase was removed and /10 vol. of 5M-NaCl 

added, followed by an equal vol. of 9Q% (v/v) phenol. The phases were 

0 separated by centrifugation at 2100 g max. for 30 mi~ at 4 C and the 

nucleic acids were precipitated from the resultj~g aqueous phase as 

described in Method I. 

(c) Method III 

The procedure.was a modification of Method II. The phenol was 

water saturated and the extractant of Method I was supplemented with l% 

(w/v) TNS, &,% (w/v) sodium 4-aminosalicylate and used in the ratio of 

1:2 with water saturated phenol. Stirring the homogenate in an ice bath 

for 1 h (Methods I and II) was omitted, and the homogenate was treated 



as described in Method II. 

(d) Treatment of RNA obtained by Methods I to III. 

The precipitated RNA was pelleted by centrifugation at 

2,100 g max. for 15 min at 4°C. The pellets were dried under vacuo 
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and then dissolved in O.l5M-lithium acetate•acetic acid, 0.~ (w/v) LLS, 

pH 6.0. The insoluble material (starch?) was pelleted by centrifugation 

at 2,100 g max. for 30 min at 4°C and discarded. The RNA was precipi­

tated from the supernatant by the addition of 2 vol. absolute ethanol 

and by overnight storage at -20°C. 

5. The fractionation and purification of low molecular weisht RNA 

DEAE-cellulose and salt precipitation were used· to separate the 

high molecular weight RNA's from the low molecular weight RNA's. The 

latter were purified by chromatography on Sephadex GlOO and G75. 

All column parameters are given in the legends to the figures. 

(i) Preparation of DEAE•cellulose. 

DEAE-cellulose (DE52) was equilibrated in excess 50mM-Tris •HCl, 

pH 7.5. The pH was readjusted to 7.5 with HCl, and the resin allowed to 

settle. The fines were removed, and the resin washed twice in excess 

fresh buffer. The resin was poured as a thick slurry into the column; 

allowed to settle, and then packed under hydrostatic pressure. The 

column was washed with buffer prior to sample loading. 

(ii} Preparation of Sephadex GlOO and G75. 

The resins were swollen in 5~i-sodium acetate-acetic acid or 

50mM-ammonium acetate•acetic acid, pH 5.1 at room temperature. The 

swollen resins were washed with excess fresh buffer and the fines removed. 

(iii) Preparation and monitoring of columns. 

All columns were poured at room temperature and allowed to settle 



Fig. 2. 

Relationship between the partition coefficient (Kav) 

and molecular weight for G75 and GlOO columns; taken from 

"Gel Filtration in Theory and Practice" published by 

Pharmacia Ltd., Uppsala, Sweden. 
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under gravity. The columns were equilibrated at 4°C, and ·packed under 

hydrostatic pressure. 

The column eluant was continuously monitored at 258nm, using an 

Isco optical unit (Model UA) and analyser system connected to a 

Servoscribe potentiometric recorder. Fractions were collected using an 

LKB fraction collector, and their extinction of 260nm measured in an 

SP.800 spectrophotometer. 

(iv) Molecular weight determinations. 

The approximate molecular weights of fractions eluted off Sephadex 

columns were calculated from the correlation between the partition 

coefficient (Kav) and molecular weight (Fig. 2). 

The partition coefficient was determined from the equation: 

Kav = Ve - VojVt _ Vo 

where Vo = void volume, Ve = elution volume and Vt = total volume of 

the gel bed. 

(v) Salt fractionation. 

(a) l.OM-LiCl 

The RNA sample was dissolved in 50mM-Tris•HCl, PH 7.5 at 4°C 

and t vol. 5M-LiCl added. 
0 The sample was left overnight at 4 C and the 

resulting precipitate pelleted by centrifugation at 2,750 g max. for 

15 min at 4°C. The pellet was resuspended in 2 vol. l.OM-LiCl, 

50mM-Tris•HC1, Iii 7.5 and repelleted by centrifugation. The Vlashed pellet 

was dissolved in 50mM-Tris·HCl, pH 7.5 and the nucleic acids precipitated 

by the addition of 2 vol. absolute ethanol. The supernatants were treated 

as described in fe.t.t".on 5' ( v) 
I\ 

(b) O. 6M-LiCl 

The RNA was suspended in 0.6M-LiCl, 50mM-Tris•HC1, pH 7.5 at 

4°C. Any insoluble material was pelleted by centrifugation at 2,750 g max. 



for 15 min at 4°C. The resulting supernatant was centrifuged at 

115,000 g av. for 4.5 h at 2°C in the 10 x 10 m1 titanium rotor of the 

MSE Super Speed 65. The resulting pellets were discarded and the super­

natant was treated as described in section 5.(vi) below. 

(vi) Recove~ of RNA from supernatant fractions. 
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260 . 
If the E1 0 had a value greater than 1.0, the RNA was precipitated • em 

directly from solution by the addition of 2 vol. absolute ethanol and 
0 260 

by overnight storage at -20 C. If the E1 0 was less than 1.0, then the • em 

solution was concentrated by lyphogel or the sample was absorbed onto a 

1 x 2 em DEAE-cellulose column and eluted with lM-LiCl. Once concentrated, 

the RNA was collected by ethanol precipitation. 

6. Methods for the separation and characterization of nucleic acids. 

(i) Spectrophotometric estimation of DNA, RNA and ribosome concen-

tration. 

The concentration was determined from the E
1
260 

with a distilled 
em 

water blank, using a SP.BOO spectrophotometer (Unicam Instruments, Ltd.). 

The following extinction coefficients were used: 

260 
210 (Calbiochem Data). DNA . 

~% = • 

RNA E260 
~ = 2~ (Yarwood, 1968). 

260 
(Tso and Vinograd, 1961). Ribosomes . E~ = 113 . 

Sample purity was determined from 260/230 and 
260

/280 ratios. 

(ii) Polyao~lamide gel electrophoresis. 

(a) Method 

Acrylamide and bis-acrylamide were recrystallised from 

chloroform and acetone respectively, and stored as stock solutions at 

4°C (Loaning, 1967). All reference to gel concentration is made with 



respect to the acrylamide concentration only. The gel mixtures were 

prepared and polymerised according to Loaning (1968). For gels greater 

than ~ (w/v) acrylamide, the solution was cooled to 0°C prior to 
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degass~and polymerisation, so as to increase the polymerisation time 

and prevent geling during the transfer of the solution into the gel 

tubes. The gels were prepared in 10 em tubes, with an internal diameter 

of 0.65 em, and were supported by 3 mm tygon tubing inserts, which were 

supplemented with millipore filter disks for gels of concentration less 

than 2.~ (w/v) acrylamide. The electrophoresis buffer (36mM-Tris, 

30mM-NaH2P0
4

, ImM-Na2EDTA, pH 7. 7 to 7.8 at 20°C) was prepared as 5 times 

and 10 times concentrated stock solutions. The former was used for gel 

preparation, and the latter after dilution was made 0.~ (w/v) with 

respect to SDS and used as the electrophoresis buffer. Gels were pre­

electrophoresed at 5mA/tube for 1 h, prior to sample loading, to remove 

the excess ammonium persulphate. The nucleic acid sample was dissolved 

in sterile electrophoresis buffer, not containing SDS, plus ~ (w/v) 

sucrose (autoclaved 0.7 Kg/cm2 for 15 min) to a final concentration not 

exceeding 2 mg/ml. Normally, 20pg of nucleic acids were loade~gel 

and electrophoresed at 5mA/tube for 3 h (exceptions are noted in figure 

legends). Following electrophoresis, gels were blown from the tubes with 

a syringe and soaked for 1 h. Gels with a concentration less ~ (w/v) 

acr,ylamide were soaked in electrophoresis buffer. Gels with a concentra­

tion greater than ~ (w/v) acrylamide were soaked in 4Q% (v/v) ethoxyethanol 

to prevent swelling. The gels were scanned at 265 nm in a Joyce Loebel 

chromoscan, fitted with a 265 nm interference fil tel:' and a liquid filter 

(15 mg p-dimethylamino benzaldehyde/100 ml methanol). The slit width was 

36 pm and the focussing lens was adjusted to give maximum resolution. A 

linear expansion factor of 3 was used for all gels. The vertical 

expansion was varied as required using the cam system of the chromosoan. 

Areas under peaks were determined using the Integrator/calculator, 
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Model UAG (Technicon Ltd.). 

(b) Gel slicing and counting of p2~ -RNA 

After scanning the gel at 265 nm, it was placed in an aluminium 

foil trough, with the top of the gel against a cork stopper. A second 

cork was placed against the bottom of the gel, and the distance between the 

two cork stoppers adjusted, so as to correspond to the length of the gel 

as scanned. The trough was then placed on powdered solid co2 , and the 

gel allowed to freeze (Loaning, 1967). When frozen the gel was sliced 

into 1 mm thick sections with a gel slicer (Mickle Laboratory Engineering 

Compa~, Gomshall, Surrey). The gel slices were dried on to filter paper 

strips (LKB type 3276) using an infra-red lamp. The radioactivity 

present in the gel slices was then determined by counting each gel slice, 

plus approximately 1 cm2 filter paper in 10 m1 of toluene scintillation 

fluid (4.5 g 2,5-diphenyloxazole and 0.1 g 1,4-di~-(5-phenyloxazolyl~ 
benzene/1 toluene) in a Beckman liquid scintillation counter, model 

LS-2008. Background was automatically subtracted, and no corrections 

for either decay or for quenching were attempted with this isotope. 

Samples were counted for 2 min, twice, and the counts averaged. 

(c) Molecular weight and sedimentation coefficient determinations. 

Molecular weights were determined from a logarithmic plot of 

molecular weight against mobility using standard markers. Sedimentation 

coefficients were determined from a linear plot against mobility. 

The molecular weights and sedimentation coefficients of the standards 

used are given in Table 2. The molecular weights quoted in this thesis 

were determined from a minimum of five determinations and are subject to 

a variation not exceeding ! 0.02 daltons, except where stated. 

(iii) Sucrose density gradient centrifugation. 

Gradients were prepared using the apparatus described by Henderson 

(1969). The mixing chamber had an internal height of 6.0 em and an 



Spe•Jies 

~!:! !!Jl! 

Rat liver 

Escherichia ,2.2!! 

Bronegrass virus 

Pl.a:llt I .5S I :RNA 

Pl.aiat 1 4S 1 RNIL 

TABLB 2 

RNA Standards. 

14\V and sedimentation 
coefficients of RNA 

6 1.29 and 0.70 x 10 
(2.58) (18S) 

6 1.75 and 0.70 x 10 
(28S) (16S) 

1.08 and 0.56 x 106 
(2JS) (16S) 

6 1.07, 0.76 and p.JJ x 10 
(26.8S)(22.3S) (148) 

0."379 x.1rY 
(4..4BS) 

0.250 X 1rY 
(J.95S) 
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internal diameter of 2.70 em. The apparatus was used to produce convex 

gradients. The gradients were prepared in 23 ml polycarbonate centri­

fuge tubes at 4°C, and centrifuged in the 3 x 23 ml rotor in the MSE 

Super Speed 65 at 4°C. The gradients were fractionated at 0.5 ml/min 

with 50}& (w/v) sucrose, 0.5% (w/v) sodium benzoate, using an Isco density 

gradient fractionator, Model 180, fitted with a tube piercing device 

(Fig. )). The gradient E
2
0
5

5
8 

was monitored with an Isco optical unit, • em 

Model UA, attached directly to the top of the centrifuge tube by a flow 

cell adaptor unit; and recorded on a Servoscribe potentiometric recorder, 

Model RE.511.20, at a chart speed of 12 em/h. 

The sucrose, used in gradient preparation, was of Analar grade and 

sterilized at 0.7 Kg/cm2 for 15 min in an autoclave; or was RNase free 

(Mann Research Laboratories, New York). 

Sucrose volumes, slope of gradient, centrifugation parameters and 

buffers are given in the legends to the figures. 

7. The isolation of sub-cellular components 

(i) Nuclei. 

Seeds of Vicia ~ were germinated for 5 days, as described 

(section l.(ii),(a)). The root systems were excised and washed in 

distilled water. They were then sterilized by immersion in lq% (w/v) 

calcium hypochlorite for 30 s, and then washed in distilled water. 

100 g of roots were homogenised at 4°C in a Townson and Mercer top drive 

macerator for 1 min with 500 ml Keuhl's medium:2~4-Tris•acetic acid, 

O.lM-sucrose, 2mM-CaC12 ; J.t~ (w/v) gum acacia.~o 4-ml.~-n-octanol, p..lf 7.6 

(Keuhl, 1964). The homogenate was filtered through 4 layers of muslin 

and then centrifuged at 850 x g max. for 15 min at 4°C. The pellet was 

suspended in 20 ml Keuhl's medium and filtered through silk with an 

average pore diameter of approximately 80 um. The filtrate was centri­

fuged at 850 g max. for 15 min at 4°C. The resulting pellet was suspended 

in 18 ml Keuhl's medium and made 1% (v/v) with respect to triton x-100, 



Fig. 3. 

Tube piercing device for the Isoo density gradient 

fractionator (Model 180). 

A : Fixed plate • 

B Movable puncturing assembly. 

C : Thumb screw; positioned by means of a nut welded 

on to the puncturing assembly. 

D Hole to position luer look adaptor. 

The apparatus is set up as described in the manual with 

the tube to be fractionated in position. The luer lock 

adaptor, attached to the hypodermic needle, is positioned so 

that the tip of the needle is resting on the tube seal inside 

the guide hole and the luer lock adaptor is positioned in 

hole D. The pump is switched on (0.5 ml/min) in order to 

remove the entrapped air in the guide hole. With the pump 

still on, the thumb screw (C) is turned against the fixed 

plate (A), so pulling the puncturing assembly towards it, and 

causing the needle to pierce the tube. 

---~-----~ 





by the addition of 2 ml 1~ (v/v) triton x-100, 5DmM-Tris•HCl, pH 7.5. 

The suspension was kept at 0°C for 5 min and then centrifuged at 

250 g max for 10 min at 4°C (D'Alessio and Trim, ·1968). The nucleic 

acids were extracted from the resulting pellet according to the method 

described (section 4.(v)). 

Samples were removed at each stage during the preparation and 

visually monitored for the presence and appearance of nuclei by staining 

with either saffranin, methylene blue or acetocarmine. Phase contrast 

and electron micrographs were taken of some of the preparations. 

Further purification of the nuclei by the methods of Dick (1968) 

and D'Alessio and Trim (1968) was attempted. 

The isolation of nuclei from imbibed cotyledons of Vicia ~ by 

sucrose-calcium (Johri and Varner, 1968) and citric acid (Douce, 1955) 

techniques was attempted. 

(ii) Ribosomes and Polysomes. 
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The tissue was homogenised with a mortar and pestle at 4°C in 3 vol. 

of 50mM-Tris•HCl, 0.5M-sucrose, 16mM-KCl, 5mM-MgC12, pH 7.5; containing 

sodium bentonite to a final concentration of 1 mg/ml. Sodium bentonite 

was omitted if DEP was added. DEP was added to a final concentration of 

1% (v/v), and the Tris concentration was adjusted to O.lM by the addition 

of' 1/39 vol. 2M-untit:c•ated Tris (Weeks and Marcus, 1969). The b1•ei was 

filtered through silk, having a pore diameter of approximately 80 wn and 

the filtrate was centrifuged at 38,000 g max for 15 min at 4°C in the 

8 x 50 ml rotor of the MSE High Speed 18. For the isolation of miQ:r.osomesj 

the 38,000 g supernatant was recentrifuged at 105,000 g av. for 90 min 

at 2°C in the 10 x 10 m1 titanium rotor of the MSE Super Speed 65. For 

the isolation of ribosomes the 38,000 g supernatant, was made ~ (v/v) 

with respect to triton x-100 by the addition of 0.4 val. 1~ (v/v) triton 

x-100, 50mM-Tris • HCl, 16mM-KCl, 5mM-Mg~l2 , pH 7. 5, or 0. 2% ( Vl/v) with 



respect to sodium deoxycholate, and then centrifuged at 105,000 g av. 

for 90 min at 2°C. The resulting supernatant was carefully decanted 

and the centrifuge tube walls were dried with absorbant paper. The 

pellets were then washed once with resuspending medium, {lOmM-Tris·HCl, 

25mM-KC1, lmM-MgC12 , pH 7.6) and finally suspended in a small volume of 

resuspending medium. lqpl was taken to estimate the particle concentra­

tion; the remaining particles were either {i) stored at -70°C, {ii) 

immediately analYsed on sucrose gradients, or (iii) the RNA extracted as 

described (4.(iv),{a) and (b)). 

Prior to the analysis of micro somes on sucrose gradients, the 

suspension was adjusted to lifo (v/v) triton x-100, by the addition of 

o. 4 vol. 10% ( v/v) t1•i ton x-100 in resuspending medium. 

The nucleic acids were extracted from the 38,000 g max. pellet, 

namely, the mitochondrial pellet; the 38,000 g max. supernatant, namely, 

the post-mitochondrial supernatant and the 105,000 g av. supernatant as 

described in the methods (section 4.{iv),(a)). 

8. Preparation of ribonuclease from developing beans 
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5g of 40-day old developing beans were homogenised in 5 ml, 

50mM-Tris•acetic acid, 2mM-magnesium acetate, pH 7.4 at 0°C. The 

homogenate was centrifuged at 2,750 g max. for 30 min at 4°C. The super-
_o_ 

natant was kept at u-~ prior to use. 

9. Enzyme incubation systems 

Commercial enzymes were dissolved in 50mM-Tris•acetic acid, 

2mM-magnesium acetate, pH 7.4, to a concentration of 0.5 mg/ml and stored 

0 frozen in 0.1 m1 aliquots at -20 C. The Vicia ~ RNase was freshly 

prepared before use (section 8). 

2 to 3 aliquots of DEP were transferred from the storage container 

in Quickfit stoppered test tubes in a dry N2 atmosphere, in order to 

exclude water vapour. 
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0 The enzymes and DEP were kept at 0 C prior to use. 

(i) Incubation system I: products analysed by polyacrylamide gel 

electrophoresis. 

The nucleic acids extracted from 38-day old developing cotyledons 

(section 4.(i)), were dissolved in a small volume of 50mM-Tris•acetic acid, 

2ml{-magnesium acetate, pH 7.4 and adjusted to a concentration of 2 mg/ml. 

0.5 m1 aliquots of substrate were then transferred to 12 m1 ~rex tubes 

{Catalogue No. 1680/02) and 50pl enzyme, DEP or LLS added. All incuba-

tions had a final volume of 0.6 ml. The mixture was incubated for 30 min 

at 0°C. The reaction was stopped by the addition of 2 vol. absolute 

ethanol, and the nucleic acids were allowed to precipitate at -20°C over-

night. The precipitate was pelleted by centrifugation at 2,100 g max. 

for 15 min at 4°C and the pellets were dried under vacuo. The dry pellets 

were dissolved in 2 m1 Kirby's buffer, and extracted with an equal vol. 

phenol-cresol. The phases were separated at 2,100 g max. for 30 min at 

0 4 C, and the nucleic acids were precipitated from the aqueous phase by 

the addition of 2 vol. absolute ethanol and by overni&1t storage at -20°C. 

Before analysis on acrylamide gels, the nucleic acids were reprecipitated 

from 0.15-M lithium acetate, 0.~ (w/v) LLS, pH 6.0, and washed twice with 

8~ (v/v) ethanol, 0.1-M LiCl. 

(ii) Incubation system II: quantitative determination of enzyme 

activity. 

This system was designed primarily for use with DNase I, but was 

also used as a RNase assay. 

and the methods of Fedrocsak 

(1967). The DNA was prepared 

The system was based on Incubation System I, 

and Ehrenberg (1960) and Uchida and Bgami 
260 

as a 2 mg/m1 solution (E1 0 = 1.38 mg/ml) • em 

by weight in 50mM-Tris•acetic acid, 2mM-magnesium acetate, pH 7.4 The 

RNA, prepared as described (section 4.(vi),(a)) and fractionated with 

lM-LiCl to remove the LMW RNA (section S.(v),(a)), was dissolved in 



Tris-magnesium-acetate buffer and adjusted to 4 mg/ml. 

Incubation miJcture, total vol. 1 ml containing: 

0.5 ml substrate, 1 mg DNA or 2 mg RNA 

0.5 - (x + y) ml Tris-magnesium-acetate buffer 

( x) m1 enzyme 

(y) m1 DEP. 

The substrate and buffer were equilibrated at 25°C prior to use. 

Buffer 0.5 ml was added to each tube (Pyrex, Catalogue No. 1680/02), 

and an amount equal in volume to the enzyme and DEP to be added was 

removed. The substrate, enzyme and DEP were then added in the required 

o1•der and incubated for 15 min at 25°C. The DEP was added directly or 
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as a lq% (v/v) solution in ethanol. The reaction was stopped by the 

addition of 0.25 ml uranyl reagent (2~ (v/v) perchloric acid, 0.7~ 

(w/v) uranyl acetate). The resulting precipitate was pelleted by centri-

fugation for 10 min in a Piccalo bench centrifuge. The supernatant was 

transferred to a clean tube (12 x 100 mm) and recentrifuged for a further 

2 min. 0.2 ml of the supernatant was added to 3 ml distilled water, and 
260 

the El.Ocm determined against a distilled water blank, using a Uvispeck 

H 700 spectrophotometer. 

260 
All incubations were duplicated and the El.Ocm averaged. 

10. .:T::h.:.e-=in:.:c.:.o:.:r~p:.:o:.:r:..:a~t:.:i:.:o:.:.n:-_:o:.:f....=~=3_2.::d:!--.:.or:..t.:h:.o:.:p~h.:.o~s~p~h=a~t:..:e:_:in::.:t:.:o....:r.:o.:o.:t.:.s...:.of:...:V::J.::· c:J.:" a:..:f:a::::b::a 

The ~2~-orthophosphate, ~1 2-3, was adjusted to between pH 5.5 - 7.0 

with lOmM-NaOH. 

(i) Excised root tips. 

The beans were germinated as described (section l.(ii),(a)), and the 

terminal 3-4 min root segment excised into sterile 2% (w/v) sucrose. The 

r.oot tips were washed twice with sterile 2% (w/v) sucrose, and then 



transferred to 2.5 ml sterile 2% (w/v) sucrose containing 100 )lCi/ml 

~2~-orthophosphate. Approximately 100 root tips were used in each 

incubation. Incubation periods of 15, 30, 60 and 120 min were carried 

out at 25°C in a shaker water bath (Rogers~~., 1970). At the end 

of each incubation, the root tips were drained; washed twice with 2% 

{w/v) sucrose, 50mM-Na
3

P0
4

, pH 7.0, and the RNA extracted as described 

{section 4.(1)). 

(ii) Intact roots. 
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The beans were grown as described (section l.(ii),(b)) and following 

harvesting were washed with sterile distilled water. The cotyledons were 

sliced in a plane perpendicular to the junction of the two cotyledons, 

leaving intact a small part of each cotyledon attached to the en~ryo by 

the cotyledon petiole. 60 embryos were incubated by clipping their roots 

into 43 ml distilled water containing 58 p.Ci/ml ~2~ -orthophosphate 

(Rogers !i al., 1970). The incubation period was 30 min, followed by a 

15 min chase in sterile distilled water. Following the incubation and 

chase periods, the terminal 3-5 mm segment of the root was excised on 

ethanol sterilized aluminium foil at 0°C, and the RNA extracted as 

described (section 4.(i)). 

11. The incorporation of 32P -orthophosphate _into th_e cotyledons of 

Vicia faba 

( i) In .Y.!:E:2. 

Following the removal of the testa and radical, the cotyledons were 

sliced into 1-2 mm slices in a plane perpendicular to the junction of 

the cotyledons. The slices were weighed and then washed with sterile 

culture medium. 1 g of cotyledon slices were incubated in 10 ml sterile 

culture medium, containing 100 jCi/ml of {?2~-orthophosphate (neutralized 

with 10 mM-NaOH), at 25°C in a shaker water bath. The incubation period 

was 30 min, followed by a 15 min chase in cold culture medium. Following 
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the incubation, the samples were drained and washed twice with cold 

culture medium, and the RNA extracted as described (section 4.(1)). 

The culture media were: 

(i) 2,% (w/v) sucrose 

(ii) a modification of Hildebrant's (1962) sunflower medium; 

from which the Na2HF04 was omitted and the glycine was 

replaced by an equimolar mixture of the 20 protein amino 

acids (Bailey et al., 1970). ·--

(ii) ~~-

(?2~-orthophosphate was dried under vacuo and dissolved in distilled 

water to an activity of 5mC~m1. 

(a) For the subsequent extraction of total nucleic acids. 

The selected pod was surface sterilized with absolute ethanol. 

A hypodermic needle was inserted into the pod airspace. 0.2 m1 (lmCi) 

~2~-orthophosphate was then injected into the pod airspace. Both 

·hypodermic needles were removed, and the area sterilized with ethanol 

and sealed with silicone grease. 

Three injections per pod were given at 12 h intervals. The pod was 

harvested 12 h after the last injection; and the nucleic acids of the 

, d ,, • I , , , I,\\ testa and cotyledon extract ea. as escr:J.Oea \ seci:aon 4· \ J.j j. 

(b) For the subsequent isolation of cotyledon polysomes. 

Injections of lmCi ['2P]-orthophosphate, 0.2 ml, were administered 

a~.; 24 h i:nte::r:;vals for 2 days and then at 12 h intervals tor 1 day. 4 

injections totalling 4 mC were administered. The pod was harvested 12 h 

following the last injection. The testa was removed and the polysomes 

were extracted from the cotyledon as described (section 7-(ii)). 



RESULTS 

1. Temperature characteristics of SDS and LLS 

The temperature characteristics of the lq% (w/v) LLS prepared, 

as described in the methods (section 2), were compared with those of a 

lQ% (w/v) solution of SDS, by cooling in an ice-salt bath. The SDS 

began to precipitate from solution at 12°C whereas the LLS did not pre­

cipitate until the temperature was -5.5°C. The precipitation was 

immediate causing a temperature rise of 5.3°C. A mixed solution, con­

taining 1 vol. lQ% (w/v) SDS and 1 vol. of LLS solution could be cooled 

to -2.0°C before precipitation occurred. The precipitation was followed 

by a temperature rise of 1.8°C. 

2. The action of DEP on DNase and RNase 

(i) Incubation system I. 
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Analysis of the nucleic acids from 38-day old developing cotyledons 

of y. f!2! showed that they contained tl1ree major components on 2.~ 

acrylamide gels: DNA, 25S RNA and 18S RNA. Vlhen these nucleic acids 

were incubated for 30 min at 0°C, no breakdown was observed, indicating 

the absence of endo~nous nuclease activity (Fig. 4a). The addition of 

electrophoretically purified DNase I (Sigma Chemicals) resulted in the 

complete removal of the DNA (Fig. 5). The addition of DNase I (Koch-Lig..ilt) 

resulted in the complete removal of DNA and RNA (Fig. 6) showing that the 

DNase possessed a contaminating component with RNase activity. The crude 

nuclease extract from developing cotyledons of y. !!£! contained RNase 

activity, but no detectable DNase activity (Fig. 7a). The addition of 

LLS to a final concentration of 0.~ (w/v) completely inhibited both 

DNase and RNase activity since the gel traces obtained were all essentially 

the same as the control (see Fig. 4a). The addition of DEP to a final 

concentration of ~ (v/v) had no apparent effect on the DNase activity of 

either the pure Sigma DN'ase or the _impure Koch-Light DNase, and traces 



Fig. 4· 

38-day old cotyledon nucleic acids. The nucleic acids were 

incubated for 30 min at 0°C as described in the methods, section 

9(i). The RNA species are notated by their sedimentation coefficient. 

(a) Electrophoresed in a 2.~ gel for 3h. Vertical 

expansion: cam A. 

(b) Electrophoresed in a 7.~ gel for 3h. Vertical 

expansion: cam C. 

Fig. 5. 

38-day old cotyledon nucleic acids incubated with DNase I 

(Sigma Chemicals), as described in the methods, section 9(i). 

Electrophoresed on a 2.~ gel for 3h. Vertical expansion: c~ A. 
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Fig. 6. 

38-day old cotyledon nucleic acids incubated with DNase I 

(Koch-Light), as described in the methods, section 9(i). 

Electrophoresed on a 2.~ gel for 3h. Vertical expansion: cam A. 

Fig. 7. 

38-day old cotyledon nucleic acids incubated with y. £!2! 

RNase, as described in the methods, section 9(i). 

{a) Electrophoresed on a 2.~ gel for 3h. Vertical 

expansion: cam C. 

(b) Electrophoresed on a 7.~ gel for 3h. Vertical 

expansion: cam C. 
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similar to Fig. 5 were obtained. However, the RNase present in the 

Koch-Light DNase must have been inhibited by the DEP, as no apparent 

degradation of the RNA was observed. Incubation of y. £!2! RNase with 

DEP resulted in the inhibition of RNase activity since a trace was 

obtained which was similar to the control (see Fig. 4a). 

It was observed that the 5S and 4S RNA species were apparently not 

affected by a RNase concentration which caused the complete degradation 

of the 25S and lBS RNA's (compare Figs. 4a and 4b with 7a and 7b). 

(ii) Incubation system II. 

(a) Effect of DEP on DNase I 

Preliminary experiments established linear relationships for 
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the release of acid soluble digestion products against enzyme concentration 

and time (Figs. 8 and 9). From these results an enzyme concentration of 

0.5 p.s/ml and an incubation time of 15 min were selected to study the 

effect of DEP concentration on the initial rate of the reaction. A ~ 

(v/v) concentration of DEP completely inhibited DNase activity, and no 

significant different was observed when DEP was added as a 1~ (v/v) 

solution in ethanol (Fig. 10). A two-phase incubation system was obtained 

when the DEP concentration v1as greater than 0.5% ( vfo); at this concentra­

tion the observed inhibition of DNase activity was approximately 9Q%. 

Increasing the D!P concentration to ~ {v/v) and varying the enzyme con-

centration, showed that as the enzyme concentration was increased,the 

inhibition deceased (Fig. 11). Preincubating DNase with DBP showed a 

rapid inactivation of enzyme activity (Fig. 12). 

(b) Effect of DEP on RNase 

Previous experiments using incubation system I have demonstrated 

that RNase is inhibited by DEP, though the enzyme concentration in these 

experiments was not determined. If it is assumed that the observed 

effects of DEP on low concentrations of DNase are similar to the effects 



Fig. B. 

The release of acid soluble digestion products with 
~ 

increasing enzyme concentration. Incubations were, carried out 

as detailed in the methods (section 9(ii)), at 25°C for 15 min. 

Fig. 9. 

The release of acid soluble digestion products with time. 

Incubations were, carried out as detailed in the methods 

(section 9(ii)), at 25°C and contained 0.5 pg/ml. DNase I. 
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Fig. 10. 

The action of DEP on the initial reaotion rate of DNase I 

with DNA. Incubations were, carried out as detailed in the 

methods (section 9(ii)), at 25°C for 15 min and contained 

0.5 pg/ml DNase I. 

A : DEP added as a 10% ( v/v) solution in ethanol. 

Fig. 11. 

The effect of increasing the DNase I concentration in the 

presence of excess DEP. Incubations were, carried out as detailed 

in the methods (section 9(ii)), at 25°C for 15 min and contained 

50 p.J../ml DEP. 
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Fig. 12. 

The effect of pre-incubating DNase with DEP. 12.5 pg DNase I 

was pre-incubated with 50 Jll DEP in buffer, total volume 0.5 ml.. 

The reaction was initiated by the addition of 0.5 ml (1 mg) DNA. 

Incubations were carried out as detailed in the methods, section 

9(ii) 0 

Fig. 13. 

The effect of Tris concentration on DNase I activity. 

Incubations were carried out as detailed in the methods, section 

9(ii). 

() : 50 mM-Tris. 

A 200 mM-Tris. 
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of DEP on loVI concentrations of RNase, then the apparent specific 

inhibition of RNase obtained in incubation system I can be explained. 

With excess RNase the observed inhibition of enzyme activity is 5.5% 

(see Table 3). 

(c) Effect of Tris concentration on enzyme activity 

Increasing the buffer concentration from 50mM- to 20~/.-Tris 

markedly depressed DNase activity (Fig. 13), but had no effect on RNase 

activity. The substitution of Trizma base for Tris had no effect. 

It was observed that the inhibition of DNase activity by DEP and 

buffer concentration were additive (see Table 3). 

3. The purification of 4S and 55 RNA 
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Analysis of the nucleic acids, extracted as described in the methods 

(section 4.(vi),(a)), on 2.~ and 7.~ acrylamide gels showed l~ttle or 

no degradation. DNA was not detected in any of the samples (Figs. 14a 

and b). 

4S RNA could be separated directly from the 255, 185 and 55 RNA's, 

by chromatography on ~100 (Fig. 36). The direct separation of 55 and 4S 

RNA from total nucleic acid samples by molecular sieve chroma·~ography was 

not attempted as the theoretical yield would be 17,% of the column capacity 

(see Table 4). The 255 and 185 RNA's were removed from the total nucleic 

acid sample by either molar-salt precipitation followed by Dl~AE-cellulose 

chromatography or directly by D~E-cellulose chromatography. 

(i) Molar-salt precipitation. 

Analysis of the supernatant fraction on 2.6% and 7.~ acrylamide gels, 

following molar-salt precipitation, showed that a complete separation of 

the 255 and 185 RNA's from the 55 and 4S RNA's was not effected (Figs. 15 

a and b). Washing the pellet with 2 vol. lM-LiCl removed all entrapped 

5S and 4S RNA as shown by analysis of the resulting pellet and supernatant 

fractions on 2. 6% and 7. 9/o acrylamide gels (Figs. 16 a and b; 17 a and b). 



TABLE 3 

Enzyme 
Tris DEP Inhibition 

Type pg/ml concn. (mM) % (v/v) % 

0 0 

50 

RNase 25 5 55 

200 0 0 

50 5 45 
DNa s-a 12.5 

200 5 95 

Incubatic>ns were carried out as detailed in the methods (section 9( ii)) 

at 25°C :l~or 15 min. 



TABLE4-

Frac:tionation of !)0-day cotyledon RNA by lM-LiCl and/or DEAE-cellulose chromatography. 

% 
258 and 18S RNA 

Unfractio·nated RNA 83 

lM-LiCl supernatant ~J 24-

l.M-LiCl supernatant RNA Trace purified 'by DEAE-cellulose chromatography 

lM-LiCl DEAE-cellulose fraction Trace 

lM-LiCl traction tollO\'i•ing 71.6 washing of ll4-LiCl pellet RNA 

% 
.5S RNA 

2.5 

14-.8 

19.8 

22.3 

2.6 

% 
4S RNA 

14-.5 

61.2 

80.2 

77.7 

25.9 

Molar ratio 
4S to 5S BNA 

9.3 

6.6 

6.5 

5.6 

15.9 



Fig. 14. 

50-day old cotyledon nucleic acids, extracted as described 

in the methods, section 4{vi}. 

{a} Electrophoresed on a 2.~ gel for 3h. Vertical 

expansion: cam A. 

{b) Electrophoresed on a 7.~ gel for }h. Vertical 

expansion: cam A. 

Fig. 15. 

l.M-LiCl supematant RNA. 50-day old cotyledon nucleic acids 

{see Fig. 14} were fractionated with lM-LiCl as described in the 

methods, section 5{v}{a}. 

{a} Electrophoresed on a 2.~ gel for 3h • Vertical 

expansion: cam A. 
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Fig. 15. 

(b) Electrophoresed on a 7.5'/o gel for 3h. Vertical 

expansion: cam A. 

Fig. 16. 

The nucleic acids extracted from the lM-LiCl pellet fraction 

with lM-LiCl, following fractionation of 50-day cotyledon nucleic 

acids with lM-LiCl, as described in the methods, section S(v)(a). 

(a) Electrophoresed on a 2.~ gel for 3h. Vertical 

expansion: cam A. 

(b) Electrophoresed on a 7.5'/o gel for 3h. Vertical 

expansion: oam A. 
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Fig. 17. 

lM-LiCl pellet RNA. 50-day old cotyledon nucleic acids 

(see Fig. 14) were fractionated with lM-LiCl as described in the 

methods, section 5(v)(a). 

(a) Electrophoresed on a 2.~ gel for 3h. Vertical 

expansion : cam A • 

(b) Electrophoresed on a 7.~ gel tor 3h. Vertical 

expansion : cam D. 
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However, the 25S and 185 RNA's were solubilised to some extent; the 18S 

RNA being in molar excess. It was also evident that the 4S RNA was 

preferentially entrapped during the molar-salt precipitation of the 255 · 

and 185 RNA's (compare Figs. 15 b and 16 b; see Table 4). 

The 255 and 185 RNA's present in the lM-LiCl supernatant fractions 

were removed by chromatography on DEAE-cellulose (see below). 

(ii) DEAE-cellulose chromatography. 

38 

Following the application of the RNA sample to the column, the 25S 

and 185 RNA's were eluted with 50mM-Tris•HCl, pH 7.5; the 55 and 4S RNA's 

were eluted with lM-LiCl (Fig. 18). Analysis of the two fractions showed 

that a complete separation of the 25S and 18S RNA from the 55 and 4S RNA 

was achieved (Figs. 19 a and b). 

A comparison of the techniques is given in Table 4. 

(iii) Molecular sieve chromatography. 

Separation of the 5S RNA from the 4S RNA was effected by chromatography 

on GlOO (Fig. 20) and G75 (Fig. 21). The eluted fractions were analysed on 

7.~ acrylamide gels. Fraction II (Fig. 23) and III (Fig. 24), GlOO and 

G75, were shown to represent the 55 and the 4S RNA respectively. Fraction I 

(Fig. 22), G75 (GlOO not analysed), was found to consist of one major 

speoj.es ( 0~90 x 105 daltons) and three minor species (1.05, 0. 78 and 

o.6B X 105 daltons). 

Various characteristics of each fraction are given in Table 5. The 

purified 4S and 5S RNA's were used as markers on 5.Q% and 7.~ acrylamide 

gels. 

4. The total nucleic acids of V. faba 

(i) The root. 

Analysis of root nucleic acids on 2.2,% acrylamide gels showed three 

major species: DNA, 255 RNA and 185 RNA. A minor RNA component, 



TABLE 5 

Molecular Vi'eight and amino acid acceptor capacity of Sephade:x fractions. 

Sephade:x GlOO; V9 = 132 ml, Vt = 421 ml (see Fig. 20) 

FRACTION % of' total Ve Kav MW 14c -phe~lalanine acceptor capacity 

I 3 - - - not tested 

II 14 203 ml 0.246 40,000 0 

III 83 245 ml 0.390 28,000 + 

Sephade:x G75; v·o = 105 ml, Vt = 480 ml (see Fig. 21) 

I 

II 

III 

8.8 

9.4 

81.8 

105 ml (Vo) 

141+ ml 

213ml 

0.10 

0.28 

45,000 

26,000 

not tested 

not tested 

+ 

The molecular weights. were determined from the partition coefficient (Kav) using Fig. 2. 



Fig. 18. 

DEAE-cellulose chromatography of nucleic acids. The 

nucleic acids, extracted as detailed in the methods 

(section 4(vi)), were dissolved in 5omM-Tris•HCl, pH 7.5 

and fractionated on a 1.5 x 15 om column of DEAE-cellulose. 

The LMW RNA traction was collected by washing the column 

with 50mM-Tris•HCl, lM-LiCl, pH 7.5. The elution profile 

is representative of that obtained when nucleic acids were 

bulk fractionated by this technique. 
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Fig. 19. 

lM-LiCl fraction off DBAE-cellulose. 

(a) Electrophoresed on a 2.~ gel for Jh. Vertical 

expansion : cam D. 

(b) Electrophoresed on a 7.~ gel for Jh. Vertical 

expansion : cam A. 
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Fig. 20. 

Sephadex GlOO elution pattem of LMW RNA. The RNA 

was extracted (methods section 4(vi)(a)) from the etiolated 

stems of 2-waek germinated seeds of !• ~ and bulk frac­

tionated on DEAE-cellulose (see legend to Fig. 18). 17 mg 

of the lM-LiCl fraction was applied to the column. The 

column, 2 x 134 om, was equilibrated with 50mM-ammonium 

acetate, pH 5.1. Roman numerals are used to indicate the 

fractions. The void volume (V0 ) was determined with dextran 

blue 2000. Flow rate = 5 ml/h. 

Fig. 21. 

Sephadex G75 elution pattern of LMW RNA. The RNA was 

extracted (methods section 4(vi)(a)) from 50-day old cotyledons 

ot Y.· !:!!!.! and bulk fractionated on DRAB-cellulose (see legend 

to Fig. 18). 17 mg of the lM-LiCl traction was applied to 

the column. The column, 2 x 153 em, was equilibrated with 

50mM-sodium acetate, .PH 5.1. The void volume (Vo) was deter­

mined with ribosomal RNA. Flow rate was 13.6 ml/h and tractions 

were collected ever,y 30 min. Shaded areas are those fractions 

pooled tor further analysis. 



E 

~8 
w 

o E 
(J) u 
N.-

W 

2•0 

1•5 

1·0 

0.5 

0 
100 

2·0 

1· 

Ill 

II 

r 
200 300 

Elution volume ( ml} 

I II Ill 
Yo 

Fraction no. 



Fig. 22. 

G75 fraction I (see Fig. 21). 10 pg RNA electrophoresed 

on a 7.~ gel for 3h. Vertical expansion : cam A. 

Fig. 23. 

G75 traction II (see Fig. 21). lOpg RNA electrophoresed 

on a 7.~ gel for 3h. Vertical expansion: cam A. 

Fig. 24. 

GlOO fraction III (see Fig. 20). lO)lg RNA electrophoresed 

on a 7.~ gel for 3h. Vertical expansion: oamA. 
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MW, 1.02 x 106 daltons, was present in all samples analysed (Fig. 25, 

see also section 8). 

(ii) The leaf. 

39 

Analysis of leaf nucleic acids on 2.~ acrylamide gels (Fig. 26) 

showed 5 major species: DNA, 2.55 RNA, 23S RNA, 18S RNA and 165 RNA. The 

235 and 165 RNA's had ~M's of 1.1 x 106 and 0.56 x 106 daltons respectively, 

and were of chloroplastic origin. There was a molar excess of 165 chloro-

plast RNA over the 235 chloroplast RNA. 

(iii) The developing cotyledon. 

Analysis of the cotyledon nucleic acids on 2.~ acrylamide gels 

showed three major species: DNA, 255 RNA and 185 RNA (Fig. 27). During 

development of the seed rRNA was found to increase relative to DNA 

between day 20 and day 60 (Fig. 28). The 4S RNA was also found to 

increase relative to the 55 RNA (Fig. 29) during development, as deter-

mined by simple regression analysis. 

The naturally-occurring RNA breakdown products were found to have a 

mobility greater than 4S RNA on gels. Their occurrence was negligible 

up to 60 days of development, but in older material they were accumulated 

(Figs. 30 and 31). The breakdown products had an average Mil of 

1.1 x 104 daltons. 

(iv) The testa. 

Analysis of testa nucleic acids on 2.~ acrylamide gels showed three 

major species: DNA, 255 RNA and 185 RNA. 

Maximum development of the testa was judged to occur at about 30 days 

after flowering. This was based on its appearance, and the fact that, at 

this time the developing cotyledons completely occupied the space within 

the testa. From 30 days there was a gradual decline in the amount of 

rRNA relative to DNA (Fig. 32). In 30 day old testa material, the 



Fig. 25. 

Root nucleic acids. Electrophoresed on a 2.~ gel for 3h. 

Vertical expansion : cam A. The numbers above the peak refer to 

its MW X 10
6

• 

Fig. 26. 

Leaf nucleic acids. Electrophoresed on a 2.~ gel for 3h. 

Vertical expansion : cam C. The numbers above the peaks refer to 

their MW x 10
6

• 

Fig. 27. 

50-day old cotyledon nucleic acids. Electrophoresed on a 

2.~ gel for 3h. Vertical expansion : cam B. 
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Fig. 28. 

Change in the 25S rRNA/DNA ratio durins development 

of the cotyledons. The relative amounts of 25S rRNA and 

DNA were determined from gel traces by integrating the 

peak areas. Results from the 1969 and 1970 season were 

averaged. 

Fig. 29. 

Change in the molar ratio of 4S to 5S RNA during 

development of the cotyledons. The relative amounts of 

4S and 5S RNA were determined from gel traces by integrating 

the peak areas. Results from the 1969 and 1970 season were 

pooled. The slope, y = 5.4138 + 0.0647 (t 0.024J)(x), where 

y = molar ratio of 4S to 5S RNA and x = age in days, was 

determined by regression analysis. Both the correlation 

coefficient (R = 0.4600) and the t-distribution (t = 0.2663) 

were significant to P =) 0.01 but ( 0.02. 
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Fig. 30. 

70-day old cotyledon nucleic acids. lletrophoresed on a 

~ gel for 3h. Vertical expansion : cam B. 

Fig. 31. 

80-day old cotyledon nucleic acids. Electrophoresed on a 

~ gel for 3h. Vertical expansion : oam B. 
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Change in the 255 rRNA/DNA ratio during maturation of the 

testa. The relative amounts of the 255 rRNA and DNA were 

determined from gel traces by integrating the peak areas. 
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naturally-occurring RNA breakdown products were negligible. In older 

(40, 50 and 60 day) material, the breakdown products showed a marked 

increase (Figs. 33, 34 and 35). The breakdown products had an average 

MW of 0.55 x 104 daltons. The differences in the MR distribution of 

the naturally-occurring breakdown products of the cotyledon and testa 

were sufficient to produce a separation during chromatography on GlOO 

(Fig. 36). 

It was noted that the cotyledons and testa were green, indicating 

the presence of chlorophyll; but no chloroplast rRNA's were detected in 

either cotyledon or testa nucleic acid samples. 

(v) 65° RNA of the developing cotyledon and testa. 

The extraction of the prote~phenolic interphase at ~~ 5.0 and 

65°C as described (Methods,4.(ii))yielded on average a further 2q% of 

nucleic acids. Analysis on 2.~ and 7.~ polyacrylamide gels normally 

showed 6 major species: DNA, 25S, 18S, 5.8S, 5S and 4S ruiA (Figs. 37 a 

and b). 

The molar ratio of 25S RNA to 18S RNA showed a wide variation 

(0.95 to 1.55) and the DNA/25S RNA ratio could not be calculated as in 

some extractions no DNA was present. 

(vi) The mature seed. 

Analysis of the seed nucleic acids on 2.6% acrylamide gels showed 

40 

3 major species: DNA, 25S RNA and 18S RNA. Three minor species were also 

discernible and had 1W/'s of 1.02 x 106, 0.52 x 106 and o.~ x 106 daltons 

(Fig. 38e). Analysis on 7.7,% acrylamide gels showed 5S and 4S RNA's and 

a group of LMW RNA's with a mobility less than the 5S RNA. These were 

calculated to have MW's of 0.78 x 105, 0.68 x 105, and 0.62 x 105 daltons 

(Fig. 38b). 



Fig. 33. 

40-day old testa nucleic acids. Electrophoresed on a ~ gel 

for )h. Vertical expansion : cam B. 

Fig. 34. 

50-day old testa nucleic aoids. Electrophoresed on a ~ gel 

for )h. Vertical expansion : cam D. 

Fig. 35· 

60-day old testa nucleic acids. Electrophoresed on a ~ gel 

for )h. Vertical expansion : cam B. 
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Fig. 36. 

Sephadex GlOO elution pattern of total nucleic acids 

from 40, 50 and 60-d~ old testa's and from 70 and 80-day 

old cotyledons. 15 mg of nuoleic acids were applied to 

the column. The column, 2.5 x 80 om, was equilibrated in 

50mM-sodium acetate, pH 5.1. 12 ml fractions were collected. 
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Fig. 37. 

0 65 RNA trom 40-day old cotyledons, extracted as described 

in the methods, section 4(ii). 

(a) Electrophoresed on a 2.e% gel tor 3h. Vertical 

expansion : cam D. 

(b) Electrophoresed on a 7.~ gel tor 3h. Vertical 

expansion : cam D. 

Fig. 38. 

The nucleic acids of the dry seed. 

(a) JUectrophoresed on a 2.e% gel tor 3h. Vertical 

expansion : cam A. The numbers above the peaks 

refer to their MW :x 106• 
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Fig. 38. 

(b) Blectrophoresed on a 7.~ gel for 3h. Vertical 

Fig. 39. 

expansion : cam D. The numbers above the peaks 

refer to their MW x 1rP. 

40-day old cotyledon nucleic acids. The cotyledons were 

frozen in liquid N2 and stored at -20°C for 6 months prior to 

extraction of the nucleic acids (methods section, 4(i)). 

(a) Electrophoresed on a 2.~ gel for 3h. Vertical 

expansion : oam B. The numbers above the peak 

refer to its MW x 106• 

(b) Electrophoresed on a 7.~ gel for 3h. Vertical 

expansion : cam C. The numbers above the peak 

refer to its MW x 105. 
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(vii) The effect of storing beans at -20°C. 

0 Following freezing in liquid N2 and storage at -20 C, subsequent 

extraction and analysis of the nucleic acids on 2.6% and 7-~~ polyacry-

lamide gels showed the breakdown of the 18S RNA into two fragments. The 

6 large fragment had a MW of 0.61 x 10 • The small fragment had a MVI of 

0.90 x 106 (Figs. 39 a and b). 

The sum of the 1WI's of the fragments is equal to the MW of the 185 

RNA. Also the molar ratio, described by the equation: 

A rea of 25S RNA x ltfN of 18S RNA 

(Area of 18S RNA + 0.61 x 106 area) x Mil of 25S ru'IA 

is approximately equal to 1. This indicates a precursor product 

relationship between the 18S RNA and the 0.61 x 106 daltons component. 

The molar ratio of intact rRNA was determined from 30 samples of 

cotyledon and testa nucleic acids. The value obtained was 1.08 ! 0.14. 

5. The 5.8S RNA 

(i) Characterisation. 

In addition to the major RNA's identified so· far, an RNA species, 

having a MW of 0.52 x 105 daltons and a sedimentation coefficient of 5.8S, 

was identified in RNA samples extracted at 65°C (Figs. 37b and 64b) and 

RNA samples prepared f'rom gradient purified monosomes (Fig. 7ld). It also 

occurred in total nucleic acid samples extracted at 0°C and subsequently 

melted at 60°C for 10 min (Figs. 40 a to d). The effect of temperature 

on the release of the 5.8S RNA was determined by heating total RNA samples, 

extr-acted from 40-day old developing cotyledons, at temperatures between 

20°C and 90°C for 10 min. After rapid cooling in liquid N2 each sample was 

analysed on a 7.~ acrylamide gel and the ratio of 5.8S RNA to the 55 RNA 

determined (Fig. 41). 

Ribosomal RNA extracted from pelleted ribosomes appeared to be 

undegraded on density gradient centrifugation (Fig. 42). Analysis of the 



Fig. 40. 

80-day old cotyledon nucleic acids. 

(a) Electrophoresed on a 2.~ gel for Jh. Vertical 

expansion : cam C. 

(b) RNA heated at 60°C for 10 min, then cooled rapi~. 

Electrophoresed on a 2.6% gel for Jh. Vertical 

expansion : cam C. 

• 

• 
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Fig. 40. 

(c) Electrophoresed on a 7.~ gel for 3h. Vertical 

expansion : cam D. 

(d) RNA heated at 60°C for 10 min, then cooled rapidly. 

Electrophoresed on a 7.~ gel tor 3h. Vertical 

expansion : cam D. 

• 
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Fig. 41. 

The effect ot heat on the release of the 5.8S RNA. 

The RNA was dissolved in electrophoresis buffer containing 

~ (w/v) sucrose at a concentration of 1 mg/ml. After 

heating for 10 min the RNA was cooled quickly and electro~ 

phoresed on a 7.5% gel for Jh. The relative amounts of 

5.8S and 5S RNA were determined by integrating the peak 

areas. 

Fig. 42. 

Sucrose-gradient sedimentation profile of ribosomal 

RNA. The RNA was extracted from the ribosomal pellet, 

prepared fro1n 50-day old cotyledons (methods section 7(ii)). 

The gradient was formed (methods section 6(iii)) from 10 ml 

1~ (w/v) sucrose and 19 ml ~ (w/v) sucrose, buffered with 

lOmM-sodium acetate•HCl, lOOmM-NaCl, pH 5.1. 0.9 mg RNA was 

layered on to the gradient and centrifuged at 95,000 g av. 

for 24h at 4°C. 10 drop tractions were collected. Fractions 

were pooled (shaded) and the RNA collected by ethanol preci-

pitation. 
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separated 255 and 185 RNA's on 2.{1% and 7.5'/o acrylamide gels showed that 

the 18S ru~ was degraded and that the 255 RNA contained some co-sedimenting 

185 RNA (Figs. 43 a, b and 44). Following melting of the 25S and 18S 

RNA's at 60°C for 10 min, the 5.8S RNA was only detected in the 255 RNA 

fraction (Figs. 45 a and b, and 46 a and b). 

Following the release of the 5.85 RNA from the 255 RNA there was a 

decrease in the 255 RNA peak area. 

(ii) Attempted purification. 

The 255 and 185 RNA's were purified by DEAE-oellulose chromatography 

and molar-salt precipitation (see previous section 3.(i) and (ii) and 

Figs. 17 a and b) and the 5.85 RNA released by heating at 60°C for 10 min 

(Figs. 47 a and b); this treatment caused the 25S and 18S RNA's to become 

aggregated. 

The separation of the 5.8S RNA from the 25S and 185 ru~'s by 

molecular sieve chromatography was not attempted as the theoretical yield 

of' the ,5.8S RNA would be 2.5% of the column capacity. 

(a) Molar-salt precipitation 

The heated preparation was extracted with lM-LiCl and analysis 

of the lM-LiCl supernatant fraction on 2.&% (trace not shown) and 7.8% 

acrylamide gels showed that separation of the aggregated 255 and lSS RNA's 

from the LMW RNA's was complete (Fig. 48). The components with a mobility 

greater than the 5.85 RNA had mobilities identical to 55 and 4S RNA. The 

components with a mobility less than the 5.8S RNA had MW's of 1.55, 1.05, 

0.90, 0.78 and 0.68 x 105 daltons respectively. Washing of the lM-LiCl 

pellet with 2 vol. lM-LiCl removed all entrapped LMW RNA's except for the 

5.85 RNA, as shown by analysis of the resulting pellet and supernatant 

fractions on 7.;J% acrylamide gels (Figs. 49 and 50). 

An attempt to recover the 5.8S RNA from the pellet was made by hi~l­

speed centrifugation in 0.6M-LiCl. Analysis of the resulting supernatant 



Fig. qJ. 

Sucrose-gradient purified 255 RNA (see Fig. 42). 

{a) Klectrophoresed on a 2.6% gel for 3h. Vertical 

expansion : cam A. 

(b) Electrophoresed on a 7.~ gel for 3h. Vertical 

expansion : cam A. 

Fig. 44· 

Sucrose-gradient purified 18S RNA {see Fig. 42). 

Electrophoresed on a 2.6% gel for 3h. Vertical expansion : 

cam A. 
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Fig. 45. 

·Release of the 5.8S RNA from sucrose-gradient purified 25S RNA 

(see Fig. 42). The RNA was heated at 60°C for 10 min then cooled 

rapidly, prior to loading on gels. The numbers above the peaks, 

except for the 5.8S RNA, refer to their MW x 106• 

(a) Blectrophoresed on a 2.6% gel for Jh. Vertical 

expansion: camA. 

(b) Electrophoresed on a 7.~ gel for Jh. Vertical 

expansion : cam A. 

Fig. 46 • 

. Sucrose-gradient purified 18S RNA (see Fig. 42), heated at 

0 60 C for 10 min then cooled rapidly. The numbers above the peaks 

refer to their MW x 106• 

(a) Electrophoresed on a 2.6% gel for Jh. Vertical 

expansion : cam A. 
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Fig. 46. 

(b) Electrophoresed on a 7.~ gel for 3h. Vertical 

expansion : cam A. 

Fig. 47. 

Release of the S.BS RNA from purified 25S and 18S RNA. 

The 25S and 18S RNA's were purified by molar-salt precipitation 

(methods section S(v)(a)) or by nilE-cellulose chromatography 

(see Fig. 18) and heated at 60°C for 10 min, then cooled rapidly. 

(a) Electrophoresed on a 2.~ gel for 3h. Vertical 

expansion : cam A. 

(b) Electrophoresed on a 7.~ gel for 3h. Vertical 

expansion 1 cam D. 
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Fig. 48. 

lM-LiCl supernatant RNA. The heat treated 25S and 18S 

RNA's (see Figs. 47a and b) were fractionated with lM-LiCl 

as described in the methods, section S(v)(a). Electro­

phoresed on a 7.~ gel for 3h. Vertical expansion : cam B. 

The numbers above the peaks refer to their MW x lo5, except 

for the 5.8S, 5S and 4S RNA's which are notated by their 

sedimentation coefficient. 

Fig. 49. 

The nucleic acids extracted from the lM-LiCl pellet 

fraction with lM-LiCl, following fractionation of heated 

25S and 18S RNA's with lM-LiCl, as described in the methods, 

section S(v)(a). Electrophoresed on a 7.~ gel for 3h. 

Vertical expansion : cam B. 

Fig. 50. 

lM-LiCl pellet RNA. Heat treated 25S and 18S RNA's 

(see Figs. 47a and b) were fractionated with lM-LiCl, as 

described in the methods, section S(v)(a). Electrophoresed 

on a 7.~ gel for 3h. Vertical expansion : cam D. 
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RNA on a 7.~ acrylamide gel (Fig. 51) showed the 5.8S RNA to be the 

main component but still impure. 

(b) DEAE-cellulose chromatography 

4-3 

A similarly heated preparation to that used in the previous 

section was subjected to DEAE-cellulose chromatography and the 5.8S RNA 

fraction eluted with lM-LiCl. When the 5.8s fraction was ~ctrophoresed, 

there were 3 components on 7.5% acrylamide gels (Fig. 52). These were 

identified as 5.8S RNA, 55 RNA and 4S RNA. 

Further attempts to purify the 5.8S RNA were based on modifying the 

initial RNA extraction procedure (see Methods 4-.(vi),(b) and q..(vi),(c)), 

in an attempt to reduce nuclease nicking of the 2.5S and 185 RNA molecule.s; 

and by molecular sieve chromatography of the 5.85 RNA fraction eluted 

from DEAE-cellulose on G75 (Fig. 54). Analysis of the fraction, on 7.~ 

acrylamide gels, eluting after the void volume showed the presence of low 

molecular weight fragments detected in earlier attempts (Fig. 53). 

The yield of the 5.8S RNA fraction, by molar-salt precipitation and 

DEAE-cellulose chromatography, was approximately 1%. 

DEAE-cellulose was normally used for the bulk separation of 255 and 

lBS RNA from the LMW RNA's; however, it was found that with smaller 

quantities of RNA, the 25S and 18S RNA's did not elute from the column 

(Fig. 55). The binding of the 2.5S and lBs RNA's to the DEAE-cellulose 

explained the px•esence of' the 5S and 4S R.l"iA contaminants in the 5.8S RNA 

fraction (Fig. 52), and further attempts to purify the 5.8S RNA were 

discontinued. 

6. The isolation of polysomes and polysomal RNA 

(i) Effects of detergents. 

Preliminar,y experiments were conducted on 2-day old seedlings of 

Phaseolus aureus. Sucrose density gradient analysis of isolated microsomes 

(Fig. 56) gave poor resolution of the ribosome units. The addition of 



Fig. 51. 

o. 6:M-LiCl supematant RNA. The l:M-LiCl pellet obtained 

following l:M-LiCl fractionation of heated 25S and 18S RNA 1 s was 

treated.-as described in the methods, section 5(v)(a). Electro­

phoresed on a 7-s% gel for Jb. Vertical expansion : cam B. 

Fig. 52. 

5.8S RNA fraction eluted off DEAE-cellulose with l:M-LiCl. 

Purified 25S and 18S RNA was heated at 60°C for 10 min, then 

rapidly cooled and bulk fractionated on D~E-cellulose (see legend 

to Fig. 18). Electrophoresed on a 7.:J%, gel for Jh. Vertical 

expansion : cam A. 

Fig. 53. 

5.8S RNA fraction eluted off G75 (see Fig. 54). Electro­

phoresed on ·a 7.~ gel for Jh. Vertical expansion : cam D. 
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Fig. 54· 

Sephadex G75 elution pattern af the 5.8S RNA fraction 

eluted orr D~E-cellulose with lM-LiCl. 4 mg RNA was 

applied to the column. Column parameters are given in 

Fig. 21. The shaded area beneath the peak was collected 

for further an~sis (see Fig. 53}. 

Fig. 55. 

DEAE-cellulose elution profile or heated 25S and 18S 

RNA (see Figs. 47a and b). 10 mg RNA were applied to a 

1 x 28 em column of D~E-oellulose. The low molecular 

weight RNA's were eluted with lM-LiCl. 9 ml fractions were 

collected. 
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sodium deoxycholate or triton x-100 to the post-mitochondrial supernatant 

improved the resolution of the ribosome units on the gradient (Figs. 57 

and 58). The monomeric unit, the monosome, was assigned to the third peak 

from the top of the gradient on the basis of the results of other workers 

(Lin~ !!•, 1966). Subsequent analysis of the nucleic acids present in 

this fraction showed the presence of both 255 and 185 RNA molecules (see 

section (v)). Particles having a greater sedimentation rate than the 

monosome, were assumed to be polysomes and the two peaks having a sedi-

mentation rate less than the monosome peak were assumed to be the subunits. 

Ribosomal subunits were present to varying extents in the different 

preparations. In the triton x-100 treated preparation (Fig. 58) they 

were probably hidden by the monosome peak. The ionic detergent sodium 

deoxycholate apparently caused a partial breakdown of polysomes and ribo-

somes with the formation of ribosomal subunits when compared to the non-

ionic detergent triton x-100 (Figs. 57 and 58). Both sodium deoxycholate 

and triton x-100 produced identical effects on preparations from the develop­

ing cotyledons of V. faba (Figs. 59 and 60). --
The polysome profiles obtained from 40, 50 and 60-day developing 

cotyledons of !• ~ were similar, and are r.epresented by one figure 

(Fig. 59). 

The storage of polysome preparations at -70°C had no effect on their 

gradient profile, but breakdown was substantial on preparations which had 

been frozen and thawed for a second time (Fig. 61). The breakdown products 

were mainly ribosomal subunits. 

'f.he storage of microsomes at 0°C for 24 h resulted in the breakdown 

of polysomes into monosomes and subunits, as judged by a comparison of 

Figs. 62 with 59. 

(ii) The RNA's of the mitochondrial pellet. 

The extraction of the nucleic acids from the mitochondrial pellet 



Fig. 56. 

Sucrose-gradient sedimentation profile of Phaseolus 

aureus micro somes. The gradient was prepared from 10 ml 

~ (w/v) sucrose and 20 ml 3Q% (w/v) sucrose, buffered with 

lOmM-Tris, 25mM-KCl, lmM-MgC12, pH 7.6, as described in the 

methods, section 6(iii). 2 mg microsomes were layered on 

to the gradient and centrifuged at 65,000 g av. for 2h at 

L°C. •• --monosome. T d B t d b tt f d" t .... m an = op an o om o gra J.en 

respectively. 

Fig. 57. 

Sucrose-gradient sedimentation profile of sodium 

deoxycholate-treated polysomes from ~· aureus. The 

polysomes were prepared as described in the methods (section 

7(ii)), the post-mitoohondrial supernatant being made 0.2% 

(w/v) with respect to sodium deoxym1olate. 1.23 mg of 

suspended polysomes were layered on to the gradient. Gradient 

parameters are given in the legend to Fig. 56. 
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Fig. 58. 

Sucrose-gradient sedimentation profile of triton 

X-100 treated po~somes from E· aureus. The polysames were 

prepared as described in the methods (section 7(ii)), the 

post-mitochondrial supernatant being made 4% ( v/v) with 

respect to triton X-100. 1.8 mg of suspended polysomes 

were layered on to the gradient. Gradient parameters are 

given in the legend to Fig. 56. 

Fig. 59. 

Sucrose-gradient sedimentation profile of triton 

X-100 treated po~somes from "40-day old cotyledons of 

!· !!!!.!· The polysomes were prepared as described in the 

methods (section 7(ii)), the post-mitochondrial supernatant 

being made 4% (v/v) with respect to triton X-100. 1.0 mg 

of suspended polysomes were layered on to the gradient. 

Gradient parameters are given in the legend to Fig. 56. 

The gradient was fractionated into 10 drop fractions. 
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Fig. 60. 

Sucrose-gradient sedimentation profile of sodium 

deoxycholate-treated polysomes from 70-day old cotyledons 

of !· !!2!• The polysomes were prepared as described in 

the methods; the post-.mitoohondrial supernatant being made 

o.~ (w/v) with respect to sodium deocycholate. The gradient 

was prepared from 10 ml ~ (w/v) sucrose and 19 ml ~ (w/v) 

sucrose, buffered with lOmM-Tris, 25mM-KCl, lmM-MgG12, pH 7.6, 

as described in the methods, section 6(iii). 2.7 mg poly-

somes were l$Yered on to the gradient and centrifUged at 

0 95,000 g av. for Jh at 4 C. The gradient was fractionated 

into 10 drop fractions and the monosome peak (shaded) 

collected, and the RNA extracted as described in the methods, 

section 4(iv)(a). 

Fig. 61. 

Sucrose-gradient sedimentation profile of sodium 

deoxycholate-treated polysomes, frozen and thawed twice, 

from f· aureus. Gradient parameters are given in the 

legend to Fig. 56. 
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Fig. 62. 

Sucrose-gradient sedimentation profile of triton 

X-100 disrupted microsomes from 50-day old cotyledons of 

y. !!:!2.!• !rhe microsomes, extracted as described in the 

methods (section 7(ii)), were kept at 0°C for 24h. The 

gradient was prepared as described in the legend to Fig. 60 

and fractionated into 0.38 ml fractions. 1 mg of triton 

X-100 disrupted microsomes were layered on to the gradient 

and centrifuged at 65,000 g av. tor 2h at ~°C. 
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(Methods, section 4.(iii)) normally yielded RNA's in a high state of 

aggregation (Fig. 63). Melting, at 60°C for 10 min, released the 

aggregates and showed that they were degraded (Figs. 64 a and b). DNA 

and 5.8S RNA were detected in these samples. 

45 

(iii) The RNA's of the post-mitochondrial and 105,000 g supernatants. 

Analysis of the nucleic acids, extracted, as described (Methods, 

section 4.(iv),(a)), on acrylamide gels showed four major components: 

25S RNA, 188 RNA, 5S RNA and 4S RNA (Figs. 65, a and b; 66a and b). The 

25S RNA and the 18S RNA were the main components of the post-mitochondrial 

supernatant, whereas the 4S RNA was the main component of the 105,000 g 

supernatant. The 18S RNA was degraded to a greater extent in the 105,000 g 

supernatant than in the post-mitochondrial supernatant (compare Figs. 65a 

and 66a). 

(iv) The RNA 1 s of the ribosomal pellet. 

Analysis of the nucleic acids present in the ribosomal pellet on 

acrylamide gels showed that the rRNA's were degraded. The degree of 

breakdown varied with each preparation, and the maximum and minimum limits 

of the 18S RNA breakdown are illustrated (Figs. 67 and 68a). 

The amount of 4S RNA present in the ribosomal pellet (Fig. 68b) was 

visibly lower than the amounts present in the post-mitochondrial and 

105,000 g supernatants. The molar ratio of 4S RNA to 5S RNA was approxi-

mately 1.5. 

The 5.8S RNA was detected in these preparations (Fig. 68b). 

Following the sepe.ration of' the ribosomal pallet componerrts by sucrose 

density gradient centrifugation (Fig. 59), the gradient was fractionated 

into a light polysome fraction comprised of subunits, monomers, dimers, 

trimers and tetramers and a heavy polysome fraction, comprised of particles 

heavier than the tetramer. The rRNA's of both fractions were similar and 

degraded (Fig. 69) to a greater extent than the rRNA's extracted directly 

from the ribosomal pellet (Fig. 67). 



Fig. 6J. 

The nucleic acids of the mitochondrial pallet, extracted, 

as described in the methods (section 4(iii)), trom 40-day old 

cotyledons. Electrophoresed on a 2.~ gel for Jh. Vertical 

expansion : cam D. 

Fig. 64. 

The nucleic acids of the mitochondrial pallet, extracted 

from 40-day old cotyledons, heated at 60°C for 10 min than 

cooled rapidly. I 

(a) Electrophoresed on a 2.6% gal for Jh. Vertical 

expansion : cam C • 

(b) Electrophoresed on a 7-~ gal for Jh. Vertical 

expansion : cam D. 
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Fig. 65. 

The nucleic acids of the post~itoohondrial supernatant, 

extracted as describe·d in the methods (section 4(iv)(a)), from 

40-day old cotyledons. 

(a) Electrophoresed on a 2.6% gel for 3h. Vertical 

expansion 1 cam A. 

(b) Electrophoresed on a 5.~ gel for 3h. Vertical 

expansion : cam A. 

Fig. 66. 

The nucleic acids of the 105,000 g supernatant, extracted 

as described in the methods (section 4(iv)(a)), from 40-day old 

cotyledons. 

(a) Electrophoresed on a 2.~ gel for 3h. Vertical 

expansion : cam B. 



11'1 co 
N 

LLJ 

LO 

~ 
LLJ 

2 

.s 

4 6 

Distance migrated ( em ) 



Fig. 66. 

(b) Electrophore.sed on a 5.0% gel for Jh. Vertical 

expansion : cam B. 

Fig. 67. 

The nucleic acids of the ribosomal p~llet, extracted as 

described in the methods (section 4(iv)(a)), from 50-day old 

cotyledons. Electrophoresed on a 2.~ gel for Jh. Vertical 

expansion : cam B. 

Fig. 68. 

The nucleic acids of the ribosomal pellet, extracted as 

described in the methods (section 4(iv){a)), from 40-day old 

cotyledons. 

(a) Electrophoresed on a 2.~ gel for 3h. Vertical 

expansion : cam B. The numbers above the peaks 

refer to their MW x 106• 
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Fig. 68. 

(b) Electrophoresed on a 5·0% gel for 3h. Vertical 

expansion : cam D. 

Fig. 69. 

The nucleic acids of the light-polysome fraction (see 

text), prepared from 4-0-day old cotyledons. The ribosome 

units were separated by sucrose-gradient centrifuge (see 

Fig. 59) and the nucleic acids extracted as described in 

the methods, section 4(iv)(a). Electrophoresed on a 2.~ 

gel for Jh. Vertical expansion : cam D. The numbers ab.ove 

the peaks refer to their MW x 106• 

Fig. 70. 

The nucleic acids of microsomes, prepared from 50-day 

old cotyledons (see also Fig. 62). The nucleic acids were 

prepared,as described in the methods (section 4(iv)(b)), 

from microsomes which had been stored at 0°C for 24h. 

ELectrophoresed on a 2.6% gel for Jh. Vertical expansion : 

cam C. The numbers above the peaks refer to their liN x 106• 
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The nucleic acids extracted from the microsomal pellet (see Fig. 62), 

which had been stored at 0°C for 24 h, showed severe breakdown of the 

rRNA's (Fig. 70). 

( v) Induced breakdown of' ribosomal RNA. 

There was little degradation of the rRNA when bentonite was used in 

the extraction of polysomes from the developing cotyledons of y. faba 

(see previous section). The breakdown products detected in these samples 

had MW's of 1.02, 0.93 (Fig. 70), 0.65 (Fig. 69), and 0.61 x 106 daltons 

respectively, and originated from the 25S and lBS rRNA' s. Of the two rRNA 

molecules the 18S RNA was by far the most labile. 

The extraction of polysomes in the absence of bentonite and in the 

presence of the ionic detergent sodium deoxycholate, resulted in a 

breakdown of polysomes, to monosomes and subunits (see section (i), and 

F.ig. 60). The analysis of the monosome RNA's on 2.~ acrylamide gels 

showed substantial degradation of the rRNA's (Fig. 71a). The observed 

breakdown products were determined to have MW's of 1.02, 0.61, 0.44 and 

6 0.31 x 10 daltons. The latter two components appeared to be heterogeneous 

in nature, and had previously been detected in the mitochondrial pellet 

RNA (Fig. 64a). 

Melting of the monosome RNA at 60°C for 10 min resulted in the 

L'elease of a large number of fragments (Fig. 71b) and an apparent molar 

excess of 18 rruiA (cf. Fig. 64a). The 0.44 x 106 daltons component, 

which was observed to be heterogeneous in previous samples, was resolved 

into two components having MW's of 0.44 and 0.42 x 106 daltons. The other 

breakdown product, having a ~m of 0.31 x 106 daltons, which had also been 

observed previously to be heterogeneous, was not further resolved. Other 

fragments not previously detected were determined to have ~V's of 1.13, 

0.79, 0.52, 0.20 and 0.13 x 106 daltons respectively. 

Analysis of the monosome RNA's on 7-5% acrylamide gels showed a 



Fig. 71. 

The nucleic acids of sucrose-gradient purified monosomes. 

The monosomes were prepared as detailed in the legend to Fig. 60. 

The nucleic acids were extracted as described in the methods, 

section 4(iv)(a). 

(a) Electrophoresed on a 2.&.ro gel for 3h. Vertical 

expansion : cam C. The numbers above the peaks 

refer to their MW x 106. 

(b) RNA heated at 60°C for 10 min, then rapidly cooled. 

Electrophoresed on a 2.~ gel for 3h. Vertical 

expansion : cam C. The numbers above the peaks 

refer to their MW x 106• 
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Fig. 71• 

(o) Electrophoresed on a 7.~ gel for 3h. Vertical 

expansion : cam D. The numbers above the peak 

refer to its MVI x 105. 

(d) RNA heated at 60°C for 10 min, then cooled rapidly. 

Electrophoresed on a 7.~ gel for 3h. Vertical 

expansion : cam D. The numbers above the peak 

refer to its I4W x 1cP. 
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complete absence of 4S RNA (Figs. 71 c and d). The two RNA 1 s present 

were identified as 5S RNA and 5.85 RNA by means of 4S and 58 RNA markers 

(not shown). There was no apparent increase of the 0.90 x 105 daltons 

component following mel t:i.ng of the RNA; though there was an increase in 

the 5.88 RNA. 

7. The isolation of nuclei and nuclear RNA 

(i) From cotyledons. 

47 

All methods of isolating nuclei from cotyledons failed, due to the 

high starch content of the tissue. The starch grains varied in size from 

a few microns up to 60 pm in diameter, with a concomitant variation in 

density. Some starch grains had densities greater than 1.355, as deter­

mined by their ability to sediment through 9(1%, (w/v) sucrose. The yields 

of nuclei were visibly low in homogenates prepared from cotyledons when 

compared to root tissue homogenates. The yields were increased by 

digesting the cotyledon cell walls with pectinase and cellulase enzymes, 

though a complete loss of nuclei still occur1•ed during the purification 

procedure, owing to co-sedimentation of the nuclei with the starch grains. 

(ii) From roots. 

The nuclei prepared as described (Methods, 7.(i)), were relatively 

pure as judged by phase contrast microscopy (Plate 1), although elect,.on 

microscopy showed the presence of fragments of cell wall and endoplasmic 

reticulum (Plate 2). Attempts to further purify the nuclei from this 

cell debris by centrifugation through continuous and non-continuous sucrose 

gradients (Dick, 1968; D'Alessio and Trim, 1968) were not successful. 

Following the extraction of the nuclear nucleic acids, analysis on 

2.2% and 7.5'/o acrylamide gels showed the sample to consist mainly of DNA 

(Fig. 72a). The DNA was removed by digestion with DNase (Methods, 9.(i)), 

and further analysis established the presence of 255 RNA and 185 RNA 

(Fig. 73). These could be accounted for by the presence of rough 



PLATE 1 

Bean root nuclei isolated as described in the methods, 

section 7(i). Phase contrast. Magnification l,OOOx 





PLA1'E 2 

Electron micrograph of bean root nuclei, isolated as 

described in the methods, section 7(1). Magnification x 6,500. 

ER. Endoplasmic reticulum 

N : Nucleus 
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Fig. 72. 

The nucleic acids of root nuclei. The nuclei, prepared from 

the roots of!· £!2! (methods, section 7(i)), were extracted as 

described in the methods, section 4(v). 

(a) 25pg electrophoresed on a 2.~ gel for 6h. Vertical 

expansion : cam D. Note: the 18S .RNA has migrated 

off the gel. 

(b) 25pg electrophoresed on a].~ gel for 4h. Vertical 

expansion : cam D. 

Fig. TJ. 

The RNA's of root nuclei. The total nucleic acids from root 

nuclei (details in legend to Fig. 72) were digested with DNase I 

(methods section 9(i)). 200pg electrophoresed on a 2.~ gel for 

Jh. Vertical expansion : cam A. 
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endoplasmic reticulum in the original sample. 

Identification of the LMW RNA's was not attempted (Fig. 72b). 

8. Incor oration of 

(i) Excised root tips. 

Primary analysis of the samples indicated incorporation of r2J­
phosphate into RNA (Table 6). Subsequent analysis of the samples on 2.2,% 

and 7-5% acrylamide gels showed that r2~ -phosphate was incorporated into 

bacterial nucleic acids. 

After 15 min incorporation, bacterial DNA and heterodisperse RNA 

were labelled (Fig. 74). After 60 min incorporation, four peaks of 

radioactivity were detected (Fig. 75). These corresponded to: DNA and 

RNA's of MW, 1.1, 0.63 and 0.36 x 106 daltons. The latter was only 

detected in this sample. After 120 min incorporation, the P2~ -phosphate 

6 was localised in DNA and RNA's of MVI, 1.1, 0.63 and 0.56 x 10 daltons 

(Fig. 76a). 

Labelling of the 5S and 4S RNA components was detected after 30 min 

incorporation and by 120 min labelling was substantial (Fig. 76b). The 

apparent non-alignment between the radioactive profile and the optical 

density profile was obtained with all samples. 

There was no evidence of incorporation of ~2P]-phosphate into the 

1.3 and 0.70 x 106 components. 

(ii) Intact roots. 

The stringent sterilization procedure adopted with these samples had 

lHtlt~ effect, as incorporation ot' r2~ -phosphate was only observed in 

bacterial nucleic acids (Fig. 77). The radioactive peaks correspond to: 

DNA and RNA's of MW, 1.1, 0.63 and 0.56 x 106 daltons. 

Labelling of the 5S and 4S RNA's was observed, on 7.~ acrylamide 

gels, and there was an apparent non-alignment of the radioactive and 

optical density profiles (trace not shown, as similar to Fig. 76b). 



TABLE 6 

The incorporation ot E2~ -orthophosphate into RNA. Activity was calculated prior 

to J)Olyacrylamide gel electrophoresis. 

Siample 

Cultured root 

tips 

Intact roots 

Cotyiedon slices 

Cotyledon 

Testa 

p2~ -pulse 

15 min 

30 min 

60 min 

120 min 

30 min 

30 min 

30 min 

chase 

15 min 

15 min 

15 min 

CPJIV}lg RNA 

64,946 

44,443 

149,750 

171,2.54-

14.,073 

743 

4,449 

1,971 

9,914 

culture medium 

2%· (w/v) sucrose 

H20 

2% (w/v) sucrose 

Sunflower medium 

In .!!!2 



Fig. 74. 

The nucleic acids of' cultured root tips of' y • .!:.!!?.!· 

Excised root tips were labelled for 15 min with 

(:2~-orthophosphate (methods section lO(i)). Radio­

activity is plotted as a histogram. Electrophoresed on a 

2.~ gel for 4h. Vertical expansion : cam A. 

Fig. 75. 

The nucleic acids of cultured root tips of y. ~· 

Excised root tips were labelled for '0 min with 

P2P]-orthophosphate. Radioactivity is plotted as a 

histogram. Electrophoresed on a 2.~ gel for 4h. Vertical 

expansion : cam A. The numbers above the peaks refer to 

their MW x 106• 
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Fig. 76. 

The nucleic acids of cultured root tips of !• ~· 

Excised root tips were labelled for 120 min with 

~2~ -orthophosphate. Radioactiv.ieyis plotted as a 

histogram. The numbers above the peaks refer to their 

MW X 106• 

(a) Electrophoresed on a 2.~ gel for 4h. Vertical 

expansion : cam A. 

(b) Electrophoresed on a 7.~ gel for 3h. Vertical 

expansion : cam D. 
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Fig. 77. 

The nucleic acids of root tips of !· ~· Seedlings 

were labelled (as described in the methods, section lO(ii)) 

with [3~ -orthophosphate f'or 30 min, and incubation was 

continued in distilled water for 15 min. The root tip was 

then exoised and the nucleic acids extracted (methods 

section 4{i)). Radioactivity is plotted as a histogram. 

The numbers above the peaks refer to their MW x 106• 

Electrophoresed on a 2.~ gel for 4h. Vertical expansion 

cam A. 

Fig. 78. 

The nuCleic acids of 50-day old cotyledons, cultured 

in vitro (methods section ll(i)). Radioactivity is plotted 

as a histogram. Electrophoresed on a 7.~ gel for 4h• 

Vertical expansion : cam D. 
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The level of incorporation of ~2~ -orthophosphate was greater than 

in the previous samples. 

9. Incor oration of in seeds 

(i) In vitro. 

Primary analysis of the samples indicated incorporation of ~2~­
phosphate into RNA (Table 6). Subsequent analysis of the samples on 7.~ 

acr,ylamide gels showed no incorporation into nucleic acid fractions 

(Fig. 7B). In all samples the LMY/ RNA's having a mobility less than the 

55 RNA were detected. There was no apparent degradation of the 25S RNA 

and the lBS RNA (not shown). 

(ii) In Ym.· 

Analysis of the nucleic acids, extracted from the testa and cotyledons 

of a 40-day old developing bean, on 2.2% (not shown), 2.6% and 7.5% 

acrylamide gels (Figs. 79 a and b; BO a. and b), showed that radioactivity 

was associated with all RNA fractions. The DNA was labelled to a small 

extent in the cotyledon sample, but virtually no labelling of DNA was 

detected in the testa. 

Primary analysis of the two samples (Table 6) indicated a significantly 

higher degree of incorporation of ~2~-orthophosphate into the testa 

nuclei acids. Actual incorporation into rRNA was not significantly dif­

ferent between the two samples (compare Figs. 79a and BOa), though incor-

poration into the 4S RNA was higher in the testa (compare Figs. 79b and BOb). 

There was no evidence, in either sample, for the existence of 

ribosomal precursor RNA, bacterial or chloroplast rRNA (see section 4.(iv)) 

or non-ribosomal RNA. 

10. An attempt to identify the messenger RNA coding for the storage 

protein legumin 

Previous results have shown that an active nuclease, present in the 



Fig. 79. 

40-day old testa nucleic acids. Seeds were labelled 

~ !!!2 with P2P]-orthophosphate (methods section, ll(ii)(a)). 

Radioactivity is plotted as a histogram. 

(a) Electrophoresed on a 2.~ gel for 3h. Vertical 

expansion : cam B. 

(b) Electrophoresed on a 7-~ gel for 4h. Vertical 

expansion 1 cam D. 
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Fig. 80. 

40-day old cotyledon nucleic acids. Seeds were labelled 

!!! I.i!2. with p2P] -orthophosphate {methods section, ll(ii)(a)). 

Radioactivity is plotted as a histogram. 

{a) Electrophoresed on a 2.(1% gel for Jh. Vertical 

expansion : cam B. 

(b) Electrophoresed on a 7.5% gel for 4h· Vertical 

·expansion : cam D. 
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developing cotyledons of y. ~ has prevented the isolation of undegraded 

polysomes and their constituent rRNA's. The primary problem was, therefore, 

the preservation of polysome structure. The much acclaimed RNase 

inhibitor, DEP, has been shown by.Vleeks and Marcus (1969) to have a pro-

tective effect on polysome structure. This technique and the RNA 

extraction technique of Oda and Joklick (1967; see also: Gaskill and Kabat, 

1971), therefore formed the backbone of the experiments described below. 

(i) The analysis of particles extracted in the presence of DEP. 

Sucrose density gradient analysis of the ribosomal pellet obtained 

following the addition of triton x-100 to the post-mitochondrial supernatant 

(Fig. 81), showed that polysome structure had been preserved to a greater 

extent than particles extracted in the presence of bentonite (Fig. 59). 

Sucrose density gradient analysis of triton x-100 disrupted microsomes 

(Fig. 82) showed a preponderance of subunits and polysome; the monomeric 

ribosomes being visible as a shoulder on the large subunit peak. 

A comparison of Figs. 81 and 82 indicates that polysome structure is 

effectively preserved by the presence of DEP and membrance. It is also 

apparent (compare Figs. 81 and 82 with 59) that DEP causes s1:1bunit formation. 

The inconvenience of preparing fresh sucrose gradients before each 

experiment necessitated an attempt to store them by freezing at -70°C 

I , ' 
1,.Shore at al., l9o9 j t'or later use at'ter thawing at room temperature. --
Analysis of the gradient slope of freshly prepared gradients, and gradients 

following freezing and thawing (Fig. 83) showed that following f:reezing 

and thawing the gradient slope steepened and changed from convex to 

sigmoid. 

The analysis of triton x-100 disrupted microsomes (extracted in the 

presence of DEP but with the omission of untitrated-Tris) on frozen and 

thawed gradients (Fig, 84) showed very poor resolution of the bands, and 

the use of these gradients was discontinued. It was evident that the 



Fig. 81. 

Sucrose-gradient sedimentation profile of polysomes 

from 40-day old cotyledons. The polysomes were prepared 

in the presence of DBP as described in the methods 

(section 7(ii)), the post-mit-ochondrial supernatant being 

made 4% ( v/v) with respect to triton X-100. 1.0 mg of 

polysomes were layered on to the gradient and centrifuged 

0 at 65,000 g av. tor 2h at 4 C. The gradient was prepared 

as described in the legend to Fig. 60, and fractionated as 

detailed in the legend to Fig. 62. 

Fig. 82. 

Sucrose-gradient sedimentation profile of triton X-100 

disrupted microsomes from 40-day old cotyledons. The 

microsomes were prepared in the presence of DEP as described 

in the methods, section 7(ii). 1.0 mg of microsomes were 

disrupted with triton X-100 and layered on to the gradient. 

Gradient parameters are given in the legend to Fig. 81. 
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Fig. 83. 

T.no effect of freezing and thawing convex sucrose 

gradients. Gradients were prepared as detailed in the 

legend to Fig. 60. 

0 

X 

Fig. 84. 

gradient shape immediately after preparation. 

gradient shape after freezing and thawing. 

gradient shape after freezing, thawing and 

centrifugation; taken from Fig. 84.. 

Sucrose-gradient sedimentation profile of triton X-100 

disrupted microsomes from 50-day old cotyledons. The 

microsomes were prepared in the presence of DEP, but the 

addition of the untitrated-Tris was omitted. 1.0 mg 

microsomes were disrupted with triton X-100 and layered on 

to a frozen and thawed gradient. Gradient parameters are 

detailed in the legend to Fig. 81. 
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omission of untitrated-Tris from the extractant caused the breakdown of 

polysomes (compare Figs. 82 and 84). 

Analysis of the nucleic acids extracted directly from the particles 

was carried out on 2.6% acrylamide gels. The rRNA's of the ribosomal and 

microsomal pellets were similar and are represented by one figure (Fig. 

85a). Both the 25S and 185 RNA's were degraded. The hnV's of the observed 

6 breakdown products were 1.02, 0.61, 0.44 and 0.12 x 10 daltons respec-

tively. Melting of the samples at 60°C for 10 min resulted in substantial 

breakdown of the rRNA's (Fig. 85b). The MVI's of the breakdown products 

are similar to those observed previously {section 6.(v); cf. Fig. 71b). 

The nucleic acids of the microsomes {extracted with DEP; untitrated-

Tris omitted) showed severe degradation of the 18S RNA component. Melting 

at 6o°C for 10 min resulted in the complete breakdown of the rfu~'s 

(Figs. 86 a and b). 

(ii) An attempt to precipitate legumin synthesising polysomes with 

antilegumin. 

Legumin, kindly supplied by Mr. D. Wright (Department of Botany, 

University of Durham), was in O.lM-phosphate, pH 7.0, at a concentration 

of 1 mg/ml (1.0 mg legumin was precipitated by 1.6 ml antilegumin; 

Graham, unpublished results). 

(a) Legumin-antilegumin incubations 

The occurrence of the antigen-antibody reaction involves the 

detection of precipitation at a liquid interphase (RING TEST), following 

n • ) 15 min incubation at 35-C tGraham, personal communication • 0.1 ml 

(100 )lg) legumin overlayering 0.2 ml antilegumin showed a strong reaction 

following incubation at 35°C for 15 min or at 0°C for 1 h. This reaction 

was not visibly affected by concentrations of triton x-100 up to lq% (v/v). 

Mixing of the two phases, following the ring test resulted in the precipi-

tation of the antibody-antigen complex (PRECIPITIN REACTION). 



Fig. as. 

Ribosomal pellet RNA. Ribosomes were prepared in the 

presence of DBP (see Fig. 81) from 40-day old cotyledons; 

the nucleic acids were extracted as described in the methods 

(section 4(iv)(b)). The numbers above the peaks refer to 

their MW x 106• 

(a) Electrophoresed on a 2.~ gel for 3h. Vertical 

expansion : cam B. 

(b) 0 RNA heated at 60 C for 10 min, then cooled rapidly. 

Electrophoresed on a 2.~ gel for 3h. Vertical 

expansion : cam B. 
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Fig. 86. 

Ribosomal pellet RNA. Ribosomes were prepared in the 

presence of DEP, but the untitrated Tris was omitted, trom 

50-day old cotyledons (see Fig. ~). The nucleic acids were 

extracted as described in the methods (section ~(iv)(b)). 

(a) Electrophoresed on a 2.~ gel tor }h. Vertical 

expansion : cam C. 

(b) RNA heated at 60°C tor 10 min, then cooled rapidly. 

Electrophoresed on a 2.~ gel tor }h. Vertical 

expansion : cam C. 
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(b) Microsome-antilegumin incubations 

The disruption of microsome preparations with triton x-100, 

as detailed (Methods, section 7.(ii)) was modified in that the lq% (v/v) 

triton x-100 was buffered with 50~4-Tris•HCl, 16mM-KCl, 5mM-MgC12 pH 7.6, 

in order to maintain the Mg2+ concentration in the incubations. 

Incubations contained: 

0.2 ml (2 mg) microsomes 

0.4 ml lq% (v/v) triton x-100 

0.2 ml antilegumin 

0.1 ml (100 pg) legumin 

0.1 ml resuspending medium (Methods, section 7.(ii)) 

Preliminary experiments, using triton x-100 disrupted microsomes 

(extracted in the presence of DEP), showed a very weak reaction to the 

ring test. Following mixing of the phases, the precipitin reaction did 

not occur unless carrier legumin was added. 

Microsomes from 40-day old developing cotyledons were incubated with 

0 antilegumin, as detailed above, for 1 h at 0 C. The resulting precipitate 

was pelleted by centrifugation at 1000 g max. for 10 min at 4°C. The 

resulting supernatant was analysed by sucrose density gradient centri-

fugation, and showed that the polysomes had been convez•ted to monosomes 

(Fig. 87). The pellet was subjected to the F_NA e~traction procedure 

detailed in the methods (section 3.(iv),(b)) and the nucleic acids 

obtained were substantially degraded (Fig. 88). 

As the most probable source of RNase contamination was the legumin, 

it was omitted from subsequent incubations. Though no precipitin reaction 

occurred, the samples were treated in an identical manner, and analysis on 

sucrose gradients gave a profile similar to Fig. 87. 

Yarwood (unpublished results) demonstrated that the antilegumin was 

contaminated with bacteria. Filtration of the antilegumin through a 

Swinnex bactez•ial filter (Millipore Ltd.) did not effect the above result. 



Fig. 87. 

Sucrose-gradient sedimentation profile of tl~ supernatant 

following incubation of triton-disrupted miorosames with 

antilegumin and leguniin, as detailed in the text. The micro­

somes were prepared in the presence of DEP from 50-day old 

cotyledons. A volume equivalent to 1.0 mg miorosomes was 

layered on to the gradient. Gradient parameters are detailed 

in the legend to Fig. 81. 

Fig. 88. 

The nucleic acids of the antilegwnin complex. Triton­

disrupted miorosomes prepared from 50-day old cotyledons 

were incubated with antilegumin and legumin, as detailed in 

the text. The resulting precipitated was extracted as 

detailed in the methods, section 4(iv)(b). Electrophoresed 

on a 2.~ gel for J,n. Vertical expansion : oam D. 
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(iii) {?2~-0rthophosphate labelled microsomal ~ffi from 50-day 

old cotyledons. 

50-day old developing seeds were labelled ~ ~' as described 

(Methods, section 11. (ii) ~(b)). The microsomes were isolated in the 

presence of DEP and the nucleic acids extracted directly from the micro-

somal pellet, as described (Methods, section 4.(iv),(b)). 
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The nucleic acids were analysed on a 2.6% acrylamide gel (Fig. 89a). 

Less breakdown was evident than had previously been observed ( cf. Fig. 85a). 

Melting of the sample at 60°C for 10 min resulted in the breakdown of the 

25S and lBS RNA's (Fig. 89b). 

(iv) The analysis of ~2~-orthophosphate labelled microsomes from 

60-day cotyledons. 

60-day old developing seeds were labelled ~ 11!2, as described 

(Methods, section ll.(ii),(b)). The microsomes were isolated in the 

presence of DEP and samples treated variously as below: 

(1) 2.0 mg triton-disrupted microsomes were incubated for 1 h at 

0°C in the presence and absence of antilegumin. 

(2) 2.0 mg triton-disrupted microsomes were analysed immediately 

on a sucrose gradient. 

(3) The RNA was extracted from 4 mg of microsomes. 

The results obt,a.:i.ned from the sucrose gradients arc compiled in 

Figs. 90 and 91. As has been shown previously, antilegumin (RNase) 

results in the loss of' polysomes. This loss is evident by a decrease in 

the radioactive profile (Fig. 90) as against microsomes not incubated 

with antilegumin. The incubation period of 1 h at 0°C causes a shift 

of polysomes to the lighter part of the gradient (compare Figs. 90 and 91). 

Analysis on 2.~ acrylamide gels of RNA obtained from (i) total 

microsomes, (ii) monosomes (Fig. 91) and (iii) polysomes (Fig. 91), showed 

no significant differences and are represented by one figure (Fig. 92). 

0 Melting of the samples at 60 C for 10 min resulted in a similar profile 

to Fig. B5b. 



Fig. 89. 

50-day old cotyledon microsomal RNA. Seeds were 

labelled ,!!:!. ,m2 with P2~ -orthophosphate as detailed in 

the methods, section 11 (ii)(b). Microsomes were prepared 

in the presence of DEP and the nucleic acids extracted as 

detailed in the methods, section 4{iv)(b). The numbers 

above the peaks refer to their MW x 106• 

(a) Electrophoresed on a 2.6% gel for 3h. Vertical 

expansion : cam B. 

(b) RNA heated at 60°C for 10 min, then cooled rapidly. 

Electrophoresed on a 2.6,% gel for 3h. Vertical 

expansion : cam C. 
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Fig. 90. 

Sucrose-gradient sedimentation profile of triton X-100 

disrupted microsomes from 60-day old cotyledons. Seeds were 

labelled !!! .ti:!£_ with ~2d -orthophosphate as detailed in the 

methods, section ll(ii)(b). Microsomes were extracted in the 

presence of DEP and were incubated for lh at 0°C (! antilegumin) 

prior to analysis on sucrose gradients. A volume equivalent 

to 2.0 mg microsomes was layered on to the gradients. Gradient 

parameters are detailed in the legend to Fig. 81. Radioactivity 

was determined on 50 p1 aliquots dried on to 2 em filter paper 

disks. 

x-x ; radioactive profile, of microsomes incubated in the 

absence of antilegumin, corresponds to the optical 

density profile. 

0-0 ; radioactive profile, of microsomes incubated in the 

presence of antilegumin. An optical density profile 

similar to Fig. 87 was obtained. 

Fig. 91. 

Sucrose-gradient sedimentation profile of triton X-iOO 

disrupted microsomes from 60-day old cotyledons. Seeds were 

labelled in !!!:.2. with ~2~ -orthophosphate as detailed in the 

methods. Microsomes were extracted in the presence of DIP 

and were analysed immediately on a sucrose gradient. 2.0 mg 

microsomes were layered on to the gradient. Gradient parameters 

are detailed in the legend to Fig. 81. The shaded areas under 

the peaks were collected and the RNA extracted as detailed in 

the methods, section 4(iv)(b). 
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Fig. 92. 

Polysomal RNA from 60-day old cotyledons. Po~somes 

were purified and extracted as detailed in Fig. 91. 

Electrophoresed on a 2.6,% gel for }h. Vertical expansion : 

cam A. Radioactivity is plotted as a histogram. 
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11. Spectral characteristics of samples 

The spectral characteristics of selected samples prepared by the 

various techniques are given in Table 7. 
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TABLB 7 

Spectral characteristics of some selected samples. 

50-day cotyledon 
micro somes 

50-day cotyledon 
ribosomes 

40-day cotyledon 
nucleic acids 

65° RNA 

Mitochondrial pellet 
nucleic acids 

Polysomal RNA 

Polysomal RNA 

4S :RNA 
G75 Fraction III 

Method of E26~ 
Preparation 230 

7(ii) 0.99 

7(ii) 1.35 

4(1) 2.4.5 

4(ii) 1.8 

4-(iii) 2.14. 

4-(iv)(a) 2.34. 

4-(iv)(b) 2.50 

E max. 

nm. 

1.68 259 

1.55 259 

2.24. 257 

1.96 258 

258 

2.18 257 

257 

2.08 257 

Emin. 

nm. 

239 

239 

230 

231 

231 

229 

228 

229 



55 

DISCUSSION 

The seed of y. ~ is characteristic of the Papilionaceae in 

containing protein as a major component of its nutrient reserves 

(Danielsson, 1949). The two storage globulins were first identified by 

Osborne and Campbell (1898), and were termed vicilin and legumin, having 

MW's of approximately 180,000 and 320,000 (Danielsson, 1949; Bailey and 

Boulter, 1970). 

On the basis of biochemical and cytological studies, Briarty (1967) 

divided the development of 1· f!2! cotyledons into four stages: 

I. Mitotic division of the zygote up to the point at which the 

cellular complement of the embryo approaches that found in the mature 

seed. Terminates 20 to 25 days after flowering. 

II. Increase in fresh weight of the embryo; the embryo swelling 

to fill the seed cavity. Terminates about 35 days after flowering. 

III. The rapid accumulation of starch and protein reserves. 

Terminates 70 to 100 days after flowering. 

IV. The maturation and dehydration of the seed. 

The above classification will be referred to in discussing aspects of 

nucleic acid metabolism of 1· ~ var. Triple White. 

The seeds of y. £!2! were obtained from outdoor grown material and 

therefore were subject to environmental conditions which resulted in a 

wide variation of the size of seeds of any one age and in the time taken 

by a seed to reach maturity (Robertson et !!•, 1962; Wheeler, 1965). 

Normally the age of a particular seed was determined from its day of 

flowering and from its size, compared to the average size for that 
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particular age. This method of ageing seeds cannot account for the 

yearly variation which occurs in the overall maturation period of 

developing seeds. It was observed that in all previous studies on 

developing seeds of y. faba (Wheeler, 1965; Briarty, 1967; Payne, 1968), 

the increase in the average fresh weight of the cotyledons was approxi­

mately constant during stage II and stage III of development, though 

yearly variations in the onset of fresh weight increase occurred. 

Random samples of seeds, aged by their flowering date, gave the result 

shown in Fig. 1. This graph allowed the determination of seed age from 

single cotyledons or cotyledon pairs during the 1969, 1970 and 1971 

seasons. Normally good agreement was obtained with outdoor grown 

material dated by flowering in the 1969 and 1970 seasons, provided that 

an average size bean was selected. Variation between the flowering age 

and the weighted age (determined from Fig. 1) was observed in the 1971 

season, and in late harvest and winter grown material; in such cases the 

weighted age was used. Little winter grown material was available for 

use as difficulties were experienced in obtaining seeds under greenhouse 

conditions due to the abortion of flowers. As the basic aim of this study 

was to identify a nucleic acid species directly concerned in information 

transfer, the majority of the material used for analysis was between 20 

and 70 days old. 

Rapid RNA synthesis commences in the developing cotyledons about 35 

days after flowering (Vllieeler, 1965; Payne, 1968), and is evidenced by the 

appearance of prominent nucleoli and roughER (Briarty, 1967), and con­

tinues up to 60 or 70 days after flowering. The increase in the membrane­

bound ribosome fraction and the apparent constancy of the ratio of 25S 

and 18S RNA to total nucleic acids during the period of' RNA synthesis 

(Payne, 1968), indicates that rRNA synthesis predominates during stage III 

of development. This was confirmed by the increase in the 25S RNA RNA 
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relative to DNA (Fig. 28) and by !a vivo (?2~-orthophosphate labelling 

(Figs. 80, 89 and 92). Relatively little DNA synthesis was detected in 

40-day old cotyledons as compared to rRNA synthesis (Fig. 80) and agrees 

with Payne (1968), who demonstrated a low rate of cell division in 

cotyledons during stage III of development. 

Calculation of the amounts of 25S and 18S RNA's and 5S and 4S RNA's 

as a percentage of the total ~~ gave values of 8J,% and 1~ respective~. 

These are in agreement with Payne's (1968) values of 8~ and 1~ for the 

percentage of high molecular weight RNA and ~NT RNA to total RNA respect­

ively, in developing cotyledons. Fayne (1968) detected an increase in 

the LMW RNA fraction, eluted off methylated albumin kieselguhr (MAK) 

columns, of developing cotyledons between day 50 and day 70. As this 

fraction consists of 5S RNA, 4S RNA and rRNA breakdown products an increase 

in any one of these RNA's would effect an apparent increase in the total 

fraction. The only significant change observed in the~~ RNA's of 

developing cotyledons was the appearance of the rRNA breakdown products 

in cotyledons older than 60 days (Figs. 30 and 31). Analysis of the 

relative amount of 4S RNA ~o 5S RNA present in the cotyledons at various 

ages (Fig. 29) gave divergent values and results were subjected to 

regression analysis in order to determine the best straight line. The 

correlation coefficient and the t=distribution on the slope obtained were 

significant (P> 0.01 and (0.02). If the values for 30-day old cotyledons 

were omitted, the regression line would be practically horizontal and 

therefore little or no significance can be attached to the slope statistics. 

It is however evident that the 5S and 4S RNA's remaining in approximately 

constant proportion to each other during development and as it has 

previously been established that the rRNA content increases during develop­

ment, then this must also hold true far the 4S RNA fraction. As the 4S 

RNA fraction is synonymous to. tRNA then a situation exists where the tRNA 

pool increases as the ribosome content of the cell increases. The number 
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of molecules of tRNA per ribosome per cell cannot be calculated with 

certainty owing to the nature of the data available, but would appear to 

be somewhere in the region of 6-12 tRNA molecules per ribosome (see 

Figs. 29 and 80). The number of tRNA molecules bound per ribosome was 

calculated at 1.5 (Fig. 68) and is in agreement with the values obtained 

by Wettstein and Noll (1965), and King and Gould (1970). 

Analysis of the testa nucleic acids showed a steaqy decline of rRNA 

relative to DNA from 30 days to 60 days after flowering (Fig. 32) and a 

rapid increase in the rRNA breakdown products during this period (Figs. 33, 

34 and 35); similar results were obtained by Payne (1968). Following 

(?2~-orthophosphate incorporation into 40-day old seeds and analysis of 

the nucleic acids of the testa (Fig. 79), it was apparent that rRNA 

synthesis was continuing even though the relative amount of rRNA was 

decreasing. This agrees with Wheeler (1965) who showed that the nucleotide 

content of ageing testa material increases up to day 55 after flowering. 

Between day 55 and day 80 there was a marked decrease in the nucleotide 

content of the testa (Wheeler, 1965). This was confirmed by P~e (1968) 

who demonstrated a very sharp decrease in the rRNA content of the testa 

during this period. This decrease in the total nucleotide content of the 

testa probably reflects the translocation of material to the maturing 

cotyledon {Wheeler and Boulten:, 1967). The obsen:.""ved :differences in Nf'i'f oi' 

the breakdown products in maturing cotyledons and senescing testa's 

probably results from a higher concentration of RNase in the testa. These 

breakdown pdoructs were not observed in mature dehydrated seeds. 

The MAK column elution profiles of nucleic acid extracts from 30 to 
--

60-day old cotyledons were atypical in containing a third, high molecular 

weight RNA fraction (Payne, 1968). A similar fraction constituting 3~ of 

the total high molecular weight RNA was identified in monocotyledon seed 

nucleic acid extracts by Cherry and Lessman (1967). They suggested that 
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this fraction constituted a store of long-lived mRNA which would direct 

protein synthesis at the onset of germination. Loening and Ingle (1967) 

fractionated the RNA's of several seeds of the monocotyledons by 

polyacrylamide gel electrophoresis and did not detect any unusual RNA 

fractions. The third high molecular weight RNA fraction of Cherry and 

Lessman (1967) has therefore arisen from the aggregation of the 255 and 

185 RNA's. A similar situation has been found to exist for y. ~ 

cotyledon nucleic acids in that no unusual RNA fractions were found in 

total nucleic acid preparations (Fig. 27), and therefore the third high 

molecular weight fraction detected by Payne (1968) constitutes an 

aggregation artifact. Direct analysis of this fraction by polyacrylamide 

gel electrophoresis demonstrates the presence of the 255 and 185 RNA's 

(Payne, 1968; Ingle and Key, 1968). Payne (1968) also identified two 

minor components of MW 2.2 x 106 daltons and 1.93 x 106 daltons. The 

latter was ascribed to the 25-185 RNA aggregation product. The 2.2 x 106 

daltons component in having a MW significantly different from the 25-255 

aggregation component (MW = 2.58 x 106 daltons) was attributed to either 

(i) a polycistronic message; (ii) a rRNA - mRNA complex or (iii) a rRNA 

precursor molecule. Ingle and Key (1968) also identified two minor com­

ponents of MW 2.5 x 106 daltons and 2.0 x 106 daltons, noticeable having 

l'N!' s similar to the 25S=25S riUiA i:ind the 253-185 rRNA aggregation com-

ponents respectively. They concluded that they were not aggregation 

products as the conditions of gel electrophoresis are not favourable for 

aggregation, though they made no positive suggestions as to their identity. 

Although aggregation of RNA molecules is unlikely to occur during electro-

phoresis, the salt concentration required to elute rRNA from MAK columns 

does cause aggregation; and if stable aggregates are formed, then they will 

migrate as an aggregate on acrylamide gels. Such aggregates can only be 

released into their component molecules by melting the RNA (see Figs. 63 
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and 64). Two minor components, similar in mobility to those described 

by Fayne (1968) and Ingle and Key (1968) were identified in some prepara-

tions of RNA extracted from ribosomes (Fig. 68a). These represent the 

25S-25S RNA and 25S-18S RNA aggregation components. Accurate '&FN data 

could not be obtained on these components, because the relationship 

between MW and mobility is non-linear in this region of the gel. The non-

linearity arises from a dilution of the ac~lamide during overlayering the 

gel with water durlllg its preparation; this normally results in an under-

estimation of the MW and this may explain the results obtained by Payne 

(1968). 

The in~ labelling of cotyledon slices with ~2~-orthophosphate 
for 30 min followed by a 15 min chase, gave no incorporation into nucleic 

acids as judged by the distribution of radioactivity on a 7.~ acrylamide 

gel (Fig. 78). Payne (1968), obtained incorporation of P2~-orthophosphate 
into nucleic acids following a 3h incubation. The resulting MAK elution 

profile of radioactivity showed a distinct peak associated with ti1e minor 

DNA component eluting at a slightly lower salt concentration than the 

major DNA DNA f'raction, and preferential labelling of the third high 

molecular weight RNA fraction. This distribution of radioactivity has 

been demonstrated to be typical of plant tissues in general (Key and 

Ingle, 1964; Ingle £:E. ~· , 1965; Ingle and Key, 1965; Cherry and Van 

Huystee, 1965; Cherry ll al., 1965; Chroboczek and Cherl"Y, 1966). The 

analysis of the ~2~ -orthophosphate labelled rlli"JA' s by sucrose gz•adient 

centrifugation demonstrated the associated of radioactivity with the 

18S rRNA fraction and with a fraction of lower sedimentation value than 

the 25S rRNA (Waters and Dure, 1965 and 1966; Ingle~ !1·, 1965). Such 

a distribution of radioactivity had previously been demonstrated by Glisin 

and Glisin (1964) in nucleic acids extracted from sea urchins contaminated 

with bacteria. Lonberg-Holm (1967) using bacterial contaminated seedlings 
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confirmed Glisin and Glsin's (1964) earlier work, and also demonstrated 

that the rapidly-labelled minor DNA component evident on the MAK column 

elution profile of earlier workers (see above) was indicative of bacterial 

contamination. It is concluded that the observed incorporation of 

P2P] -orthophosphate into nucleic acids, following the incubation of 

cotyledon slices ill vitro (Payne, 1968), was due to bacteria. In the 

present study, although no incorporation into any nucleic acid fraction 

was obtained following the ~ vitro incubation of cotyledon slices, 

analysis of the nucleic acids showed the presence of~~ RNA's (Fig. 78) 

which had not been observed in nucleic acid preparations from whole 

cotyledons (Fig. BOb); though similar~~ RNA's had been detected in 

mature seeds (Fig. 38b). The ability of cotyledon slices to incorporate 

[14-rJ -leucine and ~5~ -sulphate into legumin (Bailey ll &·, 1970) 

indicates that this system maintains its capacity to synthesi~complete 

globulin molecules, and as globulin synthesis is dependent on rRNA and 

probably mRNA synthesis, it should be possible to demonstrate RNA synthesis 

in this system. The apparent inducement of rRNA degradation by slicing 

the tissue and its inability to incorporate f2~ -orthophosphate is 

anomalous if the results of Bailey ll &· (1970) are accepted ·and further 

experimentation is required before-any conclusions can be reached. 

Attempts to identify nuclear RNA's either by the hot phenol-3DS 

extraction procedure or directly from isolated nuclei were not success!~. 

Following the demonstration of the nuclear rRNA precursors in excised and 

intact roots of pea seedlings (Rogers ~ al., 1970) similar experiments 

were attempted using the roots of y. !!£!· Initial experiments on excised 

root tips incubated in P2P] -orthophosphate for varying lengths of time 

resulted in the labelling of bacterial nucleic acids. Further experiments 

were carried out on carefully selected and sterilised seeds, germinated 

under sterile conditions, though this apparently enhanced rather than 
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reduced the bacterial flora (compare Figs. 76 and 77). As with cotyledon 

slices no incorporation into the plant nucleic acid fractions could be 

detected. It would seem reasonable to assume that in this particular 

instance, the bacteria in the intercellular spaces or embedded in the cell 

walls of the roots preferentially used the available phosphate (see Barber, 

1966). The bacterial RNA's observed on 2.2,1& acrylamide gels with the 

exception of the 0.36 x 106 daltons component (Fig. 75) are similar to 

those described by Iwabuohi et al. (1965), Hecht and Woese (1968) and --
Marrs and Kaplan (1970), though the rate of labelling of the nucleic acids 

is much slower. The observed labelling of the 0.63 x 106 and 0.56 x 106 

daltons components is consistent with the 0.63 x 106 daltons component 

being a precursor to the 0.56 x 106 daltons component (see Figs. 75, 76a, 

77 and Marrs and Kaplan, 1970). The 0.36 x 106 daltons component can not 

be explained as it was only evident in one sample (Fig. 75). Analysis of 

the LMW RNA's showed that the bacterial 5S and 4S RNA 1 s differed in 

mobility from y. £!E! 5S and 4S RNA's (Fig. 76b). This was reproducible 

in samples contaminated with bacteria whereas the analysis of the ~ !!!£ 

labelled RNA's showed an overlap of the radioactivity and optical density 

profiles (Figs. 79b and BOb). Recently Payne and Dyer (1971) have con-

firmed this result in demonstrating a separation of E. coli 55 RNA from 

!· ~ cytoplasmic .5S R.N.!\. They suggested tha·{; the :!• faba 5S RNA 

contains 118 nucleotide residues compared to E. coli 55 RI~, which contains 

120 nucleotide residues (Brownlee ll &•., 1968). The observed :MW difference 

between labelled bacterial 5S RNA and the y. ~ 55 RNA (Fig. 76b) is 

approximately 1000 daltons which is in reasonable agreement with the calcu-

lations of Payne and Dyer (1971) assuming E. coli 5S RNA to be representative 

of the bacterial 5S RNA 1 s in general. No attempt was made to identify the 

contaminating organism(s). 

Chloroplast rRNA's were evident in the nucleic acid preparations from 
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leaves of y. ~ (Fig. 26) and showed a molar excess of the 165 RNA 

component (0.56 x 106 daltons). This molar excess of the 16S RNA 

(Loaning and Ingle, 1967) or conversely the complete absence of the 235 

RNA (Brawerman and Eisenstadt, 1964) has been observed in almost all 

chloroplast RNA studies, and is due to the lability of the 23 RNA (Ingle, 

1968). There was a marked absence of organelle rRNA in nucleic acid 

preparations from testa and cotyledon tissue (Figs. 27, BOa and 79a) even 

though they displayed a typical chlorophyll colouration. Utrastructural 

studies on the developing cotyledon (Briarty, 1967) demonstrated the 

presence of mitochondria and plastid-like bodies. The latter had a fine 

structure similar to chloroplasts in that they were bound by a double 

membrane, contained grana-like lamellae and also, often contained starch 

grains. Briarty (1967) observed within the matrix of these organelles 

particles which he concluded to be ribosomes. Similar observations and 

conclusions had been reached by Swift (1965) using ~ vulgaris. It is 

apparent that, though organelle ribosomes exist in developing cotyledons, 

they are in an extremely low concentration compared to cytoplasmic ribosomes 

and therefore their constituent rRNA's cannot be detected by conventional 

means. The only RNA species identified with the organelles of y. ~ 

cotyledons is tRNA~T (Yarwood~~., 1971). This tRNA s~cies is capable 

of being charged and formy.lated by y. ~ or !• ~ enzyme and is 

indistinguishable from J!• £21! formylmethionine - tRl"'iAF in the ~· £21! 

cell-free system, suggesting that it functions as the initiator tRNA on the 

organelle 70S ribosomes (Leis and Keller, 1970; Yarwood!! !!•, 1971). 

A minor RNA species with a mobility less than the 55 RNA was first 

detected in total cotyledon nucleic acid samples (Fig. 33) and later found 

to be a major species in nucleic acid samples extracted at 65°C (Figs. 37b 

and 64b). It could also be demonstrated by melting total nucleic acid 

samples which had been extracted at low temperatures (Fig. 40); this treatment 

not only caused the release of this RNA but also noticeably reduced the 



absorbance of the 25S rRNA when compared to the 18S rRNA. Following 

gradient-purification of the 25S and 18S rRNA's, heat treatment dissociated 

this LM\V RNA species only from the 255 RNA (Figs. 45 and 46). It was 

therefore similar to the 75 RNA described by Pene .!U, &· (1968) and the 

28S associated RNA described by Weinberg and Penman (1968). Its ~V and 

sedimentation coefficient were determined to be 0.52 x 105 daltons and 

5.8S respectively using 4S and 5S RNA's as standards. These values are 

similar to the values obtained for this RNA from pea seedling (Sy and 

McCarty, 1970). The 5.8S RNA is dissociated from the 25S rRNA at a 

relatively low temperature (Fig. 41) in agreement with other studies 

(5y and McCarty, 1970; King and Gould, 1970; Payne and Dyer, 1971) 

indicating only 3-6 base pairs involved in the bonding of this molecule 

to the 25S rRNA (King and Gould, 1970). The 5 1 terminal analysis of the 

larger of the two rRNA's from both animal and plant tissues reveals two 

termini in equimolar amounts (Madison, 1968; Becker and Pollard, 1969). 

In addition the ratio of absorbance at 260nin of the hei:it released 5. 8S 

RNA to the 5S rRNA reaches a maximum at 1.35 (Fig. 41) which is very close 

to the calculated value of 1.37 for equimolar amounts of the two. It 

would therefore appear that there is one molecule of 5.85 RNA per molecule 

of 25S rRNA. The occurrence of the 5.8S ru~, as a component of the 80S 

ribosome, has been demonstrated in a wide range of eukaryotic organisms 

(Pene !i al., 1968; Sy and McCarty, 1970; Payne and Dyer, 1971), and it 

appears to be absent from the 70S ribosome systems so far analysed (Pane 

£i !!•, 1968; Payne and Qyer, 1971). The value 5.8S is determined by 

plotting mobility against sedimentation coei'f'icient, using 4S and 5S RNA • s 

as standards. However, if 3.95S and 4.4BS are used, which are the values 

of the sedimentation coefficients at 20°C corrected for the viscosity and 

density of the solvent for wheat 4S and 5S RNA's respectively (Soave et al., 

1970), then a value of 4.9s is obtained for the '5.85' RNA of y. faba. 

This value is similar to the value of 5.05 ± 0.2s, determined by sedimentation 
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and Gould (1970). The use of polyacrylamide gel electrophoresis to 

determine sedimentation coefficients is fallacious in that there is no 

real relationship between mobility and sedimentation coefficient, and 

the determination of S values for the '5.85' RNA from a two point plot 

(Sy and McCarty, 1970; Payne and DWer, 1971) is therefore considered to 

be meaningless. 

An attempt to purify the 5.8S RNA, for sedimentation analysis, was 

made using as a basis the techniques of molar-salt precipitation an~or 

~E-cellulose chromatography, which had previously been used in the puri­

fication of the 4S and 5S RNA species. Basically the purification scheme 

was to isolate the 25S and 18S RNA species free from 4S and 5S RNA's; 

heat the purified 25S/18S RNA fraction to release the 5.8S RNA and then 

isolate the 5.8S RNA. The separation of the 5S and 4S RNA's from the 25S 

and 18S rRNA 1 s was easily achieved either by precipitation of the 25S and 

lBs rRNA 's by molar-salt or by absorption of the 5S and 4S RNA 's on to 

D~E-cellulose. Both techniques yielded apparently undegraded heavy rRNA 

free of LMW RNA's (Fig. 17) and subsequent heat~atment released the 5.8S 

RNA (Fig. 47) and caused the aggregation of the heavy rRNA's which facili­

tated their subsequent separation by molar-salt precipitation. The molar­

salt soluble RNA (5.8S RNA fraction) was found to be contaminated with ~M 

RNA species (Fig. 4.8), the principal contaminants having electrophoretic 

mobilities indistinguishable from 5S rRNA and 4S RNA (tRNA). The precipi­

tated heavy rRNA' s, following washing, were contaminated with a UrN RNA 

which had 1:1 mobility identical to the 5. 85 RNA (Fig. 50). An attempt to 

recover this fraction by high-speed centrifugation only resulted in further 

breakdown of tpe RNA's (Fig. 51). Similar results were obtained when 

DEAB-cellulose chromatography was used to prepare the 5.8S RNA fraction 

(Fig. 52). Again the main contamination arose from RNA's having mobilities 

identical to 5S and 4S RNA's. The presence of these components in this 
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particular fraction suggested that some binding of the 25S and 18S rRNA's 

to DEAE-cellulose had occurred. The binding of the heavy rRNA's to 

DEAE-celltuose was subsequently demonstrated (Fig. 55) and agrees with the 

earlier work of Stanley and Bock (1965) who described the formation of a 

non-elutable complex. Attempts to reduce nuclease nicking of the heavy 

rRNA 1 s, which was considered to be a possible cause of the breakdown, by 

modifying the extractant produced no significant difference in the results. 

The fragmentation of the heavy rRNA 's into specific LM'If fragments was not 

due to nuclease activity as the rRNA's were apparently intact prior to 

heat treatment, and following heat treatment the only LM¥/ RNA observed was 

the 5.8S RNA. It therefore seems possible that molar-salt treatment of 

heat treated RNA causes a physical fragmentation of the molecule due to 

stress set up by unnatural folding. However, purely physical degradation 

would not result in the release of specific fragments and it is therefore 

necessary to suggest labile regions within the molecule; such probably 

correspond to single stranded regions. Owing to these difficulties, 

purification of the 5.8S RNA was discontinued. 

Diethylpyrocarbonate (DEP) was first demonstrated to inhibit enzymes 

by Hullan !i!!• (1965) and later by Fedorcsak and Ehrenberg (1966). 

Subsequent studies on its mode of action havedemonstrated that it is non­

selective against proteins, reacting with free amino groups and primary 

amines forming N-carbethoxy derivates (Rosen and Fedorcsak, 1966; Mwllrad 

ll al., 1967; Hegyi and Muhlrad, 1968; Glazer, 1970). The ability of DEP 

to inhibit nucleases was of obvious interest in this study and preliminary 

experiments based on polyacrylamide gel electrophoresis were designed to 

compare the actions of LLS and DEP on nucleases. In all incubations 

containing LLS, both RNase and DNase were inhibited which was the expected 

result (see Elson, 1958; Spahr and Hollingworth, 1961), owing to its 

denaturing effect on protein structure. In contrast DEP did not inhibit 

DNase activity but inhibited RNase activity. Though the DNase concentration 
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in these incubations was known, the RNase concentration was an unknown 

factor and was assumed to be low compared to the DNase concentration. As 

the RNase activity was inhibited by DEP in the Koch-Light DNase incubation, 

but the DNase activity was apparently uninhibited, a comparison can be 

made to a result of Fedorcsak and Ehrenberg (1966), in which they obtained 

inhibition of RNase in the presence of ~ albumin. Little information 

could be obtained from these non-quantitative experiments, but in general 

the results indicated that DEP did not effectively inhibit DNase. This 

apparent discrepancy with the results of Fedorcsak and .!hrenberg (1966) 

prompted a re-investigation of their results using a DNase incubation system. 

The incubation system was based on uranyl acetate, in which only the lower 

oligomer digestion products are soluble and therefore seemed reasonable f'or 

determining more precisely the extent of the action of DNase on DNA in the 

presence of DEP. A similar incubation system for assessing DNase activity 

has been described by Hurst (1958). Following the determination of the 

initial rate pa-rameters (Figs. 8 and 9), incubations involving DEP showed 

that inhibition of DNase activity was rapid and non-linear with respect to 

DEP concentration (Fig. 10). A similar result was obtained when DNase 

was pre-incubated with DNase (Fig. 12). Both of these results are in 

agreement with the previous observations of Fedorcsak and Ehrenberg (1966). 

As these authors used a lQ% solution of DEP in ethanol, similar experiments 

were conducted and no differences were detectable either in the observed 

inhibition of DNase (Fig. 10) or in the solubility of DEP which normally 

produced a two phase system when its concentration was greater than o.~ 

(v '-' I v J • Incubations which contaL1ed DEP at a concentration of 5,1o 

(10 x saturation level) and in which the enzyme concentration was varied 

(~'ig. 11), showed that as enzyme concentration increased, the observed 

inhibition of DNase decreased. A similar situation existed with high 

concentrations of RNase (Table 3). Ow:ing to the limited solubility of DEP, 

a factor which must govern its ability to react with the components of the 
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soluble phase, it can be reasonably assumed that protein concentration is 

a critical factor if DEP is to be used as an effective nuclease inhibitor. 

In contrast to RNase, DNase activity was affected by Tris buffer, 

and this effect was additive to the effect of DEP (See Fig. 13 and Table 3). 

Whether the inhibition was caused by Tris or acetate was not determined 

and it was assumed that this effect was negligible at the Tris concentra-

tion used and did not warrant repeating the experiments using a different 

buffer system. This inhibition of DNase activity by Tris buffer indicates 

that prior to general enzyme studies a careful testing of buffer systems 

is necessary, and this has in the past been overlooked (Fedorcsak and 

Ehrenberg, 1966; Hurst, 1958). 

Recently new methods, based on the use of DEP as a nuclease inhibitor, 

have been developed for the extraction of undegraded nucleic acids from 

plant tissues (Solymosy ~ ~., 1968; Lazar~ al., 1969; Solymosy !i al., 

1970). These extraction procedures incorporate SDS into the initial homo-

genisation medium, but homogenisation is carried out at low temperatures 

which probably destroys the effectiveness of SDS against nucleases. 

Analysis of the nucleic acids either by sucrose-gradient or acrylamide gel 

electrophoresis demonstrated that from older tissues there was a molar 

excess of 185 rruiA over the 255 rRNA (Lazar et al., 1969; Solymosy, 1970). --
This was a tt1•ibuted to a preferi;jntial axl:ract ion of the lBS P.lil~. Howe;;ar, 

such profiles may result from extensive nuclease attack on the rRNA's during 

the initial stages of the extraction procedure in which the SDS is effectively 

removed by the temperature conditions, and RNase is effectively protected 

against DEP modification, not only by the limited solubility of DEP but 

also by the protein concentration of the homogenate. This explanation of 

the results of Lazar~ !!• (1969) and Solymosy !i!!· (1970) is supported 

by the work of Melera ~ ~· (1970), who found that DEP did not effectively 

protect rR.J."\TA from nuclease attack during Hs extraction from Physarum 
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generated by heat treating RNase nicked rRNA (Figs. 64a, 7lb and 85b). 
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The reaction of DEP with nucleic acids is generally less well understood 

than its reaction with proteins. Though DEP desti"oys the infectivity of 
·,t docs d.esb,y 

TMV RNA (Gulyas and Solymosy, 1970), -6tdt not A the tz•ansforming capacity 

of bacterial DNA (Fedorcsak and Turtoczky, 1966) or the amino acid 

acceptor capacity of human placental tRNA (Abadom and Elson, 1970). A 

recent report (Wiegers and Hilz, 1971) has demonstrated that DEP degrades 

nucleic acids. It is concluded that the use of DEP either as a nuclease 

inhibitor or conversely as an RNA protecting agent can not be relied upon. 

Payne (1968) recommended the use of o.!J% sodium deoxycholate for the 

solubilisation of membrane during the isolation of V. f!2! polyribosomes. 

Preliminary experiments using Phaseolus aureus tissue demonstrated that 
Jn.d.LC.ced 

the ionic detergent sodium deoxycholate at a concentration of 0.2,% pee~aea 

the destruction of ribosome units into subunits when compared to the non-

ionic detergent triton X-100 at a concentration of ~. Similar results 

were obtained using the developing cotyledons of ~· faba. The destruction 

of ribosomes by sodium deoxycholate, though not detected by Payne (1968), 

has previously been recorded by Burka (1967) and Golub and Clegg (1969); 

and is attributed to the denaturation and loss of ribosomal proteins. As 

triton X-100 did not appear to affect ribosome integrity it was routinely 

used to effect the solubilisation of membrane during the isolation of 

V. !!2! polyribosomes. 

Bentonite, which has often been used in the preparation of plant poly-

somes (Wa'i;·ts a:nd Mi:tthias, 1967; Tester and Dura, 1966), was used in the 

current study in an attempt to inhibit RNase activity by selective absorption. 

Tester and Dure (1966) demonstrated that bentonite was capable of absorbing 

appreciable quantities of ribosomes, thus effectively reducing the yield. 

Similar results were obtained by Blanton and Barnett (1969), who also showed 

that bentonite was capable of absorbing rRNA. The ability of bentonite to 



70 

remove RNase was routinely checked by extracting the nucleic acids from 

the subcellular fractions, and analysing them by polyacrylamide gel 

electrophoresis. The amount of rRNA breakdown varied from preparation 

to preparation (Fig. 67 and 68a), though generally rRNA breakdown increased 

through the various stages of polyribosome isolation (Figs. 65, 66, 67, 

68 and 69). The greatest amount of rRNA destruction was observed following 

the separation of ribosome units on sucrose gradients (Fig. 69) and 

indicates an association of RNase with the ribosomal particles. '7hether 

this is due to absorption of RNase during the initial homogenisation of the 

material or whether the RNase is a ribosomal protein is not known. Hsiao 

(1968) has obtained a similar association of RNase with Zea mays ribosomes. 

The amount of rRNA destruction by RNase could be substantially increased 

if microsomes were incubated for 24h at 0°C prior to extraction and analysis 

of the nucleic acids (Fig. 70). The appearance of so many minor degradation 

components necessitated a stu~ of rRNA cleavage as a prerequisite to any 

attempted identification of non-ribosomal-RNA fractions. 

Extensive rRNA breakdown was induced by omitting bentonite and substi-

tuting sodium deoxycholate for triton X-100 in the preparation of poly-

ribosomes and by isolating the monosome fraction by sucrose density gradient 

centrifugation (Fig. 60). Analysis of the nucleic acids showed a complete 

absence of 4S RNA (c.f. triton treated ribosomes Fig. 68b) and four 

6 fragments of MW, 1.02, 0.61, 0.44 and 0.31 x 10 daltons. The 0.61 X 106 

daltons component, which was the major fragment,had previously been identi-

fied, in cotyledons which had been subjected to liquid N2 freezing, as a 

specific cleavage product f .~.. 0 1n • , n6 .,.nl\TA 0 .. ue • tv :X .&.v ....... 'In • Cleavage of tllC 0. 70 X 

rRl~, not only results in the 0.61 x 106 component but also a minor fragment 

of 0.09 x 106 daltons. A similar cleavage of the 0.70 x 106 rRNA has been 

described by Payne and Loening (1970) in pea root microsomes. The 

1.02 x 106 daltons component which is taken to be a cleavage product of the 

1.29 x 106 rRNA had previously been detected in roots (Fig. 25), mature 



cotyledons (Fig. 38a) and in triton treated ribosome preparations 

(Figs. 68a and 69). Payne and Loaning (1970) described a similar com-

ponent in pea root microsomes and showed that it probably arose from 
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ribosome damaged during the homogenisation of' the tissue, and that it was 

not related to the age of' the ribosomes. However, as this component could 

be detected in total nucleic acids of' roots and mature cotyledons it would 

appear that there exists ~ ~ a small population of' ribosomes which are 

more exposed to RNase attack. The 0.44 and 0.30 x 106 daltons components 

6 are comparable to the 0.45 and 0.31 x 10 daltons components of' pea root 

microsomes (Payne and Loaning, 1970), though in the latter system a third 

6 component of' 0.37 x 10 daltons was identified. No fragment corresponding 

to the latter could be detected from y. ~ ribosomes and probably results 

from a difference in ribosome structure. The 0.44 and 0.30 x 106 daltons 

components appeared to be heterogeneous and were further resolved by melting 

the RNA. The o. 44 x 106 dal tons component had a minor component at 

6 6 0.42 x 10 daltons and the 0.30 x 10 daltons component had a minor component 

at 0.28 x 106 daltons (Fig. 89b). Melting of' the RNA produced a dramatic 

change in the optical density profile due to the release of' hydrogen bonded 

fragments. The 0.70 x 106 rRNA became the prominent species being in molar 

excess over the 1.29 x 106 rRNA. This type of' profile could arise in two 

possible ways; firstly a large number of' cleavage points on the 1.29 x 106 

rRNA molecule resulting in many small fragments and the relative stability 

6 of' the 0.70 x 10 rRNA or secondly a highly specific cleavage point in the 
6 - 6 

1.29 x 10 rRNA which results in a 0.70 x 10 daltons fragment. A small 

but apparent increase in the o. 70 x 106 daltons species could be detec·~ed 

following heat treatment, by comparing gels (Figs. 7la and 7lb; 85a and 85b; 

see also 4-3a and 45a) and is indicative of' a 0. 70 x 106 daltons fragment 

derived from the 1.29 x 106 rRNA. The cleavage of' the heavy cytoplasmic 

rRNA into a fragment which is equivalent in size to the light cytoplasmic 

rRl'lA has been demonstrated in Tetrahymena pyriformis (Bostock ll ~·, 1971). 
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Fragment derivation studies were not undertaken and therefore conclusive 

evidence for this specific cleavage was not obtained. Similarly the 

0.52 x 106 daltons component which was totally released by melting the 

RNA (Figs. 7la and 7lb) is tentatively identified as a fragment of the 

1.29 x 106 rRNA (see also Figs. 45a and 46a). The remaining minor cleavage 

products of the 1.29 x 106 rRNA, which oould be identified on a size basis, 

had MW 1 s of 1.13 x 106 daltons (Fig. 7lb), 0.93 x 106 daltons (Figs. 45a 

and 70) and 0.79 x 106 daltons (Fig. 7lb). Other fragments which have 

been detected, but not so far mentioned, are the 0.65 x 106 daltons fragment 

(Fig. 69), the 0.20 x 106 daltons fragment (Fig. 71b) and the 0.16 and 

0.13 X 106 daltons fragments (Figs. 46a and 7lb). or these only the 

0.20 x 106 daltons fragment was consistently detected in heat treated 

preparations. 

The size distribution of the polyribosomes obtained from developing 

cotyledons of y. ~(Fig. 59), did not vary significantly with the age 

of the tissue and were similar to those obtained from other leaf tissues 

(Pearson, 1969; Pearson and Wareing, 1970). The observed distribution, 

using bentonite as an RNase protectant, cannot be representative of the 

ill ~ distribution, as bentonite did not effectively protect the rRNA 

against RNase attack and probably resulted in a considerable loss of poly-

ribosomes. The nuclease inhibitor DEP, has been reported to have a 

protective effect during the isolation of polyribosomes from wheat embryos 

(Weeks and Marcus, 1969). Similar experiment, in which DEP replaced 

bentonite, markedly improved the yield of polyribosomes from developing 

cotyledons (Fig. 81; compared to Fig. 59). A further improvement was 

obtained if microsomes were isolated in the presence of DBP, and the 

membranous material disrupted with triton X-100 immediately prior to 

sucrose-gradient analysis (Fig. 82). The decrease in polyribosomal break-

down and monosome content observed in microsome preparations probably 

results from n~mbrane protection of the polyribosomes against the sheer 
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force incurred during the resuspension of the microsomal pellet. Both 

the polyribosome and microsome profile showed an increased content of 

subunits over bentonite treated preparations (Fig. 59) and agrees with 

the previous observations of Weeks and Marcus (1969), and Anderson and 

Key (1970) that DKP causes ribosomes to dissociate into subunits. Micro­

somes were shown to be reasonably stable at 0°C for 1 hr, though a slight 

decrease in the polyribosomal distribution was noted (Figs. 90 and 91), 

indicating some residual RNase activity. The omission of the untitrated-

Tris from the extractant resulted in a poor polyribosomal profile (Fig. 8~), 

and in part this was caused by the gradient which had been subjected to 

freezing and thawing (see Fig. 83). Analysis of the nucleic acids from the 

polyribosome and microsome preparations (Fig. 85) gave profiles practically 

identical to the profiles obtained when rRNA degradation had been induced 

(see Fig. 71). The amount of rRNA destruction varied from preparation to 

preparation (compare Figs. 85, 89 and 92), though in all preparations 

degradation of the 0. 70 x 106 rRNA occurred. This disagrees with 

Anderson and Key (1970) who showed that DBP inhibited the breakdown of the 

0.70 x 106 rRNA. However, as has been previously discussed, the action of 

DEP against nucleases is limited by its solubility and the protein concen-

tration; and therefore in tissues with a high RNase content, the RNase will 

be eff'ectively protected for a short period during which it will cause 

polyribosome and rRNA degradation. The degree of DEP catalysed hydrolysis 

of the rRNA cannot be assessed, though omission of the untitrated-Tris from 

the extractant resulted in a complete breakdown of the rRNA's following 

heu t trea tmt:Ju·b. 

Antilegumin was originally intended to be used with p2~ -orthophosphate 

labelled polyribosome preparations, which had been extracted in the presence 

of bentonite, in an attempt to precipitate those polysomes engaged in 

legumin synthesis. The addition of antiserum to such preparations could 

not possibly have led to an identification of the mRNA(s) for the storage 
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protein legumin, owing to the degraded nature of the polyribosome 

preparations, though it may have led to a precipitation of those ribosome 

units wh..ich still carried nascent protein chains. That antiserum can cause 

such a precipitation has been recently demonstrated by Higashi and Kudo 

(1970). The use of antiserum against microsome preparations which have 

been extracted in the p:C"esence of DEP again could not lead to an identifi-

cation of the mRNA(s) for the storage protein legumin, as the ribosome 

units detected in these preparations represent fragments of much larger 

polyribosomes which are present .!!!, .Y.!!2, (Briarty, 1967) and the possible 

modification of the antigenic sites on nascent polypeptide would make the 

precipitin reaction unlikely to occur, however, a partial complex formation 

could possibly be detected by an increase in the sedimentation rate of the 

ribosome units through sucrose-gradients, or be induced to precipitate by 

the addition of carrier protein. Such experiments demonstrated that the 

antilegumin was contaminated with RNase, resulting in a conversion of the 

polyribosomes to monosomes (Figs. 87 and 90), and degrading the rRNA (Fig. 88) 

which was recovered from co-precipitated ribosomes following the addition 

of carrier protein to the antisera incubations. That non-specific precipi-

tation of ribosomes can occur in the presence of antiserum has been confirmed 

by Higashi and Kudo (1971). 
. _ r32J 0 0 0 0 _ • _ _ • • 

Analysis of the nucleic acids oi' [ ··.IJ -orthp.i"luspna-t;e .LaDe.L.Lea nuci'osomes, 

extracted in the presence of DEP (Figs. 89, 90, 91 and 92), only demonstrated 

the pi~sence of radioactive rRNA and its cleavage products. The radioactive 

components detected with mobilities less than the 1.29 x 106 rRNA (Fig. 89), 

could not be equated to non-ribosomal RNA purely on their size and the size 

of the ribosome units originally present in these preparations and must 

arise from rRNA aggregation or from contaminating DNA. 

The occurrence of large coiled polyribosomes in the cotyledons of 

y. faba has been demonstrated by Briarty (1967; see also Bonnet and Newcombe, 

1965). The absence of such large polyribosomes in cell free extracts results 
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purely from the physical problems involved in cell breakage and the high 

content of RNase. In tissues such as barley and wheat seedlings, which 

have a low RNase content,reasonably large polyribosomes can be obtained 

(Watts and Mathias, 1967; Weeks and Marcus, 1969); though in no plant 

tissue extracts do polyribosome profiles approach those found from 

specialised animal tissue extracts (Kuechler and Rich, 1969a and b; 

Heywood and Nwagwu, 1969; Low !i &·, 1971). The identification of 

presumptive mRNA's in animal tissue is aided by a low RNase content, and 

the absence or low rate of rRNA synthesis (Kuechler and Rich, 1969a and b; 

Heyv1ood and Nwa~vu, 1969). The developing cotyledons of y. ~which 
have both a high RNase content and a high rate of rRNA synthesis is 

therefore not an ideal tissue for mRNA studies. 
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ABBREVIATIONS 

With the exception of those listed below, the abbreviations and 

conventions used throughout this thesis are those recommended by the 

Biochemical Journal (Biochem. J., 116, 1 (1970)). 

Diethylpyrocarbonate 

Low molecular weight 

Lithium lauryl sulphate 

Sodium dodecyl sulphate 

Tri-isopropylnaphthalene sulphonate 

Molecular weight 

Ill 
Lauryl is synonymous with dodecyl. 

DEP 

1!1 
LLS 

SDS 

TNS 

B9 
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AMENDMENT 

Throughout this thesis E258 should be taken to read E254 
0.5cm o.scm. 
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