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( i ) 

INTRODUCTION 

The fundamental bootstrap idea ( 1 ) i s that i t may be possible 
to f i n d a small set of dynamical assumptions whioh, with the 
requirement that the nature be self consistent, imply that there i s 
only one or a few possible worlds; t h i s , or of one of these, being 
the one observed experimentally. As a workable dynamical sohome 
encompassing the whole f i e l d of physios, or even strong interactions, 
hus yet to be found, i t i s neoessary to seek an area of physios whioh V 
amenable to a bootstrap calculation. 

The idea of bootstraps arose from the work of Chew and MandolLstawi 
( 2 ) eniTiT scattering. They showed that the » resonance i n I T i r 
scattering could be produced q u a l i t i t i v e l y by the exchange of a jp 
i n the other ohannels. Imposing the self consistency condition that 
the jj> has the same mass and couplings i n eaoh ohannel lead to the 
idea of a bootstrap, i n whioh one considered a prooess involving a. 
few particles and obtain oonsistenoy conditions of a few parameters 
the masses and couplings. The next advanoe was performed by Chew 
who showed using the N/D method that the N and N* bootstrapped 
each other i n T N scattering ( 3 ) . The results for the couplings were 
i n good agreement with experiment. With the disoovery of su(3) 
symmetry ( 4 ) , bootstraps were attempted using the baryon octet and 
decuplet ( 5 ) . A l l these calculations were based on the Mandelstam 
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representation ( 6 ) which says that the scattering amplitude i s an 
analytic function of i t s variables apart from singularities at points 
corresponding to physioal systems. However the bootstrap idea i s ne^ 
tied to any particular dynamioal model and historically, as a new 
technique has mamerged, so people have attempted to perform a boptr 
strap with i t . This has been the case with the N/0 method dispersion 
relations, superoonvergenoe relations ( 7 ) and most recently f i n i t e 
energy sum rules ( 8 ) . 

I n ohapter one, we review the statio model bootstrap oaloulat<Lena 
and disouas the relation sULp between the "ZD atatio model calculations 
and the consistency conditions imposed by saturating superoonvergenoe 
relations with bound statio and resonances. I t has boon observed ( 7 ) 
that the superoonvergenoo relations obtained by considering the 
asympotio behaviour of an amplitude oan bo saturated quite well by 
the contributions from low-lying bound states and resonances, 
determined by experiment. Making t h i s assumption gives relationship 
between the oouplings whioh are often i n agreement with the statio 
model bootstrap results. We have investigated this situation i n a 
more general model than that considered by Oiu (9) i n a recent paper. 
By considering the. f i r s t moment sum rule along with the superoonvergenoyO. 
relation, we f i n d an elegant mathematical equivalence between the 
two methods whioh Din did not observe due to the ad hoo nature of 
his calculation. We f i n d that the bootstrap relation for the masses 
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i s related te the f i r s t moment sum rule and thai being lees l i k e l y 
te be true, or to be saturated by isobars, provides a reason why 
the statio model bootstrap oaloulations give bad or i n cons is tent 
results for the masses whilst giving good results for the oouplings. 
She use of the moment sum rule also throws doubt on the v a l i d i t y 
of using a "universal out-off". 

In ohapter two we present a review of strong ooupling theory 
and disouss its relationship to bootstraps and superoonvergenoe 
techniques. The strong ooupling oondition i s known to give the 
static model bootstrap condition for a speoifio process ( 1 0 ) . We 
see how the moment sum rule again appears as a oondition on the 
masses, following the work of Cronstrom and Noga ( 1 1 ) . 

In ohapter three, we investigate the boostrap model of Fuloe 
and Wong ( 1 2 ) , whioh attempts i n a very ad boo way to consider the 
effects of t - ohannel meson exchanges i n meson-baryon scattezLng. 
We show that the model gives consistent results of a l l three 
processes involving the scattering of pseudosoalar mesons ef 
the baryon ootet and deouplet i n the l i m i t of su(3) symmetry. 
The couplings agree with those coming from the assumption of su(6) 
symmetry ( 1 3 ) . 

In ohapter four, we consider the intermediate ooupling theory 
of Kuriyan and Sudarshan (14) whioh i s a generalisation of the strong 
coupling oondition, writing the commutation of the meson aojuroe 
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operators, not as zero, but as a linear combination of the generators 
of the symmetry group for the system. From this equation, the Fu).oo 
and Wong equation oan be derived, identif lying the generators of the 
symmetry group with meson exchange terns. As the equations of the 
intermediate ooupling group generate the algebra of au(6), i t i s 
dear why the model of Kuriyan and Sudarsham i s obeyed by the ootef 
and da outlet with oouplings whioh agree wiJth the assumption of su(6) 
as a symmetry group. Thus the self consistency of the Fuloo and 
Wong model for the various prooesses i s explained,as i s the appearanoe 
of the results of su(6) and the opnsistenoy of UdgSonkar's su(6) 
bootstrap calculation ( 1 5 ) . We also present the calculation of 
Grleeson and Musto (16) whioh derives the Fuloo-Weng and Intermediate 
coupling equations from f i n i t e energy sum rules. 

In ohapter f i v e , v/e discuss the use of sum rules and the 
mechanism by whioh the results of higher symmetries appear from the 
saturation of superoonvergenoe relations ( 1 7 ) We shew hew the 
Fulco and Wong equation oan be s p l i t up Into sets of equations f o r 
each t - channel spin. Certain helioity amplitudes are shown to have 
the same decomposition into spin £ and 3/ 2 parts as t - ohannel spin 
amplitudes i n the Fuloo-Wong equation* Regge pole phenomenology 
gives Regge-pole terms i n the f i n i t e energy sum rules which the 
same contribution to the Fulqo-Wong equation as do the exohange 
meson terms assumed by Fuloo and Wong. The f i n i t e energy sum rules 
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give i n a certain circumstances the su(6) results. In order to 
obtain these results i t i s necessary to assume mass degeneracy f o r 

i 
the baryoas. Putting l a the experimental nfcaaes gives the su(6) 
breaking i n a simple way* These results provide a possible 
explanation of why the results of higher symmetries appear)whilst 
these symmetries cannot be exact. 



CHAPTER 1 

Bootstraps and the Saturation of Sum Rules i n the Statio Model 

1. Static Model. 

The f i r s t successful model of Tf-N spattering was developed by Chew and 
Low (21), using*the statio approximation. As muoh of this thesis i s oonoevnoA 
with the statio model, we begin by discussing i t s virtues, and i t s vioes. 

We w i l l make use of the standard Mandelstam variables s,t,u whi,oh for 
the prooess B +TT B +TT are: 
B » - ( P 1 + o^) 2 = M2 + m2 • 2k 2 • 2 [ ( k j • M 2)(k 2 • m2j| * 
t a - ( p - | - p 2 ) 2

 B - 2k 2 (1 -cosGs) 
U = - ( P l - q 2 ) 2 = 2(M2 + m2) - s - t 

w t p 1, p 2 are the 4 momenta of the baryons (mass M) 
4<|( 0,2 a r e t f t e ^ ~ momenta of the mesons (mass m) 
k and Gs the oentre of mass momentum and scattering angle. * 
8 

8 «• U 
We w i l l also make use of the variable V = ^ • • • 
The statio model consists of Qegleoting the nuoleon reooil effect 

tend writing the energy of the system i n the form ^s a M + w where 
* 2 2 r " — f V f *2 

w & m + q ̂ y^vai^^M^Fis the square of the 3-momentum of the meson. 
In this approximation lu a M - w,so that V a 4 Mw and s u orossing 
consists of putting w •* -w. I f we denote this operation by a prime (*), 

2 '2 
s s u*, u' s s, t a t 1 . t a t * implies that q (1 -c«sO s) a q (1 -tt,§ G*s^ 
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As fl^f = - this shows that cos 9s = cos 9U
;>< Thus the p a r t i a l wave expansions 

i n the s.and u ohamie.'ls are identical and under u orossing, the I partia^ 
wave amplitude w i l l cross into i t s e l f . This property does not hold, when reoojp 
offoots are taken Into aooount. 

2 2 
The error rtaaaed by negleoting the reooil effects i s of order <l/* snd 

2 2 

henoe the modal i s axpeeted to work for q « H • Unfortunately the nupleon 
resonances i t o wail outside this range and the sucoess of the static model 
i n describing them might be regarded as fortuitous. D.B. Fairlie (22) has 
pointed out that a possible reason for the sucoess i s contained i n the 
work of Carruthers ( 2 3 ) , who shows that i n the "quasi-static l i m i t 1 1 the 
orossing of p a r t i a l wave amplitudes retains a simple form. Fairlie suggests 
that this simplicity allows to solutions of oertain bootstrap requirements 
to bo preserved beyond the statio l i m i t . 

The introduction of particles with spin oomplioata the theory s l i g h t l y ̂ 
but again crossing i s much simpler i n the statio model. Consider a spin 0 
meson interacting ±*i an. Q-wave with a spin J partiole. Consideration of 
the reccupling problem" oomiected with S - u orossing reveals that the 
orossing matrix, ooanecting the various to t a l angular momentum channels i n 
the a-channel and u- channel $- waves, i s the same as for a spin fl particle 
scattering off a spin J ̂ particle with zero orbital angular momentum. Thus 
i n the static modal of y$eudo-scalar mesons scattering off baryons,where the 
Interaction is 1 mainly p-wave, the angular momentum group assumes the role 
of an internal symtaotry, with the meson belong to the spin 1 representation^ 
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2. Partial Wave Dispersion Relations (24) 

Consider a p a r t i a l wave amplitude a^ (s) whioh has the following 
properties: 

(1) a j (a) can be analytically oontinued into the entire ST plana and 
i s regular except for poles and outs corresponding (a l a Mandelstam (22>)) 

physioal systems i n the direot and orossed ohannel. (The direot otenne} 
give a pole on (or near) the positive real axis for eaoh bound state (or 
resonance) and the uni t a r i t y out from threshold to + o© • The orqssed channels 
w i l l give various outs and poles depending on the kinematios. The (out-
struoture for TTN i s given i n Fig 1) 

( i i ) a^ (s) i s real analytio ie. a^(s) = ap $•) 
Using these properties we oan apply Camohy's Theorem and obtains 

a0 ( B ) = o^s T d s ' where C i s a oontour enolosing a^l the eujba 
C 

and poles and olcsed by sectors t of a oirole at i n f i n i t y * By. property ( ^ ) f 
the contribution from the oirole at i n f i n i t y vanishes. I f ( i i ) doesn't ho^At 

i t i s necessary to make subtractions i n the dispersion relation, which 
action introduces further undetermined parameters into the problem. 
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(•0 

l<0 CM—t 

Jig 1 . Cut-Structure f o r -p- H -» TN. ( 2 6 ) 

(a) unitarity out for direct ohannel. 
(b) direct channel nuoleon pole 
(o) croesed unitarity cut for u - ohannel (also IT N-»irN) 
(d) out from crossed N pole i n u - ohannel* 
(e) out from t - ohannel prooess (TTTT-*NN.) 

I n order to disouss TTN scattering, i t i s neoessary to know about the 
preoess rnr-*NNp for which there i s l i t t l e data. In order to say 
something about this channel, i t i s neoemsary to oonsider models i n whioh 
the process is dominated by the j> resonanoe. After considering such 
approximations, i t seems l i k e l y that the effeot of t - ohannel foroes w i l l 
be small, at least at low energies ( 2 7 ) * We thus olaim some ju s t i f i c a t i o n for 
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neglecting the oirple out and writing 

This oomes from Integrating round the contour i n Fig 2 and using the real-
analytioity of a| (s) to write 

•Si* j~*t>Vi£} - a(8 i- i e ) ) K ^ 2 i Ira a(s) 

'S 

i i .i . • i 

We remark here that i f equations (1.2) hold f o r t = o, 1,2,,,., one oan 
oomblne them and obtain the t = o dispersion relation for the t o t a l amplitude 
•Xa.t); 
a(.,o) =• U ^ 2 i » V ) d s ' + i j I ^ ' . o ) ds' (1.3) 

Were a(s,o) to be dominantly p- wave and were the integrals also dominated 
by p- wave contributions, then one would be j u s t i f i e d i n deriving equation 
(1.2) from equation (1*3) for the p- wave ( i . e . I s th i s l i k e l y to be 
true? The principal low lying reasonances are p- wave, and BO. I f a(q,0) 
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decreases rapidly as s increases, both the integrals and a(s,o) may be 

dominated by the p- wave for small s. The rapid deorease of a g ( s ) w^th ^ 

energy i s a prime requirement for the bootstrap oaloulationa, whioh fellow 

to work* so i f Justified i n these calculations, the above derivation of 

equation (1*2) for H • 1 may be considered as reliable as the earlier one« 

The method has the advantage that one may select amplitudes with good 

aiymptotio behaviour, from experiment and Regge phenomenology, and also 

test p- wave dominance experimentally. 

3. M/D Method (28) 

One valuable property of equation (1*2) i s that the unitarity 

equation relates I n a j (e) to the amplitude on the r^ght hand out* 

In a f i (e) . A ( s ) | a j (s)f R { ( 8 ) 1 . ( 1 * ) 
2* el 

where ( s ) m q • We note that af ( s ) i s related to the phase shif t 

1 up to the lnelastio threshold. S | ( s ) a 1 i s thus known as e^aetio 

unitarity This i e sometimes used as an approximation for the whole out;. 

This approximation w i l l be good i f R p ( s ) a ( ( s ) decreases rapidly with 

energy. 

Given knowledge of Za a g ( s ) on the l e f t hand out, one has then to 

solve a npn-rlinear equation to find a • ( s ) . Chen and Mandelstan oonyerted: 

this equation into a pair of ooupled linear equations. Shis method has 

beoome known as the N/D method, beoause of the conventional notation* 



7. 

The fundamental tenet of the method i s that one nay write ag (a) s * y n | ( a ) 

where Nj>D{ ere real analytic and N( ( s ) has a l e f t hand out only and 

( B ) a right hand out. The gap between the l e f t end right put* of • 

i s greatly simplifies the procedure. 

I n mathematical form, the assumptions ares 

Im NQ ( S ) W DQ ( S ) Im a ^ s ) 8 < S L (1,5) 

• 0 otherwise 

Im DQ ( s ) a Ng Im ( V A Q ) 

• - • l < 0 Pi(•)*!<•) B > h <1t6> 
• 0 otherwise. 

I t i s further assumed that N { (•) °*» bo chosen to go to sero at infinity 

so that one may write en unsubtraoted dispersion relation for H • 

D» I n ag (aO da' (1.7) 

Before we oan write a dispersion relation for Dg , i t i s neqessary to 

consider the G.OpOo (29) ambiguity. I t i s possible to insert arbitrary 

poles into Df without changing the l e f t hand out* 'His corresponds to 

Inserting i n the partial wave, a partiiole not generated by the forces^ 

There are two faoets to the C.0 «C• ambiguity whioh we shal l refer to as 

the global and local problems. F i r s t l y i t may be that, there exist 

"elementary particles" whioh are not generated by exchange forces, This 

i s the negation of "jsare" bootstrap philosophy, Sven i f there are no 

elementary partioles and "global" C,D,0 poles are not required, i t **? 

be neoessary to insert them i n a "local" calculation whioh ooneayns 

i t s e l f with a small sub-system. For example a process whioh i s inelastio 



may require .particles to be lneerted as C.D.C poles whereas in a fu£L 
pultlrohannel oaloulation they would be produced by the f oroes. 

We assume that the system with whioh we are dealing is, sufficiently 
elastic to allow us to neglect coupled systems and yet need BO GtP#p 
polesi The normalisation of N; and is s t i l l undetermined so we 
normalise (so) e 1 . In an exact oaloulation, the solution of the 
equation would be independent of So. However an approximate solution 
may, and generally w i l l , depend on So. We may now write the dispersion 
relation for 0 t 

B ( 8 ) ul - ls-u&> f ft <«0 Pet) 
ff W J M (»• ̂  s)(s. - ..) 

I • 
With knowledge of Jm a j (s) on the l e f t hand out, equations ( 1 . 7 ) and 
(1 *8 ) oquld be solved and a j (s) determined. In order to dp praotyoa^ 
calculations i t is neoessary to approximate the l e f t hand out ^n, some 
way. One way, whioh is of particular value in the statio model, is to 
replace the l e f t hand out by a sum of poles. 

Pole Approximations 

The approximation i s to set : In a j (s) • ^^io'C 8 • 

Then from equation ( 1 . 7 ) i H* (s) nX £ ^ Da (s i ) ( 1 ,10 ) 
j ai-a 

Substituting into equation ( 1 . 8 ) we findt 

* 1 4 R < f li - »•)(»• -*)(»«- »o) 
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Putting s s s i Inequation 0 *1 ) , one obtains a set of simultaneous 
equations f o r the DQ ( s i ) which oan be solvedsand inserting the solutions 
into equations ( 1 . 1 0 ) , one may obtain a j (s) In the phyaioal region* 

The l e f t hand out comes from crossing the u- channel physioajL 
amplitude* I n general, this oroBsing w i l l be oomplioated and the 
approximation of the out by poles w i l l be of l i t t l e signifioanoe physioaljy*, 
However i n the static model, as previously remarked, s - u orossing 
merely oonsists of putting w •» -w. and u- channel poles do not spread 
out into outs i n the s- ohannel* 

I t i s always possible to write a dispersion relation i n ? instead 
of s. As v s Jdtw i n the statio model, one oan write the dispersion 
relations i n w* This we do i n what follows* 

In the statio models, a pole i n a p a r t i a l wave at w a w t w i l l 0*60£ 
into a pole (with the same residue) at H a -wj i n the same p a r t i a l wave* 
Thus a set of resonances* with couplings Y i and energies w| i n the u*> channel 
process, w i l l generate poles at w a -w.\r with residues ^ 1 , on the l e f t )M|R& 
out of the s- ohannel process. 

k» Statio Model Bootstraps (30) 

We oonsider a model of mesons soattaring of baryons i n an I - wave* 
There i s a symmetry group for the system and the invariant channels are 
labeled by Greak l e t t e r s * We allow for some of these ohannelB to oontain 
particles and. we. label such channels, and the partioles i n them, by 
primed Greek l e t t e r s . We rule out the possibility of there being, more than 
one partiole i n eaoh Invariant channel. The partiole eC • w i l l have .;enorgy 
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W« and couple with strength ^ to the system* 
The Introduction of symmetries adds only a slight complication* ffaah 

invariant ohannel o< i n the a- ohannel w i l l receive a contribution %» i t s 
l e f t hand out from eaoh invariant ohannel p' i n the u- ohannel. l a 
our model, we approximate Im a^s) (on the l e f t hand out) by: 

& a R ( w ) : £ C ( cf(*>-*p'} V (1 .12 ) 

where C i s the s - u orossing matrix for our symmetry group* Then from 

equation ( 1 . 1 0 ) : N„,(w) = 2 Q \t D*(-«>6') ( 1 .13 ) 

Now from equation ( 1 . 1 1 ) we obtain: 

D a i - ( w " w o ) < f dw'p(w') H(WO c y . ' y B i f (-W6 •) 
1 1 y J (W« - W) (w« - Wo* )(w» • Wft' ) 

OA) 
;where we allow ourselves to ohoose a different subtraction point foe eaoh <£ 
if we so desire* 

We are now faoed with one of the oantral problems of the K/p method jpojp 
i f C^i , the integral i n equation ( 1 * 1 4 ) w i l l diverge* In. order to'make 
i t converge a out-off funotion V(w) must be introduced into the lAtegra]., 
where 7, (w) has the property of being 1 up to large values of w and there 
after tend to aero i n suoh a way as to make the integral converge. This 
ad hoo introduction of a out-off i s neoessary beoause we are integrating 
over the range (m. + «o )» whereas the model i s only valid for small «• 
With the oorreot r e l a t i v i s t i o kinematio factors the integral w i l l converge 
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oonverge, and i s In fact tractable ( 3 1 ) . Slaking the statio approximation. 

Is i n i t i a l l y divergent, with a proper cut-off the main oontlubutlon to 
the integral w i l l come from the high energy region. Thus the integral 
w i l l be independent of W and hence may be written as a constant^ thus 
allowing us to consider D as linear. Experience of oaloukbiona la whioh 
D oaoillates at high energy ( 3 3 ) f makes this argument rather shaky and Wf 
prefer the former argument. Also i t should be remarked that again 
experience i n calculations shows that D tends to be linear i n the reaoaanoa 
region ( 3 4 ) . We write the linear D approximation i n the form: 

oonverge 
M. Din ( 3 2 ) argues that av the latfglftX this point gives B linear f o r w<* 

»« (w) a 1 - (u>- u u ) \«K« - ( 1 . 1 5 ) 

(1.16) where K<x = £j C«p' Da(-u)p') 
and Xdis related to the integral as described above. 

I f we believe Diu's argument: 

} (wJ'_vJ 0 < l)(u' +iJft') 

In any oase we allow X«.to depend on « • We dlsouss the possibility 

that the A * « are equal (the "universal out-off assumption") later* We . 

note thai equations ( 1 . 1 5 ) and ( 1 J 6 ) are interdependent. Substituting 
1 

equation (1*15) into equation (1.16), we obtain oonBistenoy oondltonst 
i 

Hoc* £C*i'1f\l ( 1 - 1 8 ) 

whioh may be re-written ast 
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The bootstrap requirements are that eaoh ohannel j&' (into which 
we Inserted a pole i n the u= ohannel) should contain a direct ohannel 
pole, corresponding to a partiole with the same ooupllng and mass as 
the u- ohannel partiole. Thus the condition i s that' eaoh ohannel ft' 
contain a pole at <*>•/ with residue y^. I n mathematical terms: 

Re De' ( u y ) = o ( 1 . 2 0 ) 

Using equation 0.-15), ejuation ( 1 * 2 0 ) givesi 
1 - ( \ y -lÔ e.) A f ' t y ' = 0 (1 . 22 ) . 

Using the consistency condition, equation ( 1 . 1 9 ) , we obtain 9 alter 
some simple algebra: 

Using equations (1 . 1 3 ) and ( 1 . 1 3 ) , equation (1 * 2 1 ) gives: 

Substituting for Do/(- ̂ a"') from equation (1*13) we obtain: 

Substituting for Ap ' K p ' from equation ( 1 . 2 2 ) gives: 

( 1 . 2 * 0 



Using this result, equation (1*23) yieldsi 

V s / U p ' + £ C a v Y«'u>(' « ^A«' (1 . 2 5 ) 

i 
We have,as yet. imposed no condition on the channels into whloh 

lis inserted no Input pole• Were such a ohannel to have a pole i n 

file direct- channel, our bootstrap programme would be marred. We 

thentfore wish to exolude this possibility. 

Prom equations (1.15) , the smaller X*; K« the further away 

the polo w i l l be In the <c -ohannel. For no pole to ooour i n the 

low energy region, therefore. X*K« must be numerically small. 

Zf this i s so. I t may be hoped that seoond order terms w i l l beooma 

Important for ledger energies and remove the pole from the « 

channel altogether. I f X* K«^o the pole would ooour at unphysloal 

values of w and correspond to a "ghost" state. Suoh states are 

physioelly not allowed. For the above reasons, i t seems proper to 

impose the oondition X«K«*0 w « 1 which w i l l not 

allow the pole to ooour at y^^Referenoe (3l) suggests that X«< i s 

of order 1/M, so this oondition beoomes K « « \ This gives, 

using equation (i.18) 

£ CvV- 0 err « 1 
y * ^ X (1 . 26 ) 

Combining equations (1.24) and (1 . 2 6 ) , we obtain the standard 

bootstrap equations (35): V« « C<cs ^1*27) 

(with the 6onvention that *«»o i f there i s no particle in that 



ohannel) or. ttt * £ C*pfy ^ where ^* i s small i f 8**0 
p 

5* Buperoonvergenoe in the Statio Model. 

We have seen how, using the V/D equations and the pole approximations 

a bootstrap oaloulation may be performed. As this method i s based on 

the use of dispersion relations, i t i s Interesting to see I f supers 

oonvergenees relations, another extension of dispersion relations, 

y i e l d similar in"formation about the oouplingf and masses In the same 

polo, approximation. From many oaloulations ^ t i s known that the 
saturation of superopnvergenpe relations with single partiolp states 

gives relations between oouplings. Also moment sum pplps y i e l d 

information about the partiole masses. 

She prima faoie similarity between the two methods prompts one; 

to look more plosely to see i f the methods are in faot eyivalent l a 

somp way. 01« (32) lpoked at this problem and lias shown how the 

similar gepu^ts pan be derived i n a model with only two partiole p. 
i 

The work i n this section and the derviation of the oanonipal method 

of solving the TS/t equations was undertaken in order to find the 

mathematical relation between th«> two n&-<;h...i»B. The in-eight 

provided by this work enables one to see a olPQ^ar equivalenoe 

between the two methods than Dim found. Indeed oonplusions 

oan be drawn which throw light on the use of thVbootstrap 

equations. 
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fcet us f i r s t derive auperponvergenoe relations from tht.> 

dispersion relations. The nodal wo use i s too sane as too 

seotion of thi s ohaptor on 8t«tlo Modal Bootstraps. 

4sj amplitude i s said to superoonverge (37) i f 

Q a ( ^ ) j^Us , 6>o , »* w-«f» i n any direction 

T n i i ooidjtinii i s auffioftat for a*lw\ to 0007 •» unsuor 

traeted dispersion relation 1 

(1*28) 

I f we expand a (w) In inverse powers of. w, the 
superoonvergenoo oonditions tells us that too Vm teres oast 

Thuai » 

** ^ (1 ;29) She assumption we make to derive relations between the * 

oouplings, i s that the amplitudes Q K( are auporoonvargent -

and that the Integrals i n equation (1«29) oan be saturated by 

the contributions of the single particles states S f'} . ThjU 

l a t t e r aasuBption oorresponds to putting V" *«'•*> - (ft 

where again we use the convention V« * 0 . i f there i s no 

single partiolo state i n the «-channel. The sua rules. 

equation (1.29). now beoome; sample a^gebxaio rela. tionsi . 

Ve; * Z ( i . 3 Q ) 



1* . 

which are the bootstrap conditions, equation (1*27)* 

Wo next disQuss the f i r s t monsnt sum rule* This may be 

derived from the dispersion relation i n an analogous way 

to tho superoonvergenoe relation)on the assumption that 

A«/^>w^»fl,6*o as v»-*«» The relation lot 

Zf these relations bold, whioh i s in t r i n s i c a l l y loss l i k e l y 

than tka case off the superconvergenoe relations,it Is 

s t i l l possible, oven probable, that i t w i l l a** Possible 

to saturate with the single par&iolo states as the weighting 

faotor *V w i l l enhance the contributions from higher energies, 

Beeauae of this we allow for other contributions by writing 

{ MI'JM' J-arn/-*) *" + T« (1.32), where 

*J« %« i s the contribution to the integral from the pole toNfe 

With th i s , the f i r s t moment sun rule gLvess 

W « * « • ^ C H f t ^ s ^ f t *- fl«-+ ^ GcsTs)-so (1,JJ) 

Xf the relations do mot hold, i t may be possible to write a . 

fi n i t e energy sun rule (58) whioh has the same font as equation 

(1.33) with let flU a Hegge pole term, (We deal with f i n i t e energy 

sup rules i n ohapter f i v e ) I t i s that reasonable to assume an 
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equation of the form of equation (1*33) holds, where ^a, an 

integral over the unitarity out or a Regge pole term. I n either 

oaae we oan say l i t t l e about the terms ^» without introducing 

assumptions, which would mean that pur calculation would no 

longer be a "bootstrap*. In ohap^er five, we introduce extra 

assumptions l a an attempt to explain the existence of symmetries 

i n a more r e l i a b l e model. 

• 

Conclusions 

We are now able to discuss the oenneotion between the 

bootstrap and superoonyergenoe methods. We l i s t aevaral 

remarks to this end, below x 

( i ) The results of the standard static model bootstrap 

oaloulation are identioal in almost a l l respeots to those 

derived from taking single partiole saturation of superoonverganoe 

relations written for the various amplitudes, and from e 

similar consideration of the f i r s t moment sum rules. 

( i i ) Using the stronger oonditlons i n equation (1.26), 

both methods give the bootstrap consistency conditions for a l l 

channels. I f the weaker the condition i s used,the bootstrap . 

method yields the conditions only for ohaanelc containing 

particles^whilst i t says that the elements corresponding to 

partioles with no partiole should be small. 
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( i l l ) I n the bootstrap oaloulation, the l e f t hand out i s taken 
to oontaln only poles, whereas i n the superoonvergenoe oaloulation 
we allowed the moment sum rule to,jeejeeive a contribution from 
the u- ohannel unitarity cut. I f we are to be solving the same 
problem by eaoh method we must negleot th i s out contribution 
and take the same le f t hand out for both oaloulations. Then, 
with the identification of 1* with ~*4f equations ( 1 , 2 $ ) 

and. (1*33) are the same for the ohannel whioh oontaina a 
partiole• The f i r s t moment sum rule gives a mass relation for 
the oase where the ohannel has no partiole whereas the bootstrap 

i 
does not* 

We oan see no reason for equating the A«s i n any way and . 
this oasts doubt, via the above identification, on the assumption 
of a universal cut-off. As t h i s assumption leads to inconsistencies 
i n , for example, Diu*s oaloulation ( 3 2 ) we are happy to diaoard 
i t . As the mass relations a l l oontain arbitrary parameters 
( T* #*• ^* ) they are of l i t t l e value and th i s situation puts the 
two methods on a par as far as masses are oonoerned. 

( i v ) I t should be pointed out that the reasons that we d i f f e r 
from Dili i n our oonolusions are that Diu f a i l s to look at the 
moment sum rule, putt no oonditions on a bootstrap amplitude whioh 
should contain no pole, and assumes a universal out*off. His 
ad hoo method of solving his two partiole model obscures the 
simple mathematical relation between the two methods, whioh 



naturally leads to consideration of the moment sum rule* His 
use of a universal out-off, against whioh useage we have argued, 
lends to the breakdown of his bootstrap equations .in the "r»N 
ease, where the Internal and external nuoleons are given 
equal masses, beoause there are Insufficient parameters to 
satisfy the equations* Without the universal out-off. one 
has no Buoh problems. 

6. Uses of the Bootstrap equations. 

(a) N - H* bootstrap ( 3 ' . ' ) 

At low energies the TTN scattering amplitude i n largely . 
p- wave and dominated by the existence of the nuoleon and the 
H*33 reasonanoe. Labelling states by their isospin and spin 
( I and J) we have the N(£,£), M*(^., 34) and the p- wave pion 
i s effectively a ( 1 , 1 ) partiole. 

I n this oase the isospin and spin orossing matrixes are 
equal (3°.) 

C ( s u ) a 
(i) (*) 
-* % \ <*) 

(X) 

where the bracketed numbers beside the matrix indioate the 
channels. 

I f we assume that the N and N° are the only single partio^e 
states whioh exist we have four equations: 

0 
0 

Jo1 • <? \ 
\ s u s u ] 

0 
0 (1 .34 ) 
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Due to what might be desoribed as good fortune, these 
equations have a solutioni 

I f we identify the & s with oouplings as follows: 

= J i r N N ^TTN,:,N, ^ r r r M * ^ i r » N * 

we obtain: ^TTNN a 2 ^ i r K N * J w h i o h i s close to the experimental 
value. 

The above solution is unique only beoause we put oV,%«*\n * 0 

I t i s however i n some sense the simplest solution, requiring 
as i t does a minimal number of partioles. I n general the bootstrap 
equation w i l l not be exaotly soluble with only the desired particles 
and i t w i l l be neoesaary to introduce other partioles whioh one 
hopes w i l l have small s thus corresponding to high lying 
resonances, gwa and P a t i l (40) used this condition of using a 
minimal number of particles i n an attempt to produce a meaningful, 
bootstrap programme. 
(b) Baryon ootet - decuplet bootstrap i n SU(3,) (6*0 

After the suooess of the N - N* bootstrap, i t was natural 
with the advent of unitary symmetries to attempt to extend tola 
suooess to the SU(3) oase of the pfesado-soalar meson ootet 
scattering off the baryon ootet, using, i f possible, the barypn 
ootet and deouplet as the internal states. 

Before we perform the calculation, we must do a l i t t l e group 
theory: 
In SU(3) i 8 8 8 = 1 © 8s 9 8 a © 10 9 10 © 2 7 . 

We have ohosen linear c o m b i n a t i o n s o f the octet s t a t e s which 
oouple symmetrically and antisymmetrically to the 8 0 8 . There -k 
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are now eight ohannels for the process 8 • 8-* 8 9 8s 

1 8s -»8s, 8s—8A, 8A-*8B, 8A-8A, 1 0 - * 1 0 , 1 0 - * 1 0 , 27-* 27 

of which 8s-»8A (8sA) and 8A -»8s(8Aa) are equal by time reversal. 

The su(2) orossing matrix i s the Bame as for the UN* oasex 

(P » 
f f t ft 

The su(3) matrix i s ( 4 3 ) 

( 2 7 ) (10) ( 1 0 ) (8ss) (8sa) (Baa) 1 
(27) / 7/40 1 / 1 2 1 / 1 2 1 /5 0 * * (27) 

9/40 i i 2 / 5 a/rs 0 (10) 
9/40 i 2 / 5 - 8 / J f 0 (1?) 

27/40 i -3/10 0 4 ( B M ) 
0 SBA - 3A 0 0 0 0 
9/8 0 0 - f 0 7 -* (8*0 

27/8 -5A -5A 1 0 0 * '•.(1)' 
We seek a solution containing only the ( 1 0 , \ ) and(8,?) el 
To do this we atteuipt to solve the bootstrap oondition for the 
sub-matrix (C') which contains only these ohannels and then sea i f 
t h i s solution also yields a solution of the oomplete bootstrap 
equation. The sub-matrix i n question i s : 

e* 

( 1 0 , X) (8ss,i) (Ssa.i) (Baa,*) 
/ 1 / 1 2 4/f5 4 / 3 13 0 ) Oo.V) 

I 1 / 1 0 0 1 / 6 (88S,£) 
T5/3 0 0 0 (8sa,i) 

\ 0 1 / 6 0 - 1 / 6 (8aa,i) 
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C has an eigenvalue 9.85 whioh i s near 1 . However the oouplinga 
to the three ootet ohannels are not independent, there being 
only two free parameters, an overall normalisation and the 
f/d r a t i o . 

The best solution corresponds to o'lO/tf 8 a 1 , 0 6 , BQ«7Q 
where * i s the f/d r a t i o . This gives 

i f * 

fl'io\ / ^ 10 \ / 1 . 0 6 
Xss „ / 20/9 <X2 ̂  8 I 1.09 
*sa " / 4 JB/3*(1-t*)W" 0.626 
fcaa / \ 4(1-«) 208 / 0.0360 

whilst C» • « / 0.752 \ 
0.876 
0.790 
0.122 

I t i s open to argument whether the above represents a 
reasonable solution of the problem. 

We now look at the complete bootstrap equation and put & 
equal to 1 plus ten vanishing components. We already know 
four oomponents of C 5" from the above. The remaining ones 
are: (27, X) ( 2 7 , * ) (10,*) ( 1 5 , \ ) (10,*) (8ss, K)(8sa*«. )(8aa, \ 

0.255 0.005 0.021 0.006 0.395 -0.161 0.97 -0.245 

0.045 "2.01 
These elements are small or of the same order of magnitude 

as the error i n solution of C* S * aif», apart from the (1,*) element 



(o) M6) ( B ) 

In the SU(G) model of the baryons, the octet and deouplet are put 
i n one representation of the group, the 5Jj>. In assuming this assignment 
we are disoarding the idea that the baryons and the resonances bootstrap 
eaoh other and assuming that both exist a p r i o r i . 

The. mesons are assigned, to the j£ representations and one may ask 
whether Vie, £6 can bootstrap i t s e l f i n the meson-baryon 

scattering process. I f this should prove correct and i t is not the 
oase for other multiplets such as the 20 or 70, i t would provide a 
bootstrap argument for the existence of the %6 plet and not the other 
representations. The dynamical problems of SU(6) are avoided by l e t t i n g 
the pseudo-scalar- mesons act i n a p- wave. 

Balass, Singh and Udgaonkar(fl.8) carried out the above programme. 
Indeed the 20 plet is unlikely to bootstrap either singly or reoiprooally 
However i n 35 - 56 scattering^tho diagonal ^6 crossing-matrix element is 
very nearly one^which suggests that the _5J> «ould bootstrap i t s e l f . This 
i s also true for the VjJ^ In the same process, but a large negative 
56 - 1134 crossing matrix elements suggests that the multiplets are 
unlikely to oo-ex±st. I f one believes in SU(6) as a symmetry group, the 
above may provide some reason for the 5J? assignment of the baryons, 
(d) Isobar chains (H* ! ) 

With the success of the N - N bootstrap, people wondered whether 
there might not exists i n f i n i t e chains of particles which oould bootstrap 
eaoh other i n some way. The most interesting success i n this f i e l d is the 
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result of Abers, Balazs, and Hara (19) i * N A T I N TTN scattering the N 
and N** ( I = J = 5/2) bootstrap each other, and so on. Thus the 
chain of nuoleon isobars with I = J bootstrap each other. As w i l l 
appear i n ohapter I I , this faot is no accident but derives from the 
existence of a non-invarianoe group for the system. 



QHAPTSR 2 

Strong Coupling Theory 

Strong Coupling Theory, as developed by Cook, Goebel and 
SakLta (41,42) from the early work of Pauli e t a l . (43), sets out 
to describe, by means of the Chew-Low Equation, the scattering of 
pseudo -soalar mesons off baryons i n a p- wave. 

I t i s assumed that there exists an Internal symmetry group 
(K) for the system, such that the mesons and isobars form 
representations of the group and such that the meson- baryon 
interaction i s invariant under the group• As we w i l l be working 
l a the statio model, 811^(2), the .spin symmetry group, may be 
combined into the internal symmetry group K. Let us oonsider 
processes Hi + "If* -» Nj • TT p > ( 4 5 ) with scattering amplitudes 
( ^ * V' where i , j label isobar states and ^ , p,.-C set of 
mesons* and the AM fs which we define lat e r are operators 

• i 

l a isobar space with the notation ( f » <^ | ̂  | \ y and 

The operation X A* i s defined as the Yukawa ooupling for the 
absorption of the meson component oc 0 Thus A IkxY i s the 
ooupling corresponding to-the isobar i absorbing the meson oomponent 
and produoing the isobar j . Diagramat ioally. 

\ * \ 
j 
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The Born terms f o r the prooess Ni + IT* -* kj+n"* o or responds to 
possible isobar intermediate states i n the prooess and i n the s-*u 
orbssed prooess. Ihust 

( 2 . 1 ) 

where the sum over k i s over a l l isobar states. 

I s oan represent the Born term diagramatioally as belowt 

The Chew - Low form for f , whioh^satisfies analytioity, unitaritgr 
dnd-oroBsing symmetry, i s : 

+ (two or more meson . intermediate states) ( 2 . 2 ) 
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where Mi i s the mass of the isobar i and p(w) i s a kinsaatio faotpr, 

We have i n the theory an undetermined parameter X , whioh 
measures the overall strength of tte meson couplings* Experience 
suggests that i f X i s increased, the isobar masses tend to a 
common l i m i t , life make this assumption and set; 

Mi a H +^V/\i (2.3) 

where A i remains f i n i t e as A* «» • 
The l i m i t A*-*+<* i s the strong coupling l i m i t and the 

strong coupling model i s derived on the assumption that the 
equations of the SheW"Low model are i n some sense "analytic" i n 
Az i n the l i m i t A1 ~* °* - Unitarity requires the scattering 

amplitude to be f i n i t e i n the physical region. By equation (2.2) 
the Born term i s a].so constrained to be f i n i t e . 

Using equation (2.2), the Born term can be expanded i n terms 
of 'A1 : 

C - A' U*,Am] - i Ut.lHA^ + otVv) 
J P w 1 (2.4) 

where m i s tte mass operation defined by m 11 > « "A i ' ' > 
Thus the finiteness of the Born term for a l l processes implies 

that 
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This equation, being true for a l l * f p , oan be re-written i n 
the standard form ^A^ , A 0 ^a 0. (2.6) This condition, derived 
from the dynaodoB of the problem, i s sufficient to ensure that the 
algebra generated by the As and Js (the Js being the generators of 
the symmetry group K) oloses. The problem of finding the isobars 
i s thus reduced to the algebraio one of finding unitary irreduoible 
representations of this algebra. The additional assumption required 
i s that ths mesons souroes Act transform like tensor operators' of K« 
This gives an equation of the form; 

£ i f A * ] m Di«p Ap ( 2 . 7 ) 

The generators of X ooey an equation of the formi 

t J i , 3 - j ] - Cijk Jk. ( 2 . 8 ) 

where Cijk and Dijk are structure constants, liquations (2.0*),(i!.?) 
and ( 2 . 8 ) define the algebra of the strong coupling group Q f o r 
the system. Inspection shows that 6- i s the samidireot product of 
K with T, the translation or Abelian group generated by the A* . 
& n K at T. T i s the translation group:, n n dimensions, where n i s 
the dimension of the space spanned by the Aw . As & is non-oompaot 
i t s unitary irreducible representations are infinite dimensional. 

Representations of the Strong Coupling Group 

The methods used for deriving representation of the strong 
ooupling group are mostly of a teohnioal nature and physically 
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unenllghtening• The techniques of group contraction, used by C.G.3 

i n their original paper, and method of induced representations are 
both standard group theory procedures. The methods derived by 
Palrlie ( 4 6 ) and also Udgoankar and Singh (47) $ are however of 
physioal Interest as they not only solve the problem i n hand but 
also exhibit the olose relationship between the strong coupling 
equations and the bootstrap consistency condition. 

We therefore disouss these l a t t e r methods i n some detail 
whilst contenting ourselves with a brief outline of the former. 
group Contraction 

Given a strong coupling group G-, the idea i s to f i n d a 
group H with the property that one may take linear combinations 
of the generators of H and by taking the ooeffioients to some l i m i t 
obtain operators which obey the algebra of Cr. By seeing the effect of 
this l i m i t on the parameters specifying a representation of H. one 
may f i n d a corresponding representation of Cr. Naturally one tr i e s 
to f i n d a group H whose irreftixvflaTw unitary representations are 
particularly simple and easy to f i n d . Usually H w i l l be chosen to 
be oompaot. thus enabling one to deal with f i n i t e representations. 
Of oourse, after contraction suoh representations w i l l become i n f i n i t e 
as & i s be non-compact. 

A group H, related to the strong coupling group Cr. as specified 
above, i s referred to as an intermediate ooupllnfi group. 
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As an example of the use of this method oonsider the scattering 
of soaler mesons with iaospin symmetry (42) This i s the oase where 
K • 8U Z(2) and & a su(2) x Tj H i s chosen to be su(2) 9 su(2) with 
generators L[ and L* whioh obey: 

Put l i a L i + L i , Ai a e ( L i - L i ) I n the l i m i t €"» ° keeping Ai 
f i n i t e , the 11 and Ai generate the algebra of su(2) x T g The 
irreducible unitary representations of su(2) 0 su(2) are specified 
by ( I , , l i )where l f ( t v +1 ) i s the value of the Casamir operator 
(L* )* acting on the .rip^sentatlon. 

Putting I * • 6 ( t * 1 ) , t w i l l assume the values t = 1 Hi-it\,..., ,<t«;f» 
by the usual result for ooupling time angular momenta. Thus f o r a 
useful representation of su(2) x T3 to emerge from our calculation 
we must keep t b0a\P»-Ci\finite. 

A..J, a e ^ L ' ) 1 -(L* ?} a £ ( I , - M ( I , + i*1>. 

Thus i n order than A does not vanish we must choose ( Q, + ̂  ) to 
become i n f i n i t e . Thus we must oontraot su(2) 9 su(2) by making 
H, + J t ~* <* whilst keeping ( h-tL)finite. 
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I n fact t p specifies the representation, and such a representat&q 
contains an i n f i n i t e number of irredioible representations of the sub* 
group s u 1 ^ ) with I i i *(t+1), t=to pto+1 9 

The use of this method i s tedious for larger groups <p« The 
details may be f«.vad i a the li t e r a t u r e . 

At the end of their paper, CaG-«S0 remark that the oonneotion . 
between group contraction and taking the strong coupling l i m i t might 
have physical significance,, They suggest that for f i n i t e couplings, 
the precontracted intermediate coupling group .might servea«anon-
invariance gx-oup for the systam. In chapter 4 > we discuss the 
theory of 5 fttermediate coupling b u i l t on this idea.by Kuriyan and 
Sudarshaft ($4) « 

For completeness we l i s t below various prooesses with the 
corresponding symmetry groups (K),, strong ooupling groups (&) and 
intermediate coupling groups (H) 

K Or 

Sua) xT* SLI2.0 

Sua) 

Su/6) ®St//6) 
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Bootstrap consistency condition for strong coupling (10,47) 

The diagram i l l u s t r a t i n g equation 2.1 shows how the strong 
ooupling oondition links the oouplings of isobar intermediate states 
i n the direot and crossed ohannels. I t i s thus not surprising to 
f i n d that, using Clebsoh-Crordon ooeffioients to projeot out speq;Lfip 
invariants i n the direot ohannel, the bootstrap consistency ooadit&en 
may be derived from equation ( 2 . 5 . , ) . We use equation ( 2 . 5 ) rather 
than the more oommonly used equation ( 2 . 6 ) beoause the analysis used 
for equation ( 2 * 5 ) i s identical with that required later to deal 
with the t o t a l amplitude. 

To i l l u s t r a t e the technique sketched out above, we take a 
simple oase where K a su(2) and the mesons belong to the "spin 1" 

representations. Armed with this calculation, i t i s relatively 
easy job to oonstruot the calculation f o r any group K. 

To simplify the algebra, we take the meson operators A« to 
form the spherioal basis of the spin 1 representation. That i s , oe 
i s the s - oomponent of the meson concerned. ( 1 * 9 , 5 0 ) . We label 
isobars by their spin and i t s z- oomponent. We may use the Wigner-
Bokart theorem for the symmetry group su(2) to write the matrix 
element of A between two isobar states as the produot of an sU(2) 

Clebaih - ftordon ooeffioient and a reduced matrix element, which 
i s independent of the a - oomponents. Thusi 

< I I , | Acc| JJa> - I JUl II All J > ( 2 < 9 ) 
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for oonvenienoe we write < I I | A l| J > = g^ 
Inserting equation ( 2 . 5 ) between the states< 11*1 and |jJa> 
gives: 

( 2 . 10 ) 

using A^a^l) Attend where kjf= I 2 + X = ̂ - f p } k> -1 * - f = Ta- * 
Aquation ( 2 . 1 0 ) holds for a l l I ( X Z , J , J 2 and the summations are 
overall isobars S and X1* Charge conjugation invarianoe implies that) 

< I I * I A J J * > %. (-I)VJJZ|A-«| H*> ( ? N ) 

Using the Wigner-Echart Theorem, this gives the vertex symmetry 
m a t i n . , g j . ( - I ) 1 " 1 ( § * T ) 4 « J ( 2 . 1 2 ) 

Using equation 2 . 1 1 , equation ( 2 . 1 0 ) gives: 

•(MS) ' w 

( 2 . 1 3 ) 
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To projeot out the K channel we multiply by 

t 
1 1 M « 1 1 M 

and aum over I z and p keeping <x fixed. 
Tor the left-hand aide of equation ( 2 . 1 3 ) * we oan sum over 

with k 7 fixed and then sun over k z which i s equivalent to summlag 
over Z 2 From this we obtain from the l S f t hand side. 

£«^(i:j-(L:S)£'af 9«a>a-
k It p 1 ' 

I t 
I J / 2 k + 1 \ 

where we have uaed the relation 

i z , k i fixed 
and well known symmetry relations f o r C-G- coefficients. 

Under the same operation, the right hand side of equation ( 2 1 1 3 ) 

gives: 
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Using the symmetry relations f o r C-& ooeffioients, the sum oan be 
re-written as: 

*' • 
J(2k» • D ( 2 K ~ ) (-1)^ 

3 

The sum over C-G ooeffioients i s simply related to a 6 T symbol 
and we may write the term as: 

£ . I J (2k»+1)(2K+1) (-1)^ f i 1 k ' } 
**• 8k« T ( J 1 K J 

• £ C K k » ( ^ " ) ^ g k ' J 

where QBC' • (-1 ) 2 J(2k'+1) [ J J J i s by definition the 

s-u crossing matrix 
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Thus we have the equation.I 

and henoe obtain the bootstrap consistency condition 

I k s L k b ' l k' 
K k i (2 . 1 5 ) 

I j p 
where (?k &*k r 1 h and the summation over k 1 i s assumed. 

As remarked earlier, the bootstrap conditions may be derived 
from the strong coupling oondition for any symmetry group l(. AÛ o 
the bootstrap conditions hold f o r any process Ni + Hj +TT 
where Ni.Nj are isobars i n the representation of the strong ooupling 
group. Consideration of equation ( 2 . 1 ) quickly shows why th i s 
should be the case. We see that the Bom term has dlreot ohanne^ 
poles and^ovoased ohannel poleB. Moreover we notioe that the 
strong ooupling condition i s also the oondition that the Born tern 
superoonverges.. Thus the residues at the poles f o r a particular 
process must obey the bootstrap conditions, as was shown i n chapter 1, 
i n the seotion on superoonvergenoe. We w i l l return to the topio of 
super convergence and strong coupling theory l a t e r . 
Uses of Bootstrap Condition 

The fact that the bootstrap consistency oondition holds for 
a l l prooesses within^ the isobar chain can be used to derive the 
meson Isobar couplings, onee the composition of the isobar ohain 
(ie the representation of the strong ooupling group) i s known. One 
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merely writes down the bootstrap equations f o r a l l processes (or 
as many as necessary) and puts i n the isobars as intermediate states 
The equations so derived are sufficient to determine the ooupllngs* 
Indeed one oould show that the fact that a l l the bootstrap equations 
hold with intermediate states from the isobar ohain, i s suffioient 
to guarantee the veraoity of the strong coupling equation, acting 
between isobars within the chain. 

The procedure outlined above i s particularly suitable for 
use i n a oase where the isobars ohain has a particularly simple 
structure, such as the su*(2) 0 su^(2) ohain with I = J. In this 
oase one need only consider two prooessaate oover a l l possible 
prooesses. Clearly the more complicated and the larger, the isobar 
ohain i s : the harder this method becomes. 

The I = J nucleon iso-bar chain i s particularly suitdd to the 
above technique because we need only consider two processes: 
( i ) (1,1) + pion -* (1,1) + pion and 
( i i ) (1,1) a pion ( I f l ,1+1) + Pion 

Consideration of the prooess ( I , I ) + pion -» (1-1,1-1) + plan 
gives no extra information, as i t i s the time reversed prooess to 
( I - 1 , 1-1) + pion —> ( l , l ) + pion which is a process of type (i±^ 

D«B« Pairlie (46) has an elegent solution to the bootstrap 
problem for this oase which makes use of the orthogonality 
properties of the crossing matrixes* The bootstrap equation for 
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the invariant amplitude ( l ( J ) a(a,b) for the process ( i , j ) + pion -» 
(i»fJ') + pion i s : 

(6aa» (f bb« - Caa» Cbb») g**J g ^ J ' a 0 

where the Cs are the appropriate isospin and spin crossing matjripeB, 
The properties of Racadt coefficients allow us to write Caa* s Oaa* 

— ~ — I And Oaa1 orthogonal and symmetric, for both of orossing 
2 a +1/ 

matrioes. Wo can use this fact to write our equation as: 

(Jaa'cfbb' - Oaa» Obb») &^b, ftj^l » <> 

where G*£ a { ( 2 a • 1 ) ( 2 W 1 ) ] * g ^ 

i f we now re s t r i c t ourselves to isobars with I a J. The above 
equations gives:(<faa f - O a a 1 ) ft1* , G**-. a o 

a ' a ' a'a1 

I t i s easy to see tiiat i f i s independent of a, the equation 
i s satisfied. With this condition 

£j O"1* <Va» ' V a * » £ ° A A ' 0 a f « G* ( i ) a G* ( i ) 
a* a* 

P i i i ' i ' * / \ as 0 is symmetrical and o.rthcgona.1. Also 0 a a f G , , G a G ( i ) 
a 1 

2 
' a G 

a ' a ' a a 
?or completeness we give the iiiospin orossing matrix (Csu) 

fo r the process i + 1 i +'<. (;>1) 
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C su / 

i - 1 i i + 1 

*nr -Vi g$ ] i - i 
- J r l r - ^ i * 2 i ± 3 I 

i 2 i - 1 1 1 

The crossing matrix for the process i + 1 —* ( i + 1 ) +1 i s : ( 5 1 ) 

i i + 1 

-1 

Csu 

i(i»2)(a.i»i)? ' 1 J 

Inserting our solution g ^ = gives, using vertex symmetry, 

G-(i) to be a const tint (ie independent of i ) ThuB the oouplings 

are: g j ^ a 1 (with a particular normalisation), and g ^ ^ • 

^11*3^ *i>1 i - 1 a ( f a ^ l ) f r o m t h e T e r * e x symmetry relation. 

The above method seems not to be applicable beyond this simple 
example* so we now turn to another method of obtaining the couplings 
fo r the I a J isobar ohuin, whioh method was discovered by Fair l i e 
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and also by Udgaonkor and Sing|h (V7) This oaloulation exemplifies 
the widely applicable teohnique of expanding T i n terms of the 
Rigen veotors with eigen value +1, which are the even oolumns of 
dat (see appendix 1). 

Briefly the method i s as follows. Write T s Cat T 

where T multiplies only the even oolumnB of Cst, as T obeys 
(1 - C)T oO and henoe i s even under s- u crossing* U' has aero 
elements corresponding to the odd columns. I * also has zeros 
corresponding to channels which do not contain a member of the 
isobar ohain. The contraints the zeros of P put on F can be read 
off from r • CstT" I f T 'is determined , one can now read off the 
values of the produots of couplings whioh make up I " . I f V " i s 
undetermined, but conbains only a few arbitary parameters, the 
equation may be inverted to fi n d the consmtats whioh the theory 
imposes on the elements of T . A l i t t l e thought reveals that 
the above method of solving the bootstrap equations i s , i n 
general superior to the direct method. I f the orossing matrix 
i s of order m x m, the expansion T - OstT immediately gives 
i n terms of roughly m/2 parameters, corresponding to the number 
of even eigenvectors of Csu. In most problems T has half or more 
of i t s elements zero, so that f i s determined or contains only a 
few parameters. The effort involved thus compares very favourably 
withthat required to solve the m linear simultaneous equation* 
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of the direct method. As an example of this technique we follow 
the calculation of F a i r l i e , again for the isobar chains I « J 
and | l - J| a 

The isospln orosslng matrix for i + 1 i + 1 has one odd 
eigenvector ( i f 1, 1, - i ) and the even eigenvectors span a two 
dimensional space. For convenience we take (0, 1/21+1, 1/21+3) 
and (jgj—_i» "21+T^' °) a B o u r oasis. Thus the orossing matrix 
for the prooesa ( i , j ) + pion -> ( i , j ) + pious has five even and 
four odd eigenvectors. I f we oonsider the scattering of pions 
off isobars with I n J or,for definiteness, I a J +^, the 
Intermediate states, ( I , J-1), (l+1,J), (1+1, J-1) and (X-1, J+1) 
oannot exist. Putting the corresponding elements of to aero 
constrains T to be a particular linear combination of the f i v e 
even eigenvectors which give at 

( 1 - 1 , J - 1 I A I I J ) 2 s I * J +,1} (2,1+1) a 
2 1-1 

( U l A l U ) 2 b ( J + I ) ( I - J ) [ * ( I + J) +l]a 
(21 -1 )(2J + 1) 

( I J I A I I J ) 2 - 3 ^ ^ i f + ( I + 1 ) ( 2 I " 1 ) + 2 J * 

( U + l l A l l J ) 2 . K I -0 \* ( W > + ?\ a 
(2I + 1)(2J+3) 

( I + 1 J+1 | A| I J f = I C J + 1) ( 2 J +1) a 
2J + 3 

where a i s some normalising function. 
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Vertex symmetry for the f i r s t and f i f t h relations gives the 
dependenoe of a on I and J as a a - J — ^ v # and we put a • 
1 • a s w e a*"6 f r e e *P choose the overall normalisation* 

Consider now the prooess ( l , J ) + pion •-*( 1+1 ,J+1) + pion. 
losing the orossing. natrlx gives, one oan derive, i n the same 
way, couplings whioh are oonsistent with the above with reBpeot 
to the factor a, providing ( I - J ) [ 2 ( l - J ) - l ] =0. 

Thus the above equations give the solution for the I a J 
ohain. They are also oonsistent for the processes 

(J • £, J) • pion -*• (J + £, J ) + pion and 
(J + £» J) + pion -+(J + 3/2, J +1) + pion 

within the isobar ohain ( I -J) a £• There i s also a t h i r d 
independent procesa not inoluded i n the previous case: 

(J + £, J)+ pion -*>(J+ £, J * 1) + pion. Inspection shows 
that the above solution i s oonsistent for the prooess. As the 
theory i s unchanged by ainterchanging I and J, the above gives 
a oonsistent solutiah for a l l prooesses for the ohain | I - J \ a j 

The reoent work of Noga (52) has provided fresh insight into 
finding the representations of the strong ooupling group. Using 
the identities relating 3-J» 6-J and 9-J symbols, Noga i s able to 
fi n d solutions of the problem for the oaae K a au^(2) 9 au*(2). 
Sepresentationa of the strong ooupling group are classified by the 
value of p a max 11 - J | . For the scattering of pions offbaryon 
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isobars, Noga obtains the solution: 

g ZJ a 

A process involving strange mesons w i l l ohange the p values 
of the isobars Nega oonaiders such in-elastio prooesses of the 
type T + B (i»,J»,p»)-*X • B ( i j p ) . Equating the s and u 
channela gives a solution for the oouplings of strange mesons, 
since one vertex i n eaoh diagram i s already known, being between 
isobars with the same p values* The solution i s : 

where q = ( I + J - i - J ) . 
The symmetry properties of the 9-J symbol lead to invarianoe 

under a further su(2) group depending on the variable p. Post-

Nega, again equating s and u ohannels (t h i s time for a process involyjplg 
arbitrary wave mesons) obtains the coupling 

( ( 2 i • 1) (2 J + 1 

ulating t h i s invarianoe to exist for the scattering of 1 - wave mesons 

[ I I I } * 
(2Ul)(2j+1)(2p +1)j M 7 3 

for the vertex 
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where the meson has I ( J fP) spin K/0 ,q). 
By means of this sequence of boatstraps, Noga i s able to abat&n 

the solution for the scattering of mesons i n an arbitrary wave whioh 
Sakita obtained by group theoretioal mesas. I t should be mentioned 
that Bishari and Sohwinmer (57) obtain the same solution for p-waye 
mesons using a similar method to Noga's. They do not however apnea? 
to see the significance of their result. 

Mass formulae 

Strong ooupling theory also enables one to make statements about 
the masses of the isobars. Using the unitarlty equation, constraint* 
are imposed on the isobars masses sufficient to determine them, an.ovt 
from a small number of arbitrary oonstants which may be fixed by 
setting the masses of the lowest isobars equal to their expei'imental 
values. The masses of the higher isobars are now fixed and appear 
i n remarkable agreement with the experimental data, as remarked by 
Lovelaoe (54) at the Heidelberg oonferenoe. 

The f i r s t step i s to f i n d a solution ti£ the Chew-Low equation wiltfy 
the oorreot pole term as given by -the strong coupling oondltion. fhe 

DO* 

pole term i s : -

where D b« - [>f*» [.M , A J ] 

-L(w)» 
2m(-m-ik) 

For s-waves, the solutions i s : 4b«( v) h ^V*. 
J\* 2m(-m-I 
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where m ia the meaon mass. The unitarity equation iax 

2m D « K a ^ D A X D < 9 C (2.16) 
For this to be valid i n the physios! region W>AI, the mass dlffereaqea 
must be small compared te the meson mass m. This means that the 
oouplings must be large. 

For p- waves, a out-off i s neoessary. I n this oase the solution 

< p v 3 ' w n e p 0 a i» *«e cut-off radius. This 
gives the unitarity equation: 

2 B D ^ a f D p r DVA (2.17) 
* -1 The condition f o r this solution to be valid f or w > R i s that the 

-1 
mass differences be small oompared to R . This implies that the 
oouplings must be large oompared te the out-off radius R. 

The above deviations of the unitarity equations (2.16), (2.17) dp 
not seem very satisfactory. Perhaps a better argument i s that used 
by Sakita (53) who shews that a forma! solution of the Chew-Lew 
equation may to obtained i n the strong ooupllng l i m i t , with ne 
extraneous singularities exoept at i n f i n i t y , provided. 

(2.18) 
D^ev" j£ Df3«" D*A (K)>where X i s some kinematio 

faotor whieh w i l l be related to the cut-off. 
IShether one takes equation (2.16), (2.17) or (2.18), one may 

divided D by 2m, 2R or K to obtain the aame form for the unitarity 
equation: 

.Ap« = 5 A p * A * * (2.19) 
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where for a- waves 2m Apt* • DBoi , for p- waves ZB. Apx » Dp* 
Wo take as our fundamental relations equation (2.19) and 

Af<K « [LfAft , A * ] ] (2.20), where 
^ a H/m for s- wayes and * U/R for p- waves* 

Let us consider the oase where the symmetry group K i s au^(^) 
and the process I +Ti J + i r • 
The deoompeaition of the matrix elements of A is terms of invariant 
channels can easily be effected, using the techniques used earlier to 
obtain the bootstrap equation* 

<JJ« I Ap« \ I I * > 
»,£(*¥* -tyl) < JJ£ U £ | KK^<KK& U«lXI&> 
K 
• ^ ( ^ K * -^?J) <JJft| A«| KKfc^KKi U ^ l I I i z > 

(2.22) 

Putting R(JIJ*) a ( ^ 1 ) g j g j « £ c K ( (^K'-f J) g j . g j , (2.23) 

one obtains < JJ* | l l f c > - ^ ( ^ I f e ) 0 

R(JI£K) i s the projection ofA into- the X invariant channel. 
Using the bootstrap condition, one may re-write equation (2.23) 

to givei 
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' ' »' ( 2 . * ) 

Note that R(JI£&) 1B the contribution the pole terms would give to fhe 
1 

f i r s t moment sum rule for the process* 
I n terms of the Rs, the unitarity equation (2.19) beoomes: 

R(Upt) a^R(U'^X) BJT'JJX) (2 . 2 6 ) 
J* 

where the summation i s over J*:&-1,KtK+1. 
These two faota are the essential ingredients i n the ealoulaljion 

of Cronstrom and Noga, whioh we w i l l discuss l a t e r . 
Having obtained the unitarity equation i n various forms, i t i s 

possible to put limitations on the form of ̂  • F i r s t l y as ̂  i s 
an invariant of the symmetry group K, must bo a function of the 
Cnsimir operators of X. The early strong coupling papers (41,42) 
assumed that ̂  was a linear combination of the s econd order Gasimir 
operators of K. Goebel (45) gives an argument f o r t h i s : 

Expand ̂  « a + b i J i + CiJ J i J j + d i j k J i JJ Jk 
( 2 . 2 7 ) 

where J i are the generators of K and a, b are invariants 
of X. Then substituting gives: 

Aftfl * - Cij ( J i ) * p (Jjjj3«s- Ap V d i j k ( J i ) * j , (Jj)stf- ArAff-J.kt. 
( 2 , 2 8 ) 

where [Aat, J i j « i C J i ) ^ An. 
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Geebel argues that as a representation of the s trong coupling 
group oontains isobars with arbitrary high values of the Casimir 
operators, the matrix elements of A oan be made a r b i t r a r i l y large 
by taking them between sufficiently high isobars. This w i l l contradict 
the unitarity condition, equation (2.19) which, being non-linear, 
lim i t s the sise of A » To prevent this happening, i t i s necessary for 
a l l terms beyond the C i j term to vanish, thus giving the required form 
for ̂  . Were the matrix elements of the As to decrease f o r higher 
isobars, i t would be possible to retain some additional terms i n the 
expansion (2.27). The present author oan see no a p r i o r i reason why 
this dexwase should not occur. However i n the calculations performed, 
i t does not eoour and G-oebels argument holds. 

Rangwala (55) gives a method by whioh a difference equation may 
be found for*^.. As A i s idempetent, i t must have eigenvalues 0 or 1. 
Thus the traoe of A i s k I ( I i s the identity operator i n isobar space) 
where k i s an integer between sere and N, the dimension of the regular 
representation of K, whioh contains the mesons, i.s ^? k I (2.2^) 
Putting ^ a f/£A2 where A 2 b *?aJ k K and f i s a function of the 
Casimir operators of K, one obtains: 

£ ft* " k I (2-30) 

This yields a linear dli'ferenoe equation for f« The solutions of this 
equation are not necessary solutions of equation (2.19) as taking the 
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trace introduces spurious solutions• Substituting baok„ Hangwala obtains 
the usual mass formulae for the oases where K • su^(2) and K • su*(2) 
«suJ(2). 

We reproduce here Goeeel's mass formulae for the case K a su (2) 
• su(3) I t oan be seen that f i x i n g the mass formulae by two 
experimental masses, the other masses are approximately oerrect, and 
that the ordering of the isobars with respect to their masses i s the same 
for both experimental and theoreotioal masses. As Lovelaoe remarked 

i 
(34), this suocess oannot be repeated by, for example, the quark 
model: 

S u b ) (TTM) 

8 ' 0 Til 5 2 ] 

I 0 r 1 KU 

i t % 1768 

2-7 
t̂ i ilSii) 
& ( lUS) 2 i ( i W 

3 s i K>1TI (1656)? 

2 7 
fa U7(, 

N 117SD? 



50 

Strong Coupling and Superoenvergenoe 

Panda*' (58} showed how saturating superoonvergenoe relations JLead 
to solving the I a J isobars series for K a su*(2) 0 BU**(2). Showing 
the similarity between bootstrap and auperconvergenoe methods, and 
the relationship between the strong ooupling equation and the bootstrap 
equation, this result comes as no surprise. However, strong ooup^ing 
theory embraces more than the equation for the oouplings and so i t &a 
worth while looking i n greater detail at the connection between strong 
ooupling and the saturation of superoonvergenoe relations. Consider a 
process + meson ~»Ng+ meson where N^, Ng form representations of K„ 
Consider the invariant channel k. 

*C(=e) + ^ l a faM - Ckk' ffc'(w) j dw« (2.31) 
m w w . . 

where the pole term oontains only bound state terms. 
I f fj,(w) superoonverges, we o b t a i n s ^ 

0 a A 2 [ l - Ckk'] J&gP + \ Im[fk(w) - Ckk' fk»(w)]dw' ( ? ^ 2 ) 
m 

I f the integral oan be saturated by resonances we obtain A^ £l-Ckk'3 
Nl N2 

a^ifiCi ** ® where the assumed summation i s over both bound stateB end 
resonances. We thus obtain the statio bootstrap, and hence the strong 
ooupling condition. 

I f we further assume that the 1st moment of f ^|(w) super converge a. 
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we obtain 
•+0O 

-RCNj^sk) + J w' | Imfk(w') -Ckk»Inifk»(w)] dw« - 0 (2.33) 
I t i s not possible to saturate this integral with resonanoes, i t must 
contributions feanthe two partiole unitarity out. I f we assume only 

i 

these contributions we are i n a position to obtain information from jbhe 
equation. In the a- wave oase, putting fk(w) a reaonanoe terms + 
£?QS one obtains 

-R(»S, K,yk) + SL- b 0 

2m 
In the l i m i t £-» 0, one obtains the usual conditions 2m Dk a 

R (Wi^Nrj* k) and the unitarity conditieaa. 
I n the p~ wave oase, one runs into trouble because of the kinematic 

factors and i t i s not possible to f i n d a simple solution. For f k to 
superoonverge i n this oase, i t must also obey superoenvergenoe relations 

- f o r i t s f i r s t moment and a condition on i t s seoond moment. These do 
not i n general hold for strong ooupling theory solutions. However 
Cronstrbm and Noga (59) found a situation i n which one may apply 
these techniques. 

Consider K a su^(2) 0 suJ(2) and the I a J isobar chain. The 
ohannel (1+1,1-1) for the prooess (l,I)+TT-Ji»(l^) +iToontains no 
isobar >and obeys exact elastio u a i t a r i t y . This means that f^(w) a 0 
i s a possibility on the unitarity out. Then using the moment sum 
rule one obtains fe ^ g^ ĝ ŵ  a 0 where the Cs are the su(2) 
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grossing matrioes for the prooess. This yields a difference equation f#r 
the masses whioh leads to the same solution as Bangwala, Cronstrom and 
Noga, use an V/D method and argue on the order of magnitudes of the mass 
differences ef the different terms. The mechanism i s essentially- that 
given above• 

The point at whioh the strong coupling oondition oan be of use la 
•s 

the oase of sum rulea^in allowing one to negleot a l l terms i n the 
unitarity integral aptrt from the terms required to unitarise the 
Born term. This can be used to Justify the simplified form of the 
unitarity oondition• 
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Bootstrap Model of Fuloo and Wong 

The work i n this seotion i s concerned with a bootstrap model, 
including a l l three channels (s,u and t ) , whioh was developed by 
Fuloo and Wong (60) and modified and extended by Pat}l (61) • The 
motivation for this work was a desire to obtain higher symmetries 
from a dynamical model, as happens with current algebra, and avoid 
the problems associated with the use of au(6) as a symmetry group. 
As the main concern of the authors seems to have been to indicate 
a rough model, the dynamical assumptions are rather tenuous (67) 

Fulco and Wong obtain their bootstrap equation by representing 
..the effect of crossed channel prooesses by effective poles i n the 
parti a l wave amplitudes using the static model. Following the 
work i n chapter one, i f there i s a particle i n an invariant channel 
of the direct channel, one may write down the oondition for i t 
to exist, with mass m v and coupling with strength ^« to the 

system: 

s + s ft 3 + S 

(3.0 

where C , C are the crossing matrioes for some internal 
symmetry group, y^m„u i s the pole representing the effect of the, 
invariant channel n i n the u-channel and dp represents 

8+3 
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the fl.ffect of the Invariant channel f i n the t-ohannel. Making 
the linear D approximation one obtains: 

The argument used to give meaning to this equation i s that 
the u and t= ohannel poles correspond to the exchange of single 

v 
parcels states and the tis are the products of the oouplings 
of chose particles to the system* From ohapter one, we believe 
that this may be a reasonable assumption for the u-ohannel poles, 
which aorreeponds to the heavy partioles i n the static approximation4 
I t seems doubtful that this i s alBo true for the t - ohannel poles, 
as i n re a l i t y the t - channel gives a oomplioated cut struoture* 
JSven i f the use of effective poles i s permis sible for the t - ohanel 
nontrlbutions, i t may not be possible to attaoh significance to 
the rasidueso For the u ohannel, the higher mass exchange poles 
ar« further from the physioal region which may allow the neglect 
of higher masses exchanges without too much error* This i s not 
t r u * of the t - channel whioh contributes within a small f i n i t e 
region, and we have no guarantee that the lowest mass exchanges 
doTA.ig.Ate to the extent that the effeotive poles have residues 
given by tha oouplings of the lowest mass exohangefl. 

With these assumptions we obtain,: equating.the s and u 
ohemne-lsi f-Ceu£* « Cstf*' (3*3) 
where l u . - " ''^ and i"p - *5J p This i s the, 
isoststrap equation of Fuloo and Wong:* We nets that r^ > a 0 gives> 

http://doTA.ig.Ate
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the conventional bootstrap equation* 
i 

P a t i l , i n his anal/sis, imposes less oonstnants on l'*' which 
s t i l l allows one to derive useful relations between the meson* 
baryon ooupllngs i n IT From dispersion relations he obtainsi 

where the Ds and As are . dynamioal faotors* He argues that i n 
the statio model i t i s reasonable to approximate the u- ohannel 
contribution by the crossed physioal poles of the particles i n 
that ohannel* Henoe he. obtains 

So far we have hot mentioned spin* I f we deal with particles with 
spin, i t i s again reasonable i n the static l i m i t to use statio 
spin crossing to give the contribution of the a-channel poles* 
The oonoept of spin i s not well defined i n the statlQ model of 
p- wave scattering and again there i s trouble with the t - ohannel 
exohanges. Allowing the dynamioal faotors i n A to commute with 
the internal symmetry group gives: 

f - c I a a t f - C c £ ® a ) f ' (s.rt 

where l ( j ) refers to the internal (spin) symmetry group* From 
equation (5*5) i t i s possible to put oonstants on A from 
consideration of the spin and padfcles of the particles exchanged* 
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Spin and Statistics f o r meson exohangcs 

We forget for a mpmant the statio model and simply oonsider 
the diagram for meson exchange i n meson-barypn scattering and i t s 
symmetry under a- u proa sing whioh, i s defined as the interchange 
of the external mesons. 

3'^A The external meson have spin and 
pi 

parity J' and the internal one 
J p . f o r what follows the baryon 
vertex i s of no importance. 

Let the external mesons be i n a n 4 -wave In the t - ohannel. Then 
conservation of spin implies that 

J CJ« 6 J 1 » k (3.6) 
Parity conservation at the vertex implies that P - (-1 )^P'P'*(-^ 

(3.7) 
fiose sta t i s t i c s implies that the three, meson vertex i s symmetrical 
under the interchange of the external mesons. Thus (-1) ̂ 1 • 1 v (3, 
where :•' i s , +1 (-1) aocording as the vertex i s symmetrical 
(anti-) under the internal symmetry crossing. Equations (3*7) 
and (3.8) imply that * j £ a P. Knowledge of the Internal symmetry 
representation to whioh the exchange*belongs usually determines 
i ' ^ j (This i s not the case where the external me sons are su(3) 
octets > as 8 9 8 dontains ootets whioh oouple both: symmetrically 
and antisymmetrically), and hence determineb P. Equations. (3,6) 
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and (3*7) dcnatrain £ and there may not be a value of Jt to satisfy 
both. Squat ion (3.7) only determines whether JL i s odd or even and 
i t la eaay to see that as ̂ ong a, s J»$ 0, there w i l l exist both 
odd and even values to ft to satisfy equation (3.6). I f J' • 0 

S a ji and henoe only exohangea of natural parity, with P a (-1 

are allowed* 
Returning to equation (3 . 5 ) , we see that the l e f t hand side 

I . f 
obangea sign when operated on by Cau f Cau. ffenoe the right 
hand aide must be am odd eigenvector of Oau • Oau. An exohange 
of positive (negative) parity w i l l have f ^ j . • Expanding 
A i n terms of the oolumaaof Cst shows tnltWohange with ̂ji*».1(-1) 
oan only multiply odd (even) ooluqajof Ca{« When the spins are }xm9 

thia reault may be sufficient to determine A. apart from an arb^ary 
normalisation multiplying each individual exohange term of '• 
We now indioate the differences between the approaches of Puloo 
and Wong, and Pat 11. She former opaalder axial vector mesons 

a 
scattering o f f baryons. Thia enables them to obtain a consistent 
solution to their equations with the exohange of a vector octet 
and singlet and of an axial veotor ootet whioh may be identified 
with the external meaona. This identification, aa we shall see, 

i 
i a consistent and leads to a model witb a w a l l e r number of meaona 

r 
than required by P a t i l . He oonaidera jbhe p* wave scattering of 
pse: doaoalar meaona, whioh i s a physically observed prooess. 
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whereas axial vector mesons have apt been identified physically. 
The p.e potet oanaot be exchanged, bftvlag unnatural parity and the 
external pp-» npsonsare spin 0. P a t i l introduces a tensor (2*) 
ootet whichthaving natural parity)can be exchanged and w i l l 
contribute i n the same way as an A.V potet exohange. 

In the direot- ohannel p* wave p.p. meson scattering i s 
mathematically identical with A*V meson scattering. I n the 
t-» ohannel, Pulco pad Wong's (8.1*), (8»0»(l»1*) exohanges 
contribute to the pane elements of J*' as the (8.1~), (1,1") 

and (8.2*) exchanges of P a t i l . Thus the two calculations arc 
mathematioally equivalent, except 4i» >Q far ap we are required to 
identify the internal and external (8.1*) mesons i n the V.W 
calculation. Ship oono^rajnt impopp, tbe condition that the 
f/d ratioa of the ooupling to the baryon ootot smpt be equal 
As both f and d contributions tojf* 1 'anfrom (8.1*) terms, the 
effect of A should bo Just an overall normalisation faotor for 
the two terms, so dividing them should give the.same as the ratio 
of the direot channel f and d oontibutions. 

In the oase when Cs{ hap only one odd and even ooluaa, and 
the contribution of a speoifio exohange i s fixed, Fuloo and Wong 
put the nossaiising faotor derived froq A, to unity. This gives 
signifioanop to the elements of C ap products of oouplings. The 
results for the aesoarbaryoa couplings (63) are consistent for 
a l l proopppee involving the (8,g) pad(10,jj/2) iso-bars. As we 
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shall see i n chapter 4, this reflects the use of su(6) as a non-
^Lnyarianoe group. 

After this dlsoussion, a brief remark on how to solve the 
mathematical problem. We have shown that the equation oan be 
reduced to: p - Csu pmOmtf9' (3-3), 

j I 
where 0 • C G C , andjr i s related, as indicated previously, to 
the t * ohannel exchanges, which fact imposes oonsta&nts, i n the 
form of zero elements, onP'• . f Also has zero elements corresponding 
to iso-bars not i n the ohain considered* 

The solution of equation (3*3) has most easily been effected 
by writing P « Cat P" (3«9)» Then operating with Csu, we see 
that the non soro elements of i equal twfoe the corresponding elements 
of P" • The constraints on.fandP'oan be imposed on f andF'in 
equation (3*9)* The elements of X^*oprreBponding to even columns 
of Cat can be oonsidered as free parameters with no physical 
significance. Using equation (3*9) and i t s inverse, the effeots 
of the oonstants of I7 on T and vioe versa, may be found* 
1. ( 8 . * j • fS-j) ~» (8 rw)^8.1) 

8 G 8 • 1 • 8a • 8A • 10 • To • 27. 
As i n previously we have chosen linear oonbinations of the 

octets which oouple symmetrically and antisymmetrically e The aon^ 
zero elements of V are J/ ss, i^sA^ JfAej J(7AA corresponding to 
the ( 8 , i ) state and X^O corresponding to the (10,3/2) state. The 
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expansion of the J?b as pairs of couplings shows thatf*AS • J^&k 
andpSS J7AA - f l s . We may thus write / I s . *1 ̂ *tJ%* -Pfl***£j3* 

Let us now oonsider I 7 : • I n the s ohannel i t does not mattye* 
whioh vertex we name f i r s t , as and are equal* In the t -
ohannel we must pay attention to Una point; , as ode vertex i s a three, 
meson vertex and the other a baryon^meaon vertex. We refer to the 
three meson vertex by the f i r s t index. As we have defined a —>u 
orossing as exohanglnf the meaona, thi s f i r s t index determines the 
symmetry of the ohannel under a «>u orossing. Thus the $ni i 

oolumns of Cst are odd and the Sss>, columns are even under s • u 
su(jj) orossing. 

With P • - 1 , the veotor ootet contributes to ( 8 a s . O ) and 
(8 a* t 0 ) t the ratio of these terms giving the f/d rat i o of the 
veotor coupling to the &? system. The axial ootet contributes 
to (8&-i,1) and (8%*, 1) (again with the f/d ambiguity) and the 
axial singlet to (1,1). 

The spin orossing matrices are: (3°«) 

* h C i « ( h C.t'% 
v . * 

The odd oolumn i s the spin 1 oolumn. 
jPor the su(3) crossing Gts m Gat and: (63) 



6*1 

1 
f i 

8ss Baa 8as 8aa 10 To 27 
Cats 1 

1 
f i 0 0 0 1 5/4 27/a\ 

8bb i - y i o 0 0 * 4 4 27/40? 
888. 0 0 4 4 0 R/4 0 
8aa 0 0 4 4 0 J5A -JV* 0 
8ac * i 0 0 * 0 0 -9/8 
10 i -2/5 - V . f5 0 i -9/40 
To i -a/5 +VJ5 - V j 5 0 * i -9/40 

7/40 / 27 l i 1/5 0 0 4- -1/12 -1/12 
-9/40 
7/40 / 

The odd oolumns are: 8as, 8aa, 10, Tp" 
We now have to solve iPa(cs{ 0 CsDj"* 
where V . (0, 3*P , # P. ST, P, . 0 ^ 0 ^ , ^ , 0 , 0 ) 
and 

where xt,.,..., are free parameters oorresponding to even 

ft a correspond to these being no exohanges 
of 10, 10 and 27 ffet* of mesons. The way to solve this problem 
is to Invert the equation and f i n d the sero of [* in terms of P . 

The 10 and To- equations are the same fo r our ohoioe of 2 and 
>-• 

we have ^'ic •* X * P Y a J /». 
Thus - Po-*%d V -* , J *\ 

This gives fA a • j5/» P , 4A = 5/£ P.. A i ̂  P. tV ^ 

Mk/tk a J 5/4 which shows that the coupling of the A-V mesons 
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to the baryous has the same f/d ratio f or the internal and external 
mesons. This corresponds to an f/d ratio of 3/2 whioh i s the su(6) 
value. Since d vsO » the veotor ootet oouples.antisymmetrioally to 
the baryons whioh i s 

I f we refer to the mesons as A,V and 1, we have: 
g2A£Ba = g2Aj8,lO, g2AflBs a 5/4 g 2A#0. These give g2ASfi -

9/4 g2AjB,lO« Identifying the elements ofPwith t-ohannel oouplings . 
gives: 

68,o5 gAAl » 4/3 g2Apfia 
gMay gAAy = = jzj/Q g2A8Ba 
g8,8sAgAAA = 5/6 g2A58a 

g8j3aA. gAAA -{/5/9 g2A]3pa 
These results are consistent with su(6). Fulco and Wong claim 

that this i s also true for their results for the prooess A + B8 —> 
A • B10 (ie deauplet production). P a t i l finds the results for baryon 
couplings for PS + BlO^PS. + B10 are also consistent with su(6) 
We have performed both these oaloulations i n Fuloo and Wong's model 
and have found results consistent with su(6) for both meson-baryon 
and meson-meson oouplings. 
2. (10.3>2) • (8. 1) -» (10.3/2) • (8.1) 

8 6 10 h 8 © 10 © 27© 35. 
8 6 8 a 1 0 8s 6> 8A$ 10© 10© 27 
40 9 To = 1 © 8 ® 27 (9 64 
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Thus the t - channel Invariants are: 1*8, 8A and 2? where again 
the Index of the ooteta refers to the 3- meaon ooupllng. The au(3) 

crossing aatrloes are (63) 

Gat 

8s 

$2/5 

To 

Cta 
8sA 

8A 

2 7 

8 

to 

Ji'0/5 

10 

i5/2 

3 J V 8 

jTo/8 
-J7/6 

8A 
Jfo/5 

27 

27AJ5 

-§i<*2 
3o 

3 '/io 
• J7/20 

The only odd column of Cat la 8a,. 

The au(2) crossing aatrioes are (M): 

0 1 2 

* |"*/V6 - J l O 

Cat "• 3/2 -J3/6* - Jib Jo/3 1 3 7 

27 

20 

20 

20 

• 4 ' / 
35 

35/4 JTA 

T0V2 
-7/16J10 

- 5 J 6 \ 1? 

• 1 \®< j j S - f t / 
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* 3/2 5/2 

Cts a 1 I - JlO 
r 

-2 JlO 3 JlO To 
HI -J*6 

To 

The odd ooluan:; of Cat i s the spin 1 oolumn* 
Thus the odd t - ohannel invariants are (8A,0), (8A,2),(1,1 )(8s,1) 
and (27,1). The axial veotor mesons may oontrlbute to the (1,1) 
and (8s,1) elements. The veotor ootet may oontrlbute to the 
(8A,0) and (8A,2) elements. The (27,1) element i s sero as we 
allow no 27- plfit exohange. This i s the only oonatrant oaf9, 

Kenoe I t i s not surprising that we oan solve f o r j ^ where p has 
contribution for the (8,£) and (10.3/1) ohannels only. 

J/" 27 « 0 ^ f e = f 10 
Then: fikt0 - -3 J|o , J \ l • -A-Jj/S, J ' s s l = -J5/3 
and fSk,2 a 0. I t i s interesting to note that i f we had allowed 
f o r a spin 5/2 ootet to contribute to J 7 ( t h i s ootet being the 
Begge recur ran oe of the spin £ ootet), the vanishing of theJ 8A,2 
would imply that i t s contribution vanished* Increasing the number 
of baryons i n the theory aeema i n this case to imply a need for 
further mesons and vioe versa. 
The resulting implications for the couplings are: 
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gio .Tqr & W a -3J30/10 ^AJOJIO 

glO.lo} gAA,1 = - 4 j 2 / 3 g 2 A j 0 j 0 

g10,T^L gAAA a - j 5 / 3 g 2 Aj0f0 
2 2 g A,iqB a g AJ0.10 

whioh are again oonelatent with su(6) 
3 . (8.1) * ( 8 . 1 ) - - » M 0 . y 2 ) * ( 8 . 1 ) 

Tor thia prooesa a l l ohannela oontala two 8a, 10, 27* The 
au(3) oroaaing mat rice a are (64) 

8 S 

8a / 2/5 

8a 10 

J V 5 J2?4 

0 - J f b / 4 

.J2V5 4 
2 

9/4 JV5 Cat. 84 J - J V S 
10 | J2V5 

1 
27 \ -2 /5 

27 

-27/20 

9/4 V/"3 
V* / 
To / 

Note that as a l l three ohannela oontain the same invariants, the 
above matrices d i f f e r only by phase factors. The odd oolumna of 
Cat are 8 a , 10. 

8a 8a 10 

8a (** - 1 / f 5 J2 / 4 

8a 0 J10/4 

10 \m -j2/5 4 
27 i 2/5 2 

3J5 
-V3JT* 
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The spin crossing matrioes are (39) 

3/2 

Sw>) 5 ^ 3 / 6 / 4 
3 / i t f I J 3 / 3 n & 0/4 - J | b est s GtS a 

The spin 1 oolumn of Cst i s odd 
Thus the odd t - channel invariants are ( 8 s , 2 ) , (27 ,1 ) , (8a,2) ,(10,2), 
As we have no such multlplets we can put the 27 and 10 contributions 
to f ' , to zero. Inserting only the ( 8 , £ ) and (10,3/2) elements 
into P,we obtain: 

p8s - J '5 /4 f8A and f 8 1 a f l O 
This gives: p8s a f$/6 and f'8a a 0 

This gives for oouplings: 
The f/d r a t i o f o r the baryons ootet - 1 V ooupling i s again 3/2 

gA,8,8a gA,10,8a a gA,8,10 gA ,8,l0 

gAtT6",A gA,A,A a ,)5/3 g l , 8 , l 0 gA , l0 , l0 

Again these are consistent with su (6) . The rat i o of the meson-
baryon and meson-meson couplings i s given using su(6) notation as 
gUBB/gUU » y y 1!f. This ties i n with the results of Udgaonltar 
(65 ) , f o r his su(6) bootstrap oaloulation. 

We note, as do Fuloo and Wong, that i f one considers the 
scattering of the axial veotor singlet off the baryons one obtains 
results consistent with the previous results'. In fact, the soattoring 
off the ( 8 .2 ) gives, g8,8",1g1,1,1 a 4/3 g 2^88 and soattering off 

1 
the (10,4) gives, giojojl g1,1,1 a -4jHfo/l5 g 2 1,10,10. 
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The previous work would s t i l l be valid i f the veotor mescn 
were instead scalar, as both particles have natural parity. I n 
ikbta case one could soatter the scalar ootet off the baryons and 
obtain: 

The results obtained above for the scattering of the axial 
vector singlet and the suggested soalav ootet are a simple 
consequence of su(3) and su J ( 2 ) symmetry* The axial veotor 

representation transforms l i k e the generators of the group and the 
above results reflect the commutation relations of the generators 
of su J (2) and su(3). 
au(6) Model of Udgaonkar. (65) 

Udguonkar takes the Fuloo and Wong bootstrap equation and 
applies i t t o meson-baryon and meson-meson scattering i n su (6) . 

For scattering of the meson 3J> plot off the bazyong *j6 pl£t, 
the crossing matrices are (66) 

g & S gsss = g 8,8,8a 

glCtfOa gsss = J l O / 4 g 11,10,10 

singlet belongs to the regular representation of au ( 2 ) and the 
soalar ootet to the regular representation of su(3). The regular 

(70) (1134) 

-27/20 

17/20 

-9/10 

9/20 

(56) 

-2/5 

-2/45 

11/15 

2/15 

(700) 

5/2 

5/18 
5/3 

V6 

(70) 
Csu a I -1/12 

I i. -* 

(1134) 

56) 
/ (700) 
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and 
(405) 

J12S. fV 1 0 

' 28 J 

Cats -5/28 Jpl/10 

(35a) 
16/8 

(35a) 

J5/4 
1 

fiTITo \ 
(70) 

-16/24 J5/36 1 (1134) 

f< / 6 T3/6 1 (56) 

J6/24 -J3/12 (700) I -9/28 ( i JV24 -J3/12 1 
\ J To TiTTTb 

The simplest solution of T - Csu T a ZatV i s having only 
the £6 plat i n T and the ̂  plat i n T' Thia gives gMBVgMMM = 
|5^_ whioh ia the result of Fuloo and Wong. Thia agreement of the 
two aalculations w i l l be explained i n chapter 4 . 

We note i n passing that Udgaonkar applies the P~W equation to 
meson-meson scattering, where the static model oannot be used to 
ju s t i f y i t . 

A l l three ohannela are equal and IN V . The equation has a 
solution with containing only 35 plot. As the 35 plot forma 
the regular representation of su(6) , this results ia similar to 

those for axial veotor singlet and soalanr ootet scattering i n 
tha previous section. I t follows from the commutation relatione 
of su (6) . 



CHAPTER 4 
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Intermediate Coupling Theory 

Kuriyan and Sudarahan (14) point out that the work of Cook, 
Goebel and Sakita (42) on the strong coupling model oontaina an 
error. There ia an implicit assumption that the meson souroa 
operator i s given by X A« where A« contains no further dependanoe 
•as A • The strong ooupling condition, then implies that 
£A W ,A|)jsO. Without the assumption that A* i s independent of X 

one cannot extrapolate this equation to f i n i t e values of X . 
2 

Expanding A v i n terms of 1 / \ * * ne strong coupling oondition 
implies that the 'oonstant terms' oommute, but saya nothing about 
the higher order terms. Thus, i f A*/ a A« + 1 / \ A« * 1A 4 ne> + 

. . . , ( 4 . 1 ) ;A f l J )=0 ( 4 . 2 ) . unfortunately this 
weaker oondition does not lead to the identification of a non-
invarianoe group. 

In order to obtain a non-invarianoe group for the system, i t 
i s necessary to identify the As with the non-invariant generators 
of auoh a group. The ohoioe made follows the suggestion of 
Cook, Goebel and Sakita , and identifies the As with the non-
invariance generators of the intermediate coupling groups. 
Charge Symmetrlo Pseudo scalar Meson Theory 

In the case of 1 a su*(2) 9 au(2)t the dynamical postulate 
i s : 
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Putting 0 a 0 gives the strong ooupling oondition, 6 > 0 the 
compact intermediate ooupling group su(4) and 6 < 0 the non
impact SL (4iH)l ThuKorJbrm and Sudarshan'B model contains 
strong ooupling theory as a particular case. The strong coupling 
isclution may be derived from the su(4) or SL(4,R) solutions by the 
Utfual process of group contraction which corresponds to putting 
0 to zero. 

The use of su(4) as a non-invarianoe group differs i n 
aoveral ways from i t s use as a symmetry group. In order to 
satisfy the dynamioal postulate, the isobars must form a 
representation of su (4) . This i s not true of the mesonS>whioh 
are nine In number, and not f i f t e e n , as i n conventional su (4) . Also 
there i s no requirement that the meson-baryon states form a 
representation of su (4) . I n conventional su (4) , there i s no su(4) 

invariant BBH vertex for p- wave pions, and hence such prooesses 
as N*-*TTN are forbidden. We have no such problem. In conventional 
su(4)j, the mesons belong to the regular representation and transform 
l i k e the generators of the group. The isobars i n the Intermediate ' 
coupling model fonr: representations of su (4) . Acting within the 
i.u.£bars,our mesons, transform as the non-invariant generators, as 
d» a subset of the mesons in conventional su (4) . Thus the oouplings 
far these mesons must be the same, for this reason using su(4) 

as a non-invarianoe group gives results consistent with orthodox 
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BU(4) aymmatry. The use of su(6) as a non-invariance group differs 
from i t s use as a symmetry group i n an exactly eo&valent way* After 
this digression we return to the calculation In hand. 

Fi r s t l y we note that the solution of the equations for SL(4,B) 
and the s trong ooupling group may be obtained from those for su(4) 
using a method discovered by Kuriyan, Mukunda and Sudarshan(68) 
which depends on using Weyl's tx&k and introducing ' i ' s into the 
commutation relations and using analytio continuation. We therefore 
derive the solution for the su(4) oase, which i s perhaps physically 
more interesting and present, without proof, the corresponding results -
for the other groups. We need only oonsidsr the oaseOal, as this 
differs from the other pases where 6? 0 by an arbitrary factor 
whioh represents the overall strength of the meson couplings. 

Consider as an example the nuoleon isobars with I • J s X 
Inserting (4.3) between states with dLfferent values of X , the 
right hand side vanishes, as eaoh term may ohange I or J but not 
both. Thus the relations between ooupling derived from this 
equation are the same as the relations derived i n ohmpter 2. i.e 

< £ \ H l l X > - V- fca*ifca.*0 (4.4) 
Inserting the commutator between atatee with equal A, we obtain 

A*Mix>-J |S i j „ . _ l W M CM) 
Thus the representations are labelled by a non-negative even 

integer r: This allows X to go i n integer steps from 0 or £ to 
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r/4 - 1 . Squation (4.5) means that a state with \ > r/4-1 odrinot 

oouple to the isobar chain and we have a f i n i t e representations 

By appropriate ohoioe of r one oan inolude as many isobars i n the 

ohain as one wishes. 

The corresponding results f o r SL(4,R) are: 

^ A H / [ l l X > •= R (4.6) 

Aquations (4.4) and (4.5) give: g 2vm*/s 2 TTNN = 2(1 - 3 ^ r 2 ) 

whioh r a t i o gives an N* width of 80 HeV when r s 10, so t h a t the 

representation includef the N and N* only, r gives the 

strong coupling values f o r the r a t i o s of couplings. I n the l i m i t :' 

r , g2trNN*/g2TTNN = 2 whioh gives an N* width of 125 MeV 

whioh i s very olose t o the experimental value of l2QMeV. 

For the group SL(4,R), g 2 TrHM*/g2 TTNN * 2 (1 + 3 ^ R 2 ) . 

Thus f o r t h i s non-invarianoe group, the N* width i s always greater 

than l25HeV. Again as the number of isobars grows, the N* width 

approaches l25HeV. 

One in t e r e s t i n g oonseuuenoe of t h i s theory i s that g 7T°N*-*wV 

8i r 0 f p a V5 f o r su(4))SL(4,R) and the strong coupling group, 

independent of r and R. This may j u s t i f y the models of the TT -N-N* 

system which neglect the TrN*N* ooupling i n comparison with 

g TTNN and g TTNN* 
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Unitary symmetric psendoaoalar theory 

Consider the p- wave soattoring of the ostet of pseuioscalar 

mesons o f f bar/on isobars which contain the usual baryon eotet. 

The symmetry group K = su(3) 0 auJ(2). 
The dynamical postulate f o r the compact intermediate coupling 

group su(6) i s : 

1 ' { A . s i 
Where A'.* i s a d e f i n i t e multiple of A i * , chosen so that 

the OQmmutation r e l a t i o n may be w r i t t e n i n the usual form. This 

i s necessary beoause of the linear term i n AiA i n equation (4*8) 

For the same reason one cannot use the Weyl t r i c k t o obtain a 

non«eompaot intermediate coupling group. 

We oontent ourselves with considering the g6 representation 

of su(6) which oontains the octet and 3/2* deouplet The 

oouplings derived from t h i s are the standard su(6) ones ( 

< 10 U Al( 10> = <* 
< 8 IIA 11107 a - PC 

^ 8 l|All 8 s > = «/Sz 

C 8 U I 8 a> > 

O O l l A II8 > = - « (by vertex symmetry) 
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yuloo-Wonft equation from the dynamical postulate 

Consider the oase where K. • su(2). The dynamical postulate 

pan be w r i t t e n as: 

Inserting these between isobars and using the projection operators. 

aS i n ohapter I I , one obtains f o r the l e f t hand side 

The r i g h t hand side i s again a sum of four C- 6-. oeeffioients*. 

apart from the isoapin 1 element. This calculation may be performed 

f o r a general symmetry group and shows the equivalence of the Fuloo 

and Wong and intermediate coupling methods f o r a specifio prooess, 
i 

where the terms on the r i g h t hand side of the dynamical postulate 

are i d e n t i f i e d with t - ohannel exchanges. As we sha l l see, the 

meson exchanges assumed by Fuloo and Wong correspond to the 

non-Invariant generators of the intermediate coupling groups used 

by Kurlyan and Sudarshan* 

[ A « , A - J 

<£* T i w h e r ° • «i * Performing t h i s sum one obtains 

a oonetant. Thus one obtains the Fuloo-Wong equation 

r - Cus.T a C s t J 1 1 where P i s zero 

where i e 
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Ju^qq and Wong Re-visited 

I n the su(6) case the dynamioal postulate which gives the 

Intermediate coupling group su(6) leads to the Fulop and Wong 

Bootstrap condition, T - CsuT = Cat IT where T contains 

the ootet and 3/2* deouplet as intermediate states and f 

oontains the f ollawbg t-ohannel exchange contributions: 
1) J\j€^* "3* gives an su(3) singlet (from «T;̂  ) spin 1 
•xohaqge (as J < belongs to the spin 1 representation: €*jstf 

represents the coupling of a spin 1 p a r t i c l e to two spin 1 

pa r t i c l e s ) 

2) ft* gives a scalar (from of*(J ) f su(3) ootet 

exohange (Vk belongs t o t he octet representation and f i j k 

represents the antisymmetric coupling of an ootet k to the ootet . 

it4)« Vote that as the exchange meson transforms l i k e I k , i t s 
i 

ooup^^ng to two baryon ootets must be t o t a l l y antisymmetric, 

3) a î C«cpv Afc* gives a spin 1 ootet exohange with d ooupllng 

t o the mesons, and coupling to two baryon ooteta with the same f / f t 

r a t i o as the direct ohannel meaons. 

Fulqo and Wong made exactly these assumptions i n t h e i r model, 

and hence arrived at the su(6) results found byj&irlyan and Sudarahan^ 

This mathematical equivalence also explains the faot that the re s u l t s 

f o r a x i a l vector singlet scattering, and f o r the scattering a f th« 

soalar ootet we proposed i n ohapter 3» are consistent with su(6) 
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the bootstrap equations f o r these process may be derived i d e n t i f y i n g 

the singlet with J and the scalar ootet with F and using the 

equations f o r the generators of the symmetry group i.e 

[~J<x ,7*] - c Ttf 
and 

Were Fuloo and Wong to have proposed the exchange of a 

scalar ootet instead of a vector octet, one might argue that the 

two models were equivalent physically. However, what they have ^a 

a veotor exchange whioh i n t h e i r model f o r axial~veotor meson 

scattering acts l i k e a scalar p a r t i c l e . I n another oontext, t h i s 

p a r t i c l e w i l l behave as a veotor and the simple eqivalenoe of the 

two models w i l l not be so evident. 

jteaon-Barvon Spattering 
i 

I n order to derive any relationship between scattering 

amplitudes, i t i s neoessary t o make a additional assumption. 

Consider the amplitude T ^ l u i ) f o r the process 11* +& ~» He+B' 

where or,^ r e f e r to a general symmetry group K. The amplitude 

has. well defined transformation properties under K, but none f o r 

the intermediate coupling group. 

The assumption made by Karlyan and Sudarsha that 

where f(w) i s some function. This oan be made plausible by the . 

following arguments: 
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( l ) T«(te>(w) - Tp f«(w) and £ A K »AA]] transform i n the sams way 

under K and are both antiaymmetrio i n <* and |3 . 

( i i ) She Born Term f o r the Chew-Low amplitude i s given by: 

«» t A|j| to lowest order i n - j - , which agrees with the 

assumption. However i t should not be infer s d that the symmetry 

of the Born term i s neoessarily a symmetry of the amplitude. 

Sxpanding T as the sum of non-spin-flip and s p i n - f l i j i terms, 

f a c i l i t a t e s the discovery of relat i o n s between amplitudes. 

Put T » f • <?. » g and define 

X(iB:JB«) = f ( i B jB») - f ( j B IB') 

Y(iBfjB') = g(iB JB») - g (JB IB') 

where i and J refer to the i n t e r n a l symmetry group only, as we 

have extracted the spin behaviour. We now consider the implication 

of the above f o r the su(4) and su(6) theories. 

(1^ su(4) theory 

X,Y are both proportional to the matrix elements of the 

commutator of two non-invariant generators of su(4) been baryon. 

stages. 

As X i s a non s p i n - f l i p amplitude, i t can receive no 

contribution from the term JV^£«p«~3V Thust 

X(iB;JB«) = < B' | [ A i * , A ^ ] | &> 
= I <B/ I e.jk Ik IB> (4^) 

Isospin implies that X(iB,jB') can be expressed as a l i n e a r 

oonbination (given by C-G c o e f f i c i e n t s ) of amplitudes f o r speoiflq 
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%- ohannel inva r i a n t s . I n the processes we are considering there 

i s only one such in v a r i a n t , the isospin 1 ohannel. This equation 

(4.19) gives us no information that oould not be obtained from 
1 

Isospin symmetry. 

The spin f l i p term Y oan only have contributions from the 

term <Aj£*pr'3y which, being an isospin s i n g l e t , gives zero, 

contribution i f B 4 B'« This one may obtain relations of the 

form g ( p T i % n tl°) = g ( p i r J "H + ) I n terms of isospin £ and 3/2 

amplitudes, A£a&3/2 which result i s not well s a t i s f i e d by 

experiment (69) 

I n the case of baryon resonance production, the commukattSi 

must vanish between the external baryons. This gives, f o r example; 

Hl+f -» H*N**) - T ( r r ' f • ^ t r " K i * + ) I n terms of the 

iaospin J and j / 2 amplitudes, A s 10 A3, which compares well vMfe 

the r e l a t i o n A a 3»34A3 obtained by Olsson from experimental 

data (70) 

f f i ) 8u(6) theory 

Only the f i r s t term i s a spin singlet and hence: 
K( i« ft •, \ f BO < fillAT-.^lS? - 1 ̂  <B'I F*\fr U.n) 

I f B • B 1 i s the baryon octet, there are from su(3) invariance, 

four odd invariants i n the t - ohannel. Equation (4H) writes X 

l a terms of only one and henoe gives information additional t o 

that derived from su(3). The results involve the Johnson-Trieman.: 
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r e l a t i o n (71) f o r the non-spin-flip amplitude. Some of the 

roaltions obtained are i n agreement with experiment andsome not* 

The relations obtained f o r baryon resonanoe production give 

the r e s u l t A1 = 10A3, already derived i n s u ( 4 ) . Also 

T(K"p -* JL° = *° ) - T(K°p -*K+ =*°) = o. 

As su(3) symmetry i s broken, i t i s d i f f i o u l t t o say whether 

the sueoesses and f a i l u r e of the above r e l a t i o n s give any 

indication as to the v a l i d i t y of the theory as a whole. 

I^temediate Coupling Theory and F i n i t e Energy Sum Rules 

Gleeson and Uuste (72), use the theory of f i n i t e energy sup 

rules to provide a mechanism f o r deriving the non-invarianoe group, 

r/e ahaJLl disouss these sum rules f u l l y i n Chapter 5 but i t i s 

worth while considering t h i s p a r t i c u l a r model as i t relates to the 

intermediate coupling method as the saturation of superoonvergejiqo 

r e l a t i o n s does to strong ooupllng theory. 

Let f̂ ™ ^ be the forward amplitude f o r isospin 1 i n the t -

ohannel f o r a process i j +TT where £,,) are nuoleen isobars. 

This amplitude i s dominated by the p Hegge t r a j e c t o r y at high energio>f 

One i s lead (see chapter 5) to a f i n i t e energy sum rule of the f o r a j 

f * ^ - ) * - ^ l"^" (5.17) 
o r 

where Oc^(t) i s the j ) t r a j e c t o r y and t i s e product of couplings* I n 

terms of d i r e c t ohsnnel isospin indices, 4 ^ i s antisymmetric and 
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andf"P - f P " . i e ^ < i | l ^ l J > } (4.8) 
where * , ̂  a r e meson isospin indices. Thus i f equation (4.18)^ 

oan be saturated isobar states, one obtains. 

n 
- i e«p*<:i I !<£ f J > C (4.1?) 

where C * bNNpmr (o) afl^°j*] and q*„ »<i | A « | n > I f 
efttoj+l 

we assume that the jp oouples universally t e the isospin current pnd 

t h a t i t i s possible to take a f i x e d K f o r a l l processes, C i s 

independent of the prooess and we obtain the purely algebraic expression 

\_ A*, ApJ a i i G o ^ ^ I & between isobars, which i s the usual 

dynamioal postulate f o r K = 8^(2). One oan extend t h i s to s u ( j ) by 

assuming the existence of Regge poles corresponding to the various 

terms en the r i g h t hand side of the dynamioal postulate equation, 

The same teohnique cannot be applied t e an amplitude even under 

crossing, as t h i s involve*B an aatiooramutator on the l e f t hand side 

of equation (4.19), and i t s value depends on the representation,unlike 

the .. . .commutator. 

Xf equation (4.1?) holds only f o r a speoifio prooess, them i t 

i s possible to derive the Fuloo-Wong equation f o r that process, 

l a f a c t , the above i s merely a sophisticated way of deriving Fuloo 

and Wong's model using sum rules and Begge poles instead of loose 

arguments, about meson exchanges. I n chapter f i v e , we look at the 

relationship between saturating sum rules and symmetries i n a more 
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r o a l i s t i o s i t u a t i o n * We shall see that there are mechanisms t o 

explain the appearanoe of higher symmetry; r e s u l t s . I t w i l l not be 

possible, however, to elevate these mechanisms i n t o what might be 

termed a model. 
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CHAPTER 5. 

Superooavorgenoe and F i n i t e finsrgy Sum Rules 

Despite the various d i f f i c u l t i e s whioh e x i s t i n the theory, 

ftegge poles have been remarkably successful i n describing the h^gh 

energy behaviour of scattering amplitudes. We consider f i r s t 

p a r t i p l e s without spin, whioh w i l l enable us to. introduce the 

obncept of signature with a l l essential d e t a i l s without getting 

entangled i n a mass of spin idioes„ 

The idea behind Regge theory i s that the p a r t i a l wave amplitude 

s/(s) f o r some scattering processes may be represented by a function 

a(J,s), whioh equals a J ( s ) f o r physical values of J and i s meroaorphio 

( i . o only has poles) i n the J- plane. (This i s possible f o r p o t e n t i a l 

soattering but probably not otherwise where there are probably «ovtyg 

outs.) The a t t r a c t i o n of t h i s scheme is. that as the p o s i t i o n of these 

Regge poles <*(s) varies, OC (s) w i l l . sometime pass through or by an 

integer point Jo which w i l l give a pole i n a J e ( s ) whioh w i l l correspond 

to a p a r t i o l e of spin Jo. Thus Regge poles may l i n k up pa r t i o l e s w^bh 

the same quantum numbers but d i f f e r e n t spins. For s i m p l i c i t y we 

oonsider the soattering of spin less equal mass i n p a r t i c l e s . Wo 

expand the soattering amplitude i n a p a r t i a l wave series i n the t -

phsnnel. 
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o(ai,t) =£(2J+1) a J ( t ) p,(2t) (5.1) 
J 

where j j t = s - u » = This series converges i n an e l l i p s e 
t1 - lm q« 

whioh inoludes the physical region,. The series may be inverted t o 

give. 
T +r 

• ( t ) = i ) d z t P j ( * t ) a ( s , t ) (5.2) 
-1 

As P T ( s t ) i s noil w e l l behaved f u r large J, equation (2) w i l l not 

serve t o define our interp&e.'&sg funct i o n . To get round t h i s 

d i f f i c u l t y , we write a f i x e d t dispersion r e l a t i o n f o r a ( s , t ) . wb4<jty 

BO assume to be free of kinematic s i n g u l a r i t i e s . (We w i l l disouss t h ^ s 

point when we oome t o consider p a r t i s l e s with s p i n ) . a ( s , t ) B 1_ ( ds» a / ; 3 > t ) « i (" du' a j s ' . t ) (5.3) 

where a„(s,t) i s the absorptive part of a ( s , t ) i n the i ohanne),. 

Substituting equation (5.3) i n t o equation (5.4-): 

a J ( t ) « i f d s j , QT («(••)) 5 a a(s',t) + (-1 r a ^ s S t ) ? 
11 J. 2*S X (5^V 

whore Xo = min (So,Uo) and 

Q j ( 2 ) = £ j dx P j ( ^ ) i s a Legendre function 
_f s—x 

of the second kind. Por large ? t 

Qd (fc) j^/2J w h e r e = cost" 12. 

following Proissert and Grribovv. we define 
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This removes the unpleasant (-1 factor and the functions are 
suitable for interpolating between into ^. b * ( j , t ) are oalled even 
and odd signatured amplitudes. For even (odd) J the even (odd) 
signatured amplitude which gives the physioal amplitude. I t i s 
these signatured amplitudes whioh are belived to contain the 
Jiegge poles. 

- B l f i t t t l A i f t j ^ that bosons ooour i n a symmetric state. Thus 

i f the mesons coupling to a Rtgge pole are In an even (odd) wave, 

they must be i n a symmetrical (anti-) state of the internal symmetry 

group. Thus •yon (odd) signatured Regge poles oorrespond to 

symmetrioal (anti-?) representations of the internal symmetry group• 

The derivation of Begge poles from equation (5.4) appears i n 

the standard texts on the subjeot (73) *e shall not perform this 

task* A Regge pole, which has; the forn <t»««1(v), can be expanded as a 
aeries of KhUti polos of the form T> . For convenience we shall 

expand amplitudes i n terms of Xtarl poles, 

F ^ » « gflfrgy Sum Rules (74) . 

Consider aeson-baryon scattering and on amplitude corresponding 

to a speoiflo t r ohannel invariant, which i» antisymmetric. Then 

the amplitude wi^Ll have odd signature as w i l l the Regge Poles 

pontributing to the asymptotip hohayiouzr. We assume that sufficiently 
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Urge energies, too amplitude i s g^rea 0/ a sun of polesi 

(si) 
feeing antis/ome^o under V ^ - v wjlll obey ^ dispersion relation 

I f the leading trajeotory has <*< -1, them f ( v ) w i l l obey the 

usual auperoonyergenoe relation! 
k 

I * f ( * ) d V » 0 (5.7) 

gf a Pegge ter^ has ~1 <«* < 1 i t also s a t i s f i e s the dispersion 
relation 

Thus i f the leading Bagge trajectory has of _±#f 1 § one may subtract 

off 8Uf£U£^t Jfeggo poles from f fo give a function which super-

converges. ( t i * ) 1 % 9t\ ebeya tto 

dispersion relation end £ pa* Sawn faster than 1/y as o» . Thus 

(fxmf(V) - dV « 0 (5.9) 
Thoni (Tim ft - £ jl ±1 ^ > f (5*10) 

where * l a the residue of the polo at r 1» i f suoh exists. Assuming 

th» Pegs* expansion jLa exact f o r » Be "PJ-i* UP the integral 

Performing the integrals of the f^gge ferma explicitly t 
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$?»-, <v.«»> T P v « w » 

Kete that th# f i n a l result greats a l l the Ragge terms on an 

equal footing f despite the different ways ̂ n whioh the Regge terms 

with at > T»1 and of^ *1 entered the equations. The point eXa-1 

no longer plays the special role i t la a i n superoonvergenoo relations 

I f a l l the M s < r 1 ! MO eon }et V T * and obtain the usual 

auperoonvorgenoe rolatfion. I t has not boon aoooasary to assume that 

the amnlitudo has the Beggo form below Nv 

Zt if easy *o soo that i f the unaityferaotod dispersion relation 

holds for "*» 'yfvKn intogtfer) a» long as the functions goes to aero 
as V-#«> « Thus one may dorivo fJaita energy sua ru^es for the oven 

aoaonts of the anplitudOt For aogat^yo n^ an extra term appears ;. 

oorrosi^nd^ag to the polo at v aO* The odd noaents of. f w i l l not 

obey tno dispersion relation, i t i s however possible to write sua 

rules for those amplitudes i f there are no fixed poles at wrong 

signature points. However auob poles may ex&a^ (75). The position 

for aymnotrio amplitudes i s the appoint* Of that for the antisymmetrio 
Ones. The odd aoaent sua rules will, hold g^von the oorreot asyaptatip 

behaviour but the even ones w i l l only hold i n the absenoe of the flxod 

pole9e Sao va^ue of auporoonyorgenoo relations and finite energy 
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pun rules l i e s i n the assumption l^hat the Integrals qan be saturated 

by the attributions froa. bound states and resonanoep* We note that 

this assumption i s lops l i k e l y to be va l i d for the higher moments as 

the integrals bpoone increasingly sensitive to the behaviour of f just 

below H c The saturation assumption i s ploarfjy only.an approximation 

which may bp valid for a particular pun rule* I1j w i l l , *9r example, 

net bo possible to f i t the sun rules for different values of t wifh 

a f i n i t e punter of resonanoos* We oonsider the t«0 sun rules whioh 

as the bound statep and resonances l i e around t->e, might bp though 

to be the pun rules nest lfkely to bp patuvated. by pole terns• 

Seoondly we oensider the lowest moment sun. rules (̂ «e the sero moment 

for pdd and the f i r s t aompnt for even aauil^tudoa), as off a l l the 

momenta, these pro nost l i k e l y to allow saturation with low. lying 

states. 

The introduction of particle? with ppii} enables one to find 

•pro pun rules than i n the spinless ease. The additional amplitudea 

POBtpJn. kinematyp faptors whioh say Ipad to those amplitudes having 

a hotter asynptatio behaviour than, the total amplitude. I f one i s 

working i n invariant amplitudes, the aaysjpotitio behaviour of an 

amplitude oan be read off from the expansion of the total amplitude 

in t«ras of Lorantp invariants* I n the ease of bplipity anplitudes f 

t 
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the foot en arise beoaueo, In order to write a dispersion relation 
for an amplitude ift must oontaln no klnemati,o singularities. In 
removing these, singularities from Ifhe h t ^ l o ^ ampXitudies (76), 
factors are. introduced which Improve the asymptotic behaviour* 
His w i l l deal with the helioity formalism as 1$ enables one to 
show simply heir higher symmetry results aria? from su»rules. 

The t - ohannel helioity amplitude f^o/d^kajt (a,t) for 
tjho preoess a •>*-*? • d has partial wave e^pan4oni 

where X aAnrXb, f* aAo -Xd and 0t Is the t " ohannel soattorlng 
angle. JBaoh d Jj, (at) equals a faotor oos «V211***1 

join tt/z[ * tines a Jaoobi pclyaonieal in fit. f has kinematic 
Singularities whioh we must reneve in order to write a dispersion 

S> A 
relation! Xn >he high energy region 0 Ĵ ,*? jj . where c a mas; 
f IAI B One oan now show that ^ ^ ^ S * " * where*(t) is the 
leading Begge trajectory. Qetailod proofs of these statements may 
be found in the literature (73,77). 

Lot us now oonsider plans soattorlng off baryona. The plena 
being spinless, have aero helioity so we may put Ab« Ad> e. 
In tfhe forward direction, there oan be no helioity f l i p i n the 
direct channel and so f V,/« *0 unless X q f*% Thus i f we deal 
with holioity amplitudes at t a 0, we find only a subset of the 
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possible sum rulesi those exactly true at t - 0 (what Gilaaa and 
Harari (78) oall "Class X" sua rules) Others ("Q̂ aas 2") could, be 
obtained by taking tut certain factors whioh go to pare as t - * 0, 
This corresponds to taking the sun rules for small t sad extrapolating 
to tap* As &il»an and Harari pointed out (78), i t i s the class 1 sua 
rules which lead to the results of higher symmetrie s and i t i s these 
that we w i l l oonsider. tfe thus lege nothing by taking helioity 
amplitudes at the point taQ. We also, make the approximations of 
ftiloan and Hareri that the mesons have sero mass and that the 
beryons are mass degenerate. In this l i m i t the crossing matrix 
l.s a oonstant and i t s funotional dopendanoe en the masses of the 
saturation isobars does not appear, ^ i s only 1» this equal mass 
ease that au(6) like results emerge from the sum rules. This is not 
unexpected as su(6) i t s e l f implies mass degeneracy for the octet 
and decuplet. I f the physical masses of the partioles are used, 
the results w i l l of course differ somewhat from su(6). Shis is 
comparable with the breaking of oxaqt su(6) due to mass differencesr 

In TT H-^TTH and TP H -* lTw*? tjher is only one non-vanishing 
Sr channel helioity a m p l i t u d e T h u s a l l t - channel amplitudes 
are equal apart from a multiplicative constant. In the case of 

TrR*-**!!*, however, there are. two non-vanishing amplitudes: a£j£ 
and Thus the t - ohannel amplitudes pust be linear combinations 

of these amplitudes. We tabulate the, various amplitudes for the 
proceases mentioned above. The figures i n brockets next to the heliolty 
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amplitude give the Invariant amplitude whioh has the same asymptatio 
behaviour. The en triea indLLoate where auperoonvergenoe relations 
hold and the moment of the sum rule. 

• 1 • • •• 

1 
1 

1 

Using the wellknewn relations between helioity amplitudes and 
those between arbital angular momentum states (79) ( i t la possible 
to expand i» terms of angular momentum transactions. 
Performing this operation and retaining only the transitions between 
p- waves, ai;i-« 2/} (a^ + g a ^ ) where a' jU the amplitude for 
totaj. angular momentum. Wo do this as we wish to saturate the sum 
rules with p- wave resqnanoes only. 

i f M* 

A • o & - 1 A - 2 
(A1) •kfh- (B2) 

0 I 
... ; 

tie f t 1 
TJw non-vanishing amplitude v C * ^ ? J % •••) 



9 1 . 

* . i 
4 ^ top) (*W) a3/2rV2(B6j>) 

*> 9 
• : • - i - i 1 - '•: • 1 

1 
« < -1 1 

Sum Bulea and Symmetries 

Consider the fi n i t e energy sum rules for a l l the odd t - ohannel 
invariants, /"̂ m f 1 (v)dv * p*(Ni) (5.13) 

i c 

where c (Ri) is the Hegge term, expand the t - ohannel amplitudes. 
in terms of the direct ohannel ones. f * ( v ) » c j j j F^(<* ) ( 5 . 14 ) 

Xf we pan ohoose the same put-off Hi for a l l the t - invariants, one 
oaa combine these equations. 

P*W • J C*̂  Im »J( v ) dV ( 5 . 1 5 ) 

o 
Using the results in Appendix 1, i t oan be seen that this 

equation is equivalent to 

( 1 - Cus)r • Cst I*' ( 5 . 16 ) 

•here J* J m j Jm J{ V ) dv end T'i • P*(N) for odd invariants 
e • 

and sere otherwise. Thus the Vuloo-Weng bootstrap equation is 



obtained- from the sun rules. I f the integrals are saturated by tens 
from, bound states and resonances, we have the Fuloo and Wong model 
provided the terms i n F ' correspond to the appropriate meson 
exchanges. The orosslng matrices i n equation (5*16) are those 
for the internal symmetry group. Tnt question new arises as to 
how spin symmetry oomes into the theory* 

Consider the Fuloo and Wong equation for the symmetry group 
auJ(2) 0 1 , 1 . su*(2) or su(3) 

(X - Qua 8 Cua)C • (Cst 0 C a t ) f ! ( 5 . 17 ) 

This oan be re-writ ten as: 
Ĉ s I I - Cus e CuaJ Cat (Cts V ) • Cts (Cst 6 Cat)I 

How (Cus) W(Cst) J k . % ( C s l ^ 
where ̂  k • 11 depending on whereat he k**1 ooXumnof Cst corresponds 
to an even or odd invariant. Using this property: 

( X - f k O w ) [(Cts) WjJ] - Cat T'k (5,18) 
where I « ) and f • - (P///, ) are the 
decompositions of V andf' into representations of su^(2) 
For the oase of meson<-baryon scattering where 

Cts a f ^ 3 2 we obtain the two equations 

( I - Cue) ( I 1 * • 2^/2) - V J ? Cst To' ( 5 . 1 9 ) 

(X*Cus) (Ci-.TV2) - V2 CstTl'' f 

f i(V2) are the spin Kj/2) terms in X and F« ( 1 !) are where 
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the spin 0(1) contribution to 1 '• 
For the case ef TT N scattering, the -E* in equation (5.16) 

Indeed has the form $± + 2%3/2), Thus for this oase the 
equation derived from the sum rules is identical with one of 
those derived from the assumption of spin symmetry* Thus, . i f 
the t - channel exohange terms are the same as in the Fuloo 
and Wong model, we obtain from the sup rules the same solution 
as fuloo and Wong, whioh, as we have soon, i s the same as that 
ooming from the assumption of su(6) or su(4) symmetry. Further 
investigation reveals that the amplitude a-^r,j/2 for I T N->T»H* 
and a-£.j/2 for TT N*-» TI N* correspond to those for t - channel 
spin 2. in their respective prooesses. Thus for these amplitudes 
the 8u(4) ojr su(0) results may be obtained again assuming the 
same t - channel termB. Silman and Harari (78) show that a l l 
ô ass one superoonvergenoe relations for A w2 ampltidudes agree 
with the results derived from the algebra of ohaBges. This 
agrees with our resuitB, which show how for a small number ef 
prooesses the results of higher symmetries oome from sum rules. 

Numerous people (80) have found the superoonvergenos 
relations whioh as we indioated above give su(6) results. 
However, as far as we know, no one has looked at a l l the sum 
rules for the different invariants at onoe. As we shall see. 
the results ef this investigation are consistent with what is 
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believe, at present, about Regge poles* 

^ua Bules in su(3) fernH; -a-TH 

From present knowledge about meson speotra., where ne 10 , 17 
or 27 plet of mesons are known, i t was assumed by Sakita and 
Wall ( 8 1 ) and by Babu, Oilman and Susuki ( 8 2 ) , that ^ ( t ) < 0 

for the loading 10, To" and 27 plet trajectories* As the 27 is 
a symmetric invariant, this w i l l lead to a superoonvergenoe 

27 
relation for B (^ ) (Using the invariant amplitudes defined by 
? • A + i £i£ B forirN-tirN) 

B 2 7(V ) dV a 0 
whioh is reasonably well satisfied, though i t is impossible to 
test i t exactly ( 8 1 , 8 2 ) * There is ho corresponding sum rules for 
the 10 and To, beoause, being anti-symmetric invariants, they oan 
only appear in sum rules for A or B which have the asymptetio 
behaviour 

I f one assumes, as Palmer dees ( 8 3 ) , that ° * 1 0 , T O V - 1 , 

i t is possible to write superoonvergenoe relations for the 10 

and To amplitudes. In the forward direotion A and "VB are 
proportional so one has the relational 

j A 1 0(? ) dV « j A^Cv ) dV a 0 

Palmer saturates these three superoonvergenoe relations with the 
ootet and decuplet assuming degenerate mass* With mass 
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degeneracy, the two Juice-Wong equations, of whioh these relations 
are part^ are for the same f • The result is that the oouplings are 
those of au(6). We have seen how the 10 and To relations should 
agree with su(6), but the faot that the 27 relation gives the same 
neods to be explained. The 27 equation is part of the Fuloo-Wong 
aquation £ + Cus a Cat T' • The l e f t hand side is related to the 
anti-commutator of the non^-invariant generators of su(6). This 
oontains no 27 part in tho 56 representation of su(6). whioh 
aooounts for Palmer's result. 

to new oonsider the antisymmetric part of the amplitude 
corresponding to the 10, To", 8aa, 8aa t - channel amplitudes. 
Assuming we can choose a oommon out-off whioh allows us to 
saturate with Just the ootet and deouplet, we have: 

f -cus r « est r 
Where V oontains just the ootet and deouplet terms and P 
is sero apart from the 10, To, 8aa, 8aa term. 

r i - ^ ( N ) 

We know from our assumptions that i n the limit => 
A a 0 . We have no guarantee that this is so when N is f i n i t e . 
However as saturation of superoonvergonoe relations by reasonanoes 
Seems successful we feel Justified i n assuming that w.t??, can bhese 

10 Tb" 
the out-eff N to make j> a o a 0 a good approximation. With 
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8aa 
thia saturation scheme, p nO whioh telle us that the p Begge 
pole which we associate with the ootet exohengo, oouples anti-
syiometrioal to baryons. 

we new look at the symmetric part ef the amplitude. In the 
limit of degenerate mass saturation, the f i r s t moment sum rule 
for aj-jj is the same as the sere moment.one, whioh for the ' 
symmetric invariants is only valid in the absence of fixed 
poles. Thus the results from this prooess are shakier than 
those for the odd invariants. However i t is interesting to 
saturate the sum rules with the octet and eeouplet. The results 
of inverting the process and finding the Begge terms from the 
reaonanoes, is that the 27 plet contribution i s sero as already 
stated, f 1 B 19/4, ^8ss * ~ 7 / 8 , ^8aa a - JJ (ttJjThis corresponds 
to a large singlet contribution from a Begge pole whioh we 
identify with the Pemeranohon and a siseable one from a Begge pole 
whioh we identify with the A2« These results are quantitatively i n 
agreement with present knowledge. Similar results are produced i f 
one looks at the* appropriate TTN-»-TN* andr N*-* n N* amplitudes 
in the same way. 

The above rough and ready calculations points te the way in 
whioh higher symmetry results can be produced from sum rules. 
Similar work could be performed for meson-meson scattering and 
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Puloo-Wong typ* solutions obtained in a place where the statio 
model oould not be used to justify the equations. Indeed work 
has been performed to justify the equations. Indeed work has 
been performed whioh uses the fact that a l l throe ohannels are 
similar in meson-meson scattering to effeot a new type of 
bootstrap (6ty., 9) More exaot calculations en sum rules may 
well provide further insight into why higher symmetry results 
emerge from dynamioal oaloulations. 
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Appendix 1 Creasing Matrloea ef Meson-baryon scattering 

le obtain the properties of the crossing natrioes for a 
process assuming a symmetry group K, we f i r s t define the operator 
F whioh is related to the s- ohannel amplitude by -£«<8(w) B 

<u 1ya(w)l<x>(A.1) where \eo is a representation of K. F(w) is 
expanded in terms of t - channel invariantsi 

-&,,(*) PT (A.2) 

where is the operator whioh projects out the t - ohannel state 
T. Now combining A.1 and A.2 I 

**(•) *£KW<«\?T[«> (A.3) 
T 

By definition Cat, defined by ( C e t ^ a <«*IP-r<<*>> (A .4) 

is the s to t crossing matrix. Creasing from s to u consists 
of send̂ w to - w and exchanging the two mesons. Under this 
operation eaoh has well definded propertiesi 

Pg -9^pPs(A.5) where a • 1 aooording as I i s 
a symmetric or antisyuimet&o state of the mesons. 
Thus: FU(w) a F8(w) a ^ A T M P T (A.6) 
As the s and tt channels are equal, ene has 

A r(w) . fjT A T(-w) (A.7) 
Thus t\ (w) a £ A ̂ (w) ̂  < <* |PTI « > (A.8) 
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Thus the u te t oressing matrix Cut is given by 

(Cut)„T« ^ T ^ « I P T I « > (A.9) 
From and (A.9): ( C u t ) ^ * (C sfc)* r flr (a*1°) 

fixpanding the u ohannel invariants in terms of t - channels 
invariants and then expanding these i n terms of s channel 
invariants gives the expansion of u.channel invariants in terms 
of a- channel invariants. Thus Cut Cts a Cus. Thus from A.10 

(Cus)fl, p = (Cst)o<T ^ T (Cts)Tp (A.10) 

from (A.10, we see immediately that Cue a 1 (A. 11) Moreover 
(Cus^pCCst^r a (CBt)o^. fy, (Cts^p (Csttyr 

a y r ( C s t V T (A.12) 

Thus the column of Cst corresponding to the invariant T is 

an eigen-vector of Cus with eigenvalue ̂ , where ljT = £l aooording 
as "T is a symmetric or antisymmetric respresentation. 
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