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Abstract

A phenomenological analysis of Pion Nucleon scattering
data at high and intermediate energies and at all angles
has been undertaken.

At high energies say above 5 GeV/c the differential
cross sections are strongly peaked in the forward and backward
directions and these peaks can be adequately explained by
a small number of leading Regge poles in t channel (for
the forward peak) and u channel (for the backward peak).

In this work new Regge fits are performed to all available
recent high energy data, to obtain the Regge parameters.,

Below 5 GeV/c down up to 2 GeV/c the forward and
backward peaks are still very conspicuous and can still be
explained by the Regge poles used in the high energy fits.
So it -is thought to be convenient to define an amplitude
Fp(s,t,u) which is the difference between the total and the
Regge amplitudes. A parametric form of this amplitude
(viz, Fgq) was taken to fit all data between 2 to 5 GeV/c
simultaneously, while the parameters of the Regge Amplitudes
are held fixed to their values obtained from high energy fits.

First all [t p scattering data were fitted to get
I = 3/2 amplitude then [\ p and charge exchange data were
fitted to obtain I = 1/2 amplitudes.
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Two different ways of parameterising Fg (s,t,u) have
been attempted. The first was based on the direct channel
Regge pole model with Khuri modification, and the second
was of a simpler and less sophisticated phenomenological
form, the amplitudes being expressed as a power series in
Cos ® ( B Dbeing scattering angle) with energy dependent
coeffg¢cients, the second method was found particularly
successful in the present worke.

Partial Wave projections of both T = 1/2 and T = /2
amplitudes were made and the phase shifts were obtained for
both the isospin amplitudes. Possibilities of the existence

of resonances in the energy region 2 to 5 GeV are discussed.
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Introduction

The elementary particle interactions are usually

divided into four rather well seperated classes viz.

(i) Gravitational interaction
(ii) Electromagnetic interaction
(iii) Weak interaction

(iv) Strong interaction

the first one i.e. the Gravitational interaction is the
weakest of all the four listed above and is represented by
a potential inversely proportional to the distance between
two interacting bodiese

However only the last three are relevant in the
discussion of scatterings and decays of elementary particles
and we shall describe them briefly in the following:

(a) Electromagnetic interaction: this is caused by
the charges and the magnetic moments of the particles and
this is the only interaction apart from the gravitational
interaction for which there is a complete theory.

However it is understood that properties of nuclear
interactions cannot be explained in terms of the electro-
magnetic forces, since the nuclear forces are known to operate

only over a very short range and even between a charged




(ii)

particle and & neutral one (for example the charged proton
and the neutron in the nucleus.)
The measure of strength of the electromagnetic

interaction is provided by the fine structure constant

2
A= fly = o
(b) Weak interaction: (the nomenclature is due to
its weakness compared with the other two). Weak interaction
is the one which is responsible for the decay properties of
the unstable particles. (except M\° §f> , which decay

by electromagnetic interaction; N~ Y, i°r— T\-\—\( )e
Its strength is represented by a coupling constant- G ~
10-49 erg cm3.

(c) Strong interaction: this interaction connects
all the baryons through the virtual emissions and reabsorp-
tions of mesons according to the Yukawa process N —> N +T
and is mainly responsible for nuclear forces. Its coupling
constant is of the order of unity.

Strong interaction also accounts for very fi¥est decay
rates, such as the decay N¥ o N+ 1]

In 1935 Yukawal developed a theory of nuclear forces.
The most important experimental feature of these forces is
that they have a range i.e. they decrease very rapidly
when the interacting particles are at a distance greater

than about 10-13 cm. The nuclear potential proposed by




(iii)

Yukawa was in the form
by
V(jL ) ~ g e'p
JL

where %( is the reciprocal of the length which can be

assumed to represent the range of nuclear forces.

Yukawa also postulated, as the quantum of nuclear
forces a particle with mass about m = kVﬂcwhereJi_ is
the range of nuclear forces. In 1935 Anderson et al?
discovered in cosmic ray,particles with mass about that of
Yukawa particles. But it turned out that the particles
were not the same as postulated by Yakawa. Because,
though they had the right mass, they did not interact
appreciably with nucleus; these particles came to be
known as muons. Later in 1947 Lattes, Occhialini and
Powell3 found out particles in cosmic rays which were
identified with Yukawa particles. These strongly interacting
particles with zero spin and mass about 139.59 MeV are
known as pica-mesons or simply pions. Since then numerous
particles have been discovered experimentally. Many of
them were first found in cosmic rays and large accelerating
machines made it possible to generate these particles for
detailed study and investigsation.

Attempts have been made to classify these particles
in various ways, making some particles more elementary than

others or to derive all particles from quar'ksl+ which are
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thought to be the building stone of all hadrons (i.e.
strongly interacting particles).

Phenomenologically one may consider four families
of particles in order of increasing rest mass.

1. Photon: which is a boson of spin 1

e Leptons: containing fermions of spin 1/2
lighter than proton (such as electron) they are subject to
electromagnetic and weak interactions but not to strong
interactione

3 Mesons: it consists of bosons of spin 0 . These
are heavier than the leptons, lighter than the proton and
subject to all the three ( (a) to (c) ) types of inter-
actions.

Le Baryons: this class comprised the proton, the
neutron and heavier fermions, They are subject to all three
types of interactions, fhose which are heavier than the
neutron are called hyperons,

The pions which fall in class 3 are very important
in the study of nuclear and particle physics, because they
are the particles which are responsible for the forces
that bind proton and neutron together in a nucleus.

In particular pion - nucleon interaction is of fundamental
importance in the understanding of strong interactions,

and has been studied extensively both theoretically and
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experimentallye. A large number of e xperimental data
existafor elastic pion - nucleon scattering processes,
which we also analyse phenomenologically in this work.
It would be convenient for our discussion to divide
the Pion - nucleon scattering in to three energy regions
(the energy in this case is the pion laboratory energy)
1) from zero to about 2 GeV/cc
2) from 2 GeV/c to about 5 GeV/c

3) for energies higher than about 5 GeV/c

the reasons for choosing these energy regions will
be clear from the followinge.

The partial wave structure of the elastic pion nucleon
scattering has been studied by phase-shift analysis of the
scattering data in the first energy r‘egiorxlF and discloses
a8 structure in which many of the partial waves can be

represented as a conventional Breight-Wigner resonance of the

type f& ~ g with a smoothly varying
' 5 =S +1(
background.
In the third energy region the cross sections are
slowly decreasing functions of the energy and do not show
any appreciable structurese. This is the region where rather

sharp peaks are present in both the forward and backward

angular regionse. Regge exchanges in cross channels explain
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these peaks rather nicely5 .

In fact only a few number of Regge trajectories are
required to describe the high energy pion - nucleon
scattering data.

But the energy region (2), where conventional phase
shift analysis become increasingly difficult due to paucity
of data and also because of the presence of high angular
momentum states, will be our main point of interest.

This energy region is the so called intermediate
region where the forward and the backward peaks are still
conspicuous and can be explained by the same Regge poles
employed in the high energy region.

In our phenomenological analysis of pion - nucleon
scattering it was found to be convenient to define ana:
amplitude Fp(s,t,u) which is the difference between the
exact amplitude say F(s,t,u) and the Regge amplitude denoted
by Fp(s,t,u),

Fp(s,t,u) = F(s,t,u) - Fprls,t,yu)
the Regge parameters required to construct FR(s,t,u) were
fixed by fitting the high energy pion - nucleon scattering
data and Fp(s,t,u) was parameterised to fit all the data
in the 2nd energy region, keeping the Regge parameters fixed

at their high energy values.

-
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This procedure is consistent with the generalised
interference model6 , but independent of any dynamical
idea, the success of decomposition depending on whether
a suitable parameterisation of Fp (s,t,u) could be founde.

Two different ways of parameterising Fp(s,t,u) have
been tried. One is based on the modified direct channel
Regge formalism as proposed by Khuri7 and the other is of
a simple form, the amplitude Fp(s,t,u) being expressed
as a power series in cos 3 ( £ being the scattering angle)
with energy dependent coeff¢cients. Both these procedures
are described in detail in this work. The parameters for
T = 3/2 (T denoting the isospin) were first obtained by
fitting all the T[{+p data and then the parameters for
T = l/2 amplitude were fixed by fitting {j~— p o2nd charge
exchange dats.

Partial wave amplitudes for both the isospin amplitudes
were obtainéd by the usual method and they were studied for

possible resonance structures,
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KINEMATICS

Introduction:

| In this chapter we shall study the Kinematics
of pion - nucleon scattering, including the analyticity
of the pion - nucleon amplitude. We shall also present
the relevant formulas.
1. Kinematics and Lorentz invariant description of the

Py

TIN system

Let bl’ bz(qPQZ) be the
momenta of the incoming and

outgoing nucleon (pion)

/ L
W‘ Z \\\Wﬁ-
/7 h
Flgolcl
respectively.
We use the convention%bi_2, = - m2, q?, = - e 2, 1 = 1,2
1 e

(where m /pL are the masses of the nucleon and the pion
respectively) throughout this work unless otherwise stated.
We neglect the mass differencesamong the three charge

states of pion and between the two states of nucleon.
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The following table gives the massses and other

properties of pion and nucleon

(% natural units are used A = c = 1)
TABLE 1
Symbol Mass Spin Parity Iso~- Strange- Bar-
(MeV) spin ness yon
No.
n+ (1,1) 0 0
[]o 139.6 0 -1 (1,0) 0 0
Mesons
[QYPINLY
S
‘ 938.21 1/, 7o 1
Nucleons N 1 v - Yo
/2 Ch 0 1
By the law of conservation of total momentum we get
(see Figel.l)
Py + 9 = Py + qQp (1.1)
So there will be only three independent vectors which
determine the kinematics of the processe. We choose
the combination
=1 _1
P="/ (pl + p,) Q = /2 (q1- + q,) 0.2)
1 1 .
K="/2 (py = py)  ==/2 (a1 = q,)




With these vectors one can form the invariants

(with the help of the results pi )

-m ., q., = -4 )

2 1 2 1 2 2 2 2 2 2
K = e - - = - - t = =il - K Q = e -
~ oy =) = P RS
: (1e3)
Also we get P. Qo = —\) = - S -~ u
P. K = QOK = 0

where s,t,u are the usual Mandelstam variables defined

in the following way

s = - (p) + ql)2

2
u.'-‘ - (p2 - ql) (loL[.)
t = - (q - q2)2

We can see from (l.3) that there are only two independent
invariant quantities.

It is easy to check from (l.4) that
2 2
s+ t+u = 2(m +‘/M-) (1.5)

In the centre of mass frame where

— - =
P+ ql = 0 = Py * Qy (1.6)
and hence IE;\ = YEZ\ = q say




we can write
2
S = W

t = 2q2 (L - cos®)

[(w + m)? -/o\ 2} [(w - m)2 —/;?]/ (4 w?)

(1.7)

c
i

C.Mme momentum
(m° + qz)l/2 +

where q

2
]

2 1
(/ﬂk + q2) /2 = total energy

in the centre of mass system.

scattering angle in the centre of mass

LY~
I

system

Va
)

N

¥,

momentum vector and scattering angle
in the c.m. system
Y

Flgo 1.2

The s matrix for elastic pion nucleon scattering can be

written in the form




~5m
$e - §, - ilam)h ghipy+ gy - p1 - qp)n

where E

» ¥ 1
(5; + m2) /2

W5 (a’ib +/W2)l/2 (1:9)
and E;, W (E2, W2) are the energies of the initial
(final) nucleon and pion respectively. U; and Uy are
the Dirac spinors for the initial and final states
respectively.

The amplitude T is a Lorentz scalar and we write

T in terms of the invariant amplitudes A, B as follows

(1.8)

T = ;A (syu,t) + i ( Y- & ) B(s,u,t) (1.10)

where &u = % (ql + qz)/“ and \6/“ are the Pirac
. /

matrices

A and B are invariant scalar functions.

A is independent of the nucleon spin and B is associated

with nucleon spin flip through the term ( Y. Q& )

2e Isospin analysis and crossing

The scalar invariant amplitudes A and B are still
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matrices in the I space. The pion and the nucleon
having isospin 1 and l/2 respectively cazn form states
with the totsl isospin I = 1/2 and I = 3/2

So if isospin invariance is assumed ]]- N scattering
will be completely described by four invariant functions,
two for each isospin. Let the pion and nucleon isospin
vectors be © and 2/2 respectively.

The total isospin vector of a state composed of a
pion and a nucleon is represented by

— l,_; —

I = ..é./t, + t (loll)

- —>
where -7 's are the Pauli matrices and t ' s are spin one

rotation matrices given by

. 1/0-10 LfO01 © 10
1= 2_—1 00 t=_-i0-i t, = 00
J/010, 2 ®loi o0 3 00

here i = ’-l
From \‘\‘-|> , \\\°> and \“’> states we form
\“Jﬁ) ( £ = 1,2,3) states which behave like the

components of a cartesian vector in the pion isospace

W= B Qad oY), n) & (no-19)
\“'D = \“D> (1.13)
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it may be shown from (1.12) and (1.13) that

<M tp|nd = 1 Sy (1a14)

where équ'is an antisymmetric tensor, defined as
follows
QQP1= O if any two of «,(3Y are equal
=1 if & P Y ere all unequel and in
cyclic order
= -1 if o (5/Y are all unequal but not in
cyclic order
—
Now T has eigen values 1/2 ¢ /2 + 1) ( = 3/h) and
3/ ( 3/ + 1) (= 13/,), so from (1.11)

—-7

-—>
Ut = -2 for I =1/,
—5 > (1.15)
Tt = +1 for I = 3/

Now with the help of the isospin projection operator

Pijy = % 1- X%, Py, %(2+ TT) (1.16)

We write the total amplitude as

1
— P / 3
\PJC: ZN “P\{Pl/2 T 24 P3/2 T /2]

“,““> (1.17)

where P denote the initial and final pion states

respectivelye.
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With the help of (l.l4) it may be shown that

Tn, - ') {5:@'1* L1 0. T-‘} | 8> (1.8

2
/
where T+ = T 2 + T3/2
3
(1L.19)
1 ' 3/
™ = t1/2. 77/2
3
to derive (1.18) the result -LTO, Ta]: t e(s,(x’(Y (1.20)
has been used.
Now inverting equation (l.13) we get
_ v\
J2
|- = \MD (1o21)
J2

and from (lesl4), (le16) and (l.17) we obtain

A
—-— & L) 4 1 d = \":_‘
[ (56 =)= L3 eI r>, ’\,—.('\3/;1'\‘,‘)/3

1 Q“Tre_éﬁ}(’.); <“‘?\T‘|‘\—‘D> | (le22)
= Ve =G T
T e ey s LR\ e Tee s T 2T

Crossing symmetry (see Fig.l.,) can be written in terms

of the matrix elements of T

<p2 , qg) T+ Py qb = <P2» - q l T- Ip, -q2\>

(1.23)
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i.e. under the exchange Q +—> -9, We have

s ¢ u, t —>t.

Also since A and B are independent amplitudes crossing
symmetry applies separately to A and ( \y.g) )B and under
crossing { Y. & ) —-( Vv. @ ) (lL.24)

Defining new amplitudes

P

. 1

A" = 2(A- + A+),

A = 1(A- " A+),
2

B* = %(B- + B+),

(1e25)
B™ = 1(B- - B+)
2

(A £, Bt are

/ AN R +
/ A4 N S related to T- ).
/7{ L K \\\ W TN n
; Fige le3 \.,,.‘ _ & Fige lol ™3 -

We can see that crossing gives

X A

AL (s,u,t) = : (uys,t)
(1.26)
BZ (s,u,t) =7 BZ (u,s,t)

Also from the amplitudes A%, B*, the amplitudes for the

eigen states of the isospin can be written in the form

(see (1.19))

Atz = B +o2az, A2 = A - AT (1.27)
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identical relations hold for the B amplitudes.

T
We see that the reaction described by Fig. 1.3 inpg channel

is the elastic scattering

TV +p = T\ +P

For the t channel it becomes

THN™ — peD
and for the crossed or u channel the reaction described
by Fige. (l.4) is
=+ P —> T\+P 2s implied by (1.23)
So, the variables for the s,t and u channels exchange

their roles as shown in table belowe.

TABLE 2
s-ch t-ch u=ch
Energy variable S t u
Momentum variable t s t
Cross-momentum
u u s

variable
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Partial Wave Analysis

3

Equation (1.8) gives the differential cross section

(in the cem. system)

_fé\— <4nw) é lUZ ' Ul\ (1o 28)

Z
where °Z denotes the sum over the final spin states and

the average over the initial spin states.

We can also write:

2
o - gl n) D) (1. 29
where \i> and rﬁ> are Puuwli spinors for the initial

and final nucleon spin states. The usual convention to

relate M to T is
M _
Ze )l M| 1> - wm UTUp (1. 30
if we write M in terms of the T\-N helicity amplitudes9 fy

and f2 then

(7% (A L (®
M= &Je) + ——__’;‘o;:_—_ JLK ) (lo 31)

6 1is the nucleon Spin,'ai ,'E; the initial and final

pion momenta respectively.

- e Py ray P : 2
ond 46 . s%in \gf) £+ (65)(C3) 1| )

9
(1. 32)

in c.m. system

Using (1« 30), (1l.31) and (1. 10)
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fl and f2 can be expressed in terms of A & B

f1= Esxm | A+ (w;m)g')

g W
(1.33)
fo= E=m [_As (W+mB
gn W
Inverting (1«33 ) we get
W+ m (W_mz
f -— f
A = 4“[E+m 1 E-m ;)
(1o 34)
B = f1 + 1 F)
n i_ e f
4 E+m = E-m 2
2 . 2y%/
where E = (m“ + q ) 2 = Energy of the nucleon in the

Ce.Mme System.

The partial wave amplitudes f/q + corresponding to
total angular momentum j =/@ z 1/2 are expressed in

terms of the phase shift S,L'I by
_&- —- exp (218
[ Mas

:Liov
where { ¥

L = may be complex.

(1e 35)

The helicity amplitudes can be expressed in terms of

the partial wave a.mplitudes bylo

'%\(9): ‘7_(‘(1*9 k'x)—-hﬁ?fﬂ(a))
L=o0

Y= 2 (5, - §Of00

L+

(1. 30
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where x = cos © , PL (x) is the Legendre polynomial
and FQK*Q - {é; €, (™ . Using the orthogonality
relations of Legendre polynomials equation (l.3%) can

be inverted to get €L "

+L.‘! - _1_" S\Ax C-}\(’l(h)+ &LPQ:-‘V")]

(1437)
11
3.1 MacDowell symmetry.
From equation (1.33) replacing W by -W we get
l ——
e [ d
=_E-m I;- A + (W + m)ig—)
IW
(using E(-W) = _E(W))
= - f2 (W) (1.38)

Now from (1.37)

Yoo CW) -
\ - .Q _.(\))o‘)(
§ea CW =2 —3‘( WEDLIVEL AT

\
3y ) A
+ & (lf\ez(“))rhf‘i‘k)) "
Y

'/\O
‘L'xi)a\)(

-—
-

\
R

&i RRCORARA 5, w) P

(Using Equation 1.38)
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Wenee f ; W) = — £ - (=W) (1;39)
nes Lt ) A+1~

which is the so called MacDowell symmetry.

L Mandelstam Representation.

The fundamental principle of the theory to work with
is that A, B are analytic functions of the variables s, t,
and u except for singularities associated with the three
channels, that is, the boundary values of A and B describe
the physical processes that can be obtained by any inter-
change of the legs of Fige. 1.3

12

According to Mandelstam™{ the amplitudes A and BX

(referred as Al, i=1,2,3,4) have a representation of the

form
< o .
. A\
R w \ asr \awr Ky, s7un
{,\"\S wWt) o 2 & — A —
' Yh.‘:s i n* p) ¢
oty Ln‘;.v) 5 -5)(w—w)
vy} )

-

ol
v Yae St 0
— " AN QIR

(1.40)
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We can write equation (l.40) as one dimensional

representation at fixed s

R,

Ai (5’\4,-&) = _'@__5:, N —
V\\;s ™ - W odl
o . '
\ ‘ \ / ' S,M')
~+ %\ \ d{t:_JEEfEJZJEJ Y \ Jut__fﬁ;_gf_,.
(‘/“v k'—'t- ("\'f'/a)v “”“
(l.41)
-
where " REVio, S
\ ' ’ V Qe £ Y (sler)
\ oo\ \ dsr K. (s,&') —= X Ty
A} (S,‘\) - n ___‘_}_,—- n '—_—‘;‘;_’;——

“— L

Cwmtp)™ ¢/- s m\,_%\:“,

/) \ .
A : L . ') \ \ Ae’ ’Q‘L (S//“‘I) —-\ &ds, {L} (S/Lu)
W - -_ e - - -
* ’ n (‘K » ol o © $/’5
’f/\) b 9]
(1oh4R)

L
The double spectral functions ,/§,£ are real and do not
extend up to boundaries except asymptotically. Fig. 1.5

shows the s,t,u diagram for T\{D process. The shaded
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portions showing the physical region for the particular
process indicated there. These are the non zero regions

of the double spectral functionse.

Now we can deduce the analytic proporties of the partial
wave amplitude.

defining )

A‘;(s) = 'Sﬁk (x) A i(s,t (s,x), u(s,xﬂd§t. (Le43)
ol !

We get, using (le.41)
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‘ \ \
A}i(s}: ¢ & ((S)_C}_x R @“‘\ & P, dx

¢ AT S
-\ WY-5

U wmYe E'LV“\'\’-\"I%A\: s 26 Cr- ‘\ﬂ

o}
) \
ERT R NICED 3 e
l‘/\'v k' QVVC_\"*)

o \

< 2 | At

-~

P{( n ) 0>\_’\'_

t \- v
(\-\-&/\)" Wo G klpm

~ $4+-9Y(C \—m)]

(Lobd)
where in the 2nd term and the 4th term of the R.H.S.  of (leid)
we havek%laced u by the expression

u = am® + 3%2 - s + ZQVV (1- . )
here x = cos¢§ and q = c.m. momentum as defined in

section 1.

i
5. Singularities of Ag (s)

(1) The denominators on the R.H.S. of equation (l.44)

can vanish and thus give rise to branch cuts.

(2) Aq (s,t' ) and Azl(s,u' ) have singularities of

their own.

i N
Both A2 and A3 * have a branch cut from
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2
s = (m +*L) to o0 i.e. in W(= s )plane it is
- % £ W £ - ( mim )
and (m 4 /M ) L oy K O
this branch cut corresponds to physical region for

T\ - N scattering in s channel and would be called

"the physical cut',

The 2nd integral for each term appears to give a

branch cut for negative E.

That actually this is not so can be shown in the following

wWay e
The second terms of A, and A3 contribute to Agi as
o0 G} ot \
“ad e L aeg Gl Ridn
‘\/u" T 4§ -3 I LR T S
A lwﬁ>y*>v.' \
R RN ST
(miu> = sls “Uw G
+LquFJJ)
if the orders of the integration are interchanged in the
S ! y © ! ’ u' integrations and the variable of the
integration there after changed to
t S 2mv + 2 uv-—-sl -u' in the 2nd integral

/
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(where by)
CrotpY = 2w tW =2 G
'klo_'_ L‘/M'\' /'_a KVV\"/V\, / _’__,9 kh/.\) - “/M.

we get

the contribution of A2 and A3 to All as

\
()= qpm” \wepmfog
- "\" S Asg’ SM /g Qg E) SQQ(\)JA\
\\g s ‘
\ b o— ~\
T Ag ! .-
k410 C-%) <-19 Crw)y--s

. \ / .

this gives a term (s =s) in the numerator and hence
cancels the effect afsﬁ-s in the denominator.

Next we consider the branch cuts in the plane from the

vanishing of the denominator,

(i) Single nucleon term.

\ ; a R0
R}—LQ) &3 S Q.Q k:) s”‘ 4 R _:S\ W (o i »_5+19” (\-l)J

(le45)
(a) the first term has poles at

W = tm if f =0
(b) the 2nd term has a branch cut for

- kw\"«-x)’\")\/"f W& — G ) [ .

"~ N
L‘m\;/,«")/m £ WE CQmrp




as well as from O to4A o and O to - .«

(i.e. along the whole vertical axis)

(ii) "crossed T\-N cut", denoting this contribution by

Aﬁ'x (s) we have

\ du’ t, (5,w) x falrox
—\ L\A L'L.V'h—\77'4
-5 -r‘L"vq'C"K)s)
(1. 46)

\ X
R,\U) =
U’M/A)

this term has a branch cut for

_(m-/k)é-W & (m+m )

also from - i o to + i

[} !
(ii1) T\-f| cut in t channel
it is associated with the scattering in t channel .

‘this cut is from t = l‘/AVtO t = =
which corresponds to a cut in W plane along the circle
' 1
2
\Wl = (m2 —/k ) /2
and also from - i « to + i o0

Fig 1.6 shows in detail the singularities of the partial

wave amplitude in W plane
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Figo 1.6

6 Coulomb Scattering and Notations

To take proper account of coulomb scattering the
amplitudes fl and f2 must be modified before constructing
the cross sections that are to be compared with experiment .
To do this we follow Roper13 et al. to construct coulomb
amplitudes.

We define spin flip and non spin flip amplitudes

as



f = £+ 1, cos O

g = 1 (1g7 )

and we form modified a.mplitudes*

= £, (@) + (0 )

g(9o)= 9 (9)+gl g) (1e48)
—_ + + +
also f == £ - (B)+F (6O )
~h <. (1a 49)
X ()= g, ~ (D ) +&7p)
where +( = ) indicates \-\+p (“- p) elastic scattering

and the subscript ¢ denotes the coulomb contribution.

Now
&

s g
130y = Apan (02 b (B o L)
X *
A 2(08)= Vet (B) * Vo (D = Vet 4) )

+ +
where frem (o ) Erom ( ¥ ) are relativistic

electromagnetic amplitude to the first order in &

. er/ =\
La( = ;S he = /\s?) given by

\.X C.E c.E
£, -0 g = 0




2 W G-t 8) P.-w S

S () e e o) ),ff/“”s)mq

X . &4 > - W ot ™
A KO) = 2 2 2 1}\—:&:’ + (}*V") -
2 W (- sy O ) Poxim

(L.51)
where
a_ =( F? + 1)1/2:- pion total energy in c.m.
' in pion
W =aq, + P, = total energy in c.m. system mass unit
b = CR™4 ™ 27" 2 nwecleon Fotol energyin €,
© = ce.m. scattering angle
W = hucleon mass in terms of pion mass unit
= 6.7212
R = Pion ¢m wmomevrium.
/A*p = proton magnetic moment in nucleon
magnetons = 2.7275
@
coulh®), v » 3% s (& ) are none

relativistic coulomb amplitudes correct to all orders in .

A v ) "
M " & (4, Pt R
g te) = ¥ X (% \’o*“)ﬁ*‘,(}‘_ﬁ;&r’)
R¥W (A~ st B) "
v jw L\_:_"‘_’L‘—f')]

91 .0 (=0 (1.52)




2l

=t ¥
» . (8) ) "comi & (o) are non-relativistic
Towl {

coulomb amplitudesto first order in £

b ()= £ 4% (A Rt D

RV W (\- e3P

and finally f

-*
Yeamun) = o (1053 )

the differential cross section of an unpolarised beam of

pions is finally given by

- 2
d _ .2 = 2
2 = |t (6 ) +sine |B ( ©) |
(e 54 )
and the polsrization p( @) produced is
: Yulf ( oK
P(p) = 2%iwe Iw(f (P) g (©®)
aé
(g *'( ® ) is the complex conjugate of g ( e) )
The total cross section data being coulomb corrected,
the total cross section will be given by (using optical
theorem) N
I = 4w (I~ ‘\‘(@)/ﬂ,
Tek (1. 56)

The above formulas were actually used to construct total
cross sections, differential cross sections and the

polarizations to compare with the experimental results.
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REGGE POLE FORMALISM

Introduction:

In this chapter we shall discuss the basic principles
of Sommerfield Watson transformation, Regge poles and the
Khuri - modification to Regge amplitude. We shall also
discuss briefly the idea of finite energy sum rule.

To see how the typical Regge pole contribution is obtained
we shall start with spinless particlese.

In Chapter III we shall generalise this to the case

of & pion - nucleon scattering.

1. Analytical continuation in complex plane.

Now in a non-relativistic spinless example the

scattering amplitude can be written as

% (=2,8) = ‘:%):30_9.-\— 1) g (83 Pela;

where ag (s) is the partial wave amplitude, s 1is the

(2.1)

mandelstam variable as defined before.
?SL('t)pare Legendre polynomisls and z = cos 9 ,
0 being the c.m. angle.
Now we can analytically continue both (%x_ (s) and Elf (z))
in complex ﬂ_ plane.
For al (s) we do this with the help of Carlson's theorems
i.es« we define an apalytic function a(/é yS) thch satisfies

for some L
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i) alf ,s) = a.ﬂ(s), A = +v< integer =2 L
i_i) a(}l yS) = O(e')\ul ), L 0 wReD L with ™ &W

iii) a(.L,s) is holomorphic in Re ¢ 3, L

Now an a(f,s) satisfying the above conditions certainly
existsl® for potential scattering problems and for those
relativistic problems in which mandelstam representation
is satisfied.

From Carlson's theorem we know that if an a(ﬁ,,s) exists
it must be unique. Now given an a({ ,s) satisfying (i),
(ii) and (iii) the summation in Equation (2.1) can be
changed into a contour integr'al16 (with the help of

Cauchy's theorem)

£(s, z) ='L/a\( 241 a(g,s) P(f,-z)dQ (2.2)
3‘\)\“3
c1
the contour ¢, is shown in Fig.(2.1) s
TR, e -
| \\
[} c N\
: N '1:2\\
| e_' \
! D\
A \
A R
L Q ! J\“ \
: Y
[}
!
!
! !
| 1
[
l /
' ’
’ ”
\—‘ J-‘- - - - -
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cq is so chosen as to include the positive integers and
zero but to avoid any singularities of a(f{,s), the
integrand has poles at each integer WY\ due to the vanishing
of S wid at L= n.

Picking up the contributions of these poles,

(the residue of a pole at A = n is

Ll Pu ) an o) M) Ry a, 9 mﬂﬂ
- L—\\J\“

with the help of Cauchy's theorem, we get back equation (2.1).

Now we can deform c¢j continuously into countour 5 with a
line parsllel to the imaginary axis at Re &ﬂl = L, and a
semicircle at O .

Provided L, > L ( >>- l/2) no singularities of a(f, s)
will be encountered in this displacement and Pﬂ (z) has no

singularities as a function of K for Re &_Q\.:L - 1/2

e { {

c, c,
Again the partial wave amplitude behaves at large [ as
17
follows 4 v\)
al (s) ~ f{s) e~
2=
where

jg(’!:) = log (z + iz -1) )_&v\> \ (2.3)
this behaviour of a g (s) and the fact that

?ll’}) \\ ya \ ,Q'\I\'Q%r igha e R ~ ("\"0—{9-)3“\1}\
\ AN ¢V 3 ey L“ \‘5M.0\>

enable us to throw away the contribution of the integral from
the semicircle.




Now if we move the line parallel to the imaginary axis
towards left i.e. when the relation L>> L no longer
holds the singularities of a({ , s) shall appear within
the new contour C3e

Since ?dgk't) ~— }\A’H\"\'%‘
. for large =z

we can minimise the contribution coming from the vertical

path of integration by taking Cy as a line parallel to

the imaginary axis at Re &ﬁf& = - 1/2 and a semicircle

at L -

Assuming the singularities of a(f ,s) thus encountered in

cy are poles at ‘Q = o (s), with residue @; (s), i = 1,2 -
_ .l
o a s ~ ¢ %5, e

we can evaluate the integral in (2.2) by covering the

poles with extra loops in ¢_ as shown in Fig.2.2

e "

i . ~ o
:_.W'@d ' Y.
B IS
A -
'. »Y

- o - —g— | .
! ;
| 7
| /
i //
1

‘\I‘ L _ . '/
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- Lq_l-\-n) oy, s ? 1 - AR
- _—___——-————"_— " ’
'\'(S’—t)' \/\' \ PN W 2

—\/ =y o

— ﬁ_ n (2« +) ;?U-‘f—@

$.h‘\d

(245)

2e Regge Poles

The poles of a(} , s) given by (2.4) are termed as
"Regge poles', They were discovered mathematically in
non—relativistic potential scattering 18. The contribution
of a typical Regge pole to the scattering amblitude is,

as can be seen from the 2nd term on . %8 of Bquation(2.5),

YCs =) ~ “_Eiﬂ (5 Plty2)
g\

(2.6)
We shall see later that the limit z —» « is most important
in high energy Regge amplitude.
In this limit P(({,z) ~ 'Zd for Re o<> -1/2
Hence Regge poles with Re &4 -1/2 dominates over the
background integral and the leading Regge pole i.e. One
with the largest Re « dominates overall.

-~ | '
For 12 P(4_ ,z) ~ % and the b.ge integral
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becomes very small for large 2.

M’andelstam19 showed that equation (2.5) can be re-set
and the background integral term can be pushed further
to the left by using Legendre function of the 2nd kind

Ql () i.e. the Regge pole terms would have P.CL"})

‘nnaﬂ
replaced by — &4 & gng behave like "t as beforee.
Nl nd
F /2 e ? K- a-
or R )~ ~/2 either Y, oh - &=\ can be used but

for cases in which Qe < -1/2 only Q-A-\ form makes

Sensee.

3. Signaturezo

We generally expect ag (s) to have two different
continuations in complex,ﬂ plane for L even or odde so
89 to take care of the exchange forces which could make
the dynamics of even and odd states differ we splitf( s,¥)
into even and odd partse.

We define

fy (sy2) = S (22+1) Qg *(s) Py (z) (2.7)
R
and the actual amplitude
£(s,z) = 1/, Y_f +(s,2) + £, (s,-2) + £ = (s,2)
- f (s -z)—\ (.8)

Thus we can see that even part of f(s,z) equals to

the even part of '§+(s,z) and the odd part of f(s,z)
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equalsto the odd part of f_ (s,z). The two amplitude
f, and f_ are called the even and odd'signature' amplitudes,
respectively and they will have in general quite different
Regge poles at [ =L (s).
The % sign define the signature of the trajectory0< ps
Now we make sepsrate S.W. transformation for even and odd
parts and recombine them to get the contribution of a
single Regge pole at & = o(i to f(s,z)

_g_,\s/_t): o (2 4FD ‘3* T Vac..\‘.'t)iPerﬂ

26wy of4 - (2.9)

or taking the large % behaviour of ¥ (%)

oL v
'X'C‘t) —~ "\'\ Q’Le-(»f —H) (5.., Y("‘)“ _.\-\o(,, Tyz' ~

= L <
S V\“?‘f - (2.10)
"
where we have used Pa\ () ~ Y('() ,!./ Re gD -V
. A —L“*1$
and ‘:‘ ) = < , the choice of the phase
- \“ & v
in this case21 (i.e. fL\ instead of ef“x' )

is the one suggested by the analyticity in the upper half
of the complex u plane. If there are no exchange forces
we get degenerate pairs of Regge trajectories with opposite
signatures and get back Equation (2.6).

Now suppose for some values of s say s = sy

A3 = Lo+ is an integer
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We then have in the neighbourhood of So

Sinmd (&) = Cetnd (S.) N /(8D(s-8)*

(2.11)
so that such a pole contribution to f(z) for s near
So 1s

~ a4 ‘L%— Rni“lj
£ es) ~ — Lrtes ) B sHLTIE Y }"‘Z—’s"

Ve (S0) (2.12)

and that if the pole is of even(odd) signature and L,

is even(odd) integer

Do @)

f(S,Z) ~— couste

S = Sp
but if the pole is of wrong signature there is no such

term, the zero in thedeminator is compensated by the
zero in the numerator coming from [l z (-l)LJ%

Hence when a Regge trajectory passes through an integer
it gives a contribution to the amplitude like a bound
state of the corresponding angular momentum if and only

if the trajectory has the correct signature.

Lo Resonance and Bound States.

If for* § ¢g_, A(s) goes through integer value and
has the appropriate signature it will lead to a bound state
in the amplitude with the angular momentum equal to the
integer value and at that corresponding energy.

On the other hand if for &> S, it passes close to an
( % Wehs &, = f.m—t,«)'k)
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integer i.e. if say

Red(s) = L+y I.yiLLl
S L(s) <2} (2.13)
where L is an integer, y is a function of s
Simmndz siamn (Leyridmd) (2.14)
2 oY N Ly iTm ) )
Let Re {(sq ) = L (2.15)
/
then Y= (s - s,) Re L (s, )
where R eos’ (sp) = 3 &""3\
o s S:S(L
and Im« ~ Im of(Sp)
Hence from (2.11)
‘ P2y
2 L1t) - LY ——— ’-———-——'——"—'
SS C 5,’2) ~ L——;_~' @ Ci h-l'(s‘\_\) S5, & i 9 mAtin)
anA?gJ
(2.16)
Equation (2.16) corresponds to a Breit-Wigner

resonance of mass JS«_ and width

.....

Bes Asymptotic Regge behaviour

We have said before that the limit cos § —0 is

very important in Regge analysis. We shall see now why




this is so.
Let u® consider high energy equal mass scattering

a+b ——>c+ d

where m, mo=m, = My (m denotes the mass)

m say.
If s,t,u are the usual Mandelstam variables then t

represents the square of the centre of mass energy in

t channel a + c—>b + d

u represents the square of the ce.me. energy in u channel

~—wna

a+d —=ba+c

Now it #% always possible to find a single invariant
amplitude which represents s,t and u channel processes,
their physical regions however correspond to different
ranges of s,t, and u. This being demonstrated clearly
in{ﬁgndelstam representation (Equation 1. LO )

Now for equal mass scattering if q,n and O\ 4
in channel n (n = s,t,u) o c.vm. womenks amd ansle
then
2 ) 2

s =4 (m + g s (1 + cos D y)
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t = L,,(m2 + qtz) = - 2q82(l - COS 6})
2 (2.18)
u = L,(m2 + q, ) = - 2qsz(l + COS é%‘)
where
cos § ., = s - 2m° + /2
2m° - t/2
(2.19)
cosOu = 1 + Q\(hmz-s-‘;
u - hmz

Hence the high energy small angle region in the s channel
corresponds in the t channel to an unphysical region with
large cos ek_ahd cos D,  respectively.

So we can no doubt apply the asymptotic Regge behaviour

P
Vg L’&)~‘z—°( (2.20) in both t channel and
I X V]
u channel,
But this is not so for unequal mass scattering, though
cos Bk is still large for high energy forward scattering.
The kinematic limitations on Regge asymptotics have been
22

discussed by Atkinson and Barger . We shall confine

our discussions to the pion = nucleon scattering where

l’na = Me, mb

and mp = my = /& we have in this case

my but m, £ my,writing m, = m, = m,

2 ,
cos O¢ (s + p~ + qt2) /,2qu
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with
2 2,
2 (2.21)
; more explicitely
cosBt = 2(hg + 2 - h(m2 +4?) (2022 )

(& - 1?) V2 (6= 00772
Hence the high energy small angle region in the s channel
still corresponds in the t channel to an unphysical region
with large cos (.
But, as we shall see, life is not so easy in u channel.
The u channel Regge asymptotic behaviour does not appear
to be an obvious fact.

In u channel

Lwl s~ LUM\—“)-") +‘\)_

C W — 1l et =) ‘—)
(2.23)

which gives cos y,_= -1 when cos o, = -1 |
i.e. the exact backward direction in s channel gives a
finite value of cos @, which is not unphysical. Also

cos Gy is bounded by unity for all s in the backward cone

defined by?3

AVNRY,
s 2 pp (= 2 :>
¢ M M = (2.24 )
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Hence the conventional asymptotic representastion

CP4_C%)-7E*) does not hold good in this regione

But it has been shown by several authors that if the Regge
asymptotic form holds nearby it may be established also
in the questionable region.

In the case of TN scattering Freedman and Wangzh
have shown that high energy asymptotic Regge behaviour
holds throughout the backward region. We shall not go
into detail of their anslysis (e.g. daughter trajectories

etc.) but assume their results to hold good in the

guestionable regione.

(9% Khuri modification.

The original Regge representation (Equation 2.5) was

Aol
£f (s,z) = 1/g j Catew) alR,s) p(g,-z) dg
Siwnd
NS
n ié (L, +1) e ( '
- T (8) ple,  -z) (2.25 )
A S.kr\d ' ’

In the last section we discussed the high energy behaviour

with large values of 2z ( = cos® ) in the channels in which

the background integral (the first term on the r.h.s of

Equation (2.25 )) was small compared to the dominant second
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term and hence could be neglected. Also in dealing

with large z behaviour it did not matter that the sum

over Regge poles had a wrong cut in the z plane (the cut

in p(df;, -z) starts at z = 1 instead of the starting at
% +

2o = 1 + ™°/25 ). MeoRibhof the Regge pole terms in

the second term on the r.h.s. of (2.25) does not have

the correct threshold behaviour.

These deficiencies of the original Regge representation

were removed by Khuri7.

In the discussion below we follow Khuri's method to get

the 'full' contribution of the Regge pole which has got

the correct branch points in complex z plane.

Now putting >\'.‘- ,Q-"\/-a., Moo= A Y (2.25) can be
NEY3)
written as
o A da N v <
§Ce -2)s =t mn)?()‘l, DENCIRY
~\od
. N A
+ n T\ 2 E'___(SJ ! ? ,\L(})
{ s Ay (2.26)

Now25

TP C Combaem) ™
et A
A
\ thn_,) M (2.27)
o“eh;“%)

¢
. s(eq taks
X Moz P4 X \We ‘vw‘x‘\\:l&;—de

't P.w- N = OMX\A\ Wuw ™~
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The last term is obtained by using

e \ A
€ = GRS “((2.27) holds only for - & <& fex ¢V,)

Hence (2.26 ) can be written as

3]
Wb
feswoe =3 § BRI SIRRE a
— ol Cins hr-) e

ey A -t
fin 2 f;f;i»;,P):'VL( )
' Cas (2.28)
where
N
%
T e s
R R PES 0] * ol
-t (2.2 9)

it exists for all x.

Now each term in the r.h.s. of (2.25), when continued

to unphysical or complex values of z will have a cut
starting at z = 4 . Evidently some cancellation must
occur between the two terms in the region | & & < wr kT
to ensure that the amplitude has the correct cut which

starts at z = cos W& (cos h% =1+ *“J7is ). To see

how it happens we decompose B(x,s,) in to two parts,

Rm,ey = B,(n,ed003) 4 By, 28 (Y

"3 ol (203 O)
~ (n,e) e mbon g gffd\* &IAX
ond \ gl——i’“”"———_'_ ax 3
— Corhm -2 3/ -

(2.31)
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where

- - E;L'n’s)fh.\f&k
B C st =) >/

Now for <& % we can write a simple expression for B (x, s)

In fact using the result that

=L .
a(f ,s) —~ cls) f_;____"‘ when., [{ | —?C
IR
we can close the contour in (2.2 ) on the right and
get Bln,s ) == S P(s) ™™ = By( n, s) for h‘("‘) )
2e

To get (2.32) we have used equation (2.27), and changed
the order of integration in (2.25) (we also took a( a-‘,s )
to be meromorphic in the right half A plane)

Now (2.28) can be written as
ods

\ S B' Cn,s) Swdndn

< 4
. 2 R (s, =)+
—S—(s,'t)—— ; \ ) J‘/_zs Clesbon- 2) ¥/
(2.33)
where
RCs2,«:)=—f )T mlrtin) ¢ ¢
\ Siw '
Lo &3 eu.-wu)i )
where o ; - Xo- Mo (2.35)
For Re A; ~ © i.e. for Re , >-Y, Ry(s,z, «; ) is

the full contribution to f(s,z) of each Regge pole in the
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right half A plane.

If we denote the full Regge pole contribution to the

amplitude (in both Re A; »c and Re A< Q cases)
by R(s,z, «; ), then for R<A; 70,
Q ReJ;)—-‘/,)) R(s,z,\;(i ) = Ry(s,z, «: ) (2. 36)

Now it can be shown that the cuts of the two terms in the
right hand side of (2. 34 ) cancel each other (see Appendix 1)
Case II Re N\:< ©

The properties of a( ] ,s) for Re Q < -1/2 are more
complicated than those for Re A -1/2.  But according

to Mandelstam26

for a sub class of potentials a((,s) is
meromorphic for Re § ¢~ 1/2 and so for WS> assuming

that behaviour of a( f,s) we obtain from (2. 29 )
W (L)

P
'\3\ fo{)) - E(\,"ﬁ) = éx (EC (5) ¢
— LA o0
L | A QB
7 T S Lt e 7g>?5

(2. 37)

The sum represents the contributions of all the poles in
the strip = L L Re "A Lo. Assuming that excluding the
neighbourhood of the poles a(l,s) & C\ ces /C lv")\ })) -c\.‘u”
we close the contour for (2. 29) on the left and get

ali 8

od
N CUR SR SRS HOK
v |
oo %33 Redido (2, 38)
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~fy2m

substituting this in (2.23) we can identify the

contribution of a left hand Regge pole to f(s,z) as

o)
(K +M) n
: e :
R 2 4) = .9_,(—_2 Bimbn gy e oYy
Jx 3 Clssbam-2y>e 7

(2. 39)
This has also the correct cut in the z plane. By
virtue of (2.27) it is easy to see that the representations

(2.34) and (2.37) are identical in the region where

_% L Re x; £ 1/

Also the partial wave amplitudes of R(s,z/a(; ) turn:: out
to be same in both (2. 36 ) and (2. 23 ) representations.
We shall show below that the partial wave amplitude

defined by )

‘&P‘Q (z) R(s,z, o{y )d= (2. 40)

bl ¥

N~

f}Q (sy 47 ) =

is given by

-Ll--(;)\j
(s, 4 ) = - ﬁ“ <

We shall show it for the case where Re «, > - 1/2, the

partial wave projection of the term on the r.h.s. of (2. 39 )

then be calculated easily following the same method.

Now inverting (2. 27) we have :4.\y ~ (gl n)n
(Y |(‘1'-7C
TS VI G i) R L Y
/ —

3 CoAs N+
Cstan -2 l— . -
C. 'f\ ) -\0—\,1/

(2. 42)
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We first take the partial wave projection of the 2nd

C A
term of the r.hes. of (2.34 ) and call it 4

wo M ZS Lot = ,Q) (
T PR PRI N AT ETEE
%L = : - C«r&ﬂ(x’ar\/:,)

Hence

- 9{) \I od) (2.h3)
where we have used (2.42)
2% \ ,
o S 1 , (-2) f (B)dr = - X siwm2’
- M- )Gn) (2,41 )
(o0 -NMe 2
(&2 » o
'&'L‘ - " X S/ XJxQ (1*\’0 \~-=~\'.
) (R L+
“ve0 Ny £ (2645 )
We can write 15 U 3
\ - & =+ 8
- b °
- (2646)

For the first integral on the r.he.s. of (2,46 ) where
throughout the range of integration, we integrate over
in (2+45 ) by choosing the contour on the left half of,(,
plane including the pole at K/= -{ -~ 1 as shown in

Fig. (2.5(a)). For the second integral 5 we integrate

(
over d{ by choosing the contour on the right half of &'

plane including the pole at &'- ¢ (Fig. 2.5 (b) )
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Fig.2.5(a) Fig.2.5(b)
thus 5
. x
’ d— . . +\,1__) LJ‘ +,('|"l)
-—&—- - - ‘L-.(L“Q)L & (_&-———- < ol x
¥ - o g/ L R4
K (i=R) X
(l*\"f)_—e o\lj
— (e R+1)
) (2447)
_(-@-"(.‘)-i
_ (2 _[ LX) . D -
- ‘ Xt A+ ) (70 -k) d- L
' (2. 48)
Now let us take the p.w. projection of the first term of
rehes. of eq(2. 34 ) and call it fﬂ 2\
,&1’__ NS N SRRV & P, AESPE.
L - R Cay T &0(‘,_‘\"—) 2, ' !
N O RE S 1) (3;_
(L) (2t +) (2. 49)

using (2. 44 )
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‘\'jl(sz’(‘l)f *Q" P *‘_4 (24 50 )

f(sy, o{; ) has the same analytic properties as the full P.W.

amplitude for physical £ . Also for Re ;Do it has

the correct threshold behaviour as 8 —3> O

/R Finite energy sum rule.

Finite energy sum rules follow from the consistency
imposed by analyticity on functions that can be expanded
at high energies say & >,N as a sum of Regge poles.

The derivation of sum rules is as follows. If there is

an analytic function f(s) satisfying a dispersion relation

\ I ¥(A) 4’
M= = ~3 22
Yemd= = \ A 2os1)

ard subject to the asymptotic bound, for s — 02
| 5ol < 2P e

then it must satisfy the condition

Sjm 'S’(”)Ajro (2.52)

( If we multiply both sides of (2. 51) by £ and take
the limit s —0 , we get (2. 52 )

Now if f(s) represents the scattering amplitude for some
process and f(s) can be represented by the Regge expansion

at a fixed momentum transfer
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'&" (/S) ré(j' \'—, = /s / /3// N (2.53)

Siwm ALy TUAYD

then the following finite energy sum rule follows from

(2. 51 ) (using Canchy's theorem) P‘GG+{L

AL

N ~
S Yw yisydsz 2 (L11) T e
/7 (205)4.)

Thus F.E.S.R. provides a link between the low energy and
the asymptotic high energy regions of a scattering process.

Some author328

used this link to determine parameters of
the s channel resonances from the information &bout the
Regge terms inferred from high energy data. Other529
used the low energy data alone as an input to predict the
exchanged Regge pole parameters. But it is obvious that

a finite set of resonances which we may write as a B.W. form

{ - s b plww)
A <-ne=iQ A (2. 55 )

will not give a Regge asymptotic behaviour, but rather a
fixed pole behaviour at high energy and on the other hand
a Regge amplitude, such as (2. 53) will not give s channel
poles as usually associated with resonances. Only an
infinite number of s channel resonances yield an asymptotic
Regge behaviour at large s and only an infinite set of
Regge trajectories may lead to a second sheet pole.
Nevertheless some authors3® have proposed that the
two descriptions have a large overlap so that many features

readily interpreted in terms of Regge poles exchange can also
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be analysed as cumulative effect of direct channel
resonances and conversely the properties usually associated
with resonance dominance can be interpreted as due to
relations among Regge trajectories (such as exchange

degeneracy ).

8., Duality and Veneziano model

Following the same arguements just mentioned, one
may introduce the idea of duality between the resonance and
Regge pole description of hadron collisions. The so called
average or 12233 duality implies that the Regge amplitude
when extrapolated down to low energy region gives the average
behaviour of the experimentally observed cross seétions as o
functions of energy.

Duality in a stricter sense (local or strong duality)
means that Regge poles inferred from high energy data alresdy
contain all direct channel resonances and hence when projected
out give rise to partial wave amplitudes, which generate
loops in argond diagram, which correspond to the physical
resonancesBl. Hence supporters of strong duality seriously
object to the idea of interference model6 ’ which.writes the
amplitude as the sum of Regge plus resonance amplitude,

f = fRegge + f res. (2.56 )
as double countinge.
32

Several authors have discussed about the possible connection
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between the loops (Schmid loops) generated by Regge
| amplitude and legitimate resonances in s channel.
In the last chapter we shall remark about the relevance
of local duality with respect to the results we obtained.
However one can say that there is not yet agreement
in how far duality can be used, since no precise definiﬁation
for it is yet availsble,

33

Recently Veneziano”” has proposed a model for
invariant amplitudes which offers solutions exhibiting
- duality properties., It incorporates crossing symmetry,
resonance behaviour in the narrow width approximation and
asymptotic Regge behaviour for rising linear trajectories
and automatically satisfies the usual finite energy sum
rule, Veneziano amplitude for say TF'I scattering is
of the form

T -4 ) T4y 0)

T (= 4y () -4,(9)

Ny (8,02 -2
(2 57 )
where x and y labél the trajectories exchanged in the s
and t channel respectively.
The amplitude (2. 57 ) has no double poles since each pole
should correspond to a particle.
When written in terms of Legendre polynomial it will

correspond to a sum of parent and daughter contributions.
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The main drawback of Veneziano model is its inconsistency
with unitarity. If one introduces an analytic structure

compatible with unitarity, for ex, introducing non linear

od
9w £ L LY

‘. Q%gc;u+;cj)

trajectory, ‘

1 &L
— o &)+ =
A (%)= LLo) + n

Ywmdll) F 0 don &> ko

which preserves crossing symmetry, one also introduces
ancestors since the residue at one pole will no longer be
a polynomial in the crossed variable.

Much work has been done using a leading Veneziano
term, to explore its application in hadron scattering.
It is clear that any finite set of resonance widths can
be fitted with a finite number of Venegziano terms and that
an infinite set can also be fitted so long as the required
infinite sum of Veneziano terms preserve the Regge behaviour
of the individual term. Almost all applicationitof Veneziano
model however have been in pion - pion scattering (or inter-
actions which can be treated on the same footing as the
pion - pion scattering). Extension of Veneziano model in T\N
scattering introduces some problems because of spin.
However simple Veneziano type form (taking more than one
term) has been explored by a few authorth in the case of‘\N
scattering .The result is far from conclusive.

The model itself, nevertheless, provides scopes for
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further interesting investigations in many cases

including that of pion -~ nucleon scatteringe



CHAPTER III

REGGE POLES IN PION-NUCLEON SCATTERING
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REGGE POLE IN PION~-NUCLEON SCATTERING

Introduction:
In this chapter we shall present the form of the
exact Regge amplitude for pion-nucleon scattering in
direct channel, there by deriving u channel Regge amplitudes.

We shall also obtain the t channel Regge amplitudes.

l. We write the total amplitude F(s,t,u) as

F(s,t,u) = Fp(s,t,u) + FR(s,t,u) (3.1)

where FR represents the Regge amplitude.

We can split up FR in to two parts
FR(s,t,u) = F (s,t) + F,(s,u)

Fy and Fu being the Regge pole contributions from t
channel and u channel respectively. We start with

the partial wave expansions of the amplitudes fy and f2

. .3 ‘ 3 ‘
-& - 2 &- ?3{\/ CR)- < O P‘.S-\/,_ z)
\ 3 L 3

5 3 ‘L
SS’-:_ - % X+ ?’S“‘\/:_Lft) - %a - ?SH/L &_'L>

(3.2)
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One can check that these equations are identical with

those in (l.36)

where

dJ

= £
a g .

(3.3)
J f
a N = L_—
2 2 2
2: COSG = 1l + (2m + 2//"\ - 5 - U.)/ 28 (B.LI-)

The quantities in the 2nd term on the r.h.s. of (3.4) are
the same as defined in Chapter I.

Now if we make an S.W. transformation of (3.2) in
terms of even (J = l/2, 5/2, 9/2...) and odd (J = 3/2,
7/2....) J parity and use the superscripts e and &
for odd and even respectively to a g y we get, following

V. Singh35

. e ¢ /
5,2 (Fews *ifg \ L. q (3,7 P gy, (2 Pyt

i Cs$TVY
(-8
& - b )+ 7, 0)
. a3 . o- (3/f‘)[- Sav O Vary
el T eI
¢ /
N € / - . 9 (v
- \/, A . &y (3,39%) [Q sy UE) T Yy,
X 4 _ L
LT3 /
<

To! Cayx P w
\ ___C_\T e O\f (3/55) \L. ?’)-1 \/';_L 1) — Jave ]
:-.‘: 1/L\ Les Y

(3.5)
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.

where a¥ (J, s ) are the analytical continuation of
Je, ¢ . .

a in the complex J plane, obtained in the same manner
+ p p )

as discussed in Chapter II. Now we straighten out the

contour C to go along the imaginary axis and we get for a

typical fermion Regge pole at J = of (V3 ) with signature
-1
T-= (-l)J /2 and parity P = Q—l)’(+ 1
\ O
. : 4y . -
by =t ] 208y ETRIen T ee)
1 as Celey-cpley)
_1/(‘ S a3 Ay ('5,(5) L C_-yy-TV >
. Cos M)
et ALFTE) M

+ (Eptw) Pl &%‘> _ P’ -3
Ts)

5 cosndls (I
+ T P L+ﬁ)+\/ (1)—)

Algds)-"e

/
) ¢ — 7 \R)
(lk*ﬁ{— -'” [?du—rs)-\/ o((TJ‘.;—'l

~ (E)

T Cov 1A L;SZ)

(3+6)

4
where P’ % (=2) = P 3+ 1/2, k'Z),S‘is a scale factor,
E, = (s + m? - )2l

Y = + or - according to whether .Q =Jd+1/2 or
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f=30-1/2
Upper sign in the argument ofO{énd @ is for 1:P = 1
while the lower sign is to be taken for [P = +1,
also we have made use of Micdowells symmetry (1l.3@) viz
ay (J, & ) =-a (J, =-J3)
so that for every pole in aY(J,J3 ) there is a pole in

a-y(J, J¢ ), also we have
fo(Jg u) = = f1(- V<, u) (3.7)
and hence knowing fl one can obtain f,.

? ( {4 ) is the residue of the pole and defined by

Liw OB (T-4) oy 3H

Y = IR
e (8 T e ¢ h) kq,\z‘ )T(“r* PR
(3.8)
Here P( J4 ) is so defined as to avoid any Kinematic
singularity.

2e U channel Regge Amplitude

Since u channel in TJ|N scattering is the crossed s
channel, the Regge pole formalism in u channel is similar

to that of s channel.

'“*+ P 4—:—) HPA: e 4P — | 4P
A s &~ y
lyp — 14 Pr  «—= 1% —7' o

8 &<¥— 4




and the C.E. process
T+ P — 1° P — R
S e u

u
We define amplitudes f (ga,s) f2u(sﬁ,s) as follows

i N - qa A .
s FECEVED NN BN C AR &:\ (JK,s) s @ + TSiv0 6% [ W, 9
(3.9)

Now in (3.6) replacing J¢ by Ju and neglecting the
background integral, we get the contribution to the

u ]
amplitude f; , ( Jw,s ) for a fermion pole in u channel

y
with signature & = _l)-S ¥, Parity P = (_1)*L+1 as

W
—k L U—\A,.s) - \{_E*J_“) Le I( L= '\'L? ( J‘u)ﬂ( ‘
¥ a2y 4Ty "

e L= Js) T e’ / ‘3
\ — Le(hﬂx}Ahkh>x?ﬂqﬁ>UY;]

e e

Cuos N AL W)

(3.10)
where z in (3.6) is replaced by'Z‘l, the cosine of the
scattering angle in u channel,

2 2
(m® = )
= M 2 (3.11)

2 2
Y NS . S
Y ,\ 2 2 u /qu
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qi = Cems momentum in u channel
= (u=-2m - 2/\2 s (m? - /w\"-) 2/u)/‘y (3.12)
nd Ry - €%%r QL“L Qf{j“wr%'
“o et RS, (3413)
where  E, = (s m -/u.z) / (2JQ ) (3414)

The upper sign in the arguments of o and P in the
rehes. of (3.10) is to be taken for [P = =1 and the
lower sign for TP = +1.

From the crossing of s and u channels (see Appendix II)

we get

'k:\ \B,w) - LE-;:‘L"i ('(J“ -3 +u-) \,‘:‘ ka, s)"

2395 Eutrw

L" ‘r“t 5)
.——E—:——w\

w
“ &J’“ tS—S—‘LW) &\
(3.15)

[N
where f; (s, u) denotes the contribution to the

amplitude f1(J5  u) as defined in (1.31) from u channel
only.

Using the Macdowell symmetry8 fl( JTR" s) =-f2(--jﬁl s)
we obtain from (3.10) and (3.15)
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Y, (J“s W) —[t Ext™) T k- J’SHH)\E@’(*I“) Q% >

-,_ys cmn-u*h)

LR
y {L\ + t (—\‘nko{ kﬁfl)—‘h_)) Q&(r‘f“)*"l’ ’\

(ffk)’

o(( = {n)- -/ PR
. ﬁ —| ('U'r“ V") P \g
— (e~ 'A)- PCI ) M > L\-\—(Q " d(:v‘-)a-\.[,;\
Swl L
L") W’\\'\'{L_‘n‘) ‘- -\/‘_
- _ l'--l\ \"‘) ‘_'-%.)
Ceyav) (e 51w i_(_:_i‘t) > ‘““ a ‘:«—,;,m
-—’:}: i Jw ceynd (G 8)
*--”b
. N .—|V\(J‘ ’) : /)
— (t.aW) PLTI‘:),,_ (q}.s. ) (VAT e (DM‘)
(Ev) o N (1)
(3.16)
we took . L= L o d-)
PRV CINY B
A Jw I P (b(/'l‘;“)
pz el b
(3.17)

Also we have used

A
P/ __ e—“ \ “ K ) f*.‘\'b(—})
AxN (ﬁ) -

iR, (-
e'.,c \ (4x) = = \ e""\'l_ )(3018)
-My



58
/

neglecting the term with P L -1/2 (=z), which is small

compared with P;( + 1/, (-z) we get 36

Ny
(Eyxm) Un- o) B e > +T \*))
4 ) U

o, L—H

T-AIe

; (e o) (J“ o) K?"_\) (\+Te A )t )
Se

Al

._\-- J<u Css O L
(3.19)

Now if we assume that the asymptotic behaviour of Legendre

functions for large values of the argument holdain this

37

case, we have

2 TRy et

(1 “)

e,
AN,y T L\l.,) C [A\-UV)

&.-t k) Ll

'2._‘\ —~— L___ S—w—‘\’— —
/ T oLV
L Clan (3.20)
' ()o( A7y k-}"‘) -~ ‘—) "—'>
\ (\l._) \ (L+VL)

Now the factor \/[ U+V.,) produces zeroes at /= -1/2, -3/2..
and t( o +1) has unphysical poles a8t X = =1,=2csecss
which must be cancelled by P . We define, following
Berger and Cline6 a reduced residue function Y (_@) as



~59~

follows
VU;): 2 @(J’k) C ( LAl -n)') /T("'—)'l‘ (-(L(h)*\/g
(3421)
replacing @(JVw) in (3.19) with the help of the equation (3.21)

and using (3.20)we get

FN 6w s LEEa= ) (&) Y -

4 SJw Cerna(Vu)

' ’K’f.yw—\clt g et V“‘""‘))

KL =dw)= M

+ Q K -‘-w)"___/“\") (I +{$ caw) \{(- f“)(&') (\rrggn(.u\ru)-w)

e

4 g dw Lsvn AL

_—J

(3422)
We kept only one sign in the argument of Y and ("

because the formula (3/2) is valid both for poles at
A({w = J and L (-V) = J

Now in pion - nucleon scattering three trajectories can

be exchanged (vize N, N‘ and 4J ) in the backward

region. VBV(e) took only NuL and Aé which proved

sufficient to explain high energy backward T\ N

scatteringe.

Parameterization of « and v

A linear parameterization for 'C/[A § produces a
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dip in'“’ P backward scattering at high energy at about
U = - 1l.8.° No such dip was observed in the experimental

dataho. So like Barger and Clinel*l

we took nonlinear
trajectories both for 4 Jand Q(for negative values of u.

We actually chose to take

o (dw) = < 0) O N TR LN Wd> o
C w2
- “\;Eﬁl_f_:iif_ﬂtﬁfLL * W <D
LedruT (3023)

In addition a(AJAJR was constrained to pass through
values of 3/2 and 7/2 at Jw = 1.236 and 1.946 respectively !
in order to guarentee the well established 4J‘(1236)
and 4{(19&6) resonances. JN*L\W) was similarly
constrained to pass through 1/2 and 5/2 at {u= - 0.939
and -1.692 respectively because of the nucleon and the

‘iL (1692) . resonances

The residue functions ¥ ({w) were taken to be

A/“
[

of the form \"A y (Fwy = (\a/ N W) \(A ‘\;(\r“‘)
/ r

where
L MY A (V¥ ) & D%,
Bo g ) = (e ut®r o
\ " VAR (3.24)
= .;—\— CAJ'\'\—\AL\/'J(J)‘OLA’;‘ /L-
. - !
we write further Yga (Yw) = Y, (J\»)

and

— /
_ (fk
‘er (V) (v -Vwa) = Y N )
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where W is defined by 3%( v, )= %. Both residues of

an expo&%%al type and those represented by Polynomial
expressions were investigated and solutions obtained.

In continuation to lower energies the polynomial expressions

appeared to be superior and we finally employed the forms

-

! . !
@ANL_‘I’\:) = O‘A,N Q‘*L:.,NN‘CA’N'“)

(3.25)
In the fits we constrained the-N*residue parameters by
requiring that
Yoo 0.939) - 30 g2 ddw |
4 d Vi (3.26)
Yw =-0.939

where g2 is the renormalised TINN coupling constant.

We fitted the latest datal® availabvle (at the time the
work was being done) with PL;zx 509 GeV/c and W] <30
GeVz. The zﬁs parameters were obtained first by fitting
the near backward i+ P data alone, after which they were
held fixed and the Ng psrsmeters obtained by fiX¥ing the
near backwardf“+-+P data.

The final fits to the data are shown in figs 2(a-c) and
the J\g and %1 trajectories predicted are shown in figs
3a and 3b.




The values obtained for the independent parameters are

shown in table 3.

TABIE 3

rk}\) = 00187 O(N‘O) = 00366

d, = 0.539 GeV™ dy = 0.04L Gev=h
2, = 0,087 Gev=0 2y = 0.005 Gev=0
«'A= 20278 /Wé 1/2 a’rj = 29302 /o’“/é 1/2
A= 2,642 GeV™t Gev-1

, -1
Ca=-1.662 GeV=2 A =-0,159 GeV
3. 't' channel amplitudes

The Regge poles in t channel are dominant in the

high energy forward elastic pion-nucleon scatteringe.
We shall derive the contributions of t channel
Regge poles to the full amplitude f(s,z) by making
use of the fact that A(s,t,u) and B(s,t,u), the amplitudes
defined in (1.10) are invariante.
Hence we make partial wave decomposition of A :, B ¥

( as defined in (l.25))in t channel as follows
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A2 ( gn . < 3 -
P SuA) = 2 -~ " oy 0 ’
) o 2 (Tavy) (’e ﬁ(—) L __.__._.‘\, P (oo <) &_U"

(3Caw)s
erl
- fslwmey ¥, “’1

N/ . ) 3V ( 5 N ‘S'-‘ 3’-&
R (smm= wn g 32 (*&)  Pileey . (¥)
| 30 ‘Vv)'x\"’

(3.27)

where Py, g, and cc>s&t are the same as defined in (2.21)

and the amplitudes f, 2 J are related to the partial

wave amplitudes in the following wayl+2

¥ \ e 2 i
b O = g U M 55
+ Coer )l 34 Qo)

A

] + 7
v L Gy B+ €5
S:“u)' z "'&Ql-—l—m‘)\'b N Tt A
- R CHENY) (e “,‘)3’\ T BP)

(A R T)- 5\"“ 80 (v, et)

3, 3 (3429}
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The sums over J run through J = 0,2,4.... for A* and B
(i.ee . = O in t channel) and J = 1,3.. for A", B~
(3=141 )

+ J
One can avoid the fixed branch points of f_ =~ (&, at
rJ
J =0and J = -1 by using a new amplitude fn - defined
by
+
P S ) RV . (3.30)
[(J(T +1) ] -
rJ
Then we consider the analytical continuation of f and
' +
t(J) 2.(9) |
f instead of f in the complex J plane.
n- +
Using equation (3.28)
() B (¥) (%)
£ = J-1 - Bje1
N~
16 W(pag) J-1
(t % (3.31)
Using Mandelstam representations for At ’ B: we can

write the fixed energy dispersion relations of the

type

+ LN
Y ($ 06 - -.‘gi\“su:e)o\s' ) XMM'
a N)——" T 1 w'-n

s/ -5

._n :
-5 VLN -

’

.
R S ah): \Bf 59 B oy
<

(3.32)
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|
Now A = S dx A:(Ss"l,-’t) Py W)

-1\

14+

Using (3.32)

- x % hé (S Vi l’) ?T L’n) d\\\ AS / ~

-\ ¢s’-s)

Interchanging the order of integration and writing

X = S P\,\'—‘ Q‘IEL
g
\ A '
P‘:‘ &S P'_; Cs 7 t) pf(“)o!. AS /7 4
3 = 1.“_'\”: @ CLif_g;::‘_“tL)
AN
since
n
S S 0 = @ )
W W '
A ————‘ & Csllv Q (Q '\";1‘1\— )(‘-_1(_9-‘)0\5’
& = R TR |
3 - qk‘\__ t -
Similarly -
‘ ! b \—\ —— })
N X o) S TV o ¢
5= 2y, (88 Gl & CLEE) (1)
Vt. t L 3

(3.33)

To derive (3.33) we have used the crossing relations viz

AL (<u‘t ) = :(u,s,t) and B:( v, ) =% B(u,s,t)

and the fact that when s —u Cos @ —» = cosh which
explains the term (~1)Y in (3.33) (PJ(-cos &) = (-l)J PT(COSB)
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Hence the crossing relations imply that

for J even AJ' = BJ = 0

+ -
for J odd AJ = BJ = 0

Now from equetion (3.33) we can see that apart from the

factor (1% (-1)%) r W) T T ()
+ n-

define analytic
continuations which are suitable for Sommerfield - Watson
transformation.

Thus as in Chapter II we define the even end odd J parity
continuations by replacing (=1)Y by + th‘or J = even) and

-1 (9 = odd)

This makes the odd J parity continuation for I = O and

the even J parity continuation for I = 4 vanish identically.
So only one of the J parity continuation for each isospin
amplitude is non zero.

Now we Reggeise the amplitudes A and B.

Following Singh35 and subsequent authors we define an

amplitude
A/ = A+ w'.' tl&m B
1 - t/um? (3+34)
where @ = (s - m? -/K?) = the pion laboratory energy.
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Fi .
From (3.27) A can be calculated

0.5)3—
t 4 , ' 3
Ao ~ 30 < (o) Guw) 3o By (wnby
T3 NN (3.35)
BRI (s, 6= %“‘%.Vﬂ%%f gn— ?3 (Qd&i)
as in Chapter II we can make anS.W. transformation
and write
()3
“/ ( )= —ZE\_L'_ &L?\'N") LS*”") &f Q\—\— (- \)TJ P (U\DDF)C\'.S
L o LTS
C
(MD{)&‘)
R v L)*\") —(-\ T
YEj(S,&): 2 O\ <-:;:i__—_ % C\ .?) (3.36)

o (Fn)FinT3

as usual deforming the contour so as to include Regge poles
and assuming that high energy forward scattering (i.e. for

large cos Qk:values) is dominated by t channel Regge poles

we get for a typical t channel Regge pole
) CocvgR v a )
2¢s,¢) = A l: ___:J [QJ:(@E/-:L?‘M e) )
S\V\“& L(_)

Ay -\

PJ*QJB

S vwnd s tt)

NG
an *,;>

(3.37)
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where 0(4 and 0(' are Regge trajectories that are most
important for the isospin zero T\ +7n —> N + N channel
and for the isospin one f +n-> N +-\~_J_ channel respectively.
The residues_,l“t (t) , (_,f (t) are defined by
- ] U~ &Q)S \ '\2
v[,,. (k) 3> &t (k) gm < L) D 22 )

: V\ ] “) s-;::*u)_ﬁ']
Jg - (&) = ——>o(415)%_ _ o)l

(3438)

For high energy, cos § ¢ 1s large and we can use the

Regge asymptotic behaviour

L
P (z) «=— 1z
A
. "\ - P 2 Lv\r\:\ wY
Since Cone s4 b kVe _ S° /2 f_),
0 = T
¢ 2 v L T ey (e p)(3439)
for s >> l-cos@ o S - m° - 2—:_@__@3__.‘.’_"_‘_93
“2¥¢a, e % RV

where @ is the pion Leb &M

Using the property of Legendre functions

o) e iR (7

we can write (3.37) as



L LE)
A N - X (&
MieoSTy () DaEs Aty
Wa L vvwQd ¥ LE)
vl\’_\ ({') N S ED
& i. k\ / et \: ‘\__ é\\'\J - —i
¥ = v (G i

Siwa? LEj

-+ A
+ - -
where ¢~ and D: are linearly related to b+ and b-

respectively and G is a scale factor which we choose
to be equal to 1 GeV.

In case of T\ N scattering the contribution of each t
channel Regge pole i to A/ and B is taken to be

\"( .
~ . . X “_" \
(\‘ - I C( &-&-) \— ’\é.\ndt':.\) /S\hh‘i{\’\ Q"WO)

¢

' W )
S Vi lyY) LLE‘“J-Q'; \) /5“““*:\@@0)

\

where the + sign in the firstbracket of the r.h.s. of
€quation (3.41) is to be taken for I = O poles and the -

sign for I = 1 poles.
/
We assume that the usual P, P and 'f Regge poles are

adequate to describe the high energy forward scattering

data for the three processes Nir — N ¥P and

Ay

(3.40)

(3e41)
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WaP — ‘\{*Y\ . The works of previous authors
have established that this is perhaps the minimum number
needed. But a model in which only P, P/ and ,? Regge
poles are retained predicts zero polarization in the
charge exchange process at high energy. Experimentally
polarization is observed and this has been explained in
various ways, for example the contribution of another
I = 1 trajectory can be added to the amplitude or the
effect may be due to cuts or the background contributions
from the background integral.hB
We slightly improved our fits to the high energy pion
nucleon scattering data by taking the first of the
prescriptions mentioned above. The over all fits didn't
change much even after adding the extra I = 1 pole
though it gave the correct polarization in the charge
exchange process at high energy.

The P, p’ and*? poles contribute to the amplitude A

as follows (and similar for B)

(\"\\\".\Q-a D)= Qt'?+\“\'?,-t ﬁ',gi— t\’.f:
A (et = P & o - (\’,@— Np
n (A4 ypan) = =2 k(\f?'f h’-g:)

(3e42)
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For the residue functions Gj (t) Di(t) we took the
LL

parametric forms

/
C' (E/:- Cs Q—XV(C—\&)Y(/\ I} e ’e

\

Y ' §
=c./ §Lu+91) exp (o t) - S &

D; (4) = DeorblmOLnY, &, ¢

i

D x4 Y ,

(3e43)
/
Also for -? we took
C'\t )
C., UC) = Ceo © \(o(
L.k N .
(VI (\') = Ve e A (3.44)
where‘(k contains zeroes for unphysical ( ».  and nonmense
values)of A i-e. ,a( ==1,~-2%"and for a ghost state at
o = OMe actually took
od AD ~ |
!;Lsz oL ( ) ,
- 4 S?vffﬁ ) L& -1
| AD | (3e45)
\( n - A )

~ —swndfpy & -
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We took the trajectories to be linear in t

9(~i () = a; + bt

The data we fitted in order to obtain the t channel

Regge poles was that for pion lab en Y7/ 5.9 GeV/c and

for \t] & 1 GeV2 and can be found in Refa.ll.

We first fitted the charge exchange data alone in order to
ascertain the ‘f (and also‘f I) parameters. Then we fitted
all the ?ﬁ;-P and WI” - P high energy data to fix P, and P’
parameters.

The best fit to the date is shown in fig l(a - f).

The values of the parameters*are listed in Table 4.

TABLE 4
Trajectory a b -2 C C D D
(Gev)” (mb° 1 ¢, o 1
GeV) (GeV™%) (mb) (GeV)~
p 1.02 0.00 6.52 2.78 - 9u byl 6437
P e78  lok 13.66 .72 - 9.85 9.98
< 577 495  1.38  .211 15.527 27.50 .217

L' 40, 1435 -2.097  .106 - 124.97 16,06

¥We got another set of solutions which was ruled out on
the grounds that it failed to satisfy the finite energy sum

rules of the type proposed by Barger and Phillips.h5



CHAPTER IV

DIRECT CHANNEL AMPLITUDE.
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PARAMETERISATION OF DIRECT CHANNEL AMPLITUDE

Introduc tion:

In this chapter we shall discuss the parameterisation
of Fp(s,t,u). As mentioned earlier, two ways of parameter-
isation Fp(s,t u) were attempted; one based on the modified
Regge pole in s channel and the other being a power series
expansion in cos § with energy dependent coefficientse.

Both the methods would be described in detail in the

followinge

1. Modified Regge pole method.

In this case Fp(s,t,u) was taken to be the direct
channel Regge pole contribution with Khuri modification
as discussed in Chapter II,

For the sake of convenience we rewrite equation (3.6)
which is a typical Regge pole contribution in s channel at

A(¥s ) with signature T = (-l)J- 1/2 and parity
(1) (+ 1

J

p




w "714""

10 C.:ﬂ\S
Lol
“tl4 & A3« _y (3, \s)[lP -2)-¢ Pr))
L cetnd
K29V _
At xJs - Y
‘\'LE/S ) g(' *) k ) T P*(*J’.)rk 24T PA(.*Js)u//‘_J
¥ e R) Al L) -
\ S) e
\r .
—QE;,-"‘) (3(- r) ( )T—(’ gt)—LP“ r.w'J
\ri stnd L‘&_.: *(’fj)—\ll, (Lel)
P

where we have replaced fl a%a f1 end Es’ '3) are

same as defined in Chapter IIL, Also as before we get

p P
f2 ( J—S-—,M ) = e fl (— E, U.) (14-02)
by MacDowell symmetry.

P P
Now let us define amplitudes Fp y F as follows

2
FU( foyu) - £,50 Bu) 428, (o) (Le3)
P P P
Fp (Jsyu) =3, ( Js,u) + £ J5,u) (4ok)
Now e

F,CTsm = &fc—fs W+t k, CHBw
\ V4
pai .\ (Y;\.)._}S,-C(qu\)Q“\‘i”)
| = "LZ&-F(J&\A).t )h? (J\S/ u)—j
L G
- —-\-2 (\);/V\)
F,,e Cris, w) = — ;‘9(—55;)
(4e5)
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We need calculate only F1 ( s,u) in terms of S and

z and we get back both flP( J3,u) and f2P( [s,u) as follows

V] W cRoaRD -
LR (E,w) - (R FED /)

\2) F A

(Lo6)
Now using (4.1), (4.3) and the well known Legendre
formulag

/ . - of S (% 4N (%
P’J»t\/\,h—) AL G %) RNV

/ / ] . P ~
2 ? Z'*\ILLI) - ?3_\,1(%)_ (S-t\fu e\ )
(Lea7)
We get | o v
g 0\3 (3'\ / I ('P L‘.t.)
¢ - v S A W WAL R WA saVA
ANCEMVE /‘l (s M AT PS—\/Jlﬂ
Vit
-\-{,[,_‘x a3 9_’?}.’_‘2%. 0~y Ls,J.s)\'.QS_‘\IL\—})-I(}“}L})’]
ossn s
AN . '\'b L_-t)
%L ‘dtj“)‘; A\l [-e-“}f))'\h,
CEgtw) (x8s) /) (ALsl) -
i Canasd N \3)
Jo tesndLrds) AT
R Lk LN - )
k_E —VV\) G(F\\>) L&") (,{L:.rs) '-\IL) ‘L P"(:‘t‘r‘)*\'.l—
4 L W ., .
— A cssn Lz ds) e 2

dlzde)te T (,.8)
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*
We can see that the last two terms in (4.8) have cuts
+
in the complex z plane starting at z = - 1. But we

know that the correct thresholds in the z plane are

cos$;i\ »
- cos{} )

given by

2,2
Z 1 + 2/6\/q — R.He. cut

N
It

- [ (s-m? - ;uz)/zqz-ﬂ—: L.H. cut
(4e9)

Hence there must be cancellation of cuts between the first

two terms and the last two terms in (4.8) in the region

1 £ z £ cos \\3\ and - cos uzfz < 2l

We apply Khuri's method to get this cancellation, which

has been shown in the spinless case in Chapter IIL.

Khuri's method in essence is to replace P>\(z) by W (D ,2)

and P)& («z) by W (%, =z) in the last two terms of (4.8)

and thus these transformed versions of the last two terms

will represent the modified Regge representation with

correct cuts, whence [\ ( A, z) and T\ ( X, -z) are defined

by E )
1 'L(%’ 2y = ?A (v - or T (7«*\/;,_). \‘QXPQS:-WL) )\)sl}_‘:h m
2 M (?\t\IQ

-

LM\\\-}'\;)‘\'/IV

TE0N LR S P PAVA S TIRITE

5
Ny ey e e -

10 n ~\l‘¢, - mekl—"—__%_)ﬂa/"

(4+10)
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[ ¥ This can be seen from equation (2.34), the r.h.s,.

being proportional to T\;i‘ (=2) —)

P
Now we write F; ([s,u) as this full "Regge pole
contribution" in s channel to the exact amplitude
Fl(s,t,u) as follows., (FIP( JS,u) im thagcase represents

P
the amplitude F1 (s,t,u) mentioned earlier).

e - JN A+ -1. ?>
F\ (\ri, w) - \“__s_)_.&—-__ 2 t 18} '( (J—VL),—I) +T “(tv‘-‘&),l)—)
(OX a0\~ §
KIS (LA - S _ 32 .&_)‘)
+ _______&_____-- LT\ ((,(*\,L)/-e)—’t N (),
s, DK
(Lell)
where J:-':— oLLqJ‘_g)/ oA = o(('."ﬂ)
and A L) -V
ORI (3,”)
KT = g . (4+12)
We define the partial wave amplitude ¢ TEZ(Z) as
\
’“::} (A8 = "\,_ j N (?,-3‘:) Pi[})gl}
| (4e13)

We can evaluate the integral in (4.13) as in Chapter II

(see Section 6 of Chapter II) and see that
g S0 enp CUNIY
T\R N T L alney) Cr-)
(Lell)
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Now by defination 1
'“1’ (-2 S0 N Oy P, (2)
| (Lel5)
Using (4.13)

T\.g Oreay= S(rArnsian? exp (- 3)___3/1" (x)

LN (A C .A-,Q)

N.x4w) - é_t»\)&(uﬂ)_ﬁ_{*_m\),
K Ll'\(A-UIL) ([‘,.16)
x ex®pl- (£~ z)‘s) e L ¥
Ca- &)

[ The last equation is obtained as follows
3 '3 .
Ny ¢ ('LA-H)(..L—S. e )l (v) drt )y

. | 3 N
= ¢ e (4 (yk j| N w) e de

= 5 9t (rre) Siwn)

<x\°(~(z~>)3‘, (L]

Lf\(.?(*'\lt_.) Cxor)

Hence from (4.11) and (4.16) we finally obtain

? __(‘__,(q-\f(_)z} __“_,;u,,_)“sL
Rl KL € gm0
T4 X
(A AR g -2 —,(-v._)'\]
_.C(V e

(4.17)
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(4.18)

2 Parameterisation of Regge functiors.

Now the problem is to find suitable form for p and A.

The threshold behaviour of Yw 135

AKio) +\/
You o (8) ~ (5-5)70 77"

(4-19)

Also in Pion nucleon scattering we can exchenge 2 J;N@
Nx trajectories both in s and u channels. All the known
resonances seem to lie on these three (or possibly more),
Regge trajectories. We give a list of these resonances
together with the predicted higher resonances on those

trajectories, a8

TABLE 5
(mooe in Hey) PincPeRiEy  WdSh(BeV) Wastiolty  mifes)
A5(1236) (3/2)* .12 1.0
A§(1924) (72/2)" .17 .50
A (24,50) (11/2)* .28 -
A (2840) (15/2)* .40 -

A§ (3220) (19/2)" Lk -
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Resonances Spin-parity Width(BeV) Elasticity
(mass in MeV) (from phase shifts)
N ( 938) (1/2)* - i}
N, (1688) (5/2)* .10 .66
N (2220) (9/2)* .20 -
Ny (2610) (13/2)* .30 -
Ny (1512) (3/2)" 12 e50 = .71
N‘(2210) (7/2)- o 2L -
N§(26u0) (11/2)~ 40 -
Ny (3020) (15/2)~ .40 -
Ny (3350) (19/2)" .10 -

In Table 5 the spin parity assignments are based on the
Chew-Framgtschi plot of Regge recurrencese.

The trajectories Ree({are fixed by fitting the high
backward data with proper constrains. We parameterise

Im o(‘and @; in the following way.

\ | <.
Ay L;fs+Cy ($-5.) Vo

Arsw LTk

e{ 5" (\Fs)

+V

Yk 109 =

(4.20)

@N’s): e B,
N

(L.21)
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&I 14 c{
{1 S -f.\-\réf‘l

é; J¥) = b~ By Vs
Mo« BT
(4e22)
With the following constraints (see Appendix III)
= AL \
(I) Ywm & (I3) = _,g\' _ trg
(Le23)

(II) B 0y - nds Cee M_g \ |
YLEurm) R e) AJY * Mo

at resonance position, MR being the mass of the resonance
and the upper and lower sign being for 4 and - N‘* trajectory
respectively.

We constrain the 4[ and N 4 trajectories to pass
through the resonances ( 4§ (1236) , 4((1921.;)) for 4 5

( N o (938), N < (1688))for N%< trajectory.

Now defining

SRR AT
arss v 4555, vt < (he24)
and ¢, b
Ay Sy + A s :____* e

|-
A\‘LG;L A /L" \rg.'L 1'(|'
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where rz{. ’ JI;L are the first two resonance positions

on the trajectory o, ,

and
A - :_\_—_________ oA "<|' \
\ e
7—(51:\— s“J@(.‘.p.\\lt. AJFS J-S‘-|
T, d < \
I —— L.
“"L - A\ Ad s JS.' . (Le25)

(s )T

f“ ) t&, being the widths of the resonancesj we get

o™
after some algebnical manipulations

/ /

»)' )('/’ nl'/ )4.
T . /
QQ = « ‘vl‘/ — b.' Tl'

(4e26)

bi);/’ Yl(/)‘“

where

— \ ~ / .
b\‘ - S||/ v‘- e SoL_

A= - Sy, w s - ks

rd

L + JL‘
~Y(;: (ﬁ?’JLl f(ﬁ)’ o (A Jei C‘/

| LY Ay (T *‘(\'L)
VARET O FAR EYRTERD Rl St (4+27)
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so that only four parameters out of six in (4.20) are

varied. The remaining being determined from the constraints
(Le26)

First we attempted to fit all T *P data from 2 to
5 GeV/c allowing only 4@5’ trajectory to be exchanged in
s channel.
The fit was not very successful, for though the forward
and backward direction data were fitted well, the predicted
cross sections apart from those regions were very small
compared with rather large experimental results.
This clearly demonstrates the fact that the simple model
of one trajectory exchange in s channel can't explain
pion-nucleon scattering in the intermediate enérgy regione.
There may be two or more trajectories which are involved
implying the presence of resonance structures in many

higher order angular momentum states. But unless we get

at leaét a rough idea about the partial waves for large,(

in this region it will be difficult to decide whiéh traject-
ories to be exchanged in s channel. Clearly, for this,
Phase shift analysis is necessary in this region. But as
we mentioned earlier conventional phase shift analysis
becomes increasingly difficult in this energy region.

Hence we tried the alternative approach in which we

simply expressed Fp(s,t,u) as a polynomial in z with energy




~8l,—

dependent coefficients which were parameterised without
using any detailed dynamical model. We discuss this

approach in the following.

3. The Parametric form of Fp(s,t, u)

In this work we assumed that Fp(s,t,u) can be

parameterised in the form

N

. - < 4 (5)'2“
Ve (o bw)= = O (4+28)

where z = cos - and the cut-off parameter hl is to be
selected to give the best fit to the data. It proved
more convenient in practice to parameterise the amplitudes

P
fl and f2 in this fashion. The parametric forms fl’zx, ’
p .
fz,q.I
(I denoting the isospin) finally adopted were as follows

T = 3/2 amplitudes
by S /

- L/B "y
=\

¢ s S /
ItV 2 o Z ey a,.($) /% j,f/;, - g:{lh(y«.,‘(’)(h.zg)

Ul

D

s
, x
Q= < bt R { 6g

P S =®
o »
4 I 2 / > /. 4
(= < 8,2
g\/cz)= S a2, & e
L0

(4.30)
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I = 1/2 smplitude |
=4 | v “
RQ,‘\‘\?‘ - 2 Ry Awq L9), et ' = 2 Rum)ony (9

we

g .' hcund
9 ‘&‘P = 40 tR) ana () Jwmhy,

' wo
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i=0 s
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€, = L A= 7 2
lzo 4
/ 3 e! 42 Ce, (%)= €. 0
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32&\11(, Lyl2)z =™
Lty = 5 % £ee (be33)

Awwls)pare of the same form as in (4.31)

The parameters used in constructing Rr\(z)h were
constrained so that R (z)4 give small contributions to
the forward and backward regions, . : hence the number of
parameters actually varied was much less than what appears
in the equations above.

The values of the parameters appearing in equations
as found in the best fit to the data are listed in

Appendix IV.

L Fit to the data

Using the formulas described in the previous section
and holding the Regge pole parameters fixed at those values
determined from high energy fit7 we first fitted all the
available W¥P data in the laboratory momentum range 2 - 5

GeV/c to get the Tz 3/2 parameters.




-8 7~

Then T = 3/2 parameters were held at these fixed
values and all the available R°<P and C. E. data were
fitted to get T = 1/2 parameters.

The details of the fits are described in the following
(the data is listed under Reference 46).

1) ‘f+,P Here our best fit gave a normalised'?f of
l.2 when 48 parameters were utiliseds The best fit to
the data is shown in figs. 4(a, ..m).

The fits to the observed experimental data is quite
good overall. Specially the comparatively recent data of
Busza et al. are explained very well by this fit.

A normalisation error of S% was allowed for all
the data and in some cases it was necessary to increase
the quoted experimental errors beyond this. This was
particularly true for the data at 2.0 GeV/c, where two
independent groups have obtained results which are in
rather poor agreement with each other at certain points

The only serious discrep@ncy between the fitted curve
and the data lies in the fact that at a number of energies
in the range 2 - 3 GeV/c the predicted aross sections show
a substantial dip near the backward direction, which the
data does exhibit to some extent. The dip is very well
established in the data of J. Banaigs et al. from 2.85 to
3455 GeV/c but the 2.7 GeV/c data of Coffin et al. shows

no dip in this region. This is by far the most serious
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case and at other energies only the occasional data
disagreeing with the predicted cross section near the

region of the backward dipe

2) N™_P and charge exchanges. W-P gifferential cross
section has got even more structures than 'W;P. Our fit
explains all the structures viz bumps and dips in the large
angular region.

Much more data were available in this case and the
parametric fit was very sensitive due to the presence of
charge exchange and quite a good polarization data.

Here also the predicted cross section show a dip
near the backward region in the energy range 2 to 3 GeV/c.
The dip is present in the data nezr 2 GeV/c region but
here again at near 2.8 GeV/c the dip is present in the
data of Banaigs et al. (st 2.85 and 3.55 GeV/c), but the
data of Coffin et al. are rather inconsistent with the
data of Banaigs et al. near the backward region and it
is not very clear whether it is present in the data of
Busza et sl. due to rather large experimental error in
their data near 180°.

The overall fit is quite excellent including that
of TY-—P polarization but that of K.E. in the energy
region 2.27 to 2.5 is not so good, though it shows
the main feature of the data that were available.

The representative selection of the best fit to
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the data is shown in figs. 7(a,- e ), 8, e), A(*,9)

5e Phase shifts.

o
We define the phase shift O}Iand the elasticity

parameter v2~ in the usual way by

L exp(aidsr) -
L, - e SRCnES -

= Ty
L7

One way to parameterise T

the amplitude A, t =

. p 'L q £y
in low energy phase shift analysis is to write it as a
sum of resonance and non resonance amplitudes.

aibas
\ .
AL"' = __E';Eg/”’_—‘ +Lilie “‘)/7“
(Vﬂft'WJ)'ﬁ.f RS

and then parameterise Ey_t, CKL:‘ as polynomiagls in
momentume.

In some other works®' the analytic properties of the
partial wave scattering amplitude were fully utilised.

Y\ - N phase shift analysis has been done by several
groups in the energy regions which extend up to 2 Gevhg,

We investigated phase shifts and elasticities over the
laboratory momentum range l.8 to 5.0 GeV/c and.fl & 16 .
We exhibit our results for )l £ 6 in figures and give
all the numbers for ﬂ 5"\6 (the phase shifts for 17/ 16

are very small and structure less) in Appendix V.
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Since phase shifts, at the lower end of the energy
region we investigated, already exist, we compared our
results with those. We find that although the present
results agree with those in their main featuresf'there

are some quantitative disagreements.

*
The positions of possible resonancegkin the range

2.0 to 5.0 GeV/c are indicated on the figs. 6(a-g) and

10(a-g) and in Table 4.
X(Our 841, S

wite
1 phase shift parameters arepdifferent)

1
TABLE €

T = 3/2 resonances

Position (W in GeV) Partial Associated Regge
Wave trajectory.

2,1 S31 Daughter of ‘Afa (2 )
2.2 D33 Degenerate with &g, U,)
2.2 D35 anp (P=- T=+)
2.4 F35 a6, (P=+ T=a)
ey H3 11 Ags (P=+ (=;)
2.6 P34 Daughter of Ao{( ?)

Here Ag is the established Regge trajectory through
¢ (1236) and & (1940) and the existence of Hy, 11

is also confirmed.hg

' ' letuils.
X Se pyan .\_o?._.i(wt\\«u:.v\ew\



Also & >, L\,,L
Crittenden et al.50
supposed to be

A (1630, /2 -y,

T =
Position (W in GeV)
2.16

el
2459
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are the trajectories considered by

and whose lowest mass states are

A(1930, /2 4) respectively.*9

/2 resonances.

Partial
Wave

Associated Regge

trajectory.

N\( (P = - -C = "')
Nep (P== T = 4)
Daughter of NA(P(: I) ’
Daughter of Nd (P = +

(= +)

Among the above mentioned T = l/2 resonances Gl? is well

established.

In view of the large background at these energies

it is difficult to identify a resonance, and Table &

must be considered as a list of possibilities. For the

same reason no attempt has been made to estimate the widths

and elasticities of these tentative resonances.



5A. Resonances

We consider resonances as poles in the scattering amplitude on the
first unphysical sheet above thé elastic threshold. It is worth noting
that only poles that are allowed on the physical sheet are the bound
state poles which occur on the positive real axis below the lowest
threshold. (Poles on the real axis above threshold violate unitarity).

Now let us consider a resonance of spin % associated with a second
sheet pole at the position p which is deﬁoted by Sp = SR - 1 y where
vy 1s real and positive.

To consider the physical effect of this pole let us eipand the _
function % (8) defined by

&) = & -3,) A8 (81.1)

(CA.!(S) is the partial wave amplitude as defined in 2.1) in a power

series about the pole position %= ’gp

() = -G(sp) + (S - sp). %—'(Sp) + e (BA.2)

This series converges in the .circle centred on Sp and passing through
the next nearest singularity of 4 z(s)' Now if we assume that for small
y (&) = ‘@(ép) near & = B

then ’

,.. “s)
6&2(5) o - $§E‘I—Y - (BA.3)

which is the Breit-Wigner form of a resonance with width t = v/ 4/.%

Now if we define the phase shift 6 . and for elasticity parameter

n by




Q16

, _ 1168 _
C‘LQ(S) =n, e 1

2 iq
then .
q Re CLE(S) ' (sh-4
= -1 S

So the narrow Breit-Wigner resonance of (SA.3) corresponds to the phase .
shift increasing rapidly through fiy2 (for elasticity >.5) or through
O (for elasiticty <.5) as increases through SR'

In our model poles in F_(s,t) term can only appear in Oan(S) as

P
defined in (4.31), the second sheet poles that were found in GHMn(S)

. indicated possible resonance positions and then each partial wave was
examined for possible resonance behaviour in the Argand diagram. The

resonances found in this way are listed in Table 6.
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6e Conclusion:

In our work we found that in order to get a good fit
to the pion - nucleon scattering data from 2 to 5 GeV/c,
some higher resonance terms are needed along side with the
large Regge background from t and u channels.

Regge amplitude alone can explain at least qualitatively
the forward and backward peaks in the energy region mentioned
above, but very prominent structures such as dips and bumps
in large angular region in the differential cross section

AG/J\;\, as a function of cos @ imply the presence of
some high spin resonances in this region. Moreover these
resonance terms are contained in Fp(z) term, which is the
difference between the exact amplitude and the Regge
amplitude. Hence our model is very much consistent with
generalised interference model as opposed to the duality
model discussed in Chapter II (strong duality).

It will be rather interesting to see whether finite
energy sum rule is well satisfied using our results for
the phase shifts from 2 to 5 GeV/c together with the already
existent phase shifts up to 2 GeV/c. (Assuming of course

that the Regge behaviour sets in above about 5 GeV/c),
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Appendix I

It will be shown here that Rl(s,z, A i) as defined

in (2.34) has no right hand cut in the region 14 z ¢ cosl\\g

for the case ReeC i > o
We have from (2.34)

RiGzx) = — bl |

We shall show that

N+
Siwnd;

%,
4 \ exp CLaimVdX) |

T (s hw-E)> 0L

94 ; ("1)

(AeT.1)

AR( s,z, Ai) =0

Now APo(i (-2)

QO

-—

. N
= & LP, t2-ted - Pu; -2 7))
\ A Y
- 2‘ $‘\v\“0(; a 620(\'

= — Stwnd; ?'(\'('—2) \ﬁ}éc‘ﬁ&z

(AcI.2)
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Hence

A(f s "_‘_?_ez‘_\‘.‘_'“>: cn ko) Rz) ey
Siw 0 A

(AL.3)

Using the integral representation for Legendre function

wih2
. Ap M)
Po{ - 2) = Vi & m'{\(. - L>-“' AN 2 >\
! T y Ny s
(- wssbw
we have N
a (0 Ay R
g}»\h Al N
{ Y < oa\g ) .
(/ﬁ'j LL"\* ‘)_,_L Ak
o J% 6\ (19{\‘*-\—)} L'-l— L\'aj"i\))\"'
(ALaL)
where a = cos L—‘z

Next we deal with the integral terms in (Al.1l).

Denoting the integral by I we have



=05~

e et
-

Ty s b el

v Cunthrn-2)%0 X

-~ e (R V) %)
A s (L&-r\)s Z L,
- —-\I\r %‘ L.i_!,_&i}.i_:———- A - ' L "\"'} \[L_
- Com "y - 2V {+ _ s ) .
(integrating by parts) N (A.T.5)
\ £ e ¢ L(S\\\i

Hence

A (L, A8)) .
' UJPKU“'*\’L)“/\
- A Lj, (LA 5 ——— " AN(A.L1.6)
Jv - Cles hw =)Mo

for \é): LWSA\\;

We use N\

\/L.
C Ledhn- 2 ’,;\‘e) - :i\’k—tﬂk“)

and we get from (A.IL.6)

A L I ks /1/&‘)>
@; (L D \‘ M_\jj’jg A W

—
-

" \1
N .. (2 - tarhw) 'L
I\' [N b\ Q(.J\ v Q\'L)M'
B, (pdc ) ) SEBWT_——ldxn
= Jv ' o (-t 't

. .L—-?:)\'\
B (T4 4—-)?/\\
NG A e duPh it
-_.al Y |
(from (AeI.k))

and finally we have

A Q@_\(ﬁ,l‘,'h))':ul ler ¢ Lk
QR.E-D.
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Appendix II

Crossing.

The invarient amplitude T (see equation 1.10)

is of the form,
T= A+ (Y& )E (A.T1I.1)

Now under crossing i.e. s &> u A, B change as

follows
A(s,u,t) 4—= A(u,s,t)
(A.II.2)
B(s,u,t) «—> -- B(u,s,t)
(The amplitude B changes sign due to the fact that
( Y-& ) changes sign under crossing ( Y.8 )-—> _ ([ v. )

(A II.3)

Now from (1.30) we c an write

Ao w, &) - ‘t\'\[\ls)ﬂ“ b, Wow - V= ~ *j

EA A €a-

Lin Y— I -\- G A I \LL&ZJ)

% ( S/Ml e) = €A*_»‘“ kc- “)
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and (J\‘_\,_) - ]
v\_\.w J‘ 13 — —m s *L\Jhls)
A’(V\ 5, €)= L\nl\r[ «-\m* ) I
(AeII.5)
e Jw, s - L—\‘r\‘,s)
R Lws, k)= & 7 WS’L )* =) j
where ’\..
AW \k'\-hn"
C. - SAWTS T ff
/> 1 Je b

Hence from A.II.3, A.II.4 2nd A.II.5 , we can write

4 AW 1‘»' (Jslu),_({_s:__h) J‘_L_k\r\’“)

—

E,‘.\-w E:‘—-h»

e N R Ny

T Ek-\m

(A.II.6)

end T, (W, 8 I UATR Y.
3w B o - L'_L‘f.“/ LoV A

[~ - WA
Ehf\-v- W

solving these two equations for f; ( J%, « ) and 5 ( R
we get (3.15).
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Appendix III

We shall show here how the relations between a
Regge trajectory and resonance parameters are obtained
at a resonance point.

From (4.8) neglecting the integral terms we get,
for a trajectory q((‘rs ) exchanged in s channel with

residue @ ( {¢ ) signature T and parity P

T f(fs'“) L“'f") RYR
\ - kEérgﬁ)@Lﬁ‘ru ’.W') kJL*IQ*MJLeM*urU
IS LR M )
t T OALIJ;)—\:.PE)]
L2y -4

- (=) /gL -
A LB, )E)// - (J( Is)*"l)EQX( %

"JLJ*\’L
(5 Ces nALZ(s)

. (1)
- ( Q,L(:;.ﬁ,)—\—\pl_,

(A.IIT.1)

For A\é trajectory P = +1, T = =1 and the resonances
occur at Rgdl, = 302, 7/2,...
Hence at those points neglecting the 2nd term on r.h.s.

of AJII.1l we get

e 4\l
T, Weny s =ne WU /0, )
Ce3 N
(A.III.2)
(V) -\
amd W AVS) = Bt opd) (X >
3

A = & (N3)
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But at resonance point Rga(( fb ) = '3" = A+ l/2
hence f e 2w LT8) (“‘)(L(v
a - - — (A.IIIOB)
st N
For NK trajectory
P= +1, T=4+1
SO N\ '(_'\'\(t_)
(-Js) | o
Fv = _ lf’____,___g_———-—"_" e’( -\-\[L )
c R (AeIII.L)

here the resonances occur at
Re ® (-Vs)=T5= L-Yu
So we get (assuming Jwd (& ) to be very small
near resonance position compared with Rg £ ( VS ))
T N EN L P P L

tw T - —
et Rt (A.IIT.5)

But near resonance position we can write « as

Az TAiTma (M) (W30 A e | ...

Ay Hn,.
assuming Iw»¥X varies only slowly,

iy an/ .
also Cg\ U'L* ) ~-£& similarly for 5’: ’ L,

{t
Cos (30 )4 & similarly for 73 ! -
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hence
. - 2w (M) (A AR
a0 —
R
L e
! - a2z
Nl (Jo- Mp o
(A.IT1.6)
where o A e LTE.S)\
v Adk‘nzﬂm
But using Breight-Wigner form, a resonance on 9 Sﬂ
trajectory is of the form
\ LI AMY) L /L
o™ Ty — { ()
' R ("‘“—-ﬁ -~ UL
(A.ITI.7)
Where W = v & . comparing (A.III.6) with (A.IIT.7)
we get T S o
— 42 T (A.III.8)
T (M
and r,g: _ _\____ _____)‘
T e - \\.L’ﬂ_ (A.II11.9)
. 4+ M\ 1 d
Writing M) = El‘-’-—;\—: Glhe) R in (A.IIL.9)

we obtain
/
Tel ndpta
M)z T o
(5 & “-—) 4 v_l_.tﬂ Q_n_ﬂ-M) (A.ITI.10)
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Similarly for N-l trajectory we get
T\ - (“\«.) A

rN - - ] T
A PSR EEE N o l‘?:—j";:
- Aot (V
(Here o ;L = el S—-—&)\ )
ALS Jiz-me

1}

From B.W. formula

M(L AW - "t, L
comparing (A.III.12) and (A.III.13)
- T T _ :
IYmite= 3 '~ (A.TII.14)
Tk T 4rMe
and & (__ M(L) - — e

(A.III.11)

(A.III.12)

(A.IIT.13)

(A,III.15)




Appendix

IV

The values of the T = 3/2 parameters appearing in equation 432

found from the best

fit to the data,

A B C Al B! c!
0 0327  =.225 0.327 -e222 0.238 D = 2.585
1 435 4,09  .0508 o435 221 0.0001  pr_ 2,585
2 -.389 1.681 0.0 ~+389 1,198  -3.333
3 =349 «591 -~.6118 -+349 779 0.0
L «0623 -1.456 0.0 .062 -e977 L+999
5 - -1,0 «886 ; ~e10 -
n=1 m m m m m m m m
A ST 2 S S S SR
1 W47 .243  .107 1.0 -5.708  -6.928 62.117 624338
2 0.0 4817 .37 0.0 0.0 1.0 ;9.307 23.976
3 =1.233 =2.561 -=1.233 1.0  -8.207 16.046  Le966 55.145
L .031 .364 .262 0,0 1.0 -12.307 51.896 -71.928
n=2
m
1 - 3862 -1.97 - - 1.0 -1.46 5.738
2 - «5573 ;3.2h6 ; - 1.0 ;13.0 44O
3 - .280,  .O42 - - 1.0 1.1 -0.083
L - ;.sus 427 - - 1.0 -13.0 Lys 0




Appendix IV, continued.

n =3
m

- -0.9 5el51 - - 1.0 -12.12 39.77

1
2 - 0.0 9.0 - - 1.0 =12.12 39.77
3 - 0.061 -3.636 - - 1.0 -12.12 39.77
L - 0.0 -1.,518 - - 1.0 =12.12 39.77
n=.4
m
1 - -0.0975 9h58 - - 1.0 -9.405 22,609
2 - —0.0107 000335 - - l.O —90-’4—05 2201{’09
3 - -0.0072 0.0338 - - 1.0 -9.405 22.409
L - -0.037 0.059 - - 1,0 ~9.405 22.409
o o
wm
4 - 3323 ~-25.63CL - - -6 -1b9o9 S E
P _ o6 538 - - 4- 0 -\6-909 H-SIY 9
3 - - Q1634 2,.5v47 - - 1.0 -l6-G0F  FEEEYS
4 - 0-0 | - .0 2085 - - 1.0 -16-909 15879
‘V\o = 2.(‘)@ ‘4'\ol = -20¢C
I 7% S

P N A A
‘\'\3‘_ \- o ’%\3/ - o
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Figure Legends

Figure 1 (a), (b), (c), Regge pole fit to Y17 , I
(d), (e), (f). elastic scattering by protons
and charge exchange, in the

forward directione.

Figure 2 (a), (b), (c). Regge pole fit to n* anan~
elastic scattering by protons

in the backward direction.
Figure 3 (a), (b). Thetﬁé’and N« trajectories.

Figure L (a)ees(j)es(m) Comparison of the experimental
NI* -p elastic scattering data
and the best fit provided by the
amplitudes parameterised as

discussed in the text.

Figure 5 (a)=(c). Comparison of the data of Busza
et al. (1969) (N'-p) with cross
sections predicted by the para-

meterised amplitudes,

Figure 6 (a)-(g). T = 3/2 phase shifts determined
from the parameterised amplitudes
that provided the best fit to

the data,




Figure 7 (a)....(e)

Figure 8 (a)ooo. (e)

Figure 9 (a)eees{c)

Figure 10 (a)es..(g)

Comparison of the experimental

P ﬂ— -p elastic scattering
data and the best fit provided
by the amplitudes parameterised

as discussed in the text.,

Comparison of the experimental
n—-p and C.E. polarization

and the best fit,.

Comparison of the experimental
C.E. differential cross section

data and the best fit.

T = 1/2 phase shifts.
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Polorisation

Polarisation at 10 Gev/c
O.2- T*p —7*p /

Fig. Id.

O- 2t -

mT-p=> 7p 12.0 Gev/c
O If
o _ O-:2 O-=4 . 0;25-5[ 0;8

X/i/i f _ t -t(GCV/aZ

o k[_,,uj/‘ 1

: Y :
-0.2+ I

an,le.



p—rtp

13.7Geve

_ulGewe)'

{0l

100

rp—er'p

Fig.20.

9.9 Gev/c

o

(/J.b/(Gev/c)z)

b|d
vivo
40.1
. . . N .ol
-20 -5 -1.0 -05 (o]
' U‘Gﬂlc)z Fig 2b,
410
- - Y
T p—arl™p I8 %
¥
ry
=
r[ 8I3
0.1
} 13.7Gev/c
'. 16.25 Gevk
<20 -5 f.ol ‘IOLS )
u(Geve) '



ad Trojectory

19t 0

-
I |/2 5 y5

0“0

- )"

3, ~ Rex((S)=-187 —-058[5 +-9045
2F i

o) 2 4 6 82IO 12
' S (Gev)

Fig. 3a.

N“Tro J-'ectoﬂ--

7, 2 &
c“
o Ry

-3 L ¢ :
' /2_“"9 Reux(ES)=~-366 +-045 s+ O35S

A A 2 a -

2 4 6 8 IO 12

S (Gev)2

Fig.3b.




ey by Py -

o1 @ %9 . : 6 505
o ke o1 50 o) S0 - ol-
10" T T T v
]
Iror ok I
518 i
5 g
g
L] {i oIf
1032 xooum 3/a0gz dp—ds
f. ] 103 ju2d § . L ]
(o) a3 02 d ze—dp h oo .
apty
oy
1-
100
Q
{ro 3
a
8la, 2
EX £
m - S€
o1
a...h)naoh
(o0}




3/a2D O€ diud.s

600
o) sO-

op

(1s/qu)

-0

Wby

>/r29te du—du

100

"By-614

SO
g0 6%°0

60

henpe dp<dp

L0 90

=
o

ey §
192 o) §
U\\.NU Se thllﬁthh

| S—

Ol

up
0P

(1s/qu)




Ay b1y

R F]
. (3/A29)n
va?umv_ n o Aot .
, O ol- oe- | — - 2
aa " ] )
= 3 ol
~ 3
5 O -] aja
5 | * 1 .ul_m /M9 SSE
[ 1 * J x
3 ] B
a g ] P~
® : 1 ) Q!
| S——) = o =<
0 3/A29 OFE'E g
M " ot
00l 3/h305g-2
i duedsp
QO00I
(o] 50O- Ol- 659D ‘197614
r —8. — m.o . o mo _ _l
I dio°
BRIES
: 3
o
~
2
] Jro

oh30 Ot dpe—ds

) € d d
) lo._ \>Nomm .Qhw‘l ‘\ﬁ




7*p Polarisation 2:538 Gev/c

T
. |
-0.5 @)
o 1
-
1
Fig. 4m.
FA+HP Polarisation
O.8¢ 5.15Gevc ),
| 1%
0.6 ;l / ‘r .i .'-
| i ' 1
. . b § ! ‘ .I
0.2 14 |
C i
-O). L PO | A | .
O-2r— 1O 2.0 B 1!'
' -t (Gav/c)?




3
'p—1r'p 2.46 Gev/c
Busza et al, 1!
7
5
£
}i s |&
} viv
-0.01
A A A X {
-0 ~-0.5 Cos 8 oS5’ l-ooo
Fig. 50
mp-» wep Buszo et ol. 10
2:65 Ga
i
! e
} 2
l Bls
volv
-1.0l
j — 'l I K
-Lo - ; o5 T
Cos ‘0
Fig.5b
- 10
'p—*p Buszo et al.
B 2.80 Gev/c 1.O
i } i f 1ol =
Fel
[ { £
bl c
vlo
i -1-Oi
-0 =05 -0 0.5 |.b°°‘



-20r ’ 180
d(s;,)
-40F 1601
-léo;; |4°=
|-O A A i A I Iy i 1 J Ic (A YO RS WS WU VDR WU VAP WO JRpussl Sy Swp - 5 1 boasch _l-
2(s i
OS5 (S3)) 05 % (Py)
L
N—"TF
DP33)
[e]] i A i A Iy A A ) — B S S e W e P U UH W S e |
7 20 24 28 32 36 40 44 48 52 O 18 22 26 30 34 38 42 46 50
Plap (Gevic) PLap (Gevie)
Fig.0a.
Fig. 6b.
180
- 61053 o~ %%
: \
160k 6(035) d(Fyy)
160+
140} 10 — At

0.5

\\//\w ost 20

A A W S 1 i 3 Ao d

°.| A %
34 38 42 46 50 -8 26 34 a2 50

18 22

26 30

Fig.6¢. Fig. 6d



180F > 0(G37)

0 Gy

Qul-

26 3.4 4.2 5.0
Plob (Gev/c)

d thaq)

d(Hg )

A A " —_

\/\ ) (Hao)

MHg, )
O-5t
\§ 22 26 30 34 38 42 46 50  _ ' -
Plob (ch/c): K Fig.6t.
180 d“3.|3)
d(I3)II)
160} .
I 1l
ot .
—— :
‘ = T
"85,
OS5
1.8 26 34 4z 50 F
. PLab (Gevic)




2.014 Gev/c
T-p—-1-p

A

-Ol

.0 -05 O
' . Cos @
- la.

0.s

O

2.-56 Gev/c
M- Pp—eT—p

Ol

.Q0I

28 Gev/c
T-p=—e1-p

- I.o

Fig.Nc.



Ol

100

(O} | o

/A9 Oty d-ued-u

‘pL b4
Nﬁu?owv:
o ¢S0O- OI- §1- Oe-

Or y I W 2/m29 Sg-2

3
\\

Ol 5/A29 SG°€

d-u<d-n



2.07 Gev/e
Polarisation

{ -1-.0
L

. l-

Fig. Ra

2.5 Gevic
n-p Polarieation

| H i
¢ 1 ™ N, A T 1 ;
O CnO OS ! de)

Fig.8b.

|

Rl

2.9 Gev/e
[ w-p Polarization

Cosle

05



m-

14 L 2/A20)3_ |- —

!

.ﬁ
1

I 3/A29 g
UoljosIDIog Uy B e-d-p

3/A9 gg

28 b1y PR 613
10 .
T
o O~
4o T
—2-O
~450-~
—4€0
%
Jyo
of i Re) °d
v T o
@ so> _
uoNDSIIDIOg d-u - th



(z-(/m0) arr) 38

wﬁ;ug:_
Sl Ol S0 10

3/m9 o€l

AD ey F—p }

us -—d-p

[elmeonfan] 38

og by

; 1 o) 3e) ol
1000 : " r
H [ ' H
] 1
100
Irdl I
up | !
op !
'Ot
/a0 (22
fh.fluanh.
ot




(>/mgy Yy . “pof b1y .

cv a3 9c

8

o n

[*4]

Ol

oT

‘qafBis

(s/mg) ¥y
Y e 9T

du

) u

S0

(o]

oT

oe

(o] 4

oS

, (a189) Ty

(44

vEe o

“Dob 63

(2/r29)

(24

o
a. .._a

“*oop 64

v

4001

S (014]




(24

T

(a1n3g) %y .
a3 o2

‘Boy by

oS

(a1a29) Py
4 4 e

200 by
(oma0) Py

1

5O

g T Y Y T

(*27] [ 4 e 9T 81

T Y T

(6l9)y 50




