
Durham E-Theses

Parallel foliations

Furness, P. M. D.

How to cite:

Furness, P. M. D. (1972) Parallel foliations, Durham theses, Durham University. Available at Durham
E-Theses Online: http://etheses.dur.ac.uk/8619/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/8619/
 http://etheses.dur.ac.uk/8619/ 
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


P A R A L L E L F O L I A T I O N S 

by 

P. M. D. Furness B.Sc. 

thesis presented f o r the degree of Doctor of Philosophy 

at the University of Durham. 

May 1972 

Mathematics Department, 
University of Durham. 



C O N T E N T S 

Page 

Abstract ( i i i ) 

Introduction and Acknowledgements ( i v ) 

CHAPTER 1. Foliations 

1.1 Definitions 1 
1.2 The Ehresmann Holonomy Group 5 
1.3 Orientation of Foliations 13 
1.4 Integrable and Involutive Distributions 13 
1.5 Connexions Associated with a F o l i a t i o n 14 

CHAPTER 2. Locally Affine Foliations 

2.1 Locally Affine Manifolds 28 
2.2 Locally.Affine Foliations 34 

CHAPTER 3- Generalised Grid Manifolds 

3.1 Equivalent Definitions 54 
3.2 Complete Grid Manifolds. 59 

CHAPTER 4. P a r a l l e l Foliations on Pseudoriemannian Manifolds 

4.1 Pseudoriemannian Metrics 70 
4.2 P a r a l l e l Non-null Foliations 72 

4.3 P a r a l l e l P a r t i a l l y - n u l l Foliations 76 
4.4 Submersions 84 
4.5 P a r a l l e l Fields of Lines 89 

CHAPTER 5. P a r a l l e l Framings on Pseudoriemannian Manifolds 

5-1 Related Atlases 93 
5.2 P a r a l l e l Framings of Maximum N u l l i t y 95 
5.3 P a r a l l e l Framings of Maximum N u l l i t y on Compact Manifolds 99 

REFERENCES 111 



( i i i ) 

ABS.TR.A.CT 

The basic theory of f o l i a t i o n s i s introduced i n Chapter 1. Various 

classes of a f f i n e connexions associated with a f o l i a t i o n are discussed, i n 

par t i c u l a r those which give r i s e t o the- notion- of p a r a l l e l f o l i a t i o n and 

those which give a r e a l i s a t i o n of the 1-Jet- holonomy group of C. Ehresmann. 

In Chapter 2, l o c a l l y a f f i n e f o l i a t i o n s are defined as p a r a l l e l f o l i a t 

ions f o r which the induced structure on each le a f i s f l a t . A l o c a l charact

er i s a t i o n i s given i n terms of the existence of a special sub-atlas of co

ordinate charts. Some results are obtained about the global structure of 

such f o l i a t i o n s when certain completeness assumptions are made. 

Chapter 3 gives a description, i n terms of g r i d manifolds, of the work 

of S. Kashiwabara on the r e d u c i b i l i t y of an a f f i n e l y connected manifo/Ld. 

The work of the f i r s t three chapters i s then used i n Chapter 4 t o d i s 

cuss the question of p a r a l l e l f o l i a t i o n s on pseudoriemannian manifolds. 

Some new examples are given. An elementary proof of the De Rham-Wu decom

position theorem and some theorems about n u l l f o l i a t i o n s determined by sub

mersions are obtained. 

Chapter 5 i s concerned with the properties of pseudoriemannian manifolds 

which admit systems of p a r a l l e l vector f i e l d s . The problem i s discussed i n 

terms of p a r a l l e l f o l i a t i o n s and some recently developed techniques i n 

f o l i a t i o n theory are used to obtain some strong global structure theorems. 
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1. 

C H A P T E R 1 

FOLIATIONS 

§1.1 Definitions 

Let R111 be euclidean m-space with coordinates z 1. Define E^Cd 1^ 1) to 

be the open subset of R111 consisting of those points whose coordinates s a t i s 

fy-°° £ d 1 < z 1 < c 1 ̂  +°°. 

Let M be an m-manifold of class Cs, 0^ s ̂  °°,a) (see HI5.Z1)' 'Then 

a coordinate chart (U >x 1) on M i s an open set U c. M and coordinate functions 

x 1 : U ->• R1 i = 1,*..,ro-satisfying 

(1) I f 4^ : U + B™ ( d 1 ^ 1 ) i s defined by (fryCp) = ( x ^ p ) , . . . , x m ( p ) ) f o r 

p e U then (fry i s a homeomorphism. 

(2) I f ( V j y 1 ) i s another coordinate chart and V A U i <fr then 

(fr fc? : R™ -+ i f i s of class Cs where defined. V U 

A C s-Atlas on M i s a maximal c o l l e c t i o n of such coordinate charts, where 

maximality i s defined with respect t o an ordering by inclusion. 

D e f i n i t i o n 1.1.1 I f N i s an n-manifold of class Cs then a map f : M -»• N i s 

said t o be 

(a) of class CT r > s i f f o r a l l p e M}—: r- (p) ex i s t and are con-
3x J1...3x Jk 

tinuous f o r 0 ̂< k ̂  r where f i s represented by 

(x 1 , . . . , x m ) i - > ( f ^ x 1 , . . . , ^ ) , ^ ( x 1 , . . . , ^ ) ) 

with respect to coordinate charts at p and f ( p ) . Conditions (1) and (2) 

above ensure that t h i s d e f i n i t i o n does not depend on the p a r t i c u l a r co

ordinate charts chosen. 
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(b) a homeomorphism of class r <: s i f f i s a homeomorphism f o r which 

both f and f " 1 are of class . 

(c) a local homeomorphism of class C r ̂  s i f f o r a l l p e M there i s a 

neighbourhood U of p such that f : U •+ f(U) i s a homeomorphism of class Cr. 

Def i n i t i o n 1.1.2 The Standard F o l i a t i o n of R*1 of codimension p. 

This i s the basic building block required f o r defining f o l i a t i o n s on 

manifolds. 

I f y 1, i = l,...,m are coordinates f o r R111 then the (m-p) dimensional 

planes given by y m p + \ . . . , y m = constant determine a product decomposition 

x Rp. This i s the standard f o l i a t i o n of FT of codimension p. I f 

the discrete topology i s put on R̂  and the usual one on R^P, then, by tak

ing the product toplogy (see ^ page 90) one obtains the leaf topology 

T (R*1) on R™. The leaves are defined as the connected components i n t h i s 

topology. 

Throughout what follows, unless otherwise stated, l a t e Greek suffices 

A,u,8 w i l l denote integer values i n the range 1,2,...,m-p, early Greek, 

a,6,Y i n the range m-p+l,...,m, and Roman i , j , k , J l i n the range l,...,m. 

De f i n i t i o n 1.1.3 A homeomorphism h : U c R1""55 x Rp > h(U) c R111"13 X Rp of 

alass (f i s said to be leaf preserving. (L.P.) i f 

hCy 1,...,^,...,/) = ( h 1 ( y i ) , . . . , h m - P ( y i ) , h ^ + V > , . . . , h m ( y a > ) 

De f i n i t i o n 1.1.4 A Fo l i a t i o n *c^of codimension p and class Cr (O^r^s) on 

an m-manifold M of class C , i s a col l e c t i o n of leaf charts 

{(U ,h ) : a e J } , maximal with respect t o : 
cL Si 

( i ) D t H, TT D = M. 
a aeJ * 
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( i i ) h : U -*• BP(d 1 , c a
1 ) a homeomorphism of class (f. 

( i i i ) i f U a i \ U b t 4) then h q h^ 1 : 1^ (U fliy -> h (U AUfe) i s an L.P. 
~ r a 

homeomorphism of class Cr . 

ft w i l l be called a leaf atlas f o r the f o l i a t i o n 

I f (U ,h ) i s a l e a f chart then one may consider the coordinate a a 
functions x 1 : U -»• R1 i = l,...,m defined by 

3. cl 

x a 1 ( z ) = ̂  o h a ( z ) f o r z E U 

clearly a a a 

i i 
I f U & A i <j>, the coordinates x & and x^ are related on the overlap 

by equations of the form 
Pi (x i ) ba a 

a 

where P, Q are of class C 

and 
3R ba 
8x V 

f 3 C 
3x 3 

are non singular matrices 

Conversely, given coordinate charts (U ,x x ) with overlap equations of 

the above form, one may recover h by defining 

h (z) = ( x 1 ( z ) , . . . , x m ( z ) ) f o r z e U 
a a 

The al t e r n a t i v e form (U ,x 1 ) f o r a l e a f chart w i l l often be used i n 
cL cl 

what follows. I f z E U . then the points of U with coordinates 
a a 

x a = x (z) are called the plaque of the chart through z. 

I n the general theory of d i f f e r e n t i a b l e manifolds i t i s w e l l known (see 

.Qx8^]) that a C 1-atlas always contains a C°°-sub atlas. However, l i t t l e 

appears to be known about the corresponding question f o r f o l i a t i o n s . Andre 



Haefliger has proved i n Q 6 that i f a compact C^-manifold M admits a 

codimension one f o l i a t i o n w i t h C10 leaf atlas then the fundamental group of 

M, TTI(M) i s i n f i n i t e . Thus, the codimension one f o l i a t i o n of S 3 the three 

dimensional sphere given by G. Reeb i n d o e s n o t admit a Cu 

structure. 

D e f i n i t i o n 1.1.5 The Leaf Toplogy. 

The leaf topology T^R1") on R™ induces a topology T o(B m) on B171 by the 

inclusion map. A leaf atlas h - {(U ,h ) : a e J} can now be used to put 
a a 

the leaf topology on M. 
Consider the collecti o n f h'"1 (V) : a e J, V = open set of T (BP1) 

/ contained i n h (U ). 

This c o l l e c t i o n defines a base f o r a topology T (M) on M (see Kelley 

ClA-Zl page ^7) because 

( i ) TTh'Vv) = M. 

( i i ) I f z e h ' ^ V ) n h" 1 ( V ) , then h (z) E V A h h T ^ V ) . 
a D a a o D 

But h a h^ 1 i s an L.P. homeomorphism 

thus there i s W <- V f\ h JC1 (V) t W ^ , W e T (B111) and h (z) e W 

.'. z e h" 1 (W) and h" 1 (W) c h" 1 (V) (\ hT1 ( V ) . 
a a a D 

The leaves of are defined as the connected components of M i n the 

leaf topology T Q ( M ) and are clear l y (m-p) dimensional submanifolds of class 

C37 i n the sense of Q15 3 • 

D e f i n i t i o n 1.1.6 A map f : M -»• N of class CB between two C s-manifolds M and 

N with f o l i a t i o n s , i s said t o be f o l i a t i o n preserving i f f i s continuous with 

respect to the leaf topologies T Q ( M ) and T Q(N). 
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D e f i n i t i o n 1.1.7 Induced Foliations. 

Let N be a C s-manifold with a C r - f o l i a t i o n ^ of codimension p and leaf 

atlas fa - {(U ,h ) : a e J } . Suppose f : M + N i s a loc a l homeomorphism 
g 

of class C . 

Let p e M. Pick a neighbourhood U of p such that f(U) i s contained i n 

some U and f|U i s a Cs-homeomorphism. I t i s not d i f f i c u l t to prove that 
cl 

there i s an open set W h^ Q f(U) such that there i s an L.P. homeomorphism 

of class <F9 g : W •* B m _ p * B p and f ( p ) e h'^W). 

Consider the pai r ((flu)"" 1 h" 1 g - 1(W), g h f ) . I t can be shown 
1 o a o o a o 

that the co l l e c t i o n of such pairs f o r a l l points p £ M s a t i s f i e s conditions 

( i ) , ( i i ) , ( i i i ) of d e f i n i t i o n 1.1.4 with respect t o M, and so w i l l gener

ate a maximal leaf a t l a s . This gives the induced f o l i a t i o n f _ 1 ^ f on M. 

The leaf atlas w i l l be denoted by f . With respect to f'1 and 

f i s f o l i a t i o n preserving. 
§1.2 The Ehresmann Holonomy Group 

Let X and Y be two topological spaces and f : X -*• Y a map defined on 

some open subset of X such that f (x ) = y Q. Then a map g : X -»• Y i s i n the 

same germ as f at X q i f 

( i ) g(x Q) = y Q. 

( i i ) There i s an open set U containing X q such that g|U = f|U. 

This clea r l y defines an equivalence r e l a t i o n on the set of such maps 

f. The equivalence class of f i s called the germ of f at X q and w i l l be 

denoted by G(x , f ) . 

Consider the set $ p of maps f : RP ->- each defined on a neighbour

hood U(f) of the o r i g i n such that f : U(f) •+ f ( U ( f ) ) i s a homeomorphism of 

class (F leaving the o r i g i n f i x e d . 
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Denote by Cj the set of germs of such maps at the o r i g i n . 

This set gives a group under the following m u l t i p l i c a t i o n 

G(p,f) x G^o>g) = G(o,f Q g) 

I f has coordinates y"̂ , and f p has the coordinate representation 

fCy 1,-.-,^) = ( f 1 ( y 1 ) , . - . , f P ( y 1 ) ) on U ( f ) , then the p a r t i a l derivatives of 

f are defined at y 1 = 0, up to order r . Furthermore i t i s clear that i f 

g e G(o,f) then the p a r t i a l derivatives of g agree with those of f up to 

order r . Thus the derivative of a germ G(o,f) i s we l l defined at the o r i g i n . 

Consider the subset F of sT consisting of those germs whose deriv-
Q 0 atives at the o r i g i n , up to order q are the same as the i d e n t i t y 

Thus i f f e F then = 5 / 3 k f 1 

[ a y 1 ! . . ^ 1 ^ 
0 f or 1 < k ̂  q 

F does not depend on the choice of y 1 f o r i f y 1 = y 1 ( y ^ ) i s another 

coordinate system with the same o r i g i n , then 

af 1 

„-k 
l 3 y J 

X ( f ( o ) ) . -^4 (o) . (o) = 6* since f ( o ) = 0 
0 ay3 3y „-k 

3y 

Similarly f o r higher derivatives. 

F i s a 
q 

normal subgroup of p because i f G(o,f), G(o,g) e F^ then 

f 9 ( f ^ Bf 1 . . „ 3g* , , , i : —rr (g(o)) . -Br (o) = 5. 
I 9yJ J 

etc. 
0 3y 

-1 \ i " \ 
3y° 

[3 ( f f - 1 ) 0 

ay3 J 
_ _aj_ 

0 3y* 

I 

( f - i ( o ) ) . 9 ( f " ' / (o) 
ay0 

(o) = 6. 
3yJ J 

etc. 

and.if G(o.h) then * vl r.p 

= ̂  ( f h " ( o ) ) . (h-Uo)) . 3 - ^ k 

0 3y 3y 
f- (o) = 6.1 etc. 

3yJ J 
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P u t S r ? p = f r , P
/ F q l e t *q : ^ r . p r?p b e t h e ^ U O t i e n t h o m ° -

morphism. 

For each f , \\> G(o,f) i s called the q-Jet of f . 

U q could have been obtained by factoring CT by the equivalence 0 r,p j r ,p 
r e l a t i o n : G(o,f) ~ G(o,g) i f f and g have the same derivatives up t o order 

r at the o r i g i n . 

Let M be an m-manifold of class Cs admitting a class C r f o l i a t i o n 

of codiinension p with leaf atlas fV. 

Let L be a leaf of z e L a given point and (WjV 1) a given leaf chairt 

such that z e W and y 1 ( z ) = 0. 

One may i d e n t i f y Rp with the transversal set 

T = { ( 0 , . . . s 0 > y m - P + 1
J . . . J y m ) : \^\ < l > . 

Let a : Qo»lU L> °(0) = o ( l ) = z be a loop i n L at z. 

Since o ( Q ) , l ^ ] ) i s compact i t admits a f i n i t e cover 

Z = {(U ,x 1 ) : a = 0,1,...,n-1} of charts of 9V with the following propert-

ies: 

( i ) There i s a subdivision A of Q } , l 3 namely Q o , t i 3 ,... »{jta»^a+i3»• • • 

ft t = 0, t = 1 , such that a(Ft , t ̂ ,"1) c-U >— n-1' — 1' o ' n ' '—a' a+1— 1 a 
a ( T t , . l H ) <- U . ^ n-1' - 1 a 

( i i ) x a
a ( a ( t ) ) = 0 f o r t e Zt

a>t

a+J> x&^a^ = °' 

To construct such a cover, take any f i n i t e cover and choose a sub

d i v i s i o n A so that a( ["~t . t , , ~ ] ) i s contained i n the i n t e r i o r of a chart. 
a a+J-

Now index the charts so that ( i ) i s s a t i s f i e d and modify the coordinates by 

suitable a f f i n e transformations so that ( i i ) i s s a t i s f i e d . 

Condition ( i ) ensures that there i s a 6 > 0 such that the overlap 
transformations x = Q (x ^) a,3 = m-p+l,...,m are defined f o r a+j_ a+j_,a a 

S 
0 ^ |x p| < 6 f o r each a = 0,1,...,n-1. Put 



8. 

V a(6) = { ( 0 , . . . , 0 , x m - p + 1 , . . . , x a
m ) e U a : \x«\ < 6). 

D e f i n f i f a + l , a : V 6 ) * v a + l ( 1 ) b y 

a a *a+l,a v a'»"' , < ! ia+l,a v a' 5' * »^+l,av a ; 

Clearly f & + ^ a i s a C^-homeomorphism i n t o V a +-^(1) which sends the orig

i n to the o r i g i n . 

I t i s easy to see that there i s an E I , 0 < Ei 4 J such that 

f 1 : V , ( e i ) V (6) i s a C homeomorphism i n t o V ( 6 ) . 
a j o , " ! a.—_L a, 3. 

By induction there i s e^, 0 < efa 6 such that 

fa-b+l,a-b : Vb ( eb } * Va-b+l 

i s a C^-homeomorphism i n t o V ^ + i ( £ b + i ) f° r a l l 1 3 > 0 < D 4 a. 

Thus there i s e > 0 such that a 

f = f , : f , 0 a a,a-l o a-l,a-2 o • ofi,o : V e a ) + V a ( f i ) 

i s a C homeomorphism i n t o V^iS). 
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One can define (U ,x 1 ) = (U ,x x ) and thus f : V (e ) -»• V (1) i s a C r 

n' n cr o n o n o 
homeomorphism i n t o V q ( 1 ) . Define a map $ : ft (L,z) •* ̂ r p by 

$(a) = G(0,n f n f 1 ) , where ft (L,z) i s the loop space of L at z and 
nZ : ^ ( e ) -*• T i s the C^-homeomorphism sending the o r i g i n to the o r i g i n 

i _ irs o m-p+1 mN .̂  ~. m-p+1, ou m, aS\ given by (0,...,0,x o
v >"-> x

0 ) (0 4...,0,y ( x Q ),...,y (x )) 

defined f o r e > 0. To show that $ i s we l l defined i t w i l l s u f f i c e t o show 

that a d i f f e r e n t choice of subdivision A' and cover £' s a t i s f y i n g conditions 

( i ) and ( i i ) , give a C -homeomorphism n ^ t f*n» Q n£t w i t h the same germ. 

Let A be a subdivision of £0,1^] ^ o r which A' c A and A c A. 

Suppose A has the form D^t^J,... ,Da,s» ^ . B + J »'"' • ̂ a.V TFT+1-* 
with t Q = t a , t a > = t a + l j Q = t a + 1 . 

Then a ( [ " t , t x 1 ~ ] ) i s contained i n the i n t e r i o r of a chart of Z a 4s a,s+x 
and of a chart of E'. 

A re-indexing of E gives a f i n i t e cover Z of a with leaf charts 

(U ,x 1 ) , where U = U a 4s> a,s ' a,s a 

Ei }S 3. 3. Si 

x a = x a f o r O ^ s ^ k .. a = 0.... , n - l a,s a x s a ' ' ' 

Clearly a C Q ^ % S + 1 D C U & > 8 and 

x a« 8(a(t))=0 f o r t . £ C t a j S > t A J B + J , x ^ s ( a ( t a j S 

Put 

V («) = {©.....O.^ 1,....^" > E U a > 8 : | x a ^ | < 6> 

Define 

f a , s 4 s - l : Va,s-1 ( 6 ) ^ V a , s ( 1 ) 
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, /„ ~ m-p+1 m \ . /o m-p+1 m \ by (0,...,0,x £_lf.,.,x _ 1)iM0,...,0,x £ ••••»x
a,s^ 

f o r 0 s ̂  k -1 

For s = k a define + l j k : V + V - = V & + 1 

a. a. cL a 

by (0,...,0,x£ ,...,x ) K (0,...,0,Q a^ ( x a ) , . . . ,Qa+1 (x )) 
* a a 

I t i s easy to see that on some neighbourhood of the o r i g i n i n V 
SL 

fa+l,a = fa,k +l,k o "° o fa,l sO * a a 

and moreover n v = n • 

Thus the germ obtained from Z and A i s the same as that from Z and A. 

Hence there i s no loss of generality i n assuming that the subdivisions 

A and A1 are the same. 

Let z = {(U .x,,1) : a = 0,1,...,n-1} 
cL cL 

V = UU'x' 1) : a = 0,1,. ..,n-l} 
a a 

For a given b e l , . . . , n - l one may obtain a new cover from E by replacing 

(UjjjX^j 1) by (U^jX^ 1). Clearly, s a t i s f i e s conditions ( i ) and ( i i ) with 

respect t o the subdivision A. 

I f on the overlap of Ufe and Ub"t x^ 1 = S 5
1 ( x b

J ) then i f 

g^j : V b(e) •* V ' b ( l ) i s defined by 

(0 O^P*1,... , x b
m ) \+ (0,... . O , ^ 1 ^ ) , . . . . g ^ x ^ )) 

there i s a sequence 



f b , b - l fb+l,b 
... •* V, b-1 b+1 

b,b-l b+l,b 

The nature of the coordinate transformations gives 

fb+l,b o f b , b - l = ( fb+l,b o S ^ o ( g o f b , b - l ^ 

fb+l,b o f b , b - l 

on a neighbourhood of the o r i g i n i n Thus 

f n = f n , n - l o o fb+l,b o f b , b - l o o f l>° 

f f f n,n-l o *" o b+l,b o b,b-l o 

= f n on some neighbourhood of the o r i g i n i n V Q 

furthermore 

n„ = x) and so G(0,nv n f n nJT1) = G(0,nr n f_ . L L, ' L o n o L h, o n o L b b 

I f b = 0 then = ru gv, and f = g, f g, L E o °b n & b o n o b 
- l 

L, o n o E. E o n o E b b 

By replacing each chart i n turn i t follows that 
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and so * i s w e l l defined. 

Let o' be another loop at z, homotopic to o i n L, r e l a t i v e t o z. 

Then there i s a continuous map £ : x Q̂ -̂H L s a t i s f y i n g 

£(0,t) = o ( t ) , 5 ( l , t ) = a»(t), C(s,0) = 5 ( s , l ) = z 

Since £( C°»13XC°»1ZI) ̂ s compact, i t may be covered by a f i n i t e 

number of charts of A'- There i s a subdivision of 0)»O s a v 

n°»uill > • • •»» ub+iU * • • •»D^-pO s u c h t h a t 

i s contained w i t h i n one of these charts. Using t h i s subdivision i t i s easy 

to obtain a sequence a = ai ,02,... , 0 ^ , 0 ^ ^ , . . . ,â .=a' of loops at z so that 

d i f f e r s from a^ + 1 only w i t h i n a single plaque of a chart. I t i s s t r a i g h t 

forward to prove that $(CK ) = $ ( a ^ + 1 ) and thus by induction that 

$ ( 0 ) = * ( o ' ) . 

Also, i f OQ x i s the composition of two loops, i t i s clear that 

*(o T) = *(o) x *(T) where * i s the m u l t i p l i c a t i o n i n U 
0 J r»P 
Thus $ determines a horn omorphism $ ' TTI(L,Z) -* c . I f 

H(L,z) = 4>(TT 1 (L,z)) then i t i s not d i f f i c u l t t o prove that a d i f f e r e n t 

choice of i n i t i a l point z, or i n i t i a l chart (Wjy 1) w i l l give an isomorphic 

group, where the isomorphism comes from conjugation by an element of ̂ r ^. 

De f i n i t i o n 1.2.1 The Ehresmann Holonomy Group H(L) of a lea f L i s the group, 

determined up to isomorphism by H(L,z). 

D e f i n i t i o n 1.2.2 The Jet Group of order q,J^(L) of a leaf L i s the group, 

determined up to isomorphism by 4> (H(L,z)). H(L) and J (L) are isomorphic 

to factor groups of the fundamental group of L. 
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§1.3 Orientation of Foliations -

Let M be an m-manifold of class Cs with a Ĉ , r > 1 f o l i a t i o n "-f and 

leaf atlas ̂  = {(U ,x 1 ) : a e J } . 
a a (r. a\ 

I f U ft then det a b ' 
3x a 
ax 3 

i s defined on. the overlap. 

D e f i n i t i o n 1.3.1 *(f i s said to be transversallv orientable i f there i s a 

cover of M by charts gf A", such that on the overlap of two charts (U a >x a^) 

and 0^,3^ ) , det 
9x. 8 

i s p o sitive 

L E M M A 1.3.1. Let M be an m-manifold of class Cs, with a t f , r » l 

f o l i a t i o n *$T. Then there i s a two f o l d cover M of M such t h a t , i f 

TT : M •» M i s the projection map, the induced f o l i a t i o n t r " 1 ^ on M i s trans-

versally orientable. 

Proof see Haef l i g e r t? 3 • 

§1.4 Integrable and Involutive Distributions 

From now on, only manifolds and geometric structures which are smooth 

(that i s , of class C°°), w i l l be considered. 

D e f i n i t i o n 1.4.1 A q-dimensional d i s t r i b u t i o n D on an m-manifold M i s a 

q-dimensional, smooth sub-bundle of the tangent bundle 1M (see Ql5 ~^[) • 

I f M(x) denotes the tangent space of M at x e M, then the f i b r e D(x) 

of D at x w i l l be a q^dimensional subspace of M(>0. Furthermore the loc a l 

t r i v i a l i t y of D implies that f o r each x e M there i s a neighbourhood U of 

x and smooth vector f i e l d s Xi,...,X defined on U, such that D(x) i s spanned 

by Xi(x),...,X (x) f o r each x e U. 
Mi 

A vector f i e l d X defined on a set V C M, w i l l be said to l i e i n D i f 

X(x) e D(x) f o r each x e V. 



14, 

Let ^ be a smooth f o l i a t i o n of M, of codimension p, with leaf atlas 

Let (U,x ) be a chart of rf. Consider the smooth vector f i e l d s 

—~Y , A = l,...,m-p. 

For each point z e U, — r - ( z ) , A = l,...,m-p span an (m-p) dimensional 
- . i 3 x 

sub space of M(z). I f (U,x ) were another leaf chart w i t h z ES,-.Û  then 
3 , s 3x u 3 , v . 3x a _ —?- (z) = — r . — - (z) since — - = 0. 
3x A 3x A 3x M 3x* 

Hence t h i s subspace does not depend on any p a r t i c u l a r leaf chart. Thus 

one obtains a smooth (m-p) dimensional d i s t r i b u t i o n , the tangent d i s t r i b u t 

ion to . 

De f i n i t i o n 1.4.2 A d i s t r i b u t i o n D i s integrable i f i t i s tangent t o a f o l i 

a t i o n . 

D e f i n i t i o n 1.4.3 A d i s t r i b u t i o n D i s invol u t i v e i f given two smooth vector 

f i e l d s , with common domain, l y i n g i n D, then the Lie bracket QX,Y3 l i e s 

i n D. 

The classical Frobenius Theorem can be used t o prove the following 

results (see Hicks C *\ 3 P aS e 1 2 8 ) . 

L E M M A 1,4.1. A d i s t r i b u t i o n i s integrable i f and only i f i t i s i n -

vol u t i v e . 

L E M M A 1.4.2. Let M be a smooth m-manifold, and l e t X i , . . . ,X be a set 
a 4-i i _ m 

of independent smooth vector f i e l d s on a neighbourhood U of z e M. Then 

there i s a coordinate chart (V.x 1) with V c- U such that X̂  = ̂ /3x x on V f o r 

a l l i i f and only i f Tx. ,X.~1 = 0 f o r a l l i and , j . 

§1,5 Connexions Associated w i t h a F o l i a t i o n 

The material i n t h i s section stems d i r e c t l y from the work of A, G. 
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Walker £31 ^ ] , C"Sl3» 1^33 ZJ shows how a f o l i a t e d structure on a 

manifold gives r i s e to certain special classes of connexions. One such 

class, the Jet Connexions, of which the D-connexions of Walker, form a sub

class, can be used to define another f o l i a t i o n holonomy group. The main 

r e s u l t of t h i s section says that t h i s holonomy group i s always isomorphic 

t o the 1-Jet group. 

Again, only smooth structures w i l l be considered, and i n addition a l l 

manifolds w i l l be assumed to admit a positive d e f i n i t e riemannian metric. 

D e f i n i t i o n 1.5.1 A d i s t r i b u t i o n D i s said t o be p a r a l l e l with respect to 

an a f f i n e connexion r, i f the action of p a r a l l e l transport preserves D. 

That i s , i f X(x) e D(x), then p a r a l l e l transport of X(x) along any piecewise 

d i f f e r e n t i a b l e path from x to y yields a vector i n D(y). (This vector w i l l 

depend on the path i n general). 

D e f i n i t i o n 1.5.2 A f o l i a t i o n cf i s said to be p a r a l l e l with respect t o an 

a f f i n e connexion r i f i t s tangent d i s t r i b u t i o n i s p a r a l l e l . The following 

r e s u l t was proved by T. J. Willmore £/3^2J» a ^ A # G > Walker £31 3* 

L E M M A 1.5.1. A d i s t r i b u t i o n i s integrable i f and only i f i t i s p a r a l l e l 

w ith respect to a torsion free a f f i n e connexion. 

Proof Let D' be the d i s t r i b u t i o n on the smooth manifold M. 

By considering the orthogonal complement of D'(x) f o r each x e M, with 

respect to the metric, one obtains a smooth complementary d i s t r i b u t i o n D" 

such that M(x) = D'(x) ffi D"(x). 

Associated with the structure (D',D") there are two smooth projector 

tensor f i e l d s of type (1,1) defined by 
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a»(X) (x) = X»(x) 
f o r each x e M 

a"(X) (x)-= X"(x) 

where X i s a vector f i e l d on M and X'(x) i s the component of X(x) l y i n g i n 

D'(x) and X"(x) i s the component i n D"(x). Clearly 

a'a' = a', a"a" = a", a'a" = a"a! = 0, a' + a" = I (1) 

where I i s the i d e n t i t y tensor of type (1,1). 

Take any smooth atlas of coordinate charts on M, and i f (UjX 1) i s one 

such chart, denote the basis vector f i e l d s — r by e.. 
' ~ i i 

9x 
Lemma 1.4.1 implies that D1 i s integrable i f and only i f 

a"Qa'j X̂  e ^ a , k Y h ej = 0 f o r a l l vector f i e l d s X, Y 

expanding 

a ' t ( a 4 X J Y* a' k . - a'J Y h a' k . + a 4 a' k j Y*1. - a'j a' k Y*1 d.) = 0 k J h ' l h j«i j h * i h j «i 

where a dot denotes p a r t i a l d i f f e r e n t i a t i o n . 

Using (1), one obtains 

X0' Y*1 a'fCa'^ a' k .-a'?; a' k .) = 0 (2) k j h * i h j»i 

and 

0 = (a"f a' k) . = -a'f . a' k + a"f a , k . (3) k h * i k * i h k h«i 

Substituting i n (2) and noting that X, Y were a r b i t r a r y , one deduces that 

D' i s integrable i f and only i f 

a 4 a' k (a'f .-a'! , ) = 0 j h k * i I«K' 
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which w i l l be w r i t t e n as 

a'^ a !£ a , s = 0 
J h & - Q 

Suppose a vector f i e l d X i s p a r a l l e l along a d i f f e r e n t i a b l e curve 

a : "*" with respect t o a connexion L. Then i f a bar denotes 

covariant d i f f e r e n t i a t i o n 

x f j i f " = 0 ° 

Thus 

( a'4*j),. ̂  = a'4, X ^ j | k dt j | k dt 

For parallelism, t h i s expression must vanish i f X'' (a(0)) = a , l J Y s f o r 
s 

some Y . 

Hence a necessary and s u f f i c i e n t condition f o r D' to be p a r a l l e l i s 

a"^,, a , j = 0 J |k s 

But since 0 = (a""!" a , J ) i , , t h i s condition i s equivalent to J s | K 

a " j a ' i | k = 0 <5> 

The idea now i s t o f i n d a connexion L f o r which (5) i s s a t i s f i e d , and which 

i s t orsion free i f (4) i s s a t i s f i e d . Let r be any torsion free connexion 

on M ( f o r instance the metric connexion). 

Then L must have coefficients of the form L3:, = T1:, + T"!", where T i s 
Jk j k j k 

a tensor f i e l d of type (1,2). I f a comma denotes covariant d i f f e r e n t i a t i o n 

with respect to r, then 

a j | k - a j , k a j ^ k a q T j k ( 6 ) 
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Prom (5 ) , i t follows that D" i s p a r a l l e l with respect to L i f T s a t i s f i e s 

, , i ,q tP = _ a , , i ,p = _ , i ,p ( 7 ) 

P J Qk p j , k p,k j 

But 

0 = a' 1 (a,(? a" p) . = a' 1 a'? a" p . = - a' 1 a'? a» p . (8) P J q 4 k p j q,k P J q»k 

thus one solution of equations (7) i s 

T̂ . = - a" 1 a.'3 . j k s j , k 

The general solution of (7) i s thus 

T* = - a" 1 a'? . + V* (9) j k s j , k j k 

where V i s any symmetric tensor s a t i s f y i n g 

a" 1 a'S V p = 0 (10) p j qk 

Now, V has to be chosen so that T i s symmetric when (4) i s s a t i s f i e d . 

I t i s straightforward to show that (4) i s equivalent t o 

a' 1 a' p a 1? - a' 1 a'f a,(* = 0 (11) P,q J k P,q k j v 

Thus f o r T t o be symmetric 

v4, - v j 1 . = a" 1 ( a ' p . -a'f .) (12) Jk kj p j , k k , j ' 

Using (8) and (11), a solution of (10) and (12).is 

V* = - a" 1 a'f . + a' 1 a'f a'? Jk p k,j p,q k j 

Thus the connexion L defined by the coefficients 
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L\ = r\ - a' 1 . a»P - a' 1 . a»? + a' 1 a'? a'? j k j k p,j k p,k j p,q k j 

i s a torsion free connexion f o r which D' i s p a r a l l e l . 

Conversely, given a torsion free connexion L, with covariant derivat

ive V, then 

0 = Va'(X) a ' ( Y ) " Va'(Y) a ' ( X ) " Ca'(X), a ' ( Y ) ] 

f o r a l l vector f i e l d s X and Y. 

I t i s not d i f f i c u l t to prove that condition (5) i s equivalent t o 

a"(V x a»(Y)) = 0 f o r a l l vector f i e l d s X and Y. 

Thus a"Qa'(X), a'(Y)~| = 0 and so D' i s involutive and hence 

integrable. Q.E.D. 

This r e s u l t implies that f o l i a t i o n s can be characterised by d i s t r i b u t 

ions which are p a r a l l e l with respect t o torsion free connexions. The class 

of torsion free connexions which make the tangent d i s t r i b u t i o n of a f o l i a t 

ion '•J-* on M p a r a l l e l w i l l be denoted by CCM,1*?"). 

Let A' be a leaf atlas f o r «̂* and (UjX 1) a chart of 

Then i t can be shown that a 1, a" have components 

a'A = 6 A, a'? = 0, a'A = b A 

u u' l ' a a ^ 
. ' , , f o r some b ) (1) 

a"J . 0, i * . a"* = -b* 

Let L e C(M, and suppose a bar denotes covariant d i f f e r e n t i a t i o n with 

respect t o L. Parallelism implies 

a'^ a'j h = 0 j s|k 

expanding 

a'4 (a'J* . +LJ". a , p-L p, a , J ) = 0 j s*k pk s sk p 
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Prom (1) t h i s reduces to a" 1 a'̂ f L01, = 0 which i s equivalent t o 

Let (UjX 1) be another chart of <fc such that U r\ U ^ 4>. Then, on the over

lap 

7X _ 3x X 3x^ 3x k
 T i A 3 2 x 1 3 ^ 

VQ ' 3X1 3x y ' 9x 9 ° ^ 3x 9 ' 3X1 ' 

3x X 3x° 3>J Lp + 3 2 x T 9x X 

" 3x P ' 3x y ' 3x 8 ° T 3x y 3x 9 * 3x T 

3x a 

from = 0 and (2 ) . 
3x 

Thus L induces a torsion free connexion on each leaf of !̂ """and each le a f i s 

a t o t a l l y geodesic submanifold. 

This raises two in t e r e s t i n g questions: 

(A) What can be deduced about the global properties of i f C(M,^") con

tains a complete connexion? 

(B) What can be deduced about l o c a l or global properties of ̂  i f C(M,^*) 

contains a connexion f o r which the induced connexion on each le a f has 

special properties, 

e.g. f l a t , l o c a l l y symmetric, constant curvature, etc. 

I n Chapter 2, a p a r t i a l answer to (B) i s given when the induced connex

ion i s f l a t . I n Chapters 3 and 4, question (A) i s discussed f o r the case of 

a complete riemannian and pseudo-riemannian metric connexion. However, the 

general question appears very d i f f i c u l t and must remain f o r future con

sideration. 

Another class of connexions associated with a f o l i a t i o n i s now defined. 
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Let (UjX 1) be a chart of $C. A basis f o r D' at each point of U i s 

e, = /.A A = l,.,.,m-p, and a basis f o r D" i s E = a"(e ) = e - b w e , A 3x ^' a a a a u 
a = m-p+1,.., ,m. 

Def i n i t i o n 1.5.3 A Jet-Connexion r on a f o l i a t e d manifold i s a torsion free 

a f f i n e connexion fo r which the covariant derivative V s a t i s f i e s V E„ = 0 
eA 

i n each le a f chart. 

This condition does not depend on the p a r t i c u l a r leaf chart used, f o r i f 

(U,x x) i s another chart, then on the overlap 

3 3x y 3 . 3x a
 n e, = — r = — r . since — r = 0 

A 3x 3x A 3x y 3x A 

K = ̂ 4 • ̂ 4 • e s i n c e a". = 0 

8 3x^ 3x 3 a 3X1 3 X 

- •„ a e - — r ? . j j 
3x 3 a 5 3x B 01 

Thus 

V- E_ = V ^ 4 E = K"X<X

0 E + -^4 . -^4 V E 
eA 6 3x y

 e 3x 3 a 3x A 3x 3 a 3x A 3x P e u a 

— r e 

3x A y 

= 0 + 0 = 0 

To show that the class of Jet Connexions i s non-empty, i t w i l l be proved 

that the D-connexions of A. G. Walker £33^1 are contained i n the class. 

Following Walker, some special parallelism conditions f o r a connexion 

are now defined. 

(1) D' i s said t o be p a r a l l e l r e l a t i v e to D" i f p a r a l l e l transport of 

vectors i n D' along d i f f e r e n t i a b l e paths whose tangent f i e l d s l i e 

i n D", yields vectors i n D'. 
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(2) S i m i l a r l y , one may define D" p a r a l l e l r e l a t i v e to D'. 

(3) .D' i s said to be path p a r a l l e l i f geodesies w i t h i n i t i a l vectors 

i n D' have t h e i r whole tangent f i e l d i n D'. 

(4) S i m i l a r l y , D" path p a r a l l e l . 

D e f i n i t i o n 1.5.4 A D-connexion i s a torsion free connexion s a t i s f y i n g con

ditio n s (1) -> (4). 

I f L i s a given torsion free connexion then i t can be shown [^33Z1 that t n e 

most general D-connexion i s given by 

D j k • L j k + 2 a ( j k ) ( L ) " a 1 a'S 4p q ) ( L ) 

" a 1 a"k a ( p q ) ( L > + ^ < a ' J a ' j a ' k + a " s a " j a ' k ' 

where a^., v = â , + a.1. and a"!". (L) = a' 1 a ' ^ i , + a" 1 a"?,, and C"!", ( j k ) j k T g j k s j | k s j | k j k 
i s any symmetric tensor f i e l d of type I1,2). 

I n f a c t , conditions ( 1 ) , (2) are s u f f i c i e n t t o give a Jet connexion. 

To prove t h i s i t w i l l be necessary to obtain equivalent algebraic conditions. 

I t i s not d i f f i c u l t to prove that the following conditions are respect

i v e l y equivalent to (1) •+ ( 4 ) , where a semi colon denotes covariant d i f f e r 

e n t i a t i o n with respect to T. 

(1) ' a" 1 a 1 ? a"? = 0 

( 2 ) ' a ' p ; q a 1 a ' k = 0 

a"(p;q) a ' j < - 0 

( 4 ) ' a'! * a"? a"? = 0 
(p;q) j k 

I n a leaf chart (1)' reduces to Vs a , , J a'? a"? = 0 
pq s l k 
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i . e . r? a"J' a' A a"J = 0 
Xq a 1 6 

which i s equivalent to - b^ r"^ = 0 (*) 

( 2 ) 1 reduces to ( a , j , - r s , a'h a , , p a' A = 0 
p«X pX s a k 

i.e. a'A a , , p ( a ' 9 , - r s , a' 8) = 0 k a p«X pX s 

i.e. a»A (b e ,-be r r,-r e,+b T b 9 r\+b T r 6 , ) = o 
k a* A v aX aX a y TX a xX 

which i s equivalent t o 

b 6 . + b T r 9 , - r e , + b 9 (b T T \ - T \ ) = o (**) 
a«X a TX aX y a TX aX 

I f V i s the covariant derivative of T 

\ E6 = 'e x
( eB- b6 V = rX6 e i " eX ( b6> % " bS FXp e i 

= « V > S rxV e a " rxV rxV ee 

= 0 + 0 i f (*) and (**) are s a t i s f i e d . 

Thus (1) and (2) are s u f f i c i e n t f o r r to be a Jet-connexion. I t follows 

that every D-connexion i s a Jet-connexion. The most general Jet-connexion 

w i l l be of the form r^, = D1, + a'? a"^ V 1 where V i s any symmetric tensor 
j k j k j k pq 

of type ( I j 2 ) and D i s a D-connexion. 

Let X q be a given point i n a lea f L of ̂ **and a : Qo, 1 ^ + L a d i f f e r -

entiable path i n L such that a(0) = X Q. 

I f (UjX 1) i s a lea f chart containing X q and r i s a j e t connexion w i t h 

covariant derivative V, then 

(V Y6 E_) I ? - = 0, yields a solution Y 3 ( a ( t ) ) = Y B(x ) 
6^ p QX O 
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and so p a r a l l e l transport of vectors i n D"(X Q) i s independent of path i n L 

l o c a l l y . Furthermore, the translation does not depend on the p a r t i c u l a r 

choice of Jet connexion. I t follows that i f o, T are homotopic, piecewise 

d i f f e r e n t i a b l e loops at X q, then p a r a l l e l transport of a given vector i n 

D"(x o) around a yields the same re s u l t as that around T. 

Thus by transporting a given basis f o r D"(x o) one obtains a homomorphism 

w : TTI(L,X O) -»• GL(p;R) the general l i n e a r group of order p i f i s of co-

dimension p. 

Let W(L,xo) = W(TTI ( L » X Q ) ). A d i f f e r e n t choice of base point, or basis 

yields an isomorphic group. Similarly, f o r a d i f f e r e n t complementary d i s 

t r i b u t i o n D" say, the vector bundle isomorphism defined by 

Y a a"(e ) (x) i+ i " ( e ) (x) f o r x e M shows that one again obtains an 

isomorphic group. 

D e f i n i t i o n 1.5.5 The Walker Holonomy Group W(L) of a leaf L i s the group 

determined up to isomorphism by W ( L , X Q ) . 

T H E O R E M 1.5.2 Let r ^ be a smooth f o l i a t i o n of codimension p on a 

smooth m-manifold M. Then for each leaf of ffi"", the Walker Holonomy group 

and the 1-Jet group are isomorphic. 

equivalence classes of f i r s t derivatives at the o r i g i n . Thus, since the 

matrix of p a r t i a l derivatives of a l o c a l homeomorphism of class C°° (that i s , 

a l o c a l diffeomorphism) i s non-singular at the o r i g i n , and moreover the 

Proof 

Let L be a leaf of and x z L a given point. 

Recall that ty\ 1 was essentially P 00 
obtained by taking 
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derivative of a composition i s the matrix product of the derivatives i t 

follows that one may i d e n t i f y M ^ wi t h the general linear group GL(p;R). 

Thus tyi Q c|> : TTI(L,X o) ->• GL(p;R) yields the 1-Jet group J I ( L , X Q ) . 

Take D' to be the tangent d i s t r i b u t i o n t o and D" a complementary 

d i s t r i b u t i o n . Let r be a Jet-connexion. 

I f a : Qo, 1 ^ "*• L i s a piecewise d i f f e r e n t i a b l e loop at xQ-.e L. Then 

there i s a cover Z = {(U ,x^) : a = 0,1,...,n-1} of a by leaf charts and a 

subdivision A of £0,1^ s a t i s f y i n g conditions ( i ) and ( i i ) of §1.2. 

Change coordinates i n each chart (U &,x^) by the r u l e 

y X = x A - b A(0) x 0 1 
J a a a 
a a y = x J a a 

Then {(U j y 1 ) } i s easily shown to be a c o l l e c t i o n of lea f charts and further-a a 
more 

3X1 ^ 
» a ~ _ a " i ~ _ a x 9y a 9y a 3 ^ 3x a 3x a 

Thus 

3y J a 
8 3 

Hence i f Y — - i s a vector i n D"(a(t )) then p a r a l l e l transport along a 
3y£ a 

from a ( t ) to cr(t , - , ) , "with respect to r w i l l y i e l d the vector 

Y 3 . _ J _ at o(t A l v . 
n. 3 ~ a a+1) 
3 y a 3 y a + l 
This i s clearly the same as the action of ( f , and so p a r a l l e l 

a+x ,a 
transport around a from X q to X q w i l l y i e l d the same r e s u l t as the action 

of 

( f n , n - l } * 0 < fn-l,W* 0 - 0 ( f V > * = ( f n } * 
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which i s the derivative of $(a). 

Thus w( QcQ) and ty\ <J>( (3CTZJ ̂  S^ve precisely the same lin e a r maps of 

fP to Rp (where ^ s t l r i e homotopy class of a) and hence the groups 

W(L,X q) and J i ( L , x o ) are isomorphic 

Q.E.D. 

The following example shows that the Walker Holonomy group and the 

Ehresmann Holonomy group are d i s t i n c t i n general. 

E X A M P L E 1.5.1 

Take R2 with coordinates (x, y ) . Consider the smooth vector f i e l d 
Y - 3 a. 3 

9x 3y 

X generates a one dimensional d i s t r i b u t i o n , and since £.X,X^ = 0 t h i s 

d i s t r i b u t i o n i s tangent to a one-dimensional smooth f o l i a t i o n A simple 

calculation shows that the leaves of consist of the y-axis and the curves 

y = - log|x| + c where c i s an a r b i t r a r y constant. 

The integers Z act on, R2 by n(x,y) = (x,y+n), and X i s cl e a r l y i n v a r i 

ant under t h i s action. 

By taking the quotient structure, one obtains a smooth vector f i e l d on 

the cylinder R x S'. Let be the smooth f o l i a t i p n determined by t h i s 

vector f i e l d . 

The leaves of 3*are homeomorphic t o R except the image of the y-axis 
which i s homeomorphic t o S'. Call t h i s leaf L. 

From the picture i t i s clear that 

H(L) i s generated by the germ of the 

map f which sends x t o x i . 
x 

But X X = 
1 1+X 

Tnus H(L) = < G(0,f) : f ( x ) - = ̂  > 



and i s i n f i n i t e c y c l i c , 

However J i ( L ) i s generated by ^ (0) = 1, and t h i s i s the i d e n t i t y . 

i . e . H(L) s * , W(L) a {1} 
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C H A P T E R 2 

Locally Affine Foliations 

Throughout t h i s chapter only smooth manifolds and maps w i l l be con

sidered. 

§2.1 Locally Affine Manifolds 

D e f i n i t i o n 2.1.1 A l o c a l l y a f f i n e (L.A.) manifold i s a p a i r (M,D where M 

i s a smooth manifold carrying a smooth a f f i n e connexion r whose curvature 

and torsion tensors vanish i d e n t i c a l l y . 

Such (M,D can be characterised by the existence of an atlas of a f f i n e 

coordinate charts. That i s , an atlas i n which the coordinate transformations 

have constant jacobian. 

L E M M A 2.1.1 Qi 3 Let (M.Q be an L.A. m-manifold then there i s an 

a f f i n e atlas on M. Conversely, i f M admits an a f f i n e atlas then there 

i s a uniquely determined connexion f o r which (M.rfrftQ) i s an L.A. 

manifold and i ; ^ , . = 0 i n each chart. 

Proof 

Let (UjX 1) be a coordinate chart on M. From the classical Frobenius 

theorem (see Hicks ^ page 126) the equations 

^ £ + r f . X* = 0 (1) 
3xJ * 

one completely integrable i f R j j ^ j the components of the curvature tensor 

vanish on U. 

Thus i t follows that p a r a l l e l transport of vectors i n U between two 
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points i s independent of the choice of path between the points. 

Let p e U, Xi(p),...,X m(p) be m-independent vectors at p and Xi,...,X m 

the corresponding vector f i e l d s on U obtained by p a r a l l e l t r a n s l a t i o n . Let 

X. = -4r , then F x ^ X . ! 
. 3X? . 3X^ 

3x 
3_ 
s 

Substituting from ( 1 ) , one obtains 

L > .x.H = r?„ fx1? x^-x h x k) -±- = o 
1 J hk I j i i j j 9 x s 

Hence, by lemma 1.4.2 there i s a coordinate chart ( V j y 1 ) such that p £ V and 

V C U and X. = on V. 
1 3y _• 

I f X? and T. . are the respective components of X and r i n (V,y ) 
then, X k = 6 k and from ( 1 ) , * l l ' 

(6?) V FJ. 6? = 0 
ay 1 k : I S k 

.'. f ̂ = 0 onV (2) 

Since one may f i n d such a chart ( V j y 1 ) about every point of M i t follows 

that there i s a cover S of M by coordinate charts i n which the connexion co

e f f i c i e n t s of r vanish. Prom the transformation law f o r those coefficients 

i t i s clear that the coordinate transformation between two overlapping 

charts ( V j y 1 ) and ( V j y 1 ) must s a t i s f y 

i2 - i 
= o 

9yJ 3y k 

The required a f f i n e atlas w i l l be the c o l l e c t i o n of coordinate charts con

ta i n i n g S and maximal with respect t o (2 ) . 

Conversely, i f M admits an a f f i n e atlas A then one may define a 

connexion r on M by putting r̂ ". = 0 i n each chart. Q.E.D. 
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C O R O L L A R Y I f (M.D i s an L.A. manifold, and M i s compact and 

connected then T T I(M) i s i n f i n i t e . 

Proof 

Assume T T I ( M ) = { 1 } , then from the proof of the theorem there are m-

independent vector f i e l d s Xi,.,.,X defined over a l l of M sa t i s f y i n g 

Q ^ X . p = 0. 

. Thus there i s an a f f i n e atlas A" = {(U j X 1 ) : a e J} f o r which 
Sx1

 ±
 a a 

— • = 6 l on the overlap of U and U, . 

Consider the 1-form oi, defined by w = dx i n U . Then w i s clear l y 
a a 

defined globally and i s non-vanishing. 

I f d i s the exterior derivative (see £L5 I ] ) then doi = 0 and w i s 

closed. 

Now, any smooth r e a l valued function f , on a compact manifold has at 

least two c r i t i c a l points ( i . e . where df = 0 ) , namely at the maximum and 

minimum values. Thus to i df f o r any f , and so GO represents a n o n - t r i v i a l 

element i n the f i r s t de Rham cohomology group (see Q 7 P ). I t follows 

that the f i r s t singular homology group with integer coe f f i c i e n t s i s non 

t r i v i a l But t h i s i s j u s t T T I(M) made abelian and so T T I(M ) t {1} a 

contradiction. 

I f T T I(M) were assumed f i n i t e , then the simply connected cover M of M 

would be compact. The l o c a l l y a f f i n e structure l i f t s i n a natural way to 

M and so i r i ( M ) t {1} a contradiction. Thus T T I(M) i s i n f i n i t e . Q . E . D . 

So f a r only l o c a l properties of the connexion have been used. However, 

with an assumption of completeness, very strong global results may be 

obtained. 

D e f i n i t i o n 2.1.2 A connexion- preserving, map f between two manifolds M and 
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M' wi t h a f f i n e connexions T and r ' i s a smooth map s a t i s f y i n g 

F* V = \ x f*Y 

where V and V are the respective covariant derivatives and X,Y are any two 

vector f i e l d s on M. 

The following r e s u l t i s due t o Hicks Q10 ̂ . 

L E M M A 2.1,2 Let M , M1 be m-dimensional connected manifolds each 

carrying a f f i n e connexions. Let M' be complete and l e t f : M' ->• M be a 

connexion preserving l o c a l diffeomorphism of M* in t o M. Then f i s a cover

ing map. 

Proof 

To show that f i s onto i t w i l l s u f f i c e t o show that f(M*) i s both open 

(which i s t r i v i a l since f i s a l o c a l diffeomorphism) and closed. Let 

p £ f(M') (the closure of f ( M ' ) ) . Though M i s not assumed complete, the 

existence of a simple convex neighbourhood at p (see Whitehead C 4 - 2 3 ^ » 

ensures that the map exp^ i s defined and non-singular i n a neighbourhood U 

of o E Mp^ Such that i f p E U then tp £ U f o r a l l t 0 ̂  t .̂ 1. Let 

V = exp U be the corresponding neighbourhood of p. Since p i s a l i m i t 
P 

point of f(M'), there i s a pi E V o f(M'). Let p = (exp |U) _ 1 ( p i ) . Then 
P 

a : ["0,1*1 "* M defined by a ( t ) = exp t p i s a geodesic from p to pi with 
p 

i n i t i a l vector T a(0) = p. Let a ( t ) = c f ( l - t ) , then a i s a geodesic from pi 
to p, Choose any p' £ Mf such that f ( p ' ) = p i , Let q = f ^ 1 T (0) E M',. 

cx p 
Define y : C!0*1!! M' by y ( t ) = exp , t q . \ Then y i s a geodesic i n M.1, and 

P 
hence f y i s a geodesic i n M since f i s connexion preserving. Moreover, 

f Q y(0) = a(0) = P l . 
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Also, T f (0) = f*(q) = T a ( 0 ) , which implies ?Qy = a. Hence f y ( D = P 
o 

and so f i s onto. This argument also shows that M i s complete. 

To show that f evenly covers any p e M, l e t U,V be as before. Then i t 

can be shown that f evenly covers V, that i s to say, f " 1 V consists of a 

union of d i s j o i n t sets each diffeomorphic by f to V. Let p' e M1 such that 

f ( p ' ) = p. Since f i s a l o c a l diffeomorphism, f * 1 maps isomorphically 

onto MT,. Pf 

Define <f> : V -> M 1 by <$> = exp p, q f * 1
 q (exp^U)" 1 and l e t <j)(V) = V . 

Clearly cj> i s smooth, since i t i s a composition of smooth maps. fQ<j) = ident

i t y map on V because $ l i f t s geodesies i n V that emanate from p i n t o geo

desies i n V that emanate from p 1 ; moreover, since f i s connexion preserv

ing, f projects these geodesies back i n t o geodesies that have the same 

tangent vectors at p and hence f o r such geodesies a, fQ$0o -

Similarly <j>o ( f | V ) = i d e n t i t y map on V . Thus f i s a diffeomorphism 

of V onto V and i t follows t r i v i a l l y that V-' i s the connected component of 

p' i n f _ 1 ( V ) , Q.E.D. 

This resu l t w i l l be used several times i n what follows. 

D e f i n i t i o n 2,1,3 An L,A. manifold (M,r) i s complete i f T i s a complete 

connexion, 

T H E O R E M 2.1,1. Let (M.D be a complete L.A. m-manifold. Then f o r 

each p e M, exp^ : •+ M i s a covering map. 

Proof 

One can make Mp i n t o a complete L.A. manifold as follows. 

Pick a basis e i , . . . , e m f o r Mp. This defines a global coordinate chart 

(M ,XX) f o r M . where i f X e M and X = X1 e. then X has coordinates p* P p l 
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The coefficients = 0 define a connexion L on Mp. Geodesies are 

j u s t a f f i n e lines and the connexion i s complete. 

By Lemma 2.1.1 there i s an atlas ' { ( u
n > x ^ ' a e J } o f a f f i n e a a 

charts on M jsuch that the connexion coefficients of T have the form 

T1:, = 0 i n each chart. 

Now, l e t X e Mp and o : Qo,l~" + M be the geodesic at p with i n i t i a l 

vector Xt i . e , o(O) = p, T (0) = X. 
a i i i Let (Ui,X| ),»,=, (U ,x ), = o :, (U ,x ) be a cover ofcr by charts of fr 3. 3. n n 

f o r which there i s a subdivision Q ) , t i ^ , r.., £ t a , t a + 1 ^ ,. „, O ^ - i * 1 ! ] o f 

C°jlZl s a t i s f y i n g o(£t tt <=. \JL^ There i s no loss of generality i n 

assuming that r (p) = e., i = l,...,m. 
3xi . 

I t follows by induction that i n the chart (U ,x ), a has coordinates 
a a 

of the form 
a a ( t ) = Aj(a) XJ" t + B 1 ( a ) , t E Q a , t A + 1 3 

where (A'l'(a)) i s a constant non singular mxm matrix and B x ( a ) , i = l,...,m 
J 

are m-constants. 
Thus a 1 ( l ) = A"l"(n) XJ + B 1(n). These are the coordinates of exp X i n n j *p 

the chart (U j X 1 ) , Thus exp has the form XJ fr- A3, (n) X 1 + B J ( n ) , which has n' n *p l ' 
jacobian (A^(s)) and so i s non-singular, showing that expp i s a lo c a l d i f f e b -

morphism,, But the connexion L Q n Mp i s also preserved . 

(i=e, L 1^ = 0 -»• T j k = 0). Hence, by Lemma 2,1.2 exPp : Mp •*• M i s a covering 

map, Q.E.D. 

C O R O L L A R Y . Let (M.r) be a complete, L.A. m-manifold. Then with 

respect to the coordinate chart (Mp.X1) on Mp, the group of covering trans-
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formations of the covering map e x p , i s a subgroup of the group of a f f i n e 

transformations A(m; R) of i f (see |"[ 1 5 " • 

Proof 

Let f : Mp -> Mp be a covering transformation (see £2.7 ̂  )• T n e n by 

d e f i n i t i o n f i s a homeomorphism and 

exp f = exp *p o ^p 

Now, since exp p i s a connexion preserving l o c a l diffeomorphism i t follows 

that f i s a diffeomorphism and preserves the connexion L. 

Thus i f v i s the covariant derivative of L then 

f*UV a / . 9 /3X j) (X k)} = (-V„ a / . f« 3 /3X j) i f ( \ h ) ) 

Thus 

Ls_ 3f* _ 3 f S / 3 2 f * , 
ij" 3XS 3X1 \3XS 3Xj 3XJ' ^ 7 

which gives r = 0 
3> s 3XJ 

and hence f i s an a f f i n e transformation. Q.E.D. 

Thus a complete, L.A, m-manifold can be considered as the quotient space 

of Rm by a subgroup of the a f f i n e group, This resu l t was f i r s t proved by 

Auslander and Marcus i n Q J. ^ using a d i f f e r e n t method. 

§2.2 Locally Affine Foliations 

Let M be a smooth.m-manifold with a smooth r-dimensional ( i . e . co-

dimension m-r) f o l i a t i o n 

D e f i n i t i o n 2.2.1 A l o c a l l y a f f i n e (L.A.) f o l i a t i o n on M i s a t r i p l e 
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(M,#>r) where r i s a connexion i n C ( M , ^ - ) which induces a l o c a l l y a f f i n e 

structure on each leaf of ~}~. (See §1.5). 

Several results , which generalise those i n the previous section can be 

proved about such f o l i a t i o n s . 

Throughout what follows l a t e greek suffices A,u,a, etc. w i l l denote 

i n t e g r a l values i n the range l , . . . , r early greek a,3,y, etc, i n the range 

r+1,,..,m and roman i . j , k , etc. i n the whole range l,..,,m. 

The following r e s u l t i s due to A, G. Walker 055"^ and i s quoted i n 

a form suitable f o r use i n the proof of the next theorem. 

L E M M A 2.2,1. Let X̂ . X = 1..... r be independent smooth vector f i e l d s 

defined on a neighbourhood U of a point p e M. sa t i s f y i n g 

PX, ,X n = *? X \' u— 1 Au a 

for some smooth $^ . and l e t d>̂  be r-smooth r e a l valued functions defined 

on U. Then the system of equations 

h f = *X 

f o r f admit a smooth solution on a neighbourhood V ̂ - U of p i f and only i f 

X. <J> - X 4u = *? 4> 

The next theorem i s a direct generalisation of Lemma 2.1.1 and gives a loc a l 

characterisation of an L.A. f o l i a t i o n . 

THEOREM 2.2.1. Let (M.^-.D be an L.A. f o l i a t i o n . Then there i s an a f f i n e 

leaf atlas ^ ^ a » x ^ : a e J) of charts f o r the f o l i a t i o n ^ , such that 

i n the overlap of two charts (u
a«x^) (Ub»x^) the coordinates are related 
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by equations of the form: 

x£ . A ^ ) . x» • a»<»»> 

Furthermore the connexion coefficients r̂ ,_ s a t i s f y = 0 i n each chart. 1 j k — u — u o 
Gbnversely, i f M i s paracompact and admits an a f f i n e leaf atlas A* of the 
above form then there i s a T e C(M.ffi such that (M.rfr.D i s an L.A. f o l i 
a t ion and = 0 i n each chart of 

ya 

Proof 

Let D be the tangent d i s t r i b u t i o n to $T and (UjX 1) a deaf chart from 

a smooth at l a s . Let p E U. 

Consider the transversal neighbourhood at p consisting of those points 

of U whose coordinates s a t i s f y x A = 0, X = 1, . . . , r . W « 

The smooth vector f i e l d s — r , X = l , . . . , r give a basis f o r D at each 
3x A 

point of U, i n p a r t i c u l a r along W. 

The system of equations 

3Xy 

- A + (x 9 , x a ( w ) ) X? = 0 w « W (1) 
9x T T a * 

with boundary condition X y(0,x a(w)) = 6 y, admits a unique solution 

X u(x 9.x a(w)) f o r each w because R ^ =0. Standard arguments (see f o r 

example [^X ^ ) show that the solution varies smoothly with x 1, i f w i s 

regarded as a parameter. 

Thus one obtains smooth vector f i e l d s X, = xVfx 1) —— X ? l , . . , , r on 
A * 9x y 

U. Furthermore 
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3X° 3X^ 
J _J± -x T - J l 

3x T y 3x T 3x^ 

T VQ j-„a 
T9 y - r£ xP from (1) 

= 0 since T i s torsion free. 

Thus by Lemma 2.2.1 there i s a neighbourhood V <• U of p f o r which there 

are y smppth functions f X , X = l , . . , , r s a t i s f y i n g . 

X, f M = 6̂  (2) 

These functions are independent, f o r consider a functional r e l a t i o n 

F ( f X ) = 0. Then 

0 E X x F 2 - "^u XX ^ = ^ 7 b y 

u=l,,..,r 3 f M A 3f 

which i s a contradiction. 

Consider the transformation of coordinates defined by 

y X = f X ( x 1 ) 

a a y = x 

By suitably r e s t r i c t i n g the coordinate ranges one may obtain an open 

set V « V such that p e V , and (V ' j y 1 ) i s a leaf chart. 

From (2) 

xe = 6M t h u s xe = l4 
A ~ o A A ~ A 

3x 9y 

d i f f e r e n t i a t i n g 

3x 3x 3x 3x 
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_r6 xa 9/ + x8 3 2 

TO X „ 9 X ~ T „ 0 
3x 3x 3x 

Q ^ a ,, y „ 0 _rS 3x_ 9v_ + 3x 
~ Ta „ X «0 -X 3y 3x 3y 

?y 

3 2 .VU 

3x T 3x 9 

which implies that r£ = 0, (3) 

s i where r . are the connexion coefficients of T with respect to the chart 

( V j y 1 ) - Since p was a r b i t r a r y i t i s clear that one may cover M with such 

charts and thus generate a maximal atlas with the property (3). The a f f i n e 

nature of the coordinate transformations follows immediately from the trans

formation rule f o r the r y . 
Xa 

Conversely, l e t be an a f f i n e leaf atlas. The assumption of para-

compactness guarantees the existence of a postive d e f i n i t e riemannian metric 

on M (see £|fT H ) - Such a metric ray be used to define a complementary 

d i s t r i b u t i o n D to D. 

The structure (D3D) determines two smooth projector tensors a, a see 
§1.5. 

Let L E C(M,^), and l e t (UjX 1) be a chart of TV . I n t h i s chart the 

components of a s a t i s f y a A = <5A, a? = 0. Define m3 functions r^ . i n each 

chart by 
y y 

( i ) ya = 0 

( i i ) rT. = LY. (note that L 

( i i i ) aX = L a 

aX - a T a? L a , 
a X tp 

( i v ) r a 

a3 
- TCT 

" La3 
X y Ta - a a£ L, a 6 Xy 

JiX = 0). 

Xa a Xp 

To v e r i f y that these functions define a connexion on M, l e t ( V j y 1 ) be 

another chart of 9̂ f such that U n V t <j> and l e t Lt and at be the components 
.1K ,1 

r l -1 

of L and a i n t h i s chart. Then 



( i ) . *£. i £ . 92L. r i + _ i L x L . i z t 
9x^ 3y y 3y a j k 9y M 9y a 3X1 

= 9y_ 9x_ 3x_ r x s . n c e _ 3 _ x _ = 3x_ 
9x T 3y^ 9y a 6 v 9/ 9y a 3y^ 

^ rev = L9v = 0 

= 0 

•"• F y a = 0 ' 

^ ^ 3x a Sy1 3yJ ^ 3y 1 3yJ 3 x
a 

3v Y 

since = 0 
3x p 

kh 

= . . 12^. l T + 9 2 x 1 9v° 
~ _ T * '.a ° A i y ~ a „ A " i 3x 9y 9y K 3y 3y 3x. 

_ 3/ Sx1 3x T
 T y 3 / 3x V 3x T

 T y 
~ y ~ a ~ A I T „ y » a „. A VT 3x 3y 3y 9x- 3y 3y 

3y J 3x S 3x T v T y A 3 2 x 1- 9y a 

0 y ^.a .A $ VT ~ a „ A » I 3x r 3y 3y y 9y 9x 

_ 9yf 9x^ 1x1 r y v y n 3 2 x 1 d f _ 

3x M 3y 3y M 3y 3y 9x 

But from ( i i i ) the bracketed term i s r 
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_ 3 J £ SxJ 3 ^ . i , 3 ; x 1 3 / 
3X 1 9y a 3y 3 J k 3y a 3y 3 3x X 

Ux* ! 3y a E ax*' 3 y a J L 3 x e " 3y 3 ^ Sx^ ' 3y 3J ' ^ ^ V l 
3v^ 3x£ 3x^ i i 2 L 9 2 L T V • 9* ^ 

" 3X 1 ' 3y a " 3y 3 " J k " 3x V " 3y a ' 3y 3 6 T" 3y a 3y 3 " 3 ^ 

_ a
T
 ae L

v 1x1 3x1 
3y 3x 3y 

_ ax L v 3xf_ 3y° 3x 9 

3y 3x 3y M 

T T v 3J£_ 3yf 3x £ 

~ e 6T . a " v ' 3 3y 3x 3y 

_3yf. 3 / 9x1 p L v T 8 v • • 3 2 x 1 3y^ 
' ^ ' 3y a ' 3y 3 L £ Y £ T 9 J 3y a 3y 3 " Sx1 

+ 3 ^ 3x1 3x1 j - v . T L v - j 

a 3y_ 3x_ 32L_ p L v _ T v 
3xV' ' ̂  3 ' ̂  a e 8 e 1 9 

3X6. 3x £ 

0 

3x 3x £ 

3y 

3x1 3x E 

3y 
a 3 * 3y 

3xJ" a k 3x 
3y. 3y 

•1 n — L

& 

3y- 3xu 3x p i + 3 x 3y^ 
» i ' a ° 3 " j k » a „ 3 ° r . i 3x 3y- 3y 0 3y 3y 3x 

as required. 

Thus the T1, define a torsion free a f f i n e connexionT on M; The condition 

r?^ = 0 implied by ( i i ) ensures that T e C(M,^). Furthermore'since 

= 0, i t follows that R̂- = 0- and so T induces :a L.A; ;structure on each ua * uax 
leaf. 

Thus (M;2J-,r) i s an L.A. f o l i a t i o n . Q.E.D. 



This r e s u l t leads to the following conjecture. 

CONJECTURE 2.2.1 Let (M.tfo be a smooth f o l i a t i o n of-a paracompact mani

f o l d M, i n which each leaf i s diffeomorphic to an L.A. manifold (where each 

leaf has the d i f f e r e n t i a b l e structure induced from a leaf atlas). Then there 

i s a connexion T on M such that (M ,£Kr) i s an L.A. f o l i a t i o n . 

The following r e s u l t shows that the conjecture i s indeed true f o r the 

case of one dimensional f o l i a t i o n s . 

THEOREM 2.2.2. Let M be a smooth paracompact m-inani£o,.ld, admitting a smooth 

f o l i a t i o n tfr" of dimension r . with leaf atlas = {(U .x 1) : a e A). Then 
a a 

there i s a sub-atlas,^"' ^ &t f o r which the p a r t i a l r * r .jacobian determ
inants J , = det ab 

3x. 
are ±1 (+1 i f J^. i s always p o s i t i v e ) . 

Proof 

The assumption of paracompactness guarantees the existence of a posit

ive d e f i n i t e metric g. Let D' be the tangent d i s t r i b u t i o n to and D" the 

orthogonal d i s t r i b u t i o n . As before (t>',D") determines smooth projectors a' 

and a". I n the chart (U , x x ) , D' i s spanned b y — r X = l , . . . , r , D" by 

-a ' 
^x a 

X 9 
a ~ X 

3 x a 
a 

a' a 
r+1,... ,m, 

3x. 

For the cotangent bundle there are the corresponding dual bases 

r+1,...,m respectively. 

Then i t i s easy to show that g has a l i n e element of the form 

o> = dx + a*„ dx , X = l , . . , , r and dx a a a p a' ' ' a 

ds 2 = 3aY a a dx a dx* 
a ;a 

where 
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~ a „ x 
Sx 3x 

^ = I x f • ^ j j " ga<rt 

on the overlap of u*a and U . 

Moreover: d e t ( g a ^ ) / 0. 

From (1) I d e t C ^ ^ ) ! = J & b |det(g a X f 4)| 
Writing J & = /|det(g a^n )| i t i s clear that 

a 

Now re-choose coordinates as follows 

x1 

y 1 = / a J ( t , x 2 , . . . x m) dt J a o a * a' a 

2 2 y = x* J a a 

m m 
y a = x a 

Then: det 
3y: 

= det 
3x_ a 

3x a 

= J . J , . — = ±1 a ab J, b 

Since J"a i s always p o s i t i v e , one must obtain +1 i f J
a b ' i s always 

posi t i v e . 

By suitably r e s t r i c t i n g the coordinate ranges one can obtain an open 

set V c U such that (V j y 1 ) i s a leaf chart, a a a J Ja 
Such charts w i l l generate the required leaf atlas. Q.E.D. 

COROLLARY, Any 1-dimensional f o l i a t i o n ^ on a paracompact manifold M admits 

an L.A. structure (M1£f"tr). 
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Proof 

From the theorem there i s a leaf atlas A' on M f o r which 

det 
3x> a 

i 9 x b J 

3x' 
±1 = 

3r } 
3 xb 

T h u s ^ i s an a f f i n e leaf a t l a s , and so by theorem 2.2.1 there i s a 

connexion r on M f o r which (M /^" , r ) i s an L.A. f o l i a t i o n . Q.E.D. 

EXAMPLE 2.2.1 Affine Bundles 

Let<£) = ( E , T T , B , F , G ) be a f i b r e bundle i n the sense of Steenrod { ^ ^ O * 

with t o t a l space E, projection IT, base space B, f i b r e F and structure group 

G , with the following properties: 

( i ) E,B,F are smooth manifolds, 

( i i ) TT i s a smooth map. 

( i i i ) There i s a connexion L on F such that (F,L) i s a complete l o c a l l y 

a f f i n e manifold. 

( i v ) G i s the l i e transformation group of connexion preserving d i f f e o -

morphisms of (F,L) (see Nomizu QlS^])* 

(v) There i s an atlas of coordinate charts 'Ar'(B) = {(V , y j ) : a e J} on 

B and diffeomorphisms $ : V * p -* TT""1 (V ) sa t i s f y i n g 
a a a 

(a) TT d> (y,x) = y f o r a l l (y,x) e V x F 
O d. d 

(b) i f c|> : F -»• i f l ( y ) i s defined by 

• a , y ( x ) = *a{*>x) 

Then the diffeomorphism <(> : F F defined on V f i V. , 
^ Tb,y o Ta,y a b* 

coincides with the operation of an element of G . 

(c) For each a,b e J, the map : V"a 0 •* G defined by 

&, (y) = $ i s smooth. °ba J Yb,y Ta,y 

Such a bundle^) w i l l be called an a f f i n e bundle. Condition (v) shows 



that E admits a smooth f o l i a t i o n gf**, the leaves of ••which a r e - a l l d i f f e o -

morphic to P. Moreover the connexion L-induces a connexion L(y).on each 

leaf T T _ 1 ( y ) v i a the maps <$> which does not depend on the p a r t i c u l a r choice 
a. 

of <j> . a 
I f ^f(P) i s an - a f f i n e atlas on F f o r L, then the maps (f> together with 

3, 

<fc(B) and ̂ -(F) give a leaf atlas f o r ̂ "such that the induced atlas on each 

leaf T T - 1 ( y ) i s an a f f i n e atlas f o r the connexion L(y ) . Hence by theorem 

2=2.1 there i s a connexion r on E which induces L(y) on each leaf T T _ 1 ( y ) and 

such that (E, $",r) i s an L.A, f o l i a t i o n . Clearly r induces a complete L.A. 

structure on each leaf. 

This motivates the following d e f i n i t i o n . 

D e f i n i t i o n 2.2.2 An L.A. f o l i a t i o n (M,^ ,D i s leaf-wise complete i f T i n 

duces a complete connexion on each leaf. (Of course, i f T is-complete then 

(M,^,D i s necessarily leafwise complete). 

I t might be hoped that a leaf-wise complete L.A.•foliation'always admits 

an a f f i n e bundle structure.' However, the next r e s u l t shows that t h i s i s 

certainly not true i n general, even f o r simply connected manifolds. Thus, 

theorem 2.1.1 does not generalize i n t h i s d i r e c t i o n . 

THEOREM 2.2.3. Any 1-dimensional f o l i a t i o n i f - o n a compact manifold M 

admits a leaf-wise complete, L.A, structure (M , ^ - , r ) . 

Proof 

By theorem 2.2.2 there i s an atlas = {(U ,x x) : a e J} on M such 

that the leaves of ̂ a r e given l o c a l l y by 

x 2,...,x m = constant a* 5 a 
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3X1 

I f U n U, i $ then — = ±1, 
a b K 1 
By theorem 2.2,1 there i s a connexion r on M such that T u = 0 i n each 

chart of A - and such that ( M , ^ r ) i s an L.A. f o l i a t i o n , 

Clearly, i f (U , x j ) e <£f then (U, ,xj) e ^ r where U = U, , a a D D a D 

i _ _ i . 

Consider the. set M = C(p,X(p)) : X(p) e M , X(p) = — (p) ( 

p K 
for some a e J 

Consider the subsets of M, U = \ ( p , — (p)) : p e U (. 
a C 3x^ a J 

I t i s straight forward to check that these give a base for a togology 

on M such that IT : M •+ M, defined by tT(p,X(p)) = p, i s a 2-fold covering 

map. 

Let S = {(U ,x^) : a e J}= This i s a smooth coordinate cover for M and 

generates a smooth a t l a s for which IT i s smooth. 

Moreover, i f U r\ i <f> then i t i s easy to see that 

3x' 
— = +1 (1) 

K 
Hence S generates a smooth le a f a t l a s A ( s a t i s f y i n g (1)) for a f o l i a t i o n 

^ on M, Obviously, ^ = I T " 1 ^ , 
~ -1 

The induced connexion r on M c l e a r l y s a t i s f i e s T i i = 0 i n each chart 

of A", and makes (M,^,D an L,A, f o l i a t i o n . Also, (M,# ,D i s leaf-wise 

complete i f and only i f (M,^,r) i s leaftoise complete. Since M i s a 2-fold 

cover of M i t i s compact. 

Because of ( 1 ) , the vector f i e l d X = on U , i s defined globally on 

K a 

Since M i s compact, X i s a complete vector f i e l d (see Q l 5 3 ) > that 

i s to say, there i s a smooth map a : M * R M, such that a(p,0) = p and 
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T a ( p , ) ( 0 ) = X ( ^ 
But, i n a chart (U^x 1) for which p e U, one has 

a ] ( p , t ) = x l ( p ) + t 

a a ( p , t ) = a a(p,0) a = 2,...,m. 

But these are the geodesic equations for r along the leaves. Thus geo

desies i n the leaves can be extended for a l l ' values of the parameter and so 

(M,CJ»,r) i s a leafwise complete, Q.E.D. 

COROLLARY. There, i s 1-dimensional leaf-wise complete L.A. f o l i a t i o n on the 

3-sphere S 3 which does not admit an affine bundle structure. 

Proof 

I t i s well known that there i s a complementary vector f i e l d X to the 

2-dimensional Reeb f o l i a t i o n of S 3 ( s e e which has some i n t e g r a l 

curves homeomorphic to. R and at le a s t one which i s homeomorphic to S 1. Thus 

the f o l i a t i o n determined by X cannot admit a bundle structure of any type. 

Q.E.D. 

EXAMPLE 2.2.2 

Although one may always find a leafiwise complete structure on a compact 

M i n t h i s way i t i s not true that any given L.A. structure i s necessarily 

complete. For instance, consider the C h r i s t o f e l connexion r , on the plane 

R 2 defined by the Riemann metric ds 2 = dx 2 + e^ dy 2. Here 
1 1 1 1 2 2 2 2 

T n = T i 2 = T 2 i = r 2 2 = T n = Ti2 = r 2 i = 0 and r 2 2 = Vz. A short c a l c u l a t 

ion shows that curvature and torsion tensors are zero. The metric i s not 

complete since geodesies do not have i n f i n i t e length. On the torus 

(x,y)(mod 1), the connexion T can be projected since the co e f f i c i e n t s r̂ ". 
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are periodic. 

This defines a non-complete L;A. structure on the torus T 2. By taking 

the a f f ine product with i t s e l f (see example 3.1.1) one obtains a t r i v i a l 

f o l i a t i o n of f by the T 2 factors with a non-leaftvise complete L,A. s t r u c t 

ure, 

The next r e s u l t throws some l i g h t on the behaviour of these f o l i a t i o n s 

i n the large. 

THEOREM 2.2.4, Let (M.gKD be a leafwise complete, r-dimensional L.A. 

f o l i a t i o n with an a t l a s ^ = {(U .x 1) : a e J ) of aff i n e l e a f charts. I f 

V. = {p e U_ : x*(p) = 0, A = 1 r } . Then for each a e J there i s a 
a a a 

l o c a l diffeomorphism. 

E : V x R r -> M a a 

such that. 

(a) There i s a neighbourhood W_ of 0 e R for which 
3 

E, : V x w •+ U i s a diffeomorphism and ^a a a a _ 
5 : V x 0 •+ V i s the inclusion map. a a a 

(b) For each v e V , £_ 1 v * R r ->• C l e a f through v ~ l i s a covering map. 
a a • 

(c) I f TV : U ->• V i s the obvious projection, and i f U n u i s non-null 
3 3 3 3 u 

and connected, then there i s a diffeomorphism. 

n. : TT (u nu. ) x R r -+ TT (u n u ) x R r 

'ba a a b b a b 

such that: L n u = S b o ba ^a 

= i d e n t i t y 

nab = n b a 

cb o ba ca c b a Y 
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Two lemmas are required: 

L E M M A 2.2.2. Let N be a smooth manifold with a complete connexion then 

the map Exp : T(N) •» N. defined by (p,X(p))h>- exp X for each p e M i s 
P P 

smooth. 

Proof 

The theory of ordinary d i f f e r e n t i a l equations (see j ^ X 3 Page 22) can 

be used to show that t h i s i s true l o c a l l y , i n the sense that there i s a 

neighbourhood U of p and a neighbourhood W of the zero section i n T(N)|U 

such that Exp : W -* U i s smooth. 

Let a : \29>\3L N be a geodesic s t a r t i n g at p with i n i t i a l vector 

T (0) = X(p). Then by def i n i t i o n Exp (p,X(p)) = o ( l ) . 

I f -Qo,ti3»• • • J C I^J 1^ i - s a subdivision of Q^^ZI 

then ' a ( l ) = Exp ( a ( t k ) , ( l - t k ) T a ( t k ) ) 

= Exp ( E x p ( a ( t k _ 1 ) J ( t k - t k _ 1 ) T a ( t k _ 1 ) ) J ( l - t k ) T 0 ( t k ) ) 

etc. 

Thusj by choosing the subdivision i n a suitable way i t i s c l e a r that 

there i s a neighbourhood of (p,X(p)) i n T(N) such the Exp can be expressed 

as a composition of smooth maps, and hence i s smooth. Q.E.D. 

L E M M A 2,2.3< Let (N.Q be an L.A. n-manifold and (U.x 1) an affine 

chart on N. Let e i , . . . ,e be a basis for N. p E U. and f i f . a basis 
u » — n p — ^ ^ L J *—n 

for N , q e U. I f e i ( z ) , . . . , e ^ ( z ) and f i ( z ) . . . . , f . ( z ) are the corresponding 

bases at z e U obtained by p a r a l l e l t ranslation along paths i n U, and i f 

e.(z) = Pp. f . ( z ) then A*? does not depend on z. 
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Proof 

i f e A = e{ 3 y (p) and f. = f j 9 / 3 x j (q) 

then e i ( z ) = e j 3 / g x j (z) and f \ ( z ) = & (z) 

c l e a r l y A. r = e. , and since ) i s i n v e r t i b l e , the r e s u l t follows 

Q.E.D. 

Let D be the tangent d i s t r i b u t i o n to Consider the map 

E : V x R r + M defined by £ (v, (X 1,... ^ ) ) = exp X X ( v ) . Clearly a a a v ~ A 

E = Exp | (D|V ) and hence i s smooth by lemma 2.2.2. To snow that E, i s a a a a 
l o c a l diffeomorphism l e t a(v) : Q o , l ^ "* M be the geodesic s t a r t i n g at v 

with i n i t i a l vector X^ —^-y ( v ) . Since the leaves are t o t a l l y geodesic sub-
3 x a 

manifolds, o w i l l l i e • e n t i r e l y i n the l e a f through v. 

There i s a subdivision £ o , t ] ^ ' * °'' ̂ -^b'^b+l-^'''' * ^ k ' " * " — ° ^ 

and a cover ((U b,xJ) : b = 0,1, ...,k} of o(v) ( H 0 * 1 ! ] ) b v charts of A" such 

that a(v) ( C t b , t b + J ) c ^ U b . 

I t i s not d i f f i c u l t to show that i n the chart U^, a(v) has coordinates 

of the form 

ahv) ( t ) = P*(v) X y t + Q X(v) 
K. y 

o£(v) ( t ) = P a ( v ) 

where ( P X ( v ) ) and K <»<#> 
! ̂  P O 
i 9x 

o -

are non-singular matrices. But 

( 5 a ( v , (X 1,.,. ty?))O1 = cr^(l) with respect to (U^,*^) and hence i s non-

singular, i . e . 5 i s a l o c a l diffeomorphism. I f the X X are s u f f i c i e n t l y 

small then o(v) (1) w i l l l i e i n U with, coordinates 

cl 

a A ( v ) (1) = X A + a \ v ) (0) 

a a ( v ) (1) = a a ( v ) (0) 
then (a) follows with 
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Wo =' ( ( X 1 , . . . ) f ) £ R r : d ! - a A ( v ) (0) < X A < + a X ( v ) (0)} (see definit-
a. a, a. 

ion 1.1'. 4 ) . 

By Theorem 2.1.1,exp |D(p) : D(p) £leaf through i s a covering 

map, and so (b) follows. 
Put Q = V x w c- V x Rr, then £ (Q .) = U . a a a a ' a a a 
Suppose now that ^a (\ i $ and i s connected. 

I f z e Q and 5 (z) e U O U, define a ^a a b 

V ( z ) = ^ b l ^ 5 ' 1 • ? a ( z ) ( I ) 

Put N a b = (^ a|Q a) _ 1 ( U a ^ U b ) then c l e a r l y n b a : N & b - N b & i s a diffeo-

morphism. 

The idea now i s to extend l i n e a r l y along the R f i b r e s using the L.A. 

structure on the leaves. 

For convenience, l e t e^, A = l , . . . , r be a basis for R so that 

( X 1 , . . . , ^ ) may be represented as X' e^. 

Suppose z = (v,X A e^) e N a b and n b & (v,X* e^) = (v,Y* e A ) , v e V b» 

Let q = £ ( z ) . T h e n— r (q), X = l , . . . , r i s the basis for D(q) obtained a ~ A 

3 9 x a 
from — r (v) by p a r a l l e l t r anslation within the l e a f through v and 

9x A 

v ( i n the plaque of U through q). This i s because (U x ) i s an a f f i n e 
EL c l * cl 

l e a f chart. Put 

- \ (q) = - i - (q) (1) 

(where (A^) w i l l be a non-singular r x r matrix). 

By Lemma 2.2.3 A^ w i l l not depend on the choice of z. e Q . provided q l i e s 
A a 

i n the l e a f through v and v (see picture) and hence i s a function of v only. 

Now since N & b i s open, there i s a neighbourhood V of v i n V & such that the 

transverse neighbourhood S at q l i e s in£N , where 
A. ao 
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S = C q ' E l N a b : x a ^ r ) = x a ( q ) X = l . - - - . * . <(q») = x " ( V ) a = r + l , . . . a •* ' a' 

v* e V f 

o-

I / ' 

;' LEAF 

The equation -\ (qi') = A^(v') . (q») shows that A^ : V 1 -»• R i s 
9x 3 xb 

smooth, and hence i t i s smooth on TT (U OU, ) . 
a a b 

The domain of n h„ can be extended from N to TT (U C\ U, ) x R r as follows, ud. ao a a b 
I f 

(v,X* e x ) e N g b , and i f V ( v , X * e^) = (v,Y* e,) (2) 

put 

o y (ID 
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This does not depend on the choice of Xq because i f 

% a ( v > X ' e X } = ( ^ Y > eA> 

then 

exp v X X (v) = exp- Y X (v) = q say. 
9x_ 

But 

A A 9 A 3 / exp (Xi+Z ) — r (v) = exp Z — r - (q) / Since v.q are i n U and N ,_ 
V 3x X 9x X I • * „ * * 

a a V i s connected 

= e X ^ q Z " A A < v ) <*> 
9 x b 

= exp-(Y X+Z y A X ( v ) ) (v) 

exo Z X (v) = exp-(Y A+A X(v){Z y-X 1i 1}) (v) 
9 x a 3 xb 

thus V ( v ' z A eA ) = (v,(Yi+A X(v){Z y-xy}) ê .) 

and so n. i s well defined, ba 
By a s i m i l a r argument one can show that d e f i n i t i o n ( I I ) does i n fact 

agree with d e f i n i t i o n ( I ) on N 
ab 

n b a i s smooth because A X i s smooth, and i s a diffeomorphism because the 

correspondence v -* v i s a diffeomorphism and the correspondence 

Z X -> Y X + A X(v) { Z y - X^} i s a diffeomorphism. R r + R r. 

I t i s straight forward to show that E, = L n . . 
w a b o ba Obviously n = identity, aa 

Suppose U fl U, (\ U i § for z e Q 
3 . D C £L 
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^ o v : { ( ^ Q c r l o V o ^ i v 1
0 y 

By l i n e a r i t y i t follows that 

"cb o % a = \ a : \ ( UaA " b n U c ) * R r + ^ ( u ^ U J x R r 

One can deduce immediately that r\~l = n ,. Q.E.D. 
oa ao 

The maps n. closely resemble the structure one would expect from a ua 
an affine bundle. However, since £ i s only a l o c a l diffeomorphism one 

cannot hope to obtain a bundle i n general. I t i s hoped that t h i s r e s u l t 

may be used to study the existence or non-existence of codimension one, 

leafwise complete L.A. f o l i a t i o n s on compact simply connected manifolds. 

In Chapter 4 i t w i l l be seen that the f o l i a t i o n determined by a p a r a l l e l 

f i e l d of n u l l planes on a pseudo-riemannian manifold has an L.A. structure. 
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C H A P T E R 3 

Generalised- Grid-Manifolds 

The work of t h i s chapter has been inspired largely by the work of 

S. A. Robertson J^i^Q. s- Kashiwabara Ql3 H and H ' W u C ^ H ' ^ e m a ^ T l 

structure theorem of §3.2 i s due to Kashiwabara, although the proof given 

i s more dire c t than the o r i g i n a l . 

§3-1 Equivalent Definitions 

In , S. A. Robertson defined a grid as a set of complementary 

f o l i a t i o n s , p a r a l l e l with respect to a riemannian structure. 

For our purposes i t w i l l s u f f i c e to consider only p a i r s of such f o l i a t 

ions as a l l the r e s u l t s generalise e a s i l y to the more general situat i o n . 

In Chapter 4 i t w i l l be seen that the following generalised d e f i n i t i o n of 

grid manifold reduces to Robertson's d e f i n i t i o n when the connexion i s the 

Ch r i s t o f f e l connexion of a riemannian metric. 

Definition 3-1.1 A grid manifold (M.,DljD2,D i s a smooth m-manifold 

M, a pair of smooth complementary distributions Di and D2 of dimensions 

r > 0 and m-r > 0 respectively, and a torsion free a f f i n e connexion T on M 

sa t i s f y i n g 

( i ) Di and D2 are p a r a l l e l , 

( i i ) I f ai and a 2 are the projector tensors associated with the p a i r 

(Di sD2), and i f R i s the curvature tensor of r then R(aiX,a 2Y)Z = 0 

for a l l smooth vector f i e l d s X,Y,Z oh M. 

Condition ( i ) implies that Di and D2 are integrable (by Lemma 1.5-1) 

and thus generate smooth f o l i a t i o n s and ̂"*2 say, of dimensions r and 

(m-r) respectively. 
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This i s e s s e n t i a l l y a l o c a l d e f i n i t i o n and hence i t i s not surprising 

that a grid manifold can be characterized by a s p e c i a l a t l a s of l e a f charts 

i n which the connexion co e f f i c i e n t s T2:, have a s p e c i a l form. 

As i n previous chapters, lat e Greek s u f f i c e s A,u,a,T etc. w i l l denote 

integer values i n the range 1,2,...,r, early Greek a,6,Y,6 etc. i n the 

range r+l,.c.,m and Roman i , j , k i n the range l,2,...,m. 

THEOREM 3.1.1. Let A = (M.Di.D2,D be a grid manifold. Then there i s an 

at l a s & = { ( u
a J z ^ ) : a e J> of coordinate charts on M such that on the 

overlap of two charts the coordinates z^ and z^ are related by equations of 

the form 

and Di, D2 are respectively spanned by — r X = l , . . . , r and a = r+l,...,m. 
9z 3z a 

a a 

Conversely given a torsion free connexion T on M and an a t l a s with the 

above properties then there are smooth distributions Dt and D2 for which 

(M,Di,D2,r) i s a grid manifold. 

^ a ( za> 
6 a a 

b 
( I ) 

I n the chart (U ,x ) the connexion coefficients s a t i s f y 

a 9f 9f 
BY a 0 la Xi a 9z 

Proof 

By Lemma 1.5-1 there i s an a t l a s &\ of lea f charts for $*i {(U j X 1 ) } 

so that Di i s spanned by — r - X = 1,... ,r on U . 
9x 

Simil a r l y there i s an a t l a s Pft = ^ V b > v h ^ s o t n a t D2 i s spanned by a ay 
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a = r+1,...,m. 

Let p E M and U a neighbourhood of p on- which' coordinates x 1 and y 1 are de

fined, and for which each plaque of in t e r s e c t s each plaque of exact

ly once. There i s no loss of generality i n assuming that the charts have 

a common origin 0. 

For each q e U, denote by P(q), Q(q) the plaques of i and through q 

i n U. 

Define new coordinates z 1 on U by 

z X ( q ) = x A(Q(q) C\ P(0)) 

z a ( q ) = y a(Q(0) H P(q)) 

I t i s not d i f f i c u l t to prove that t h i s defines a coordinate chart ( U j Z 1 ) . 

Moreover, on U, Di i s spanned by 

9 9 — r , X = 1,...,r and D2 by , a = r+1,...,m (1) 
9z A 9 z a 

This procedure can be carried out for each p e M to obtain a cover 

S = {(W j Z 1 ) : c e J} by such charts, c c 
I t follows immediately from (1) that i n the overlap of two charts 

(WjZ 1) and (WjZ 1) of S the coordinates z 1 and z 1 are related by equations 

of the form ( I ) . 
Qto) QM 

Pcv) n P(fy) 

P(o) 

0(<v)n P(o) 
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3 3 Di i s spanned by — r - A = l , . . . , r and D2 by a = r+l,...,m. 
i 3z 3z a 

With respect to z the projector tensors ai and a 2 have components 

A pA a -a a „ A ~ 
a i u = V az

 3
 = V a i i = °' a z i = ° 

a A The p a r a l l e l i s m of Di and D2 implies that r . = r . =0. Thus the curvature 
1 A lOt 

condition ( i i ) is-equivalent to R j ^ = 0. Thus 

3 r" 3 r? 
0 S R* = f l PA a i . a i 

6 y A 3x X 3x Y l X 6 y 1 Y B X 

3 r a 

3z X 

§1 

A 3 r 
Similarly,"one can deduce that j ~ = 0. 

3z 

Thus the cover S w i l l generate the required a t l a s . 

Conversely given such an a t l a s , and torsion free connexion T the required 
g 

smooth distributions Di, D2 are defined l o c a l l y by — r A = l , . . . , r , and 3 9 z 

a = r+l,.,.,m respectively and the overlap equations ( I ) ensure that 
3z a 

they are defined globally and are p a r a l l e l . 

Also, the a t l a s structure implies R®, = R*\ = 0 and R^, = R^. = 0 and ' ^ 3Ay oAy 3Ay uAy 
thus R^ , =0. jaA 
Hence (M,Di ,D2,D i s a grid manifold. Q.E.D. 

EXAMPLE 3.1.1 The Affine. product (see C l S l ] ) . 

Let M,N be smooth manifolds of dimensions m and n carrying torsion free 

a f f i n e connexions r and L. 
A a Let (U,x ) A = 1,.,.,m be a coordinate chart on M and (V,y ) 

a = l , . . . , n a chart on N. 

I f E = M x N i s the smooth product then.(UxV, ( x X , y a ) ) w i l l be a 

coordinate chart on E. Such charts generate the product a t l a s on E. 
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Define (m+n)3 functions P~ on t h i s chart by 

P? Q = Pf« = P? = P A = 0 A3 A3 Ay a3 • 

p a = r a p A = r A 

BY 3y> y6 " y9 

I t i s not d i f f i c u l t to show that P̂ . give the connexion co e f f i c i e n t s 

of a torsion free affine connexion P on E (defined globally by the product 

a t l a s ) , , 
3 Pg Y , 3 P e 

Since r1 = =- = 0 i t follows from Theorem 3.1,1 that P gives r i s e 
3x A 3y a 

to a grid structure on E where the p a r a l l e l distributions Si and S 2 are given 

by the product structure. 

Let pi : E + M, p 2 : E N be the projection maps. I t i s c l e a r that 

Pi and p 2 are connexion preserving (see Definition 2.1.2). 

Let O , T : [j3>l3 "* M » N b e respectively geodesies on M and N, then 

(0-3T) : QO, 13 •* E w i l l be a geodesic on E. Conversely i f h : [ j ^ j l H "* E 

i s a geodesic on E then one can write h = (pih,p 2h). Thus i f T and L are 

complete then P w i l l be complete. 

This grid manifold w i l l be denoted by (MxN,S 1,S 2 srxL). 

EXAMPLE 3.1.2. Take R 3 with coordinates ( X j y , z ) . Let T be the complete, 

f l a t C h r i s t o f f e l connexion of the standard metric ds 2 = dx 2 + dy 2 + dz 2. 
3/ 3/ 

The distributions £>i and D2 determined by the vector f i e l d s ( 3x, 3y) and 
3/ 

( 3z) respectively are p a r a l l e l . Since the curvature of r vanishes i t i s 

c l e a r that (R 3,D!,D 2 ,r) i s a grid manifold. 

Consider the smooth embedding f : S 2 x (0,1) -»• R 3 defined as follows: 

Let g : S 2 -»• R 3 be the standard embedding of the 2-sphere with radius 1 

r e l a t i v e to the above metric 

i f p e S 2 and t e (0,1), define f ( p , t ) to be the point distant (t+1) 



59. 

from the ori g i n along the l i n e j o i n i n g the ori g i n and g(p). 

This embedding gives r i s e to a natural grid manifold structure on 

S 2 x (o,l) induced from that on R3. 

The f o l i a t i o n s ^ i and ^ 5 on R 3 are given by the planes z = const and 

the l i n e s x = const, y = const. The f o l i a t i o n on S 2 x (0,1) induced by ^jh 

has leaves homeomorphic to R2 and to S 1 x R and so the structure cannot a r i s e 

from a product. 

1 

I t should be noted that although the connexion r on R3 i s complete, the 

connexion induced on S 2 x (0,1) i s not. 

This example shows that, even i n the case of simply connected manifolds, 

l i t t l e can be deduced about the global structure of a grid without some 

extra conditions. In the next section i t w i l l be shown that i f the connex

ion r i s complete then (M,Di,D2,r) i s covered by an a f f i n e product. 

§3.2 Complete Grid Manifolds 

Definition 3.2.1 A grid manifold Ms = (M,Di,D2,D i s complete i f r i s com-
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plete. 

Definition 3°2»2 A grid morphism f : Ji. -*• between two grid manifolds 

J(*= (M,Di,D 2 jr), J\j- (M,Di,D2,f) i s a smooth connexion preserving map 

f : M -*• M such that-Di = f*-Dx and D2 = f* D2 as bundles ( i . e . f preserves 

the f o l i a t i o n s and r f 2 ) Qz)* 

I f i n addition f i s a diffeomorphism then f i s a gr i d isomorphism. 

THEOREM 3 = 2.1 [ j 3 "J .. Let Jt= (M.Di.D2,D be a complete grid manifold 

for which M i s connected and simply connected. Then A* i s grid isomorphic 

to an affine product, 

Proof 

Let and ^"2 be the f o l i a t i o n s determined by the p a r a l l e l d i s t r i b u t 

ions Dx and D2. Let p e M and suppose L i and L 2 are the leaves of and 

^f2 through p, 

Let $ f = {(U ,x 1) : a e J } be the sp e c i a l l y related a t l a s of l e a f charts 
cL 3 . 

given by theorem 3,1,1. This a t l a s induces a smooth structure on Li and L 2 

as submanifolds ( v i a the l e a f topology, see Definition 1.1.5) r induces 

connexions Y\ and r 2 on L\ and L 2 . Since L i and L 2 are t o t a l l y geodesic 

(see §1.5) Ti and r 2 w i l l be complete. 

Let Li and L 2 be the simply connected covers with smooth covering maps 

TTi and T T 2 j and l e t Ti and r 2 be the l i f t e d (complete) connexions. 

Consider ( L i x L 2 , S i , S 2 , r i x r 2 ) the affine product grid manifold. 

The idea now i s to construct a gr i d morphism. f : J\j •> J\, for which 

f : Li x L 2 -*• M i s a covering map. 

Let a,x : 1̂ 0,1̂  -*• be broken geodesies emanating from p and lying i n Li and 

L 2 respectively. 
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Take a subdivision £o = - t o . t i j ,..., D v ^ + J '''' »^ tn-l» tn = ^ o f 

QOjI^J f o r which a | 0^*^ +-[3 i s a geodesic. 

I f a passes through the chart (UjX 1) of $r then the d i f f e r e n t i a l 

equations f o r a reduce to 

d 2a* . rA , iv da M da 9 _ n 

dP~ + rye ( a } HT • dT - 0 

(1) 
a a = constant 

Let X be the tangent vector at a ( t ) such that 
a. 3. 

a ( t ) = exp v ( t - t ) X f o r t e Ft , t . " J * a ( t ) a a '—a' a+1—1 

(note that X Q E D, (a( t ) ) ) . 
a. a. 

A broken geodesic a corresponding to a but emanating from x ( l ) and l y i n g i n 

the leaf L] of ^ " i through T(1), i s now defined inductively. 

P a r a l l e l translate X q along T from T(0) to T(1). Denote by Y q ( S ) the vector 

so obtained at T ( S ) . 
d Yj;(s) 

Locally, Y (s) s a t i s f i e s —^2 = q (2) 
since T l i e s i n a leaf of ̂ Tz. 

Define 

T l ( s ) = e x P T ( s ) Y o ( s ) 

a ( t ) = e x p i ( 1 ) t Y q ( 1 ) f o r t e Q ) , t i ] 

by v i r t u e of equations (1) and (2) i t i s clear that Ti l i e s w i t h i n a leaf 

of "̂"2 • Assume a I " [ j ^ t i s defined and that T & : Q ) , l [ ] M j o i n i n g 

a ( t ) to a ( t ), l y i n g i n a leaf of ^2, i s defined, a a 
Denote by Y (s) the vector at T (s) obtained by tr a n s l a t i n g X along T . 

Si cl cl cl 
I t s a t i s f i e s (2) l o c a l l y , 
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Define 

T a + 1 ( B ) = exp x ( s ) Y a(s) 

a(t) = exp x ( 1 ) ( t - t a ) . Y (1) f o r t e D , t U 
a 

Again by v i r t u e of equations (1), (2), T & + 1 w i l l l i e e n t i r e l y i n a 

leaf of 

J r . s i Qo,t a +^3 i s clearly a broken geodesic. Thus by induct

ion a i s defined on Q},!^] * 

<X(\) aV) 

L 

. 1 ' 
J-

XO) 

Put ail) = P ( a ( l ) , T ( D ) . 

F has the following property : I f a* and T 1 are broken geodesies at p, 

ly i n g i n Li and L 2 respectively with a ' ( l ) =; a ( l ) , T'(1) = T(1), and a 

homotopic to a', T nomotopic T' r e l a t i v e to t h e i r respective end points, 

then PCa'dJ.T'CD) . = 'P(O(1),T(1)) . 

Since equations (1), (2) do not depend on coordinates x a = r+l,...,m 

i t i s clear that i f a1 d i f f e r s from a only w i t h i n a single chart of ̂ , then 
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the property holds. 

I n general, i f H : Q ) , l 3 * C 0 » O L l ^ s a continuous map s a t i s f y i n g : 

H(0,t) = a ( t ) 

H ( l , t ) = a ' ( t ) 

H(s,0) = p 

H(s,l) = a ( l ) = a»(l) 

then, one may subdivide Q 3* 1!] as n ° s u i Z I »•0 •»C ub b+1-^ * °' °' ̂ N' 1-^ s o 

that H ( ^ u b , u b + 1 3 * C! u
c» u

c+in ) i s contained w i t h i n a simple convex 

neighbourhood U of r x i n Li with U <=• U , (U jX 1 ) E A". One can now use 
a a a 

th i s subdivision to obtain a sequence a = Oi,a2,...,a^,... = a 1 of broken 

geodesies s a t i s f y i n g c ^ ( l ) = c ( l ) = a ' ( l ) f o r i = 1,...,£, and such that 

d i f f e r s from o^+^ only w i t h i n one chart of &. 

I t follows by induction that F(a'(1),T(1)) = F ( a ( l ) , T ( l ) ) . But since 

the homotopy argument did not depend on 

F(O'(1),T'(1)) = F ( a ( l ) , T ' ( l ) ) 

One may use simi l a r arguments to show that F ( a ( l ) , T 1 ( 1 ) ) = F(CJ(1),T(1)). 

Hence 

F(a»(l),T'(D) = F ( a ( l ) , T ( D ) 

Now f i x a,To Let (U ,x 1),o,.,(U jX 1),,,,,, (U,,x^) be a cover of a(]"~0,l~]) 
O O 3. Q. Q Q. 

by charts of A' sat i s f y i n g 
( i ) There exists a subdivision Co,vi^] , •«•, C V

A » V
A + ] I ] > • • • J C ^ - I * 1 ! ! 

( i i ) For a l l a = l J B . . , d x & ( a ( t ) ) = 0 i f t e [_v a,v ^ a = r+l,= 5,,m t 

The piecewise smoothness and compactness of a ( ^ 0 , 1 ^ ) guarantees the e x i s t -
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ence of such.a cover. 

Let P be the plaque of L 2 i n Ui through x ( l ) . Let L 2 be the leaf of ^ 2 

which passes through a ( l ) , and P be the plaque of L 2 through a ( l ) i n U^. 

I t may be assumed without loss of generality that P i s given by 

Xi = 0 X = l , s . , , r and P by x^j = 0, A = 1,. c. , r . Suppose 

x a + l = B a + l , a ( xa> ( 3 ) 

o n a ( Q v a , v a + 1 J ) r\ U a (\ U f l + r 

Then the map (0,... .O.x 1^ 1,. ,x m) i+ (0, .. . A ^ t i . a ^ a ^ 0 ' ' ' C l . a ^ a ^ 

defines a diffeomorphism of a neighbourhood of q(x x=0) e U i n the plaque 

given by x^ = 0, A = l,„..,r, onto a neighbourhood of q(x
a+2_=0) e ^a+1 i n 

the plaque given by = 0, X = 1,...,r. 

Furthermore by ( i i ) q(x 1=0) H- q(x ̂-,=0). 
a a« _L 

Then by an inductive argument one obtains a diffeomorphism £ of a neighbour

hood W of T(1) i n P onto a neighbourhood W of 5(1) i n P, 

Let us suppose that with respect to the charts ( U ^ x 1 ) and ( u
d , x x ) that £ 

has the form 

(0,...,xi ,r..,Xi)l-*- (0,„„.,0,5 (xi),.,.,C ( x i ) ) . 

By v i r t u e of equations (1) i t i s clear that i f T' : ^ 0 , 2 ^ L 2 i s a broken 

geodesic s a t i s f y i n g T' | Q ) , l 3 ) = T | Q 5 * 1 ! ] and T ' ( Q I , 2 ^ ] ) C W then 

P(O(1),T'(2)) = 5(T'(2)). 

Since T N l i e s e n t i r e l y i n L 2 j one may do an exactly s i m i l a r analysis t o 

obtain a diffeomorphism n of a neighbourhood V of a ( l ) i n Li onto a neigh

bourhood V of a ( l ) i n Li„ 

I f (U ,x x) i s a chart of A*with o ( l ) e U and x 1 ( a ( l ) ) =0 i = l,...,m, o o o o 
then with respect to (U .x 1) and (u,.Xj).n w i l l have the form ^ o' o d' d » 
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x x£,o,...,o) H- ( n 1 ^ ) nr(x£),o,...,o) 

Furthermore, i f a' : C°>23 Li i s a broken geodesic s a t i s f y i n g 
a' I C0*1!! = a I E0*1!] and a'(Ql,23) <̂  V. 
Then F(a'(2),T'(2)) = (nl(a«(2)),...,nr(a'(2)),£r+1(T'(2)),...,£m(T»(2)) 

I f V x W has the product connexion defined by r t and T2 then equatiors (3), 

together with the corresponding equations used to define n, show that g i s 

connexion preserving and f o l i a t i o n preserving. 

Let p! : Li x L 2 -»• L j , p 2 : Li * L 2 •+ L 2 be the projections. 

Choose pi e Li and p 2 e L 2 such that TTI q P i ( p i ) = p = TT2 q p 2 ( p 2 ) . 

Let p = (pi,P2) e Li x L 2, 

Take any point q e Li x L 2 and l e t h : E°>-C3 + Li x L 2 be a broken geo

desic from p.to q (which always exists because any path from p to q can be 

covered by a f i n i t e number of simple convex neighbourhoods). 

Define f : Li x L 2 •+ M by 

The various properties of T T I , T T 2 , P I , P 2 , F and g show that t h i s does not 

depend on the choice of h and i s a smooth connexion preserving, f o l i a t i o n 

preserving, l o c a l diffeomorphism. 

Thus by Lemma 2.1.2 f i s a covering map. 

Since M i s simply connected i t follows that f i s a diffeomorphism and thus 

with respect to (U d,x^). 

Thus for f i x e d O,T there i s a diffeomorphism 

g : V x v/ U, C M defined by 

g(a,b) = ( n 1 ( a ) , . , . , n r ( a ) , ? r + 1 ( b ) , t . . , C m ( b ) ) 

f ( q ) = F U i q P I q h(l),TT 2 q p 2 q h ( l ) ) 
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f : J\j -*• J\* i s a g r i d isomorphism, Q.E.D. 

This theorem shows that simple connectivity plus completeness i s 

s u f f i c i e n t f o r a global product decomposition. Example 3.1.2 showed that 

the assumption of completeness cannot i n general be dropped. 

Thus the general problem of - cl a s s i f y i n g complete g r i d manifolds reduces 

to an algebraic one, namely the c l a s s i f i c a t i o n of certain groups of covering 

transformations. 

Let G be a properly discontinuous group of diffeomorphisms (see 

Spanier Q2-"7]Q page 87 ) of a smooth m-manifold M. Then one may take the 

quotient space M/G, M/G in h e r i t s a smooth hausdorf manifold structure from 

the quotient map p : M -* M/G. Furthermore, with respect t o these structures 

p i s a regular covering map (see Q 11 ̂  page ) and i f M i s simply 

connected then ITi (M/G) = G. 

I f M has some geometric structure which i s invariant under the action 

of G then there i s a corresponding structure induced on M/G. Thus i f 

(M,D l sD 2,r) i s a g r i d manifold and G i s also a group of g r i d auto

morphisms then there i s a g r i d structure on M/G f o r which the quotient map 

p induces a g r i d morphism. This g r i d manifold w i l l be denoted by JijG. 

This leads to the following r e s u l t . 

THEOREM 3.2.2, Let J t = (M.Di.Da.D be a complete g r i d manifold, Then 

there i s an a f f i n e product (MixM 2,Si,S 2,rixr 2) and a properly d i s 

continuous group G of g r i d automorphisms of such that A i s g r i d i s o 

morphic to Jf /G. Futhermore T T I(M) = G. 

Proof 

Let M be the simply connected cover of M. Then the g r i d structure on 

M l i f t s to one on M i n such a way that the covering transformations act as 
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a properly discontinuous group G of g r i d automorphisms. But G = T T I(M) and 

so the re s u l t follows by theorem 3.2.1. Q.E.D. 

I t i s possible that a global product decomposition might r e s u l t even 

i f M i s not simply connected. 

Suppose that G decomposes as the direc t product of two normal subgroups 

Gi and G2 such that f o r a l l (x,y) e Mi x M2 

g e G =>g(x,y) = gig2(x,y) g x e Gls g2 e G2 

where gi(x,y) = (g|(x),y) 

and g 2(x,y) = (x,g'(y)) 
2 

l 
where g^ i = 1,2 i s a connexion preserving diffeomorphism of (M^,I\). 

I f Ĝ  = < g^' : g e G> then Ĝ  w i l l be a properly discontinuous group of 

diffeomorphisms of M^„ 

I t i s not d i f f i c u l t to show that Ml/G' * Mz/G' admits an a f f i n e product 
1 2 

structure induced fromc^*, and Jd>is g r i d isomorphic to c^'. 

Conversely i f i s g r i d isomorphic to a product then G w i l l factor i n 

t h i s way. 

This motivates the d e f i n i t i o n (due to A. G. Walker Q34-^]) o f " t h e 

m u l t i p l i c i t y p(z) of the point z e M as the number of intersections of the 

leaf of cf"T through z with the leaf of $""2 through z, p(z) i s obviously 

closely related t o the action of G„ 

THEOREM 3-2.3. Let J( ,= (M 1D l lD 2 tD be a complete g r i d manifold. Then/L 
i s g r i d isomorphic to an a f f i n e product i f and only i f p(z) = 1 f o r a l l 

z e M. 
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Proof necessity i s obvious. 

Let J f = ( M i x M 2 , S i J S 2 j r i x r 2 ) be the covering a f f i n e product of theorem 3.2.2 

and G the covering group of g r i d automorphisms. 

Let (x,y) e Mi x M2 and g e G, 

Since G preserves the product structure one may w r i t e g(x,y) = (A(x),B(y)) 

where A,B are connexion preserving diffeomorphisms of Mi and M2 respectively. 

I f IT : Mi x M 2 ->• M i s the covering map then p(ir(x,y)) = 1 t e l l s us that i f 

(a,b) = g(x*M 2) A (Mi*y) then there exists gi e-G such that gi(x,y) = (a,b) 

((a,b) w i l l always exist because g preserves the product). 

now, (a,b) = (A(x),y) 

°°° gi(x,y) = (A(x),y) 

Put Gi = < gi : g e G > then i t i s easy to show that Gi i s a normal subgroup 

of G. 

Similarly, one may construct a normal subgroup G2 such that 

g = gi Q g2 = g2 Q g i , gi e G l f E G2 

The representation i s obviously unique. Thus G ^ Gj x G2 and so iA(̂  i s an 

a f f i n e product. Q.E.D. 
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EXAMPLE 3 o 2 . 1 „ A complete g r i d structure i s now constructed on the torus 
T 2 which has i n f i n i t e m u l t i p l i c i t y and hence i s not isomorphic t o an af f i n e 
product. 

Take R2 with coordinates (x,y). Let T be the C h r i s t o f f e l connexion of the 

standard complete metric ds 2 = dx 2 + dy 2. Clearly T2: = 0 and so T i s i n -

variant under the usual action of Z x Z. Consider the d i s t r i b u t i o n s Di and 

D2 spanned by the smooth vector f i e l d s - r - + v2 - r — and . These are 
j dX dy dX 

p a r a l l e l , and invariant under Z x Z and so give r i s e to a complete g r i d 

structure on T 2 = R2 / Z x Z. 

Let L] and L 2 be the leaves on Rz through ( 0 , 0 ) . Li i s the l i n e y = ̂ 2. x 

and L 2 i s the l i n e y = 0 , I f (m,n) e Z x z then (m,n)(L 2) i s the l i n e y = n. 

This intersects hx at the point with coordinates (n, n / * ^ 2 ) . Since / 2 i s 

i r r a t i o n a l , n / / 2 i s never an integer and so there i s no g e Z x i such that 

( n , n / / 2 ) = g ( 0 , 0 ) 

Furthermore i t i s easy to show that i f n i n' then there i s no 

g e Z x z such that 

(n,n'/i£) = g(n,n/*£) 

Thus i f TT : R2 •+ T 2 i s the projection then t\(hi) and ir ( L 2 ) must i n t e r 

sect i n f i n i t e l y many times. 
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C H A P T E R 4 

P a r a l l e l Foliations on Pseudoriemannian Manifolds 

§4.1 Pseudoriemannian Metrics 

Let M be a smooth m-manifold. A r)lemannian metric g on M i s a smooth 

symmetric tensor f i e l d of type (0,2) which i s positive d e f i n i t e as a b i l i n 

ear form on the tangent space at each point of M. 

I f the positive d e f i n i t e condition i s relaxed to non-degeneracy then one 

obtains: 

D e f i n i t i o n 4.1.1. A pseudoriemannian metric g on M i s a smooth symmetric 

tensor f i e l d of type (0,2) which i s non-degenerate as a b i l i n e a r form on the 

tangent space at each point of M. 

A pseudoriemannian manifold w i l l be denoted by the pai r (M,g). 

Let x E M, then the signature of g at x i s the pair (k,m-k) where k i s the 

number of negative eigenvalues of the b i l i n e a r fojrm. 

A simple continuity argument shows that the' signature of .g i s constant over 

a neighbourhood of x and hence i s constant on M' i f M i s connected. 

I t i s well known that a paracompact manifold always admits a riemannian 

metric. The s i t u a t i o n i n the pseudoriemannian case i s more complicated. 

The following r e s u l t i s proved i n [ j i 6 ! . 

L E M M A 4.1.1. A compact smooth m-manifold admits a pseudoriemannian 

metric of signature (k»m-k) i f and only i f i t admits a smooth k-dimensional 

d i s t r i b u t i o n . 

Hence the 2-sphere S2 admits a riemannian but no pseudoriemannian structure 
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of signature (1,1). 

A pseudoriemannian manifold i s said to be complete i f the C h r i s t o f f e l 

connexion i s complete. 

Subspaces at a point. 

Let x e M and suppose Ei and E 2 are two vector subspaces of M . Ei o E 2 

w i l l denote the intersection subspace and Ei + E2 the sum. 

Then dim(E x+E 2) = dim(Ej) + dim(E 2) - dim(Ei H Eg}. 

E 2 i s said to be orthogonal to Ei i f g(X,Y) = 0 f o r every X e E i , Y e E2. 

The conjugate subspace Ej. to a subspace E of i s defined as the c o l l e c t i o n 

of vectors which are orthogonal to every vector of'E. • 

I t can be shown that dim(E x) = m-dim(E). Clearly, i f Ej i s orthogonal to 

E 2 then E 2 i s orthogonal to Ei and so ( E j j j _ = E." 

The n u l l part E^ of E i s . Efl E^ and consists of vectors X f o r which 

g(X,X) = 0. I f E A = {0} then E i s said to be non-null. I f dim(E 0 ) > 0 

then E i s said to be p a r t i a l l y n u l l . 

The subspace E + Ej. w i l l be denoted by E +. I t i s not d i f f i c u l t t o prove 

that E + = (E^ ) j _ and hence dim(E +) = m-dim(EAi ). 

Since EL contains E^, i t follows that (m-dim(E)) £.dim(E^) < dim(E). 

Hence dim(E^) < ̂ 2m. 

Parall e l Foliations. 

Let r be the torsion free C h r i s t o f f e l connexion of g and suppose that i s 

a p a r a l l e l f o l i a t i o n on M of dimension r i n the sense of d e f i n i t i o n 1.5-2. 

Denote the tangent d i s t r i b u t i o n to ̂  by T̂ "\ 

By taking the conjugate subspace at each point one obtains a conjugate di s 

t r i b u t i o n (T^-)j_ say. ( T ^ j j . i s a p a r a l l e l d i s t r i b u t i o n because p a r a l l e l 

t r a n s l a t i o n preserves orthogonality. The corresponding p a r a l l e l f o l i a t i o n 
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i s denoted by t f j _ . P a r a l l e l t r a n s l a t i o n also preserves, the n u l l part of 

T ̂  at each point and hence one can define to be the f o l i a t i o n with 

tangent d i s t r i b u t i o n (Tgf-) O ( T ^ ) . 

w i l l be called a p a r a l l e l f o l i a t i o n of type (r,sO i f d i m ( ^ - ) = r + s and 

dim(~f"^ ) = r . This implies that dimC^j.) = m - r - s and d i m ( ^ ) = m - r. 

Def i n i t i o n 4.1.2. A p a r a l l e l f o l i a t i o n of type (r,s) i s said to be 

non-null i f r = 0 

p a r t i a l l y n u l l i f r > 0 and s 0 

n u l l i f s = 0. 

Clearly, ^f" i s non-null i f and only i f i s non n u l l . 

§4.2. P a r a l l e l Non-null Foliations • 

I n t h i s section an alternative proof of the De-Rham, Wu decomposition 

theorem 3, C^"lH i - s given, using theorem 3-2.1. The proof i s 

simpler than that given by Wu i n ^ • 

THEOREM̂  4:2.1. Let ̂  be a p a r a l l e l non-null f o l i a t i o n on a pseudoriemann-

ian manifold (M.g). Then J^>= (M,T'fr,T/3j_,r) i s a g r i d manifold- (see §3.1). 

Furthermore, each leaf of ̂ * has an induced pseudoriemannjan structure. 

Proof. 

For convenience put D = T'cf. 

Since D x = {0} i t i s clear that D and Dj^are complementary. 

Suppose dim(D) = r. From the proof of theorem 3-1.1 there i s a leaf atlas 

& = {(U j X 1 ) : a e J} such that on U , D i s spanned by — A = l , . . . , r and 
3 a Dj_is spanned by a = r+l,...,m. The orthogonality of D and Dj. implies 

3x a 

a 
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that 

aX Xa ~ , n, 
gXa = gaX 8 =8 = 0 (1) 

i n each chart. The parallelism of D and D± implies that 

i f . = r A . = 0 (2) Xi a i 

I f a comma denotes p a r t i a l derivative then from (1) and (2) 

0 = B Ds B A i i
 + g 3 i } X - gxij3D 

Also 

r 3 y = >2 g eCg eg j Y
 + geYje g3Y,e-^ 

and thus from (3) 

r„ , = 0, s i m i l a r l y r \ = 0 

Hence by theorem 3-1-1 <Ms= ( M ^ D ^ D i s a g r i d manifold. 

The components g D a,B = 1,...,r induce the required pseudoriemannian 
CXp 

structure on the leaves of Q.E.D. 

In p a r t i c u l a r , i f g i s riemannian then any p a r a l l e l f o l i a t i o n i s non-null 

and thus the g r i d manifold d e f i n i t i o n due to S. A. Robertson £ ^ " 0 ^ s a 

special case of d e f i n i t i o n 3-1.1. 

EXAMPLE 4.2*1. The Pseudoriemannian Product. 
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Let (M,g) and (N,h) be pseudoriemannian manifolds of dimensions m and n. 
A a 

Consider the smooth product P = M * N. Let (Uyx -.) and (V,y ) 

A = 1,... ,m, a = 1,...,n be coordinate charts on M and N respectively. 

Then (UxV,(x\y a)) gives a chart of the product-atlas on P. 

Define (m+n)2 functions k.. i n each such chart by 

Ay &Ay' ag ap' Aa aA 

These define a pseudoriemannian metric on P. Moreover the d i s t r i b u t i o n D 

determined by the f i e l d — r A = l,...,m i n each product chart, i s p a r a l l e l 
ax 

and non-null. 

By similar arguments to example 3-1-1 the structure i s complete i f and only 

i f both (M,g) and (N,h) are complete. 

L E J&J/Ui. kJZ.l. ' (Wolf H4Cf] ). Let f : M ̂  M' be a map of connected 

pseudoriemannian manifolds. Then the following are equivalent, 

( i ) f i s an isometry. 

( i i ) f i s connexion preserving and f« : M̂  -*• M j , ^ i s a linear isometry f o r 

every x e M. 

( i i i ) f i s connexion preserving and there exists x e M f o r which 

f * : M -> M', N i s a linear isometry. —* x f (x) J L 

Proof 

( i ) implies ( i i ) implies ( i i i ) i s t r i v i a l . 

Assume ( i i i ) , given z e M choose a smooth path a i n M from x to z and 

l e t a' = f a. I f T and T" denote p a r a l l e l t r a n s l a t i o n along a and a', then 

because f i s connexion preserving ( f * ) : M -»• M!,,' v i s given by 
Z Z X \ Z ) 

( f , J = T' ( f J T _ i. But T and T* are linear isometries thus ( f * ) i s * z o * x o * z 
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a linear isometry. Thus ( i i i ) -*• ( i ) . Q.E.D. 

THEOREM 4.2.2. Let (M,g) be a connected, simply connected, complete 

pseudoriemannian m-manifold which admits a p a r a l l e l non-null f o l i a t i o n 

of dimension r . Then there i s a f o l i a t i o n preserving isometry from (M,g) 

onto the pseudoriemannian product of an r-manifold and an (m-r) manifold. 

Proof 

Let x e M and suppose V[x i s the leaf of through xand M2 i s the leaf of 

through x. By theorem 4.2.1 g induces metrics-gi and g 2 say, on Mi and 

M2. The C h r i s t o f f e l connexions Tx and r 2 determined by gi and g 2 are 

clearly the connexions induced on Mi and M2 by r . 

Denote the pseudoriemannian product by (M xxM 2 3giXg 2). 

Obviously the C h r i s t o f f e l connexion of gi x g 2 i s Ti x T 2 (the a f f i n e 

product connexion). By theorem 3-2.1 <̂ C= (MjT^jT'-f ^ r ) i s g r i d isomorphic 

to ( M i X M 2 j S i 3 S 2 j r i x r 2 ) . 

Hence there i s a connexion preserving diffeomorphism. 

f : (M,xM 2 jrjxr 2) + (M,r) 

But f i s clearly an isometry at the point (x,x) e Mx x M 2 with respect t o 

the metrics g] x g 2 and g. Hence by Lemma 4.2.1 f i s a global isometry. 

Q.E.D. 

COROLLARY Let (M,g) be a connected, complete pseudoriemannian m-manifold 

which admits a p a r a l l e l non-null f o l i a t i o n . Then there i s a pseudoriemann-

ian product (M,g) and a properly discontinuous group G of isometries of 

(M,g) such that (M,g) i s isometric t o (M,g)/G. Furthermore T T I(M) ^ G. 
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Proof immediate. 

The theorem determines completely the global structure of a p a r a l l e l non-

n u l l f o l i a t i o n on a complete simply connected, pseudoriemannian manifold. 

§4.3- Parallel. P a r t i a l l y - n u l l ..Foliations 

whereas the global structure f o r the non-null case i s well understood, 

the s i t u a t i o n f o r p a r a l l e l p a r t i a l l y - n u l l f o l i a t i o n s • i s f a r more complicated. 

The reason f o r tUs seems to be the loss of a lo c a l product .structure. 

However, i t w i l l be seen that the n u l l part of a p a r a l l e l f o l i a t i o n i s i n 

fact a l o c a l l y a f f i n e f o l i a t i o n i n the sense of d e f i n i t i o n 2.2.1. This 

property i s used to deduce several global r e s u l t s . 

The next r e s u l t i s due to A. G. Walker Q3£T , [j56 ̂  and gives a 

loc a l characterisation of the structure. 

L E M M A 4.3-1- Let ^f-be a p a r a l l e l f o l i a t i o n of-type- (r.s) on a 

connected pseudoriemannian m-manifold (M,g). Then-there i s an atlas 4* of 

coordinate charts on M such that i n each chart (U.x 1) the metric has the 

canonical form. 

0 0 0 i " 
0 A 0 F 
0 0 B G 
1 F' G' C__ 

where the non-zero submatrices s a t i s f y the following conditions, 

( i ) I i s the unit r * r matrix and A,B are non-singular and symmetric of 

of orders s * s and (n-2r-s) * (n-2r-s) respectively. C i s symmetric 

of order r * r. F and G are of order s * r and (n-2r-s) * r 

(g- = ) 
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respectively with transposes F' and G'. 

( i i ) A and F (and thus F') are independent of the coordinates x r and 

x x ; and B and G (and thus G') are independent of 

x^ ,... ,x r and r+1 r+s 

Furthermore the tangent d i s t r i b u t i o n s to ^"A , rj~ are spanned 

respectively by 3 
9X1 

3x r+s 
M r 5 [ 3 F ' 3xx 

r 3 
' _r ' r+s+1 ' " '' m-r 3x 3x 

3 
3x' m-r 

Conversely, given such an atlas with a canonical form, then the above d i s 

t r i b u t i o n s are p a r a l l e l . 

D e f i n i t i o n 4.3.1. An atlas fa of the above form w i l l be called a Walker 

atlas. 

THEOREM i | . 3.1. Let ^ be a p a r a l l e l f o l i a t i o n on a pseudoriemannian m-

manifold (M,g), then (M, ^ ,D i s an L.A. f o l i a t i o n (where T i s the 

C h r i s t o f f e l connexion of g)• 

Proof 

Let A be a Walker Atlas and (U,x 1) 3 (OjX 1) be overlapping charts. 

Then on the overlap g. . = — - . — - g . 
1 J 3X1 3xJ ^ q 

I f PjA,y,e,T E ( l , . . . , r ) ; p',\1,u',6',T' e(m-r+l,...,m) then from the lemma 

d x p 3x q 3x 9 3x T' m 

" 3x A ' 3x A ' a ? ' 9 T ' 

D i f f e r e n t i a t i n g 

0 = 3 2 x 9 3x T' 
3 x e 9 x

A " ̂  ^ 
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thus 

3 2 x 9 - 0 
ax? & 

Furthermore = J* g ^ - ( g . Q y g . ^ ^ - g ^ ^ ) = 0. 

Thus by theorem 2.2.1 ( M , , D i s an L.A. f o l i a t i o n . Q.E.D. 

In E. M. Patterson and A. G. Walker exhibit a pseudoriemannian 

structure on the cotangent bundle of an a f f i n e l y connected manifold. This 

structure makes the f o l i a t i o n determined by the vector space f i b r e s , n u l l 

and p a r a l l e l . 

A similar structure i s now put on the sub-bundle of the cotangent bundle 

which i s canonically determined by a f o l i a t i o n . 

D e f i n i t i o n 4.3.2. The Co-normal Bundle. •. • 

Let 3̂ " be an a r b i t r a r y codimension p f o l i a t i o n on a manifold- M- and 

<£c - {(U , x j ) : a e J} a leaf atlas f o r ' c f . The leaves are determined a a 
ot l o c a l l y by x = const., a = m-p+l,...,m. • • 
cL 

Consider the 1-forms to a = dx01. These span a p-dimensional subspace of the 
cL cL 

cotangent space of M at each point of U . Moreover, since 

dx & i t is- clear .that- t h i s .subspace does not depend on the dx, b 

pa r t i c u l a r choice' of chart. Thus one obtains a smooth p-dimensional sub-

bundle of the cotangent bundle T*M. 

This i s the co-normal bundle of and i s denoted by v* I f " . 

THEOREM 4.3-2. Let 1^*be a smooth codimension p f o l i a t i o n on a paracompact 

m-manifold M. Then there i s a oseudoriemannian- structure on the conormal 

bundle v* which makes the f o l i a t i o n by the vector space f i b r e s , p a r a l l e l 

and n u l l . 
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Proof 

Let <A" be a leaf atlas f o r and T e C(M, 3") (which i s non-empty by 

theorem 1.5.1). 

I f (UjX 1) e Af, then u 0 1 - dx a a = m-p+lj...jm span v*'^ |U. 

Thus one may take coordinate functions ( S ^ x 1 ) on v* ̂ "|U where' • 

v e v* $"(x) has coordinates ( S i , . . . .x1 ( x ) , . . . , x m ( x ) ) and v = £ ;-w a(x). 

Put W = v* 1J-IU, then (W,(E . x 1 ) ) i s a coordinate chart on- v* (since W 

is diffeomorphic t o U*RP). Such a chart w i l l be- called a bundle- chart. 

Let h be a positive d e f i n i t e metric on M. This can be used to determine a 

complementary d i s t r i b u t i o n to T ^ and projector tensors a and I - a. With 

respect to (UjX 1), a has components a^ = 6̂ , a? = 0, a^ and h has the form 

ds z = h. a) w + h a dx dx where GO = dx + a dx . Au a3 a 
Define 

H s (v = ( fiv > (1) 

Consider the following (m+p) * (m+p) matrix defined on W c_v* ^" 

( S r s } = 0 0 1 

0 A H 

1 H' B 

r,s e ( l , . . . J P J I , . . . ,m) 

where I i s the unit 

p x p matrix. 

For (gpg) to define a pseuodriemannian metric tensor globally on v* i t 

i s not d i f f i c u l t t o show that the following conditions must be s a t i s f i e d on 

oh the overlap of two bundle charts (W ( S ^ x 1 ) ) , (VI, ( ^ x 1 ) ) . (For conven

ience a' w i l l denote components with respect to £ ). 
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( i ) 

( i i ) A Ay 

( i i i ) H Aa 

( i v ) B a3 

3x_ 
3x A 

'aS' 
e 3x1 

3x y 9T 
35 

note that — 7 = 0 
3x A 

3x M f3x 9 

3x A l 3 x a y 8 3x a 
H ye 

35, 
3x 
3xA 

a 
3x Y

 | 3x Y 

3x B 3x a 

35, 
3x e 

3e'Y 
3x 
3x a 

.-a 3x 
3x1 
3x 6 

3x1 32L 
3x a 3x 3 X Y 3x a 

9xi 
3x p 

3x_ 
0-3 3x 

Ây 

S ye 

These conditions are now v e r i f i e d i n turn. 

- 3x a 

( i ) clearly £ = E — g 
6 a 3x 3 

Thus y — 
y 3x 

35. 

35 
3x Y 

( i i ) A 

( i i i ) H Aa 

3x e 
3 

3x T 

.-a 3x 
3x e 

Ay " Ay .-A 3x 3x y 
h, 9T 

3x 
3x* 

3x 
e 
Y =e3' 3a3' 

Ml 
3x y 

A 6T 

a yX 3x 
T 
e 

3x 
3x X 

3x_ 
' 3x a 

3x! 
3x a ' 

a 6
 + e 

3 ^ 
3x 

T 8 3x a 

3x!)f3x! 
.-a I -A 

(2) 

3x 
3x! 
3x X 

3x 

H 
TE 

M l 
3x y 

A 

( i v ) B, a3 -2 f Y £ * a 3 ^ 
~y ~A r + a a Q h , Y a 3 yA 

"2 5, & 3xc 3x Y 3* x 6 

£ Y 3x a 

3 ^ 
3x 9 

3x' 
3x 

a 8 + 
a e .. 

3 ? 
3x 

3x B 

3x£ 

3x a 3x0. 

3x a 

3x A 3xL 

3x* 3x 3 6 

4) + 3x_ 3x1 
3X* 

(noting that = 0 because r e C(M, ^-)) 

3xBJ 3x y 

3x1 
3x X ax 

3x1 
--a 3x 

3x .Y 

3xh 

( a a a T h -2 E. r 6 ) e Y & cy 

f3x T 3xf_ 3x2 l ^ d l a h 
.-3 a-a --a .-3 ae err ^3x 

- 2 E 

3x 
3* x 6 

6 3x a 3x S 

3x1 
3x a 

Ml 
3x 8 ax 

(3) 
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now, from (2) 

9 ^ - V r , ML 9 2 x 6 

9-a £ - B W 3-a ' 3 X Y ^ 

thus 

e 3x a " 3x 3 •'• ^ • " 3x 6 ' 3x a ' 3x Y 3x e ' 6 

y 3x^ 3x Y 

and by d i f f e r e n t i a t i n g 6l = — ^ . — o n e obtains 
B 3x^ 3x° 

5 3 2 x e 3x Y 3x e 3 2 x 6
 F ' E " 3x a 3x 6 3x B ' 3x a ' 3x £ 3x Y ' 6 

Hence 

3 2 x S . , ffe 3x Y . 3x Y 3 « e 

6 ~-a «-B _ 2 £ d x = y 
^ 3 x a . 3 x e 1 

+ 
3x a ". 3x S. 3x a-' 3xBJ ^ 

Substituting'in (3) orie'obtains the required form f o r B fl. • 
Otp 

Thus (g^, ) defines a pseudo-riemannian metric on v* ̂ . By Lemma 4.3.1 i t 

makes the f o l i a t i o n by the vector space flibres, p a r a l l e l and n u l l . Q.E.D. 

This theorem enables one to construct on simply connected manifolds, 

p a r a l l e l f o l i a t i o n s which do not admit a global product structure. 

For instance the cotangent bundle of S2, T*S2 i s 1 a-'simply .connected k-

manifold with such a metric. However T*SZ i s not homeomorphic to S2 x R2. 

Also, by considering the co-normal bundle of the 2-dimensional Reeb 

f o l i a t i o n ' of S3 (see Q^-O^) o n e c a n u s e the theorem to- obtain.a metric on 

R x s 3 which makes the 1-dimensional f o l i a t i o n by the R- factors, p a r a l l e l 

and n u l l . The conjugate 3-dimensional f o l i a t i o n does not- even-admit- a 

fib r e d structure, because the Ehresmann holonomy group of at least one leaf 

i s n o n - t r i v i a l . 
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D e f i n i t i o n 4.3.3- A pseudoriemannian co-normal bundle (E,g) i s a co-normal 

bundle E and a pseudoriemannian metric g which makes the f o l i a t i o n by the 

vector space f i b r e s , p a r a l l e l and n u l l . 

I t might be hoped that , j u s t as the pseudoriemannian product was the 

'canonical' example f o r p a r a l l e l non-null f o l i a t i o n s , so the co-normal 

bundle might be the - 'canonical' example f o r p a r a l l e l n u l l f o l i a t i o n s . 

However, l i t t l e appears to be known on the subject. In the next section 

some special cases are discussed. 

The next r e s u l t i s due to S. A. Robertson. 

THEOREM ' 4.3.3- Let 3~ be a p a r a l l e l f o l i a t i o n of type (r,s) on a connect

ed , pseudoriemannian- m-manif old M. Then there i s a natural vector bundle 

isomorphism f : T ^ •» v* ̂ ~ |. 

Proof 

Let <^ =• {(U ,x^-)- : a e J} be a Walker atlas f o r 1$r. Then v* j f " i s 

spanned on U by the 1-forms dx m r+"'",... ,dx m and T^k i s spanned by the 
3. SL Si M 

vector f i e l d s -5—r 3 • 
9 x a 3xA 

Define f on T |U by f fi a 

to m and X from 1 to r. 

,X 9 
9x_ 

X ct = X g, dx where a runs from (m-r+1) Aot a 

Prom Lemma 4.3-1 ( S A a ) i s the u n i t r * r matrix. 

I f U r\ n i <t> then a b 

,X 3 
9x[ 

X' 

X X a 3x 3 

3x^ 

3x: 

a 

^ 3 dx" 

a 
d X b d X b 

a • SpB d x b = X gXa **b 
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and thus f does not depend on' the p a r t i c u l a r chart used and so i s defined 

globally. I t i s easy to see that f i s a vector bundle isomorphism. Q.E.D. 

COROLLARY. Let ^ f " be a p a r a l l e l n u l l f o l i a t i o n of dimension m on a para-

compact connected pseudoriemannian 2m-manifold M. Then 

( i ) M ; T t 8 T ^ - (Whitney sum). 

( i i ) M admits an almost complex structure, 

( i i i ) The S t i e f e l Whitney classes of M are given by 

W 2 i + 1(M) = 0, W2i(M) = (W.(T^)) 2. 

Proof 

Since ^ = ̂  i t follows that- T ̂- = v* • 

But TM ̂ .TC^ffi v£j" where v~f- i s any normal bundle (determined by some 

positive d e f i n i t e metric). 

Also v#"= v* J - and hence TM • ^ T / f - 0 v * ^ ^ T ^ - I T J ' . 

The almost complex structure J i s defined by 

J(a,b) = (-b,a) 

( i i i ) follows d i r e c t l y from the product formula W(A©u) = W(A).W(y). (See 

Q.E.D. 

As a consequence of theorem H:3.2 and t h i s corollary i t follows that 

the cotangent bundle (and hence the tangent bundle) of a paracompact mani

f o l d admits an almost complex structure. 



84. 

§4.4 Submersions 

De f i n i t i o n 4.4.1. A submersion f : M -*• N~ between two . smooth manifolds i s 

a smooth surjective map such that f + i s surjective on each tangent space. 

N w i l l be called the base of the submersion. 

In t h i s section some global results w i l l be obtained about p a r a l l e l f o l i a t 

ions by assuming that there i s a submersion f" for-which 

T ^ ( x ) = kernal ( f ^ K x ) i . e . the inverse image of a point of N i s a union 

of leaves of sJ" . 

In the corollary to theorem 2.1.1 i t was proved'that"complete L.A. manifolds 

could be considered as the quotient space of i f by a group of transformat

ions contained i n the a f f i n e group A(m;R). 

De f i n i t i o n 4.4.2. A euclidean cylinder i s a complete L.A. manifold f o r 

which the group of covering transformations i s a group of translations. 

THEOREM 4.4.1. Let ̂ f- be a p a r a l l e l f o l i a t i o n of type ( r , 0 ) , given by a 

submersion, on a complete, connected,'• pseudoriemannian m-manifold (M,g). 

Then each leaf of %~ with the induced connexion i s a f f i n e l y equivalent t o 

a euclidean cylinder. 

Proof 

Let f : M •* N be the submersion and A' a Walker atlas f o r 

Let L be a leaf of and w = f ( L ) e N. Take any point p E L and l e t 

( l ^ x 1 ) E A* such that p e U. 

Put V = {p 1 e U : x X(p') = x X ( p ) , A = l , . . . , r } . Because kernal 

(f„,)(p) = T$*Cp) i t follows that there i s a neighbourhood U' c: u of p such 
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that 

f : V -> f (V ) i s a diffeomorphism. 

Let W = f (V ). Let E = union o f leaves of ft through V . 

Then f(E) = W .'. E i s open. Now because each leaf of ^ - j . i s a union of 

leaves of i t follows that f|E induces a f o l i a t i o n £j say on W where 

T ^ ( f ( x ) ) = f * ( T # j . ( x ) ) f o r x e E. 

Define coordinates y 1 i = 1,.... ,m-r on W by 

y ! ( z ) = x v + 1 { { f \ V ) - H z ) ) 

y m _ r ( z ) = x^CflV'J-Uz)) 

I t i s clear that (Wjy 1) i s a leaf chart f o r ̂  (leaves are 
m-2r m-r . . N y,....3y =constant). 
Now, l e t q be any other point of L and (U QJX^) e such that q e U q. Then 

there i s U' <=- U such that o o 

f : + f (V^) c i W and i s a diffeomorphism. 

Change to new coordinates x^"1",... ,x m by the rule 

x j + 1 ( q ' ) = y ^ f t q ' ) ) 

x m(q') = y m " r ( f ( q ' ) ) 3 q' e 

I t follows d i r e c t l y from Walker's o r i g i n a l construction (see LZSJf̂ ] 

Theorem 1) that one may f i n d coordinates x 1....,x r (defined i n terms of 
o o 

xl> • • • J X O *o + 1'''' '*o^ a n e i S n t ) O U r n o o d U Q 0 U
Q
 O F ^ S U C N T H A T 

(U^x*) e A . 
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Let S = {(U .x 1) : a E J} be a cover of L by such charts, a a 
From the construction i t i s clear that i f U fi U, t <b then 

a b 
9x a 

— | = fij , a,0 = r+l,...,m 
3x, 

9x , 
Thus from equation (1) of theorem 4.3.1 i t follows that = 6 

9x£ * 
A,u = 1,...,r and so S gives r i s e to a cover of L=by a f f i n e charts i n which 

the coordinate transformations are translations.= I t i s now easy to show 

that the group of covering transformations of L with respect to the covering 

map, exPp : T jj"(p) L, i s a group of translations of Rr. Q.E.D. 

Def i n i t i o n 4.4.3. A submersion f : M -»• N i s i n j e c t i v e i f f _ 1 ( y ) i s connect

ed f o r a l l y e N. 

THEOREM 4.4.2. Let ^ be a p a r a l l e l f o l i a t i o n - o f type (r,0) given by an 

i n j e c t i v e submersion, on a complete, connected-, . paracompact pseudoriemannian 

m-manifold (M,g). I f each leaf of ^ i s simply connected then (M,g) i s 

isometric to a pseudoriemannian co«-normal bundle. 

Proof 

Let f : M -*• N be the i n j e c t i v e submersion.' Because each leaf of 

consists of a union of leaves of 3^ i t follows that induces a f o l i a t i o n 

i on N given by T ^ C f C x ) ) = f * (T ). (T h e - i n j e c t i v i t y ensures that 

images of the leaves of ^f""j_ do not have s e l f intersections) see picture.(pS8). 

Let ^ b e a Walker atlas. Let (UjX 1) e A* such that i f 

V = {q e U : xX(a) = 0 \ = l , . . . , r } then f- :-V -* f(V) i s a diffeomorphism. 

By theorems 4.3-1 and 2.2.4 there i s a l o c a l diffeomorphism 
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£ : V x R •* M which i s leaf preserving and i s a covering space of each 

leaf. Thus, since each leaf i s simply connected 

£ : v x R + (leaf through v) i s a diffeomorphism. 

Also, i f 5(v,X) = £(v,X) then f ( v ) = f ( v ) which gives v = v and so X = X. 

Hence £ i s 1-1 and so i s a diffeomorphism. 

Consider : f(V) x R R •* M defined by i|Kf(v),X) = £(v,X). 

i s clearly a diffeomorphism. The c o l l e c t i o n of a l l such together with 

the t r a n s i t i o n maps n b ^ of theorem 2,2.4 show that M admits an a f f i n e 
r 

bundle structure with projection f , f i b r e R , base N and structure group 
A(r , R ) (see example 2.2.1). 

Now i t i s we l l known (see Ql5 ^ and ["2/13) t n a ^ any smooth f i b r e 
r 

bundle with f i b r e R over a paracompact base manifold, admits' a smooth cross 

section. I t follows that the a f f i n e bundle structure can be reduced to a 

vector-bundle structure, with structure group G L ( r ; R ) . (The general linear 

group). 

I t i s not d i f f i c u l t to show that there i s a cover of M by coordinate charts 

of the form ( ^ ( W x R^jX 1) where x l , . . . s x r span the f i b r e s , (W,x- r + 1,... ,x m) 

i s a leaf chart on N f o r the f o l i a t i o n Mj,, and on the overlap of 
-A 

( i K W x R ^ x 1 ) and ( ^ ( W x R 1 " ) , ^ 1 ) , x A = - ^ j x p A,u = l , . . . , r . 
9 x 9 3 Thus T #-,T th _ are spanned by -r—r ,. • •, — - and • 

3 3 9 X 

3 F ^m=? respectively. 
Also g, . = 0 A = 1,...,r, i = r+1,...,m-r. 

A l 
Consider now the- map h : M •* v* <^x defined by 

, ,• i r r+1 rru , A, a r+1 m, h(x ,...,x ,x ,...,x ) = ( g a A x dx ,x ,...3x ) 

where a = m-r+1,...,m and A = 1,...,r. 

I f (iKWxR ),x ) i s an overlapping chart then 
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3otA 
-A ,-a x dx M l 

3x a : 

M l 
3x A 

38u 
~-A ~-a 
^ - x T . d xY 
3xl 3x .Y 

=3u x dx 

This shows that h does not depend on any p a r t i c u l a r chart and"sp i s indeed 

defined globally. I t i s easy to show that h i s a diffeomorphisnrr . 

The required metric on v* ^ x i s given by ( h _ 1 ) * g . Q.E.D. 

This theorem shows that i f the n u l l part ^ of a p a r a l l e l , p a r t i a l l y 

n u l l f o l i a t i o n ^ of type (r,s) i s given by an i n j e c t i v e submersion then i t 

can be considered as a co-normal bundle v* ^ + where <2j+ i s the f o l i a t i o n 

on the base induced from ̂ " . By looking at the canonical form f o r the 

metric given i n Lemma 4.3-1 i t can be shown that each leaf L of ^ + admits 

a complete pseudoriemannian structure f o r which the f o l i a t i o n s induced on 

L by ^ and ^ a r e p a r a l l e l , non-null and complementary. Thus, by 

theorem 4.2.2 L i s covered by the product of an (m-2r-s) manifold and an 

s-manifold. 
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I t would seem reasonable to conjecture that the submersion assumption i s 

unnecessary i f M i s simply connected. 

CONJECTURE 4.4.1. Let ̂  be a p a r a l l e l f o l i a t i o n of type (r,0) on a com

plete, connected, paracompact, simply connected, pseudoriemannian m-manifold 

(M,g). I f each leaf of 3~ i s simply connected then (M,g) i s isometric to 

a, pseudoriemannian co-normal bundle. 

§4.5 Pa r a l l e l Fields of Lines 

In Q ^ ^ Z I J S. A. Robertson proved that a compact, connected, complete, 

3-dimensional pseudoriemannian manifold which admits a p a r a l l e l 1-dimension-

a l f o l i a t i o n ( i . e . a p a r a l l e l f i e l d of lin e s ) has i n f i n i t e fundamental 

group. His proof f o r the n u l l case used a deep theorem of Novikov QiS 3 • 

In Q 5" 3 > ^ w a s c l a i " i e d t h a t the resul t generalised t o n-dimensional 

manifolds. Unfortunately, there i s a gap i n the proof of the n u l l case and 

i t only works f o r a s t r i c t l y p a r a l l e l f i e l d of lines (see Chapter 5). 

However, the proof of the non-null case i s v a l i d , and i n fact does not make 

use of completeness. In t h i s section a much stronger r e s u l t i s obtained by 

using a theorem of Reeb Q i O ^ } . 

L E M M A 4.5.1. Let u be a closed non-vanishing smooth 1-form on a smooth 

m-manifold, then the smooth co-dimension-1 d i s t r i b u t i o n D defined by ai|D = 0 

i s integrable. 

Proof 

I f X,Y e D then i n the chart { \ J , x x ) 
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f x i 3YJ y i 3XJ 

3xJ 3xJ 3^ 

10 
U -1 a x 1 J

 9 x
J 1 

, i a 
3x 

T- (to. Y j) - YJ" (u. X 1) + i J axJ 
aw. 3io.-> 

l 
"•ax1 ax0-" 

= 0 since u>(X) = co(Y) = 0 and du = 0. 

.'. [^XjY3 E D and so D i s involutive and hence integrable by Lemma 

1.4.1. Q.E.D. 

L E M M A 4.5.2. (Reeb ) • Let M be a compact riemannian manifold 

and to a closed non-vanishing 1-form s a t i s f y i n g i I col I = 1 . Let H~ be the 

f o l i a t i o n of M defined by co \= 0 (see lemma 4.5.1). Then the leaves of ^j-

are homeomorphic and i f L i s a t y p i c a l l e a f , there i s a covering map 

f : R x L -*• M which preserves the f o l i a t i o n and f o r which f | t * L i f f a homeo-

morphism f o r each t . 

THEOREM 4.5.1. Let be a p a r a l l e l f o l i a t i o n of type (0,1) on a compact 

connected, pseudoriemannian m-manifold (M»g). Then M i s covered by R * V 

for some (m-1) manifold V. 

Proof 

By lemma 4.3.1 there i s a Walker Atlas of charts f o r which the metric 

g has the canonical form. 

where B i s a non-singular, symmetric (m-1) x (m-1) 
matrix function of the coordinates 
•> m 

(g..) = a 0 

0 B 
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and a i s a non-vanishing function of x 1 only. 

I t follows that on the overlap of two charts ( U j X 1 ) , (UjX 1) the 

jacobian matrix has the form 

r ^ 1 

r 0 

0 S 

where a = r a. 
x 1 -V i i Change coordinates by the rule y 1 = / |a(u)| 2 du, y = x i £»2, 

Then 

3y-
±1 0 

0 S 

By using similar arguments to theorem 2.2.3 i t i s possible to show that 

there i s a 2-fold covering map <f>i : M -* M such that M admits a cover by co

ordinate charts (WjU 1) with jacobian matrices of the form 

v-i-i 

o 
( i ) 

There i s a globally defined closed non-vanishing 1-form u on M given by 

oj = du 1 i n each chart. Let h be any positive d e f i n i t e metric on M. Then 

||^|12- i s a riemannian metric f o r which w has u n i t norm. Let ^ be the (m-1) 

dimensional f o l i a t i o n on M determined by w = 0. By lemma 4.5.2 the leaves 

of ^ are homeomorphic, and i f V i s a t y p i c a l leaf there i s a covering map 

<j>2 : R x V •*• M thus f = ifi | 2 : R x V + M i s a covering map. Q.E.D. 

COROLLARY. I f (M,g) i s a compact, pseudoriemannian manifold which admits 

a p a r a l l e l f i e l d of non-null lines then TTI(M) i s i n f i n i t e . 
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See also £J 5" J • 

I t should be noted that i f (M,g) i s complete then the theorem follows from 
theorem 4.2.2. 
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C H A P T E R 5 

Parallel Framings on Pseudoriemannian Manifolds 

§5.1 Related Atlases 

Let M be a smooth, connected, pseudoriemannian m-manifold. 

An orthogonal k-frame at x e M i s an ordered set X = (Ai,...,X^) of mutually 

orthogonal, l i n e a r l y independent tangent vectors to Mat x. The set of a l l 

orthogonal k-frames at x e M forms a S t i e f e l manifold S k (see [jlA ^ ) which 

i s the f i b r e over x of the S t i e f e l bundle SkM. A smooth section a of 

i s called a k-framihg of M and determines an ordered set (o"i,... ,o^) of 

smooth, l i n e a r l y independent, mutually orthogonal vector-fields . The-

section a also determines a sub-bundle ]> of TM generated by Oi,...,a^. 

D e f i n i t i o n 5.1-1- The framing i s said to be p a r a l l e l of type ( r , k - r ) i f 

and only i f : 

(1) For a l l i = 1,...,k, CK i s a p a r a l l e l vector f i e l d . 

(2) ai,...,a are n u l l . 

(3) °r+i>'••>°k a r e non-null and un i t ( i . e . g(a,a)=±l). 

(4) a i , . . . ,o r generate I f\ J . 

There i s no loss of generality i n assuming condition (4), because i f some 

linear combination of a
r +±> • • • s a y X were n u l l then since p a r a l l e l trans

l a t i o n preserves n u l l i t y the system could be reduced to one of type 

( r + l , k - r - l ) . 

I f a i s p a r a l l e l , then £ i s a s t r i c t l y p a r a l l e l f i e l d of k-planes of n u l l i t y 

r , i n the terminology of . The results of Chapter 4 can now be 

strengthened considerably f o r such p a r a l l e l f i e l d s . 

As before the f o l i a t i o n s determined by ,][ £ and w i l l be denoted 
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by 9 l 3f-j., ? n respectively. 

Suppose that a i s a p a r a l l e l k-framing of M of. type, ( r , k - r ) . Then by 

a result of Eisenhart [^4- ZI ( s e e a l s o Walker [^3G~|)> i n t h e notation of 
§4.3 there i s a Walker atlas A" on M such'that in.each chart (with coordin-

r* s u i** 
ates (x,y,z,t) e R x R x R X R , u=m-k-r) the matrix of the-metric tensor 

has the form 
(g-•) = 0 0 0 1 

r 
O A 0 O 
0 0 B(z,t) " G-(x/t) 

_ I r 0 G'(z,t) C(z,t)_ 

where I i s the u n i t r x r matrix and A,B,C are symmetric matrices of - order 

s x s, u x u and r x r respectively, where r + s = k1 and u + v - m - k. 

Also, A and B are i n v e r t i b l e and A i s a constant diagonal matrix with 

entries of the form ±1. 
1 r 

I f x = (x , , . . j X ) etc. then 01 = Sx1 .,a. 
3 8 

a r + l = 3~r ' * " , a k = — s ' I f c follows that the coordinates ( x ^ y ^ . z ^ j t * ) 
r y 3y 

and ( X j y j Z j t ) on the overlap of two charts are related by equations of the 

form 

y* 

x + a(z,t) 

y + 3 

Z(z,t) 

t + y 

s r 
where 8 e R and y e R are constants and Z,a are smoottnfunctions of the 

coordinates z,t. 

The existence of 'A' leads to the following r e s u l t . 
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THEOREM 5.1.1. Let (M,g) be a connected, pseudoriemannian m-manifold with 

a p a r a l l e l k-framing of type ( r , k - r ) , then: 
k+r 

( i ) TM 5 c (BE; f o r some sub bundle S of TM (where c i s the- t r i v i a l l i n e 

bundle. 

( i i ) I f M i s compact then the leaves of and ff^ are-, a f f i n e l y equivalent 

i n the induced structure to euclidean cylinders'and there.is a' k-dimensional 

subspace i n H'(M;R). Furthermore M i s a'bundle over T^ (the k-torus). 

Prqof 

( i ) follows from theorem 4.3.3. 

( i i ) The atlas A' induces a l o c a l l y euclidean structure on the leaves of 

and . Since M i s compact the integral' curves of Oi,...,a^ are complete 

and so t h i s induced structure i s complete'.'- Hence the leaves are af f i n e l y 

equivalent t o euclidean cylinders (see theorem • ̂ .4.1). dt = (dti,.;'v,dt ) 

determines globally, r-independent closed non-vanishing 1-forms and thus 

gives an r-dimensional linear subspace' i n HKM>R) (see corollary t o lemma 

2.1.1). I t follows also that M i s a bundle over T^ by theorem 1 of Tischler 

C50"2 (see lemma 5-3.2). Q.E.D. 

§5.2 Parallel. Framings of Maximum N u l l i t y 

The extreme case of p a r a l l e l framings' of "type ( r 3 0 ) on manifolds of 

dimension m = 2r or (2r+l) i s now considered'. The metric of M has signature 

( r , r ) i f m i s even and ( r + l 3 r ) or ( r , r + l ) i f nr i s odd. I f m is- even i t 

follows immediately from theorem 5-1.1 that M i s pa r a l l e l i z a b l e (and hence 

orientable). 

THEOREM 5.2.1. Let (M,g) be a complete, connected, pseudoriemannian 2r or 
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(2r+l)-manifold with a p a r a l l e l framing of type ( r , 0 ) . Then, f o r a l l 

x e M, exp : M ->• M i s a covering map. 

Proof. Case (1). M i s even dimensional. 

There i s a Walker Atlas ^ on M such that i n each chart the metric 

tensor has the form 

0 I 
r 

l _ i r c ( t ) . 

Each chart has coordinates ( x , t ) e Rr x R*" and on the overlap of two charts 

the coordinates ( x ^ j t * ) , ( x , t ) are related by equations of the form 

x* = x + a ( t ) 

t + = t + y where y e R i s constant 

For ease of notation x w i l l be denoted by x^ X = l , . . . , r and t by 
L r+1 r 2r 

w = x s . . . j t = x . Late Greek suffices A,U,T,... w i l l denote integers 
i n ( l , . . . , r ) and early Greek ot,3,Yj... integers i n (r+1,...,2r). Roman 

suffices i j j j k w i l l denote integers i n (1,...,2r). The coefficients of the 

Levi-Civita connexion s a t i s f y 

r j k = ruk = ° s r6y = 1/a S a ( ga3 JY + gaY JB" g6Y,a ) 

The equations f o r a geodesic 6 : [^0,1^1 -* M reduce t o 

| ^ + r* g(e a(u)) x 0^ = 0 
d 2 Q a J (2) 
di? ~ = 0 

X a 
where (0) = XA and (0) = A ' 
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Let x e M and X q e M . Let 6 : Q ) , l ^ l "** M b e t n e geodesic determined by 

X q such that 8(1) = exp x X q. Cover 6 ( [ j D , l 3 ) ™-th' charts 

(U . x i " ) , . . . , (U„,xJ.) of <Af f o r which there i s a subdivision o o N' N 

C°JUiIl3---J|Zui'ui+1II>--- D-^-p 1!] ° f C 0' 1!] s a t i s f y i n g 
9( C u ^ J u j _ + 1 I ] ) ̂  u j _ - Suppose that X q has components X^ with respect t o 

o' o 
I t follows from (2) that i n the chart (U.,x^), e has components i ' l 

e j ( u ) . x y U i ) • e*(u.) - ^ . r ^ (e*(.» ds *, 

e?(u) = x"(u-u.) * e?(u.) 
1 0 1 1 1 

By using an inductive argument with (1), one can obtain 

(3) 
6?(u) = X 0^ + A? 

l o 1 

(u) = xxu - x V l V ;v .r x
f t(xW)ds dv +

 1 f / > V V A ( x W f ) d s d v l . o o ol !u. u. i a6 o i ' > n ul. u. j aB o j I i i 
i - 1 , 

+ I K* . . ( x V + a T ) j=0 J J 1 J J 

ex A where A. i s constant and K. .,n i s a smooth real valued function defined on i J j + 1 
the overlap of IL and U.Al. Thus, i n the chart (U^,x^), one can represent 

exp X by *x o J 

(exp x XQf - e j j d ) 

(exp x X / = e x ( D 

I t i s clear from (3) that the Jacobian of t h i s map has the matrix form 

• l r Q(X»)' 

0 r —1 

(4) 
f o r some smooth Q 
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This matrix i s non-singular and so exp x i s a l o c a l diffeomorphism. I t 

follows that there i s a neighbourhood W of X q i n and an open set U C 

such that exp : W -»• U i s onto. I t w i l l now be shown that exp i s onto U 
X X 

(the closure of U i n U^). 
X ct 

Let z = (x ,x ) be a l i m i t point of U i n U N and l e t X(p) £ W p = 1,2,3,..., 

be a sequence such that exp x X(p) converges to 7,. 

Clearly X a ( p ) converges to x a - A®. Using equations (3) i s i s not d i f f i c u l t 

t o show that exp X|{X e-Mx r X A r. x
a.- p*},-+ ( i e a f through z ) ' i s a covering map. 

I t follows that l i m ( x A - X A ( p ) ) exists. Thus = l i m X 1 ( p ) exi s t s . 
P"*°° - / p-K»-

Clearly, z = exp x
 x i and so exp x i s 'onto U and hence the whole of Û . I t 

i s easily seen from (3) that there i s a neighbourhood W of X such that 

exp x : V/' •*• i s 1-1. A straightforward induction shows that 
exp : M + M i s onto. K x x 
The connexion on M can now be pulled back to a connexion on M so that exp 

X X 
i s connexion preserving. 

Let 0 : r"o.Ui) -> M be a geodesic and l e t T = exp a be the corres->— » 1 x & ^x 0 
ponding geodesic on M. Since M i s complete, T ( U I ) i s defined. One may pick 

a chart (UjX 1) around T ( U I ) SO that exp x has the form (3) f o r a neighbour

hood W of a ( u 2 ) , u 2 < Ui, a ( p u 2 , u i ) ) <z. W and exp : W •*• U i s a d i f f e o -

morphism. Put a ( u i ) = (exp x|W) - 1 T ( U I ) . Thus a i s defined on the whole of 

R and hence M i s complete. 
x * 

By lemma 2.1.2 exp x : Mx •*• M i s a covering map. 

Case (2). M i s odd dimensional. 

There i s a Walker atlas A' onH (see Walker 035"3) s u c n t n a t i - n e a c n 

chart the metric tensor has the form 

(g-•) = 0 0 1 
r 

0 ±1 0 
, 1 0 C(t) r -
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Each chart has coordinates (x,z,t) £ R*1 * R x R1"' -and on the overlap of 

two charts the coordinates (x^z^jt,,,) and (x,z,t) are related by equations 

of the form 

x # = x + ai ( t ) z + 012(t) 

z* = ±z + 3 ( t ) 

t * = t + y 

where y e Rr i s constant. 
The res u l t now follows by an exactly analogous method t o case (1). Q.E.D. 

COROLLARY. I f M111 i s simply connected and connected, with a p a r a l l e l framing 

of maximum n u l l i t y then M"1 i s diffeomorphic t o Ft"1. 

§5.3 P a r a l l e l Framings of Maximum N u l l i t y on Compact.Manifolds. 

The results of the previous section can be strengthened considerably 

i f M i s assumed to be compact. 

L E M M A 5-3.1. I f (M,g) i s a compact, pseudoriemannian m-manifold with 

a p a r a l l e l framing of maximum n u l l i t y of type ( r , 0 ) , then (M,g) i s complete. 

Proof 

Only the case m = 2r i s proved. The proof f o r the odd .case i s exactly 

analogous. I t w i l l again be convenient t o work with closed charts. By the 

nature of equations (3) of theorem 5.2.1 i t i s clear that normal'coordinate 

systems are compatible w i t h the Walker Atlas A". By using proposition 8.1 

of Chapter I I I of [^15 3 and the compactness of M i t follows that there 

(5) 
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exists an e > 0 and a Walker chart centred at each point of M whose coordin

ate ranges are greater than e. That i s to say, f o r each p e M there i s 

(UjX 1) e such that x 1 ( p ) = 0 and |max(x 1)-min(x 1)| > E , i = l,...,m. 

Denote t h i s c o l l e c t i o n of charts by S. I t i s clear that there i s a K > 0 

such that i n every chart of S, | r ^ | < K. 

Fix p e M and l e t o : £o,l) -»• M be a geodesic emanating from p with i n i t i a l 

vector X e Mp so that o(u) = exp^ uX f o r u e Qo,l). 

Let (UQJX^) be a chart at p and X 1 the components of X with respect t o 

(p) pick uj e Q),l) such that K l - u J X 1 ! < | and ^ X ^ K < § 9x d d d 
o 

f o r i = l,...,m. a,6 = r+l,...,m. Let (U,x ) e S be a chart at o ( u i ) then 

a has coordinates 

a a(u) = jfCu-u,) 

a X(u) = X A(u-u,) - X^ 3 |^ |^ r ^ 6 ( a Y ( s ) ) ds dv 

The conditions on Ui ensure that f o r u e £ui,l2J> the r i g h t hand sides 

of both equations are w i t h i n the respective coordinate- ranges. 

Thus a ( l ) i s defined. I t follows easily that a i s defined on the whole of 

R, and hence (M,g) i s complete. Q.E.D. 

L E M M A 5-3.2. (Tischler £]303 )• Let M be a compact m-manifold which 
1 r 

admits r-independent, closed non vanishing 1-forms in ,... ,OJ . Then there 

i s a bundle map f : M -> T r and i f { 6 a : 6 a + 1 ~ 8 a, a = 1 r } are 

standard coordinates on T2* then f o r any e > 0 there exists a r a t i o n a l 

number q such that ||f*(d8 a) - q uoa|| < e (where the norm i s induced from 

some riemannian metric on M). 

This res u l t can be strengthened as follows. 
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THEOREM 5.3.1. Let M be a smooth, compact, connected m-manifold which has 

a f o l i a t i o n of codimension r , determined by r independent closed non-
m— r+1 m 

vanishing 1-forms, o> tu . Then a l l the leaves.of T are homeomorph-

i c , and there i s a bundle map f : M •*• such that i f F i s the f i b r e and L 

i s a t y p i c a l leaf then F x R1* and L * Rr have the same universal cover and 

TTI(F) i s isomorphic to an extension of a subgroup of TTI(L) by Z n (where Z n 

i s the free abelian group on n generators). Furthermore, i f L i s simply 

connected then TT̂  (M) i s abelian. 

Proof 

Let A = {(UjX 1 ) } be a leaf atlas f o r $"~so that the leaves are given 
cx 

l o c a l l y by x = constant, a = m-r+l,...,m. 
ot . o t . du =0 implies that there are r smooth functions y defined on U such that 

a , a u) = dy . 

There exists a leaf' chart (UjZ 1) such that za = y a, a = m-r+1,. •.. ,nr. ' 

Let h be a riemannian metric on M. Then, by defining an orthogonal cony-' 

plementary d i s t r i b u t i o n t o one can obtain projector tensors a and a i n 

the usual way. 
X u Ci 8 Suppose h has l i n e element ds 2 = h^ w w + dz dz where 

X , X , X , a a) = dz + a dz . a 
Define a new metric g by ds 2 = h, oi^iaV + Z ( d z a ) 2 . 

a a ^ . * • 
Now, because UJ = dz i t follows that g i s defined globally and i s 

bundle l i k e i n the sense of Reinhart Q i l 3 • 

I f g has components g.. with respect to the new chart (UjZ 1) then the 

vector f i e l d s X = g 1 J 8/ a j are defined globally and s a t i s f y 

u)^(X ) = 6 6 and g(X ,X ) = 1. Let X = C0^ be a non zero combination with a a & a 5 a a 
£ a = constant. Then the one parameter group of diffeomorphisms 

; R x M ->• M associated with X (the flow of X) corresponds t o a geodesic 
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flow normal to the leaves. But g(X(x),X(x)) i s constant as x varies over 

M and thus because g i s bundle l i k e (and complete since M i s compact), 

I|J(S, ) : M •+ M sends leaves to leaves f o r each s e R. I t follows easily 

that a l l the leaves are homeomorphic. 

Denote the r-tuple of 1-forms ( u ) m - r + 1 , . . . ,u m) by w. Thus T ^ - i s defin

ed by w l T ^ = 0. Operations on u are carried out component-wise. 

Let a e M and consider H & = {[^cQ : ]^cQ e i r ^ M j a ) , a smooth loop, 

/ u = 0}. 
a 
Clearly H i s a normal subgroup of TTi(M,a), and moreover i t contains the 

3. 

commutator subgroup C. 

Let M be the connected covering space of M with respect to the group H (see 

Rosenburg l~2-5~]) then M i s a regular covering space of M with covering 

group TTi(M,a)/H . Denote the covering projection by p. 

Defined on M i s the r-tuple u* = p* w = (p* u m " r + 1 , . . . ,p* u m ) . 

w* i s never zero, and dto* = 0. Let be the f o l i a t i o n determined by 

U*|T2-* = 0. 

Let a be a closed curve i n M based at some pqint a i n p _ 1 ( a ) . 
Now, / u* = / OJ and because {~p cQ represents an element i n H (from the 

a p a , 0 a 

construction of M) i t follows that / o>* =0. 
a 

Thus the i n t e g r a l of OJ* about any closed curve i n M i s zero and so 

OJ* = d £ where J, i s an r-tuple (lm r + 1,... ,£m) of smooth re a l valued funct

ions on M. The l e v e l surfaces of I are precisely the leaves of . 

The vector f i e l d s X l i f t t o X* on M so that wa*(X?) = 6?. 
a a 6 3 

Thus X*(£a) = fij, and so i f la = c01, a = m-r+l,...-,m i s a leaf of ^ * then p P 
the flow of £X* f o r a r e a l number £ takes t h i s leaf to the leaf 
„m-r+l m-r+1 .3 r. 3 „m m T, „ n, ,,, .„ _ r ,, J!, = c = £+c ,...,£ = c . I t follows that i f y e R then 

I = y i s a leaf of 

Thus M i s diffeomorphic to L x Rr where L i s a l e a f of f f " * . For each 
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Y e Rr, L q x y corresponds to a leaf of 9~ *. I t may be assumed without loss 

of generality that p ( L Q) = L the leaf of cf* through a. 

Define a map q : L -> L q as follows. Let b E L and T : D-^O •*" L a 

path from a to b. L i f t T to a path x i n L q with i n i t i a l point a. Put 

q(b) = T(1). This map does not depend on T because closed paths i n L are 

represented i n H & and so l i f t t o closed paths i n L . 

Thus p : L Q •*• L i s a diffeomorphism and M can be i d e n t i f i e d with L * Rr. 
r • p : L x R - v M i s a regular covering with covering group G, isomorphic to 

TTI(M,a)/H a. Now because i s a monomorphism i t follows that H & may be 

i d e n t i f i e d with TTJ (L,a) c TTJ (M,a) (where i : L -*• M i s the inclusion 

map). Thus G = i r i ( M , a ) / i ^ 7Ti(L,a) and i s abelian because C <^ Ha« To show 

that G i s free abelian a further lemma i s required. 

D e f i n i t i o n 5.3.1. An oriented closed transversal to ^ i s a smooth path 
ct 8 

j : S1 -> M such that u (,]"*( / g t ) ) a = m-r+l,...,m are not a l l zero and a l l 

have constant sign f o r t e S1 (= { t E R : t ~ t + l } ) . 

L E M M A 5.3.2. Under the hypotheses of the theorem an element of 7Ti(M,a) 

can be represented by an oriented closed transversal i f and only i f i t 

belongs to iri(M,a) - i^TTi (L,a). 

Proof 

This result i s a d i r e c t generalization of a theorem of Moussu Q l 7 U 

f o r the case r = 1. 

I f x i s a closed oriented transversal then obviously / to i 0 and thus 

DO t H
a
 = ijjt (L>a) • 

Conversely, l e t o be a loop at a such that DO E " f i f t ^ a ) ~ % i r i ( L , a ) . 
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Let a be the l i f t of o i n L x i f with i n i t i a l point a = (a*0) say'. Put 

SLI = ( a i , ^ i ) = 5(1), t i e R and Li = L x . t r . Now,'since 

C°H ^ ̂  TTi (L,a), t i i s non zero. The path, T : Qo,l3 L * Rr defined 

by x(u) = (a,u t i ) i s a transversal segment, oriented with respect t o u a * 

f o r a = m-r+1,... ,m, with end point a 2 = (a,_ti) e L i . 

Let Si be a smooth path i n Li which joins a.2 to Hi . Since 

TT! (L*R ,a) = i i / TTi (L ,a), the loop a"1 BY T i s homotopic r e l a t i v e t o a 
if O 0 0 

to a loop 6"0 i n L q . Let 0I,X,B o a' be the projections under p of 
B i j ? ) ^ , , ( a , t i ) . Then i t i s clear that Q Q = £6i T Q 8j" ! 3- B y a 
suitable deformation along one of the flows, one may construct an oriented 

closed transversal x' homotopic to 9i x^ 9J"' and oriented with respect t o 
ct • 

each to i n the same sense as x. Q.E.D. 

COROLLARY, TTI (M,a)/iy TTi(L,a) i s free abelian. 

Proof 

I t i s abelian because C c H . 
a 

To show i t has no torsion l e t [ J J ^ e iri(M,a) and l e t ^ 0 be i t s coset 

i n TTL(MjaJ/i^ Tr l(L,a). By the lemma i s representable by an oriented 

closed transversal x say. x k i s always an oriented closed transversal and 

thus [\kH = [ V ] K 4 i ^ TTi (L,a) i . e . 00 K * °- Q.E.D. 

Hence G i s free abelian, and moreover i s f i n i t e l y generated because M 

i s compact (see Q2.7^] ) • 

Now, by lemma 5-3.1 there i s a bundle map f : M T r. I f F i s the . 

f i b r e , then F i s compact and there i s no loss of generality i n assuming that 

F i s connected - because i f i t were not then one' could construct a k-fold 

cover (k=number components of F) of T r (which i s diffeomorphic to T1") and 

http://L
http://x.tr
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a new bundle map onto t h i s covering manifold, with connected f i b r e and the 

same properties. 

Let M be the universal cover of M, then there is.a regular covering 

<() : M •> L x Rr such that p <J> : M -»• M i s the'- projection. 

Let P(a) be the f i b r e of f through a and P the.component of p"l(F(a)) 

through a. Then p : P •>• F(a) i s a regular covering with covering group G1, 

a subgroup of G. Clearly G' i s free abelian and f i n i t e l y generated, i . e . 

G' = Z n f o r some n. 

Since tii (I>R ) = TTI (L) i t follows that the covering group of <f> i s iso

morphic t O TTi (L). 

Let P be a connected component of tt> - 1(F), then <j> : F •> F i s a regular 

covering with covering group isomorphic t o a subgroup A of TTI(L). Then, i f 

F i s simply connected, TTI (F) w i l l be isomorphic to an extension of A by G-'. 

I f T has coordinates {9 e R •: 8 ~ 9 +1, a = m-r+1,.... ,m), l e t 
r „r • . . r £ : R •*• T be the regular covering induced by the standard Z action. Then 

r r . 
£ induces a p u l l back bundle on R- with f i b r e F. But since R i s contract-

able t h i s bundle i s reducible to the t r i v i a l bundle and so there i s a cover

ing map n : F x Rr -* M such that f o r each t E Rr, n | P x _t i s a diffeomorphism 

onto a f i b r e of f i n M. 

Let F be a simply connected cover of F, then there i s a covering map 

<j>' : F x Rr -»- p x Rr. Clearly n 4>-1 : F x R r -»• M i s a simply connected 

cover. Hence by the uniqueness of simply connected covers (see 

there i s a homeomorphism X : F x Rr- -»• M such that (pQ4>) X = <p'. Thus 

X : F + F i s a homeomorphism and so F i s simply connected. This proves the 

f i r s t part of the theorem. 

The second part follows immediately from the fact that C <=• i ^ ^ ( L ^ a ) 

and so i f L i s simply connected, C i s t r i v i a l . Q.E.D. 

The next theorem uses t h i s r e s u l t t o show that there are very strong 
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topological r e s t r i c t i o n s on compact manifolds with p a r a l l e l framings of 

maximum n u l l i t y . 

THEOREM ' 5.3.2. Let (M.g) be a compact, connected, pseudoriemannian m-

manifold with a p a r a l l e l framing of type (r,0') and maximum n u l l i t y . Then 

the leaves of ^f" are a l l homeomorphic to T q f o r some fi x e d q ̂  r and 

M i s a bundle over T r. The f i b r e F i s a compact, connected (m-r) manifold 
r in 

f o r which F * R i s covered by R . I f m = 2r then ^(FQ i s isomorphic t o 
k h 

an extension of Z by Z f o r some k and h with k ̂  q. Furthermore. M i s 

covered by and i f m = 2r then TTI (M) i s isomorphic t o an extension of Z q 

g 

by Z f o r some s. 

Proof 

By theorems 5-1.1 and 5.3.1 the leaves of jf~ are homeomorphic euclidean 

cylinders and hence are a l l homeomorphic to T q x R 3^ fo r some q (see Q l 5 3 

page 210). 

( i ) m = 2r 

There i s a Walker Atlas on M such that on.the overlap of two 

charts (UjX 1) and (U^,x^) the coordinates are related by equations of 

the form 
A A , A/ ou , 1 x + = x + a (x ) A = 1,...,r 
x® = x a + c a where c a i s constant, a = r+1, ...,m=2r 

Put io a = dx a i n each chart. This defines r independent closed 

non-vanishing 1-forms which determine The re s u l t now follows from 

theorem 5«3.1. 
( i i ) m = 2r + 1 

There i s a Walker Atlas with coordinates related by 
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A A , A, ou r+1 A, civ , , x* = x + aj (x ) x + a 2(x ) A = l , . . . , r 
r+1 , r+1 , , r+1, ou x,,, = ± x + b (x ) 
Ct Ct Ot 01 . 

x,,, = x + c ot = r+2,... jm=2r+l, c is-constant. 

Then OJ = dx define r-independent, closed non-vanishing 1 forms on M. 

Again the res u l t follows by theorem 5-3-1-

That M i s covered by R171 follows from lemma 5-3.1 and theorem 5.2.1 ( i n 

the case m=2r i t also follows from the fact that M i s covered by 

TW^R" 1^). 
Now, ir! (T qxR r - qxR m" r) == Z q and so, i f m = 2r then TTJ (M) i s isomorphic to an 

Q S S 

extension of Z M by Z where Z i s isomorphic to the group G i n the proof of 

theorem 5.3.1. Q.E.D. 

COROLLARY 1. Suppose m = 2r. I f q = r then F i s diffeomorphic to T1* and 

i f q = 0 then M has the homotopy type of T1" and i s homeomorphic to T111 i f 

m t 4. 

Proof 

I t i s easy to prove that the Ehresmann Holonomy group of each leaf of 

$"is t r i v i a l . Thus, by results of Q^l^l and 1^30^ i t follows that f̂" can 

be given a bundle structure i f the leaves are a l l compact ( i . e . q = r ) . 

Thus i f q = r then one may assume that F i s diffeombrphic to 

I f q = 0 then theorem 5-3-1 shows that TTI (M) i s abelian. Let 

h : Rm -* M be a covering map and K the group of covering transformations. 

A theorem of P. A. Smith [^263] says that any homeomorphism of Rm of 

f i n i t e order a prime has a fix e d point. Thus i f <J>' e K were of' f i n i t e order 

then some power of <j) would have a fixed poiriit, contradicting the fact that 
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K i s properly discontinuous. Hence i r ^ M ) i s free abelian, and i s f i n i t e l y 

generated because M i s compact i . e . TTI(M) = Z k f o r some k. 

Also TT^(M) = 0 f o r i > 1 because M i s covered by- Rm. 

Hence M has the homotopy type of T^. Homology considerations (see Q 11 3 ) 

and the compactness of M show that k = m. 

A theorem of Rosenburg L~2.<hZI s a y s t n a t M i s irreducible i f M i s covered 

by R"1. Hence by results of C. T. C. Wall £38IL M i s homeomorphic t o T™ 

i f m t 4. Q.E.D. 

COROLLARY 2. Let (M,g) be a compact, connected, pseudoriemannian' 4rmanifold 

with a p a r a l l e l framing of type (2,0) then M i s a T 2 bundle over T 2. 

Proof 

There are three cases, q = 0,1,2. Since F * R2 i s covered by R1* i t 

follows that F i s covered by R2. I f q = 0 then M i s a homotopy T1*, TT 1 (F) 

i s free abelian and so F i s diffeomorphic to T 2. 

I f q = 2 then the re s u l t follows immediately from corollary 1. 

I f q = 1 then TTI (F) i s at worst isomorphic to an extension of Z by Z f o r 

some h. Thus there i s a regular Z h cover p : F:-*-. F where rci(F) * Z. I t can 

be shown that F i s homeomorphic to S1 x R.asF i s orientable(because Hi(M;Z) 

has no torsion) Let x e S1 x 0 c s1 x Rr and a : S1 x 0 -»• S1 x R be the 

inclusion map. Then HaZI represents a generator of T r ^ F j X ) . Let \\) be any 

orientation- preserving homeomorphism of S1 xR, Then \p a i s an embedded 

S1 and hence i f x e S1 x 0, y = I)J(X) and T : C0*1!] •*• S1 x R r i s a path 

j o i n i n g x to y then J^x-1
 q («|MT) Q iQ = £ a Q . 

Thus a"1 x _ 1 (ty a) x i s n u l l homotopic. I t follows easilv that the 0 0 0 0 
commutator subgroup of T h (F) i s t r i v i a l and hence F i s diffeomorphic to T 2. 

Q.E.D. 
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The following example shows that this bundle structure i s non-trivial 
in general. 

EXAMPLE 5.3.1. Take R1* with coordinates (x,y,z,t) and pseudoriemannian 
metric ds 2 = 2dx dz + 2dy dt. With respect to this, metric the vector fields 

9 3 
Xi = /9x and X2 = /9y are mutually orthogonal, parallel and n u l l . Consid
er the group G of transformations of R1* generated by A,B,C,8 defined as 
follows: 

A(x,y,z,t) = (x+l,y,z,t), 
B(x,y,z,t) = (x,y+l,z,t), 
C(x,y,z,t) = (x,y,z,t+l), 
6(x,y,z,t) = (x+t,y-z,z+l,t). 

I t is not d i f f i c u l t to show that G is a properly discontinuous group of 
isometries leaving Xi and X2 invariant. Since 9 does not commute with C, 
G is non-abelian. 

R1* 
Let M = /G. Then M admits a parallel framing of type (2,0). 

9 9 3 9 
Furthermore, M is compact and the fields Xi,X2, z ^ j 5 "3z ~ z 9y o n ^ 
are invariant under G, showing that M is parallelizable-. 

The projection IT : R1* -> R2 defined by (x,y,z,t) H- (z,t) i s equivariant 
with respect to the action of G on R4 and the usual action of Z2 on R2 and 
so 

R1* R 2 

TT : /G = M ->• /Z2 = T2 is well defined 

I t is not d i f f i c u l t to show that TT gives a fibre bundle projection with 
fibre T2 and structure group a subgroup of T2. 
M is not the t r i v i a l bundle because T T I (M) - G t Z". 
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I t would be interesting to know whether, i n higher dimensions, the 
fibre of theorem 5-3.2 is always a torus. A good problem would be to try 
and use the general technique of this example to find a bundle which admits 
a framing of maximum n u l l i t y but whose fibre has non-abelian fundamental 
group. 
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