Durham E-Theses

Pion interactions in Hydrogen and Deuterium

Briggs, Geoffrey Arthur

How to cite:

Briggs, Geoffrey Arthur (1966) Pion interactions in Hydrogen and Deuterium, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8602/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

A Thesis Presented By
Geoffrey Arthur Briggs
for the
Degree of Doctor of Philosophy
a.t the
University of Durham

august 1965

こuiPAITS

Page
PROFACE iv
LISH OT FIGURLE v
I. IRUDUUTIOA 1
 3
1.1 the Deuteriun ixposure 3
J. 11 the 1.2 Bea:: 3
1.12 The Gaclay 31 c. Bubble Chamber b
1.2 The Exposure in indrogen 6
1.21 the 02 Bear. 6
1.22 The British Fational Ifigarogen Bubble 8
1.23 Distortions 9
 12
2.1 Scoming 12
2.11 Scanints lailes 12
2.12 scanning the -Lydrogen film 13
C. 13 Eficicieney of Scanine 14
2.14 Scansinte tine Deaterim: rill! 1
2.2 Lebelling 16
2.3 Mes.surenent 16
2.31 Messuring Tables 18
Page
2. Dete Processing 20
2.41 iEAF: 21
〔.e2 Tontion 22
2.43 GRIMD 23
2.5 sxanination and Analysis $? 5$
$2.51 x^{2}$ Limits 27
2.52 Date Sundery Tepe 28
$\because 53$ SUL. K 29
2.6 Phase Space 29

 31
3.1 Introauction 31
3.11 fechniques for Studying slastic Scattering in Deuterium 34
3.2 The Optical wodel 36
3.3 digh Energy Scattering in the Impulse Approxinetion 39
3.4 the Deuteron Wave Ihnction 46
3.5 Lxperimentel Analysis 49
3.51 Corrections for Bicanning Loss 54
3.52 ixperimental Differentiel cross Section 56
3.6 Opticel Model Gelculations 57
3.7 Inpulse Model Calculations 63

MULITPLIUIMY AI 5 Giv/O
$\therefore .1$ Introduction
4.11 The Peripheral Liodel 68
4.2 Experimental Results 72
4.21 Uross Bections 73
4.22 Distributions of min 2 and x^{2} 75
4.23 i'ffective :lass Distributions of 76$\mathrm{p} \pi^{+}, \pi^{+} \pi^{-}$, and $p \pi^{-}$
4.24 Angular Distributions of the 79 Secondary Particles
4. 25 Distribution of Δ^{2} between the 81 Incidert Proton and the $p \pi^{+}$
4.26 Three-pion biffective Irass 83 Distributions, $\pi^{+} \pi^{+} \pi^{-}$and $\pi^{+} \pi^{-} \pi^{-}$
4.27 Four-pion Effective hiass 86 Distribution, $\pi^{+} \pi^{+} \pi^{-} \pi^{-}$
4.28 Higher ifucleon Isobars 87
4.29 Decaj Distribution of the $\pi^{+} \pi^{-}$ 87
COMCLUSIONS 90
 93
RuFwRuives

PRIPFACE

The work described in this thesis concerns two bubble chamber experiments which have been performed to investigate certain aspects of the scattering of high energy π mesons in hydroger and deuteriu.a.

The trend in bubble chember experinents is towards the analysis of larger numbers of photographs to obtain greater stetistical gnalysis and to exanine events which occur with very small cross sections; generally the facilities of several labor:tories are combined for the anelysis of the date. Both experiments reported here have been performed in such collaborntions. the stuady of the elastic scattering of $\sigma \mathrm{GeV} / \mathrm{c} \pi^{+}$mesons in deuterium is the conbined work of the Eicole Polytechnique, Paris and SiRif and Durham University. The investigation of the inelastic scettering of $5 \mathrm{GeV} / \mathrm{c} \pi^{+}$mesons in hydrogen has been undertaken by the Universities of Bonn, Durhan, ijijnegen, Faris (d.Y.), Strasbourg and lurin. The exposure, in which the autior assisted, was planied by representatives of ell the leboretories and was nade at lerii.

The results presenteã in this thesis represent thi t Dert of the analysis which was the particular concorin of the ruthor. Acknowiedgenent is made in the text to any gocific contribution factivy lis colleagres.

1 - Schematic Layout of the in2 Beam
(from Goldberg J., and Perread J.M., 心ERil 63-12)
2 - Optical Systen of Saclay 81 cm . Bubble Chamber
3 - Camera Position of Saclay 81 cm . Bubble Chember
4 - Interaction of π^{+}meson in the Deuteriun of the Saclay 81 cin. Bubble Chamber. Ihe Fiducial Volume is indicated.

5 - Schenatic Layout of the 02 Beam
(from Keil E., ard iveale if. in., CERN/TO/O2 63-3)
6-Plan Viev of B.N.H.B.C. showing Optical System and Ma.ginet (from CERH Courier, September 1964)
7 - Photosraph of Interaction of $5 \mathrm{GeV} / \mathrm{c} \pi^{+}$meson in the B.N.H.B.C. The Fiducial Volume is indicated

8 - Flow Diagram of the Analysis of Events
9 - iTeasuring and Recording Layout
10 - Schenatic Diagram of Coordinate Punching
11 - Gartenhaus S-Wave Function wi th Hulthen Vave Function and Approximate ilard Core Wave Function (froil doravesik M.J., huclear Physics; 7, 113)
12 - Distribution of the Projected Angle Between the Proton and Neutron

13 - Distribution of wiantity 'A' for Different womentum Zones of Recoil

14 - Distribution of ivents Found as function of Angle of Recojl in Chamber for Different homentum Zones

15 - Ratio of A.P. and CHRi-Durhan Scanning Efficiencies es function of recoil momentum

16 - Correction Factor for Scanning Loss as Iunction of Deuteron jifomentum

17 - Comparison of Lxperimental Differential Cross Section with Predictions of Optical Hodel

Figure
18 - Variation of Ks with Impact parameter, p , for Uniform Deuteron and for Deuteron described by Hulthen and Hard Core Wave Functions

19 - Comparison of Experimental Differential Cross Section with Predictions of Impulse model

20 - Feynman Diagram for Reaction $a+b \rightarrow c+d$
21 - Distribution of Squared i.issing lass
22 - Distribution of x^{2}
23 - defective hiss of $0 \pi^{+}$
$24-$ ineffective Hess of $\pi^{+} \pi^{-}$
25 - Effective Mass of $p \pi^{-}$
26 - Angular Distributions in the Centre of ias, $\mathrm{p}, \pi^{+}, \pi^{-}$
27 - Angular Distributions in the Centre of jifass $p \pi^{+}, \pi^{+} \pi^{-}$
28 - Distribution of Production Angle of $p \pi^{+}$Combination for condition $1120<\mathrm{in}\left(\mathrm{p} \pi^{+}\right)<1320$ lie V
29 - Distribution of $\Delta^{2}\left(p \pi^{+} / p\right)$, (a) Overall
(b) for $1120<\operatorname{Li}\left(p \pi_{1}^{+}\right)<1320$ neV $670<\mathrm{MI}^{2}\left(\pi_{2}^{+} \pi_{1}^{-}\right)<850 \mathrm{MeV}$ $-1<\cos 0^{*}<-0.75$
$30-$ aFfective ns of $\pi^{+} \pi^{+} \pi^{-}$
31 - 圤ective i.gss of $\pi^{+} \pi^{-} \pi^{-}$
32 - Effective in ass of $\pi_{2}^{+} \pi_{1}^{+} \pi_{3}^{-}$for

$$
\begin{gathered}
1120<1\left(p \pi^{+}\right)<1320 \mathrm{MeV} \\
670<\operatorname{cin}^{+}\left(\pi^{+} \pi^{-}\right)<650 \mathrm{NeV} \\
\left(\text { a. }-1<\operatorname{cose}^{\pi}<-0.75\right. \\
\text { (b) }-0.75<\cos \theta^{\pi}<0
\end{gathered}
$$

Figure

33 - Effective hass of $\pi^{+} \pi^{+} \pi^{-} \pi^{-}$
34. Effective hiess of $p \pi^{+} \pi^{+}$

35 - Effective ifass of $p \pi^{+} \pi^{-}$
36 - $\mathrm{effective} \mathrm{inass} \mathrm{of} \mathrm{p} \pi^{+} \pi^{-} \pi^{-}$
37 - iffective Miass of $p \pi^{+} \pi^{+} \pi^{-}$
38 - Decay Distribution of $\pi_{2}^{+} \pi_{1}^{-}$for

$$
\begin{aligned}
1120 & <\mathbb{W}\left(p \pi_{1}^{+}\right)<1320 \mathrm{MeV} \\
-1 & <\cos {\underset{p \pi}{1}}_{x}^{+}<-0.75
\end{aligned}
$$

(a) $670<\mathrm{M}\left(\pi_{2}^{+} \pi_{I}^{-}\right)<850 \mathrm{MieV}$
(b) $490<\operatorname{mil}\left(\pi_{2}^{+} \pi_{1}^{-}\right)<670 \mathrm{HeV}$
(c) $850<\mathrm{W}\left(\pi_{2}^{+} \pi_{I}^{-}\right)<1010 \mathrm{MHeV}$

INTIRODUCTION

The first beams of pions with energies into the GeV region became available a little over ten years ago and since then an intensive effort has been made to examine the pionnucleon interaction which is fundamental to the understanding of strong interactions. The inelastic processes have proved to be particularly suitable to be examined by the bubble chamber technique as the multiple production of particles, which is the dominating feature of pion-nucleon interactions in the GeV region, cannot be observed easily in any other way at present. Over the last few years many resonances have been discovered between the particles of the final state and many of their properties e.e. their cross sections, lifetimes and quantum numbers have been determined from bubble chamber experiments. This information has provided the basis for various theoretical models for particle production in this energy region, the most successful of which has been the peripheral model. There is still, however, no universal theory to explain all phenomena observed and much more information about the less frequent processes is needed. An increasing number of bubble chamber photographs are becoming available for analysis and the study of interactions of very small cross section has become possible. Such a study is reported in Chapter 4 concerning the production of six charged particles in the final state when $5 \mathrm{ceV} / \mathrm{c} \pi^{+}$ mesons interact in a hydrogen bubble chafiber.
jxperiments in deuterium bubble chambers have generally been performed to study scatterings on the loosely bound neutron which closely resenbles a free particle in its inelestic interactions. iowever, information other then on $\pi-n$ scattering can be learned fron collisions of pions in deuterium; knowledge of the bound nucleon-nucleon state can be obtained by observing interactions with the deuteron as a whole, such as elsstic scatterings. At present only bubble chambers and nuclear emulsions have sufficient resolution to distinguish between elastic scatterincs and interactions in which the proton and neutron are separated. In Chapter 3 an inveritigation into the elastic scattering of $6 \mathrm{GeV} / \mathrm{c} \pi^{+}$mesons in a deuteriua bubble chamber is described. A report is \#iven of the determination of the angular distribution of the scattered pions at this momentum and of the comparison of different deuteron wave functions for the interpretation of the experinentel dete.

The first two Chapters contain a description of the experinental and analytic techniques used in the evalustion of the date. The experimental conditions are described in Chaoter 1 and aetails of the data reductios, common to both experimeits, are given in uhapter 2. It has been considered sppropriate to introduce the last two chapters separately.

CHAPTEA I

puo exposures have been nede nt vidiv, one aith the jï2 bean and the Saclay 81 cm . Dubble Chanber filled with deuterium, and the second using tiae $u 2$ bea, and the l5o c.i.
 Hin esreatinl ferturer of the bean and buble chanbers rie dercribed briefly here rad fuller details can be found in tiee references eliver.

1.1 Whe Denteriun Exposure

An exposure vias wode in Jurse 1963 in which a total of about 70,000 photographs were taken of the Saclay Bubble Chanber to provide data for a general study by CERN and the icole Polytechnique, Pnris of the interactions of $5 \mathrm{geV} / \mathrm{c} \pi^{+}$ mesons in deuteriuin, and by Durham, also, of certain aspects of the two- and six-pronged interections.

1.11 the M2 Beam

The layout ot the $\mathbb{W} 2$ bean is shown in figure l and a complete description is given in the cefly interial report
 specifically to provide separated kaon beans up

to $3.5 \mathrm{GeV} / \mathrm{c}$ and antiproton and pion beans are also available up to $\sigma \mathrm{GeV} / \mathrm{c}$. The length of the bean from target to the Saclay Bubble Chamber is 87 Al . The beam is produced at an angle of 8.5° to the internal p.s. beam to provide a suitable intensity of particles (particularly kaons) in the chamber. The production of secondary particles from the target is peaked strongly forward and the angle is therefore kept as low as possible. :iomentum separation takes place in the first part of the beam; the first bending magnet B.M. 1 produces dispersion in the horizontal image at the filt no. 8 where the momentum bite is defined. The quadrupole triplet $Q 1,42$, and $\psi 3$ at the start of the beam produces a converging beain in the first 10 m . electrostatic separator and a focus at the mass slit no. 10. In the second identical mass separator the beam is horizontal so that the maximum separation may be produced and the final mass separation is made at the slit no. I8 where the beam is focussed by the doublet Q7 and $\mathbf{Q S}^{6}$. Before entering the bubble chamber the beam is given the desired spread by the quadrupole magnet $Q 9$. The beam momentum during the exposure was computed by the programme 'TRAiW' to be $6.07 \mathrm{GeV} / \mathrm{c}$.

1.12 The Saclay 81 cm . Bubble Chamber

The Saclay Chamber has a conventional throughillumination system, shown in figure 2, which uses vertical linear flash tubes as light sources focussed by two-section condensers. The chamber windows, 81 cm . in length, are rectangular with semi-circular ends and the depth of the chamber is 32 cm . For this exposure the chamber was filled with about 100 litres of liquid deuterium. The three cameras were located in the positions shown in figure 3 and 35 mm . unperforated film was used. The chamber was expanded and photographed every two seconds. The reference system of crosses engraved on to the inner surfaces of the windows was used to define the fiducial volume as shown in figure 4 which is a photograph taken by the lower canera, View 3. It was necessary to define the fiducial volume on this view instead of the usual central view because the photographs taken by camera 2 were of poor quality and difficult to scan. Ihe magnetic field varied by up to 4% at the edges of the chamber, heving an average value of 20.0 Kilogauss and was measured accurately throughout the chamber. The distortion of the optical system and of the chamber as 9. whole is very small and the trajectories of the tracks have been reconstructed in the geometry programme 'THRESH'

FIG. 2 optical system of saclay blem be.

FIG. 3 CAMERA POSITIONS OF SACLAY BI cm BC.

Interaction of π^{+}meson in
the Deuterium of the Saclay
81 cm . Bubble Chamber. The

Fiducial Volume is indicated.

Figure 4
without difficulty. No corrections for distortions have therefore been attempted.

1.2 The Exposure in Hydrogen

Approximately 150,000 photographs were taken of the B.I.H.B.C. exposed to a beam of π^{+}mesons of $4.98 \mathrm{GeV} / \mathrm{c}$ momentum in an experimental run during February 1965. The film was divided between the five collaborating laboratories - Bonn, Durham, Paris (E.P.), Nijmegen, and Turin; subsequently the film of the Ecole Polytechnique was shared with Strasbourg. The run was made in the East Experimental Area using the 02 beam.

1.21 The 02 Beam

The 02 beam was built to provide reasonably well separated beans of kaons, protons, antiprotons and pions with momenta up to $15 \mathrm{GeV} / \mathrm{c}$. Initially the beam served the British 150 cm . chamber and in this experiment was set up to produce a beam of π^{+}mesons at a momentum of close to $5 \mathrm{GeV} / \mathrm{c}$. The beam, described fully by Keil and Neale (1963), is interesting technically because it combines in a single channel both electrostatic and R.F. separetion. However, for the purpose of providing the π^{+}beam at this momentum only the electrostatic separators were needed, the R.F. separation being of greater
efficiency at higher momenta.
The layout of the beam, which is about 180 m . long between the target and chamber, is shovin in figure 5. The internal target produces positive particles at an angle of 5.1°. The circulating proton bean of the P.S. had an intensity of about 5. 10^{11} protons per pulse and the 02 beam was given about 10% of the intensity. In the first part of the beam the angular acceptance and. the momentum bite are initially defined. In the second part, after mass separation the angular acceptance and momentum selection are redefined and the beam is finally shaped for entry into the bubble chamber. The angülar acceptance from the target is defined by the collimators Cl and C2 and later, in the final stage, by C9 in the vertical plane and by the vertical bending magnet in the horizontal plane. The bending magnets $\mathbb{N l}$, $M 2$, W3, and N4 and the horizontal collimator C 3 provide the momentum selection in the first stage and Cll redefines the momentum bite just before the beam enters the chanber. The quadrupole triplet $\psi 1, Q 2$, and $\psi 3$ focusses the beam at the centre of the collimator 04 in the vertical plane which then acts $a s$ a source for the mass analysis stage. The lens triplet $\psi 4, \psi 6$, and $Q 7$ produces a parallel beam
 3
MAGNETS
2m. Quadrupole ($\mathrm{Q}, 2,5,13,14,15,16,17$)

0.5 m . Quadrupole [Q7]
2m. Merizontal Bending Magnet (M1,2,3,6,5,6)

Im. Puised Vertical Bending Magnet (PM)
$\square \square \square \square$

Fig 5
in the vertical plane and an intermediate focus inside the mass separators which have a total plate length of 27 m . Ihe final mass analysis is made at collinator C6. The beam is brought to a sharp vertical focus just inside the bubble chamber by 416 and Q17 and this is then swept across the chamber by the pulsed magnet PM.

1.22 The British National Hydrogen Bubble Chamber

The initial testing and operation of the B.i.A.B.C. took place at CERiV. The chamber is described in several papers e.g. Welford (1964). The aperture of the two plane parallel windows is rectangular with semi-circular ends and the clear dimensions are 150 cm . by 50 cm . The windows are 15.5 cm. thick and the spacing between the inner faces is 45.0 cm . producing an effective volune of liquid hydrogen seen by the three cameras of about 300 litres. The optical system is of the through-illumination type using ring-shaped flash tubes and a condenser system in three sections. The cameras, 122.2 cm . from the front window, have axes which are perpendicular to the windows and they are loaded with 35 mm . unperforated film in 300 m . lengths. The chamber, its surrounding magnet and the optical system are shown diagrammatically in figure 6.

Beam Entrance

FIG. 6 PLAN VIEXW OF B.N.H.B.C. SHOWING OPTICAL SYSTEM AND MAGNET.

Again, the reference system of the chamber in the form of eingroved crosses on the inner window surfaces is used to define the fiducial volume and this may be seen in a. photograph taken by the central camera, figure 7. l'he crosses on the cainera-side have four equal arms and on the light-side have one longer arin. During the experiment the film was monitored and the chamber working conditions adjusted to produce minimum ioisation tracks with twelve bubbles per mm. The magnetic field had an average field strength of 13.5 kilogauss and varied by about $3 \%^{\circ}$ at the sides of the chamber. ithe field strength was accurately measured throughout the chamber and the results of this survey recorded in the usual way in metrix form for use in the fitting progranme.

1.23 Distortions

Ihe distortions produced by the optical system of the chanber are not negligible and reliable geometrical reconstruction is not possible without meking corrections. Kellner (ly65) has nade a study of the corrections required and these are now included in the geometry programme THRESri. The optical distortions were determined with the aid of a glass plate upon which was engraved a grid of intersecting rulings. It was then possible to make use of the optical corrections to determine accurately the

Photograph of Interaction of $5 \mathrm{GeV} / \mathrm{C} \pi^{+}$meson in
the B.N.H.B.C. The Fiducial

Volume is indicated.

Figure 7
positions of the cameras relative to the chamber.
The grid plate was photographed in three positions corresponding to the inner surfaces of the front and back windows and to the centre of the chamber. These positions of the grid were aligned using a telescope arrangement and the positions of the cameras were estimated carefully. With the relative positions of grid and cameras established the coordinates of the grid intersections x_{i}^{T}, y_{i}^{T} on an ideal film plane were then calculated. The actual coordinates x_{i}, y_{i} on the photographs, were determined by accurate measure ants and the effect of film stretch was reinoved by measuring also the camera-based fiducial printed on to the film in the camera gate. Film tilt and lens distortions were then calculated by a least squares fit to the expression.

$$
\sum_{i=1}^{N} w\left(\left(x^{\prime}-x^{T}\right)^{2}+\left(y^{\prime}-y^{T}\right)^{2}\right)=\operatorname{mininum}
$$

where $\binom{x}{y}^{\prime}=$

$$
\binom{x}{y}\left(1+\alpha_{1} \frac{x}{f}+\alpha_{2} \frac{y}{f}+\alpha_{3} \frac{x y}{f^{2}}+\alpha_{4} \frac{x^{2}}{f^{2}}+\alpha_{5} \frac{y^{2}}{f^{2}}+\alpha_{6} \frac{\left(x^{2}+y^{2}\right)^{2}}{f^{4}}\right)
$$

Here, w is a weight and f the film-lens distance.

The general formula for fitting film tilt and spherical lens distortions would include coefficients only for x, y, r^{2} and r^{4}, where $r^{2}=x^{2}+y^{2}$. The coefficients α_{3}, α_{4} and α_{5} were introduced to study the effects of non-rotational arrangement and other contributions which were not obvious. The corrections made by these coefficients, α_{i}, in a typical case would be about 5 microns for a track measured on the film 10 mm . from the optic axis.

Finally it was necessary to determine the camera positions relative to the chamber and for this purpose photographs were taken of the chamber fiducial crosses. The coordinates of these crosses were measured and corrected by the polynomial expression given above and the camera positions were then reconstructed. Using the camera positions thus determined and the correction expression given it has been found that points in the chamber space can be reconstructed by TriRESH with a similar precision to that of the Saclay 81 cm . Bubble Chamber.

CHAPIER 2

DATA REDUCHION

The system of data reduction by which events of interest were selected, measured and analysed is shown in the block diagram of figure 8.

2.1 Scanning

2.11 Scanning Tables

The tables upon which the film was scanned were designed in Durhem and constructed in the Departmental. Workshop to accomodate a Prevost projection system. To project the film on to a horizontal reflecting surfece of convenient height it has been found necessary to tilt the projectors and to use a single reflection from a large cantilevered mirror which is also tilted. The lenses of 135 mm . focal length allow the projected images to be $2 / 3$ full size and by using other appropriate lenses 50 mm . and 70 mm . film may also be scarined. The table tops which serve as reflection screens are designed to be unobstructed enabling the images to be vieved from three sides if required. Generally the film is scarmed

by viewing fron the direction of the ingoing bean.
2.12 Scanning of the fydrogen Film

Une fifth of the total number of photographs of the hydrogen film vere analysed at Durham, comprising of 30,000 pictures on 25 triads of film. Six of these were rejected after a brief initial scan because the picture quality on one or more of the views was bad. The reasons for the rejections were various - faintness, blurring, fogging and too many tracks in each frame. The remaining fila was scarmed initially for six-pronged interactions inside the chosen fiducial volume shown in figure 7. Interactions inside the volume were recorded only if the bean track entered the volume somewhere along its bottom edge. The fiducial volume was divided into six zones vertically and horizontally and on the scarming sheets vere recorded both the zone of entry and the zone of interaction for each event. In addition to this the following characteristics of each interaction were recorded:
(a) Secondary interactions
(b) Stopping tracks and decays (c) Associated electron pairs and $\mathrm{V}^{0} \mathrm{~s}$
(d; Identified protons

The protons were identified where possible from their curvature, estimated by comparison with calibrated curves, and by judging their bubble densities visually. It was found possible to identify protons up to a momentum of about $1.3 \mathrm{GeV} / \mathrm{c}$.

2.13 ifficiency of Scanning

A complete re-scan of the film for six-pronged events was made and the scanning efficiencies calculated in the usual way (Burhop 1962) for the scan and re-scan of each triad. For the first scen the average efficiency for all the film was ($94.8^{+} 1.0$) $\%$ and.$f o r$ the re-scan ($95.6^{+} 0.8$) \%. The overall efficiency with which six-pronged events were found is therefore (99.77 ± 0.06) \% The assumption has been made as always that the finding of the events was a statistical process and that the same events were not aissed in both the scan and re-scan. This assumption should be valid for six-pronged events since the visibility of such events is generally much better than for events of smaller multiplicities.

2.14 Scanning of the Deuterium Filn

I'he film of the Saclay Bubble Chamber which was
studied at Durham for elastic scatterings had already been scanned and re-scanned completely at ©iRN as part of an investigation of four-pronged interactions in deuterium. As the results of the study of elsstic scattering were of imnediate interest and because at that time the scanning equipment was largely committed to the hydrogen experiment it was not possible nor thoueht necessary to re-scan the film in Durhan. Instead the two-pronged events recorded on the Citur scanning sheets were reexamined and e selection made of those events which had the visual charecteristics of elastic scatters. This procedure and the manner in which the interactions were anelysed is described in section 3.5. The later comparison of the results of the analysis with those of the Ecole Polytechnique have shown that the efficiency of the CERN scanning for two-pronged events in which the recoil track is shorter than about 2 mrn. is low and that re-scanning woulá be desirable. This has not been possible because of the deterioration of the film in handling and the experimental results have been shown with the appropriate errors.

2.2 Labelling

Before measurement the six-pronged events were 'labelled' by a physicist. For each event a sheet was prepared with the track labels for each view in the order in which they were to be measured. This preparation was undertaken mainly to save time at the measuring tables and to minimise errors which might be made by the measurer. In events with six secondary tracks it was found that frequently the relative positions of the tracks changed from view to view. Whilst these changes were easily noted at the scanning table where the labelling took place whore and a.ll the views could be consulted simultaneously it was much more difficult to observe them a.t the measuring table where only one view may be seen at a time. For interactions with smaller multiplicities the labelling was carried out by the operators as the tracks were mes.sured.

2.3 vieasurement

A standard measurement procedure was adopted as follows. For each interaction four selected fiducial crosses were messured first and then the interaction point
(apex) of the event and the tracks in counterclockwise order starting with the primary. In general, for the tracks of non-stopping particles the coordinates of six evenly spaced points along the track were measured. For some of the slower non-stopping tracks the curvature could be seen to change significantly along its length and for these care was taken to measure only that part near to the apex where the curvature vas essentially constant. No allowance is made in lHRESH for energy loss by the particles and therefore these tracks cannot be accurately reconstructed unless this precaution is taken. For stopping tracks of very short range only the coordinates of the end-point were measured and the momentum was then determined in the kinematics programme 'GRIND', after a mass assignment had been made, using known rangemomentum data. In the case of stopping tracks with visible curvature, points were measured along their length as well as the end-point. The momentum was then determined from both the range and the curvature and the calculated values checked for compatibility. A weighted average of the two values was finally used.

2.31 Measuring Tables

The machines used for the measuring were designed. in Durham and built within the department. The basis of each measuring table is a stage which moves on linear bearings and the movement of the stage is digitized in two directions using the well-known technique of counting hoiré fringes. To provide measurements with sufficient accuracy for the reconstruction and fitting of the events digitizers with a least count of two microns are used. The film is projected on to a vertical screen on which is marked a reference point of about the size of a projected track bubble. The y -motion of the stage moves the optical system and the x-motion moves the clamped film so that any point of the projected image may be brought to the reference point. This arrangement allows the stage to be of compact dimensions but there is a difference in the magnification in the two directions. THRESH takes this difference into account providing four fiducial crosses are measured. The motion of the stage is controlled through servo- and stepping motors for the course notion and the fine motion respectively. It is found that on average the settings can be reproduced to an accure.cy of ± 2.5 counts.

The coordinates of the measured points are punched on to paper tape and the read-out from the counter banks to the tape punch is by way of a buffer store which enables immediate movement from one point to the next without waiting for the punching cycle to be completed. The counting and read-out system is illustrated in block diagrammatic form in figure 9. The output from the four photocells of each reading head, after being amplified and shaped, is taken to a sense detector and then to the gate control which is connected to each of the binary counters. These counters cover the range 2^{0} to 2^{17} counts. A read pulse (manually operated when a coordinate is to be recorded) transfers the information from the two counter banks (x and y) to the buffer store, figure lo, by a parallel read system. Each of the binary counters hes its own location in the store which is comnected as a shift register with six locations per row. The upper row is connected through amplifiers to the eight-hole punch which operates on automatic trip. As each row is punched a synchronised signal returns from the punch to the store shifting each row up by one position and filling the store with 'zeros' from the bottom. After six cycles the information is completely read out and the store empty. If one of the rovis of a coordinate is completely empty

FIG. 10

(as by chance it may be) the punch is tripped by a sixrow shift register connected to act as a counter. Thus each coordinate is punched on to the tape in six rows. Between the store and the punch amplifiers is an even parity generator.

Together with the measuring table is an electric input typewriter coupled to the punch by way of a diode matrix arranged in the elliott code. All the other information needed with the coordinates is punched on to the tape using this typevriter. The read pulse is also operated by a key of the typewriter so that a complete record of the order in which each event is measured is kept on paper. The information required by the computer in adiition to the coordinates includes lables for each point and track, and a 'title' for each event. This title is a series of reference numbers for a) the frane, b) the event in the freme, c) the event type, and d) the operetor.
2.4 Data Processing

The output from the messuring tables was recorded using the programe 'REAP' and then put on to magnetic
tape to serve as input data for the geometry and kinematics programmes, IfRUSH and GRIND. These two UiRH Library programmes were used by all the laboratories in both collaborations. Although these programmes are well lnown and widely used a brief review of their main features is given here for the purpose of later reference. The computing of the Durhem six-prong events was performed using the Bonn I.B.M. 7090 computer and the deuterium two-prong events were processed on a similar computer in Paris.
2.41 RLAAP

In the form in which it leaves the measuring tables the data cannot be read into the geometry programme. The programme REAP, written by H. Halliwell for the particular requirements of the Durham data, both reorders the data and at the same time checks the accuracy and the completeness of the measurements. REAP is written in such a way that in reordering the data considerable latitude is allowed in the exact form the measurements take. Errors of measurement noted at the time they are made may be corrected simply by relebelling the point or track and repeating the measurement. REAP also allows a general
title, punched on to the tape with the first measured event, to serve as the title for ach of the following events, with only those reference numbers altered which change from event to event. In this way usually only the frame number will need to be changed by the operator.

The output from REAP, which is run on the Durham Rlliott 803 computer, consists of a paper tape in Ferranti code with the ordered IHRESHE input data and a second tape with information about the quality of the me nsurements. If insufticient fiducial marks have been measured or if they have been incorrectly measured the event is rejected. Similariy if a track has been badly measured (perhaps as a result of a counter fault) a simple fittinc routine allows this to be noted and the event can usually be remeasured before the film leaves the measuring table so that considerable time can be saved.

Before entering THRESH the input data is transferred on to a magnetic tape using an I.B.si. 1401 computer and the code is changed from Ferranti to I.B.M.

2.42 THRe'SH

THRESH is the mass-independent geometrical reconstruction programe and the version used for these experiments was written in the Fortron II language. Using some
general information about the bubble chamber used e.g. the positions of the cameras and fiducial crosses and data concerning the optical system, the measurements of each event are used to calculate the curvature (or range) and the direction in the chamber of each track and also the coordingtes of all interaction points. The output lists the angles of dip and azimuth at the starting point of the track and the curvature at its middle. For each of these quantities the error is calculated from the difference between the measured and the fitted points. This is the 'internal' error of each quantity.

2.43 GRIIVD

The kinematics programme GRIND tests the various hypotheses for the interpretation of each interaction. For each experiment the possible exit channels of an interaction are assembled in a 'title' to the programme and these indicate the mass assignments that may be made to the tracks. The other GRIND titles contain data concerning the magnetic field, the range-momentum relations and the 'external' errors.

Besides enabling the different hypotheses to be distinguished GRIND also provides the best estimate of the
complete kinematical state of each particle (given by its four-momentum) after the correct fitting has been made. These values are then used in later analysis. The relativistic conservation laws are imposed upon the interactions by four constraint eduations - one for each component of four-momentum. The masses of the particles are fixed by the hypothesis and all the measured quantities are adjusted within prescribed limits until the best fit to the constraint equations is found. The fit is made by the minimisation of a. x^{2} function which depends on a.ll the measured quantities. In the case where there are no unneasured variables the fit has to fulfil all the constraint equations and there are four degrees of freedom. Where there are unmeasured variables, such as the momentum and direction of a neutral particle, some of the equations must be used to calculate these variables and in the case of one neutral particle three of the equations are automatically fulfilled leaving only one degree of freedom for the fit. No fit alt all can be obtained when there is nore then one neutral particle produced in an interaction unless the decay products can be measured. In such cases only the missing mass can be calculeted for the interaction. For any one interaction the number of fits is not necesserily limited to one. The actual number vill depend
largely on the particular kinematics of the event and upon the amount of ad.justment which is allowed. The output of $G R T N D$ contains a geometry record of the complete unfitted event and for each hypothesis a record of the assigned masses and the corresponding value of x^{2}. Por each hypothesis, whether fitted or not, GRIisD also calculetes the squared missing mass using the unfitted quantities. The relative ionizations of the tracks are determined as seen on the central view from the $1 / \beta^{2}$ dependence and these are corrected for dip. Gertain tests are applied during the fitting which if not satisfied are indicated as errors in the printed output. For example, the expected 'external' errors which are defined by certain formulae, are compared with the internal errors computed by THRLSH for the curvature and the angles of each track. If the internal error is greater than three times the external error then the correspond ${ }^{-i n g}$ error is signalled.

2.5 Examination and Analysis

Each six-pronged interaction was studied at the scanning table together with the output from GRIND and a
visual comparison was nade between the computed bubble densities of the tracks and those seen on the film. all hypotheses which were not consistent with the ionization of the tracks were excluded. Hypotheses with strance perticles were not vritten in to the GRIND title so it was necessary to identify the proton only to distiriguish betveen hypotheses. Protons can be distinguished from pions up to a momentum of about $1.3 \mathrm{GeV} / \mathrm{c}$ when the proton ionization is close to the plateau level. For events where more than one hypothesis satisfied the above examinetion the velues of the squared missing mess, sillit and of x^{2} were considered to choose the more probable interpretation. The necessary condition for the calculated wii ${ }^{2}$ to be acceptable for a hyothesis was that

$$
\mathrm{iNM}^{2}-2 \Delta\left(\operatorname{iNI}^{2}\right)<\mathrm{M}_{0}^{2}<\min ^{2}+2 \Delta\left(\mathrm{iNW}^{2}\right)
$$

where h_{0} was the mass of the missing particle corresponding to the hypothesis e.s. $\mathrm{H}_{0}=0$ for 4 C fits. The greatest acceptable value for x^{\prime} was 6 for the 10 fits and 24.5 for the 4 C fits. Where two or nore hypotheses still remained the following order of precedence vas observed. Four-constraint hypotheses vere accepted rather than 10 fits and where further distinction was required the
hypothesis with the lowest value of x^{2} was chosen.
Some events which had not been sufficiently well measured failed to be reconstructed in THELSH and these were picked out froin the GRIND printout for remeasurement. Certain other events which had produced fits in GRIVD were also remeasured if the errors signalled as a result of the GRIND tests were sufficiently important to cast doubts on the validity of the fit obteined. If, for example, an event had one track too badly measured to be reconstructed a. lC fit might nevertheless be made which could be satisfactory in every other way and in such a case the error signalled would ensure that it was remeasured.
$2.51 x^{2}$ Limits
The x^{2} limits used for the $\pi^{+} p$ experiment were the ones that had been found previously to be adequate in distinguishing between the following interactions of one and no degrees of freedom

$$
\begin{aligned}
\bar{p} \bar{p} & \rightarrow \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0} \\
& \rightarrow \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{\circ} \pi^{0}
\end{aligned}
$$

Events of these two types were generated by a lionte Carlo programme 'fAKN' with errors of the variables similar to those found in experimental values. These simulated events were then used as input for GRIND and a study of the resulting fitted hypotheses and associated x^{2} values indicated the extent to which misclassification of events might be expected. It was found that selecting a value of $x^{2} \leqslant 6$ for the $1 C$ fits gave a confidence level of 0.01 and this has been adopted for the lC fits of the six-pronged $\pi^{+} p$ interactions also. For the 4C fits a value of $x^{2} \leqslant 24.5$ was thought to be adequate and corresponds to a confidence level of 0.0001 .

2.52 Data Summary Tane

From the GRIfD output a summary tape was prepared which contained only the hypotheses selected by the examination. For each event GRIND produced a 'SLICE' card and upon this was punched the number corresponding to the selected hypothesis. Using these cards the programme SLICE compiled the Data Sumary Tape (D.S.T.). This tape held the records of the unfitted and fitted geometry, Min^{2} and x^{2} for each event. As the experiment
progressed and more events were fitted the D.S.T. was kept up to date.
2.53 SUNX

The CREIN Library progranme 'SUlVX' was used to calculate the differential cross sections ($d \sigma / \alpha \Delta^{2}$) and the effective mass and angular distributions from the D.S.T. By adding the appropriate subroutines SUNM may be used to plot any distribution relevant to the experiment. The distributions may be plotted with any 'cuts' needed to study particular features of the interactions by requiring that certain tests be satisfied.

2.6 Phase Space

The distributions prepared by SUMī from the experimental results are presented later and are often compared to the distributions predicted by statistical factors only - usually called 'phase space'. The density of n particles in Lorentz invariant phase space is given by the integral which is defined thus

$$
R_{n}\left(E, \bar{p}_{1}, \ldots \bar{p}_{n}\right)=\int \prod_{1}^{n} \frac{d^{3} \bar{p}_{i}}{2 \dot{r}_{i}} \delta^{3}\left(\sum_{1}^{n} \bar{p}_{i}-\overline{\mathrm{P}}\right) \delta\left(\sum_{1}^{n} w_{i}-\dot{\mathrm{E}}\right)
$$

where $\overline{\mathrm{p}}_{i}$ are the momenta and \dot{E}_{i} the energies of the perticles in the centre of mass system of total energy 2 ana total momentum $\overline{\mathrm{P}}$.

For any particuiar final state R_{n} is calculated using the programe foll which generates events by a Wonte Carlo method. The programe has been used chiefly. to calcuLate the phase syace distribution of effective mass for all the different combinations of particles possible in the six-pronged interections. When the distributions are calculated for many thousands of events the results agree well with the curves produced analytically. The weight with which each generated event is plotted is given by the phase space integral and the total weight is normalised to one. To take into account postulated resonances in the final state a Breit Wigner function is introauced to increase the weight of those events for which the effective mass of the particles of the function lies within the width of the resonance.

GHAPMEK 3

3.1 Introduction

The analysis of elestic scattering of pions and protons on nuclei is usually made mith the optical model which describes very well in terms of a Bessel function the characteristic diffraction phenomena observed experimentally. Bellettini et al. (1966) at Criki have studied the elastic scattering of protons orı nuclei renging from Li to U and have made such an analysis with an optical model which additionally takes into account the Coulomb interaction. For the heavier nuclei the agreement is very good and evidence for the secondary maxima can be seen; for the lighter nuclei these secondary maxima become masked because the structure of the nucleus, with diffraction from individual nucleons, is then important. In the case of the heavy nuclei the optical analogy works very well beceuse the partial vaves are strongly absorbed up to a clearly defined maximum value. This maximum is given by $l_{\text {mex }}=k R$, where k is the reduced wave number of the incident perticle, and defines the radius of the nucleus R.

In an approximation usually made for the Bessel function at small angles the differential cross section, $d \sigma / d t$, has a simple exponential dependence upon t, the negative square of the four momentum transfer. Using nuclear emulsions Kirillova et al. (1964) have made a study of proton-deuterium elastic scattering and have examined the dependence of $\alpha \sigma / d t$ upon t. They have shown that their results are in fact fitted by the relation
where

$$
\begin{aligned}
& d \sigma / d t=(d \sigma / d t)_{t=0} \exp \left(b t+c t^{2}\right) \\
& (d \sigma / d t)_{t=0}=\pi R^{4} / 4 h^{2}
\end{aligned}
$$

The differential cross section has an energy dependence which reflects the well-known 'shrinking' of the diffraction peak for nucleon-nucleon scattering. It is unlikely that the simple optical model for a uniform nuclear potential can be used to describe the deuterium nucleus which has a very small binding energy and consequently diffuse structure. In the analysis of the present experiment, therefore, an attempt has been made to introduce more realistic nuclear potentials into the optical model calculations, based on the Hulthen wave function and an approximation to a 'hard core' wave function.

It has beerı showrı by Fernbach, Green and Watson. (1951) and others that the elastic scattering in deuterium may be described in terins of the free neutron and proton scattering amplitudes, $f\left(\pi^{+} p\right)$ and $f\left(\pi^{-} p\right)$ respectively. In the case of $\pi^{+} \dot{d}$ interactions these are both known -- $f\left(\pi^{+} p\right)$ from direct measurements and $f\left(\pi^{+} n\right)$ from the measurements of $f\left(\pi^{-} p\right)$. \&uasi-elastic scattering, in which the deuteron breaks up, may also be considered from the same point of view and Harrington (1964), taking into account double scattering effects, has derived expressions for the differential cross sections for both elastic and quasi-elastic scattering. Bellettini et al. (1965) in their $p-d$ scattering experiment at $19.3 \mathrm{GeV} / \mathrm{c}$ have analysed their results using these expressions and obtain good agreement for the assumption that both the real and imaginary parts of the $p-p$ and $p-n$ scattering amplitudes are identical. They have at the same time extended the analysis to the results of Kirillova et al. for p-d scattering at $10.9 \mathrm{GeV} / \mathrm{c}$ and again have found good agreement. The results of the present experiment have also been studied in this way to try to confirm that the analysis holds for the scattering of pions as well in the lower energy region, namely $5 \mathrm{GeV} / \mathrm{c}$.

3.11 Techniques for Studying Elastic Scattering in
 Deuterium

The spark chamber and nuclear emulsion techniques have been used most often to study elastic scattering in deuteriuin. In both cases only one of the particles taking part in the interaction is observed. In counter experiments only the scattered particle is measured and this is performed with extremely good angular resolution, about 0.1 mrad. The momentum resolution, however, although about $1 / 2 \%$ a.t $19 \mathrm{GeV} / \mathrm{c}$, does not allow the elastic interactions to be separated from the quasi-elastic interactions by means of the kinematical constraints between angle and momentum. At present this represents a limitation when studying deuteriun scattering with this technique but with improved momentum resolution and the very large statistics obtained by spark chambers very accurate measurements of elastic cross sections will be possible.

In the emulsion experiments performed at Dubna the proton bean is incident on a thin foil terget loaded with a. hesvy hydrocarbon and the recoil deuterons, which are enitted at alnost 90°, are detected with nuclear emulsions placed a short distance away. Very accurate measurements
of the momenta and angles of the deuteron tracks enables the elastic and quasi-elastic interactions to be distinguished. Monentun transfers down to $-\mathrm{ta} 0.005(\mathrm{GeV})^{2}$ may be studied in this way. Experiments on the elastic scattering of pions are more difficult to perform because of the need for very intense, pure and well collimated pion beams which are not available as readily as similer proton beams.

In bubble chanber experimente at high energy the angles through which the incident particles are elastically scattered are too small to be easily detected at the scanning table: The recoiling target nuclei, however, are more readily visible and it is by scanning for these choracteristic 'black' tracks thet elastic scatterings may be selected. It is not possible to separate the quasielastic scattering visually nor simply by the fitting of GRIID. The elastic sample is selected by requiring certain tests to be satisfied vinich are imposed by the constraints of the interaction. The range of momentum transfers which can be covered by the bubble chamber technique is not as great as can be obtained usine counters or emulsions becsuse deuteron tracks of range less than 1 ma. ere not seen whilst scanning. Thus the smallest transfer which can
be resolvedi is $-t=0.015(\mathrm{GeV})^{2}$ which corresponds at $6 \mathrm{Gev} / \mathrm{c}$ to an angle of scattering of about 20 mrad . For this reason the bubble charber would not be useful to study the real part of the scattering amplitude by observotion of the interference betveen this part and the Coulonb amplitude (essentially real) which is important only at small angles. However, to study elastic scattering at very s:nall impact parameters, bubble chambers would be more suitable for observing and measuring the long recoils than nuclear emulsions where long tracks would have to be followed through the ermlsion stack.

3.2 lhe optical model

In the optical mociel a particle scattered by a nucleus is treated as a wave propagating throuch an attenus.ting medium h :ving a refractive index. In this case where absorptive effects are considered the interoction poteutial will be complex. The elestic effects, the refraction inside the nucleus and the diffraction around the nucleus (vihich is considered to be spherical), are described by the real part of the potential, V_{r}. ijecause the thin nuclenr surfece is considered to be diffuse
reflection may be neglected. The refraction increases the wave number of the incident particle fron k to k ' inside the potential and in the relativistic case (Fowler and Perkins, 1958)

$$
k^{\prime}=k\left(1+\left(2 V_{r} / \mathrm{p} \mathrm{\beta c} j+\left(V_{r} / p c\right)^{2}\right)^{1 / 2}\right.
$$

where p is the centre of mass momentum of the incident particle. Then if pc is large in comparison with V_{r} the change in wave number k_{1} is given by

$$
\begin{equation*}
\mathrm{k}_{\mathrm{I}}=\mathrm{k} \mathrm{~V}_{\mathrm{r}} / \mathrm{p} \beta \mathrm{c} \tag{1}
\end{equation*}
$$

The attenuation inside the nucleus by the inelastic channels is described by the imaginery part of the potential, V_{i}, which is therefore related to the coefficient of absorption, K. This coefficient is defined by the product of the nucleon density and the average cross section for scattering of the particle by a nucleon, and is related to V_{i} in the following way

$$
\begin{equation*}
K=2 V_{i} / \check{ } / n c \tag{2}
\end{equation*}
$$

The refracted wave front re-emerges from the nucleus with smaller amplitude and is out of phese with the wove diffracted around the nucleus. The resulting interference
pattern may be described by Bessel functions. Fernbach et al. (1949) have shown that the scattering amplitude, $f(\theta)$, may be written as follows

$$
\begin{equation*}
f(\theta)=i k \int_{0}^{R}\left(1-e^{\left(2 i k_{1}-K\right) s}\right) J_{0}(k \rho \sin \theta) \rho d \rho \tag{3}
\end{equation*}
$$

where J_{0} is the zero order Bessel function, 2 s the distance across the nucleus at distance ρ from the centre, and θ is the angle of scattering. The differential cross section is given by

$$
d \sigma / \partial \Omega=|f(\theta)|^{2}
$$

In large nuclei the wave passing through the nucleus is almost wholly absorbed. The elastic scattering is then essentially diffractive only and the following approximation is usually made.

$$
d \sigma / d \Omega=\frac{k^{2} R^{4}}{4}\left[\frac{2 J_{1}(k R \sin \theta)}{k R \sin \theta}\right]^{2}
$$

For small angles of scattering this may be further simplified and viritten in teras of -t, the four-momentum transfer squared, becomes

$$
\mathrm{d} \sigma / \mathrm{dt}=\frac{\pi \mathrm{R}^{4}}{4 h^{2}} \exp -\left[(\mathrm{R} / 2 \mathrm{~h})^{2}|t|\right]
$$

this expression is valid only inside the first minimun of the diffraction pattern.

It may also be shown (e.g. Lock, 1960) that the imaginary part of the forward scattering amplitude is related to the sum of the elastic and inelastic cross sections, the total cross section σ_{T}, in the following way

$$
\begin{equation*}
\operatorname{Imf}(0)=\frac{k \sigma_{I}}{4 \pi} \tag{4}
\end{equation*}
$$

This relationship is known as the optical theorem.
In the optical model the potential inside the nucleus is generally taken to be constant but in the calculations presented later the structure of the deuteron nucleus has been taken into account by considering both the real and the imaginary components of the potential to be dependent upon the nucleon density. An alternative approach to the problen of scattering on deuterium, the model besed on the impulse approximation, considers the nucleons separately i.s
and allowancejmade for diffuseness of the deuteron by the inclusion of a strong interaction form factor.
3.3 High Energy Scattering in the Impulse Approximation The problem of high energy collisions of particles
with deuterium has been treated in detail by Harrington and by Franco and Glauber (1965) whose work is closely followed in this discussion. In the approximetion used the two nucleons are considered to be stationary during the interaction which takes place on the mass shell. Both single and double scatterings are taken into account and the deuteron elastic scattering amplitude is expressed in terms of the elastic scattering amplitudes of the proton and neutron and of the deuteron form factor.

High energy scattering takes place predominantly at small angles and so double scattering mey occur with appreciable intensity but scattering of higher orders will require one or more backward scatterings and is therefore of negligibly smell amplitude. At the high energies considered the wavelength of the incident particle will be much smaller than the range of its interaction with a nucleon and ditffraction theory may be used to describe the collision.

A general expression may be written to describe the two-pnrticle elastic scattering amplitude at small angles

$$
\begin{equation*}
f\left(\bar{k}^{\prime}, \bar{k}\right)=\frac{i k}{2 \pi} \int \exp \left[\left(i\left(\bar{k}^{-}-\bar{k}^{\prime}\right) . \bar{b}\right)\right](1-\exp (i x(\bar{b}))) d \bar{b} \tag{5}
\end{equation*}
$$

where \bar{k} and $\bar{k} \cdot$ are the propagation vectors of the particle before and after deflection, and $\overline{\mathrm{b}}$ is the impact parameter vector pernendicular to the direction of the incident particle. The scattering process is characterised by the function $\boldsymbol{x}(\bar{b})$ which represents the change in phase at a point \bar{b} of the energing wave front resulting from its passage tirough the interaction region. Absorption of the veve as a result of incoherent processes is represented here again by allowing $x(\bar{b})$ to take complex values. Since the Lorente transíornation does not affect the transverse components of the momentun nor the phase shifts, equation 5, is also the correct, representation for the scattering amplitude in the laborptory sjosten when the laborntory velues of \bar{k} and \bar{k} are used.

Phe internel ground state wave function of the deuteron is $\psi_{i}(\bar{r})$ and $\psi_{\mathrm{P}}(\bar{r} ;$ is the internal final state Wave function where \bar{r} is the vector separation of the proton and neutron whose coordin: tes are \bar{r}_{p} and \bar{r}_{n}. In the case of elastic scattering the final stete will be the ground state again. The amplitude for the process in which the deuteron is left in a firmel state $|f\rangle$ and in

may be written as

$$
\begin{equation*}
F_{f i}(\bar{q})=\frac{i k}{\dot{2} \pi} \int \exp (i \bar{q} \cdot \bar{b})\langle f| \Gamma_{t o t}\left(\bar{b}, \bar{r}_{p}, \bar{r}_{n}\right)|i\rangle d \bar{b} \tag{6}
\end{equation*}
$$

where the abbreviation has been introduced

$$
\Gamma_{\text {total }}\left(\bar{b}, \bar{r}_{p}, \bar{r}_{n}\right)=1-\exp \left[i x_{\text {total }}\left(\bar{b}, \bar{r}_{p}, \bar{r}_{n}\right)\right]
$$

The total phase shift appends upon the coordir tee \bar{r}_{p} and $\bar{r}_{\text {in }}$:s well as \bar{b}.

Since in the processes considered the momentum transfer is small the recoil of the nucleus nay be neglected without introducing any significant error. The centre of mass of the target nucleus is considered to remain fixed at the origin and Eq. 6 may be rewritten ass

$$
F_{f i}^{\prime}(\bar{q})=
$$

$$
\frac{i k}{2 \pi} \int \exp (i \overline{\underline{q} \cdot \bar{b}}) d \bar{b} \int \psi_{f}^{*}(\bar{r})\left[I-\exp \left\{i \chi_{1 n}\left(\bar{b}-\frac{1}{2} \bar{s} j+i \chi_{\underline{p}}\left(\bar{b}+\frac{1}{2} \bar{s}\right)\right\}\right] \psi_{i}(\bar{r}) d \bar{r}\right.
$$

Here, \bar{B} is the projection of \bar{r} on the line perpendicular to the direction of incidence and $x_{n}\left(\bar{b}-\frac{1}{2} \bar{s}\right)$ and $x_{p}\left(\bar{b}+\frac{1}{2} \bar{s}\right)$ re the phase shifts produced by tine neutron aud proton
in their instantonesus poritivas.
To assist in separating the individunl scattering contributions Γ_{p} and Γ_{n} are introduced for the proton and neutron respectively. These obey the relation

$$
\begin{align*}
1-\exp & {\left[i x_{n}\left(\bar{b}-\frac{1}{2} \bar{s}\right)+i x_{p}\left(\bar{b}+\frac{1}{2} \bar{s}\right)\right]=} \\
& \Gamma_{n}\left(\bar{b}-\frac{1}{2} \bar{s}\right)+\Gamma_{p}\left(\bar{b}+\frac{1}{2} \bar{s}\right)-\Gamma_{n}\left(\bar{b}-\frac{1}{2} \bar{s}\right) \Gamma_{p}\left(\bar{b}+\frac{1}{2} \bar{s}\right) \tag{8}
\end{align*}
$$

Fron A. (5) it cen be seen thet the nucleon scattering whlutude is e rourier transforin of Γ and an approxinete inversion is made by nultiplyins this equation by $\operatorname{exv}\left(-\bar{i}_{\underline{1}} \cdot \bar{b}^{\prime}\right)$ and integratins the variable \bar{y} oven a plane perpenaicular to the direction of incidence. Then

$$
\Gamma(\bar{b})=\frac{1}{2 \pi i k} \int \exp (-i \overline{4} \cdot \bar{b}) f(\bar{q}) d \bar{q}
$$

alnbstituting the identity (8) into the integrel (7)

$$
\begin{aligned}
& +\exp \left(-\frac{1}{2} i \overline{c_{i}} \cdot \bar{\varepsilon} \cdot \frac{i k}{2 \pi} \int \exp \left(i_{ \pm} \cdot \bar{b} ; \Gamma_{p}^{1}(\bar{b}) d \bar{b}\right.\right. \\
& -\frac{i \underline{r}}{\overline{2} \pi} \int \exp (i \bar{q} \cdot \bar{b}) \Gamma_{\underline{L}}\left(\bar{b}-\frac{1}{2} \vec{r}\right) \Gamma_{p}\left(\bar{b}+\frac{1}{2} \bar{s} j d \bar{b}|i\rangle\right.
\end{aligned}
$$

the first two integrals are easily expressed in terms of the neutron and proton elastic scattering amplitudes by means of sic. 5. In the third integral Γ_{n} and Γ_{p} are expressed in terns of f_{n} and f_{p} and making use of the Fourier integral representation of the two dimensional delta function it is found that

$$
F_{f i}(\bar{q})=\langle f| F(\bar{u}, \bar{s})|i\rangle
$$

where

$$
\begin{aligned}
\vec{F}\left(\bar{q}_{1}, \bar{g} ;\right. & =\exp \left(\frac{1}{2} i \bar{q}_{\underline{q}} \cdot \bar{s}\right) f_{n}(\bar{y})+\exp \left(-\frac{1}{2} i \bar{q}_{1} \cdot \bar{s}\right) f_{p}(\bar{q}) \\
& +\frac{i}{2 \pi k} \int \exp \left(i \bar{q}^{\prime} \cdot \bar{s}\right) f_{n}\left(\bar{q}^{\prime}+\frac{1}{2} \bar{q}_{1} j f_{p}\left(-\bar{q}^{\prime}+\frac{1}{2} \bar{q}\right) d q^{\prime}\right.
\end{aligned}
$$

The effects of single and double scattering hove been separated in this expression. The first two terms are the single scattering amplitudes for the proton and neutron and the third term represents the double scattering amplitude. The form factor of the deuteron in the ground state is

$$
S(\bar{u})=\int \exp \left(i_{1} \cdot \bar{r}\right)|\psi(\bar{r})|^{2} \bar{r}
$$

and this expression is used to rewrite the elastic
scattering amplitude in the form

$$
\begin{gathered}
F_{i i}(\bar{q})= \\
S\left(\frac{1}{2} \bar{q}_{q}\right) f_{n}(\bar{q})+s\left(-\frac{1}{2} \bar{q}_{\underline{q}}\right) f_{p}(\bar{q})+\frac{i}{2 \pi k} \int S\left(\bar{q}^{\prime}\right) f_{n}\left(\frac{1}{2} \bar{q}-\bar{q}^{\prime}\right) f_{p}\left(\frac{1}{2} \bar{q}-\bar{q},\right) d \bar{q}
\end{gathered}
$$

This is the diagonal element of $F(\bar{y}, \bar{s})$ in the deuteron ground state and by squaring the modulus of the matrix element the angular distribution of the elastically scattered intensity may be obtained

$$
\begin{gathered}
(d \sigma / d \Omega) \text { elastic }=\left|F_{i i}(\bar{q})\right|^{2} \\
d \sigma / d \Omega_{e l}=S^{2}\left(\frac{1}{2} \bar{q}\right)\left\{\left|f_{n}\left(\bar{q}^{\prime}\right)\right|^{2}+\left|f_{p}\left(\bar{q}_{1}\right)\right|^{2}+2 \operatorname{Re}\left[f_{n_{1}}\left(\bar{q}_{1}\right) f_{p}(\bar{q})\right]\right\} \\
-\frac{1}{\pi k} S\left(\frac{1}{2} \bar{q}\right) \operatorname{Im}\left\{\left[f_{n}\left(\bar{q}_{q}\right)+f_{p}\left(\bar{q}_{q}\right)\right] \int S\left(\bar{q}_{1}^{\prime}\right) f_{n}\left(\frac{1}{2} \bar{q}^{+} \bar{q}^{\prime}\right) f_{p}\left(\frac{1}{2} \bar{q}-\bar{q}^{\prime}\right) d \bar{q}^{\prime}\right\} \\
+\frac{-1}{(2 \pi k)^{2}}\left|\int S\left(\bar{q}^{\prime}\right) f_{n}\left(\frac{1}{2} \bar{q}^{\prime}+\bar{q}^{\prime}\right) f_{p}\left(\frac{1}{2} \bar{q}-\bar{q}^{\prime}\right) d \bar{q}^{\prime}\right| 2
\end{gathered}
$$

The three ter .s above each have 2 straightforward physical significance. The first term contains the intensities for scattering by the neutron and the proton and the interferfence of the two wave amplitudes. The second term corresponds to the interference between the double scattering
amplitude ana the two single scattering amplitudes. Since the form factor is peaked sharply in the forviard direction this term has an appreciable contribution only if in the double scattering process the scattering by one of the particles occurs with a momentu:n transfer very close to \bar{q} and the additional scattering by the other nucleon occurs with nearly zero momentum transfer. The third gives the intersity for pure double scattering.

To derive the forn factor, $S\left(\frac{1}{2} \bar{q}\right)$, for the above expression two differerıt wave functions have been use, described below. These wave functions have also been enployed to describe the structure of the deuteron in the optical model calculations.
3.4 The Deuteron Wave Function

If an attractive central force of short range is assumed between the proton and neutron a potential, which must be negative, may be derived having a value different from zero only within the range of the force. The ground state of the deuteron would then be a singlet state, being spherically symmetric, and the radial wave function $u(r),(=r \psi(r))$, would be dependent only on the absolute value of the separation r. For large values of r the
radial wave function is then given by

$$
u(r)=e^{-r / p}
$$

where

$$
\rho=k^{-1}=x_{1}(2 \mu B)^{-\frac{1}{2}}=4.31 \text { fermi },
$$

k being the wave number, f the reduced mass of a nucleon and B the binding energy of the nucleus. Fron the value of the 'decay length' ρ which is considerably larger than the range of the force between the nucleons (about 2 fermi) it may be seen thet the deuteron has a very diffuse structure.

Fron measurements of the deuteron quadrupole magnetic moment it is known that there is, besides the S state, a D state probability of about 3%. This gives rise to e spin-orbit interaction so that in addition to the central force there is a tensor force also. Garterihaus (1955), taking into account the two states, has studied the interaction potential using the Yukawa theory with cut-off. The resulting potential at large separations (>l fermi) is similar to the potential with no cut-off. At small distance however, the tensor potential is close to zero and the central potentiel is strongly repulsive. The corresponding
wave function, which is given in numerjcal form, describes a deuteron with a 'herd core'. The proton and neutron cannot then overlap as would be the case without cut-off. the binding energy and quadrupole moment which may be calculated with this theory are in good agreenent with experiment. Horavcsik (1958) has approximated the Gartenhaus wave function by several analytical expressions and two of these have been used in the present calculstions. The first is a Hulthen type wave function which has the form

$$
u(r)=c\left(e^{-\alpha r}-e^{-\beta r}\right)
$$

Agreement with the asymptotic behaviour of the Gertenhaus S function deteraines the value of C and $\alpha(\simeq I / \rho)$ and β is given by the normalisation. The D-wave function contributes only 7% to the total normalisation and we have neglected this. The resulting approximation to the whole wave function is

$$
\begin{equation*}
u(r)=c\left(e^{-0.232 r}-e^{-1.202 r}\right) \tag{10}
\end{equation*}
$$

This wave function does not give good agreement at small separations and cannot be thought to resemble a 'hard core' description of the deuteron. A much better
gpproximation to the hard core is given by a second function which, however, retains a simple analytical form

$$
\begin{equation*}
u(r)=K\left(1-e^{-1.59 r}\right)\left(e^{-0.232 r}-e^{-1.59 r}\right) \tag{II}
\end{equation*}
$$

We have used this approximation as our hard wave function. The twio wave functions are shown in comparison with the Gartenhaus S-wave function in figure ll.

3.5 Experimental Analysis

From the two-pronged events found in the scan at CERA about 1,250 events were selected from 31 triads of film for measuremert as condidates for the elastic interaction $\pi d \rightarrow \pi d$. At the Ecole Polytechnique a further 1550 events, selected from 38 triads, were measured. As explained previously the elastic scatters have a characteristic appearance, namely a track of ninimum ionisation in the forward direction and a 'bleck' recoil track. For aromentum transfers typical of elastic interactions and for events inside the fiduciol volu:ne, the recoil stops inside the chamber. The conteminetion in the samnfe selected by scemining is largely mede up of quasi-elastic interactions in which the deuteron nucleus breaks up, and the proton

stops in the chamber. in these cases the intersction may telke place on the neutron when the proton acts as a 'specte.tor', or it nay take blace with the deuteron as a whole and raise its internal energy so thet it subsequently breaks up. Since the euteron is a loosely bound nucleus the impact of a high energy particle may be expected to produce many events of this kind.

Whilst events of the above types cancot be separated visually it is possible to exclude nearly all inelestic evente from selection by adopting certain acceptance criteria. It was required that the selected interactions, besiaes heving a stopping recoil trsci, should also be characterised by a second:ry pion with momentum greater then 4 Gev/c, an engular deviation of less then 6° (which allowed momentum transfers up to about $0.6 \mathrm{GeV} / \mathrm{c}$) and a transverse momentum opposite to that of the recoil. There were no other restrictions. The momentum of the secondery pion was estimated at the scenning table using sets of calibrated curves.

After measurement in Durham and Paris the events were enalysed by the Paris versions of Prikesh and GRIrD on the Saclay I.B. \quad. 7090 computer. 'lhe events were fitted to the following hypotheses

$$
\begin{align*}
\pi^{+} d & \rightarrow \pi^{+} d \tag{i}\\
& \rightarrow \pi^{+} p n \tag{ii}\\
& \rightarrow \pi^{+} d \pi^{0} \tag{iii}
\end{align*}
$$

All fits to the lC inelastic hypothesis (iii) were rejected from further anelysis. This djd not introduce any bias into the sample of elastic events finally selected because ambiguous fits were obtained in a few cases only between hypotheses (iii) and (ii). It was found, however, that nearly all of the events which make a 40 fit for the elastic scattering hypothesis (i) wexe also able to fit the 10 hypothesis (ii) for quasi-elastic scattering. Thus of the events analysed by GRIMD a total of about 2100 interactions from both laboratories gave fits to the 10 hypothesis (ii) snd of these about 1200 events also fitted the elsstic scattering hypothesis (i). That some of the events can be fitted by both hypotheses is nainly a result of the comparatively large errors which are made in the messurement of very energetic and very 'slow' particle tracks. When GRIND tries to fit a recoil deuteron as a proton it is able to adjust the angle anci.
momentum of the neutron until a reasonable fit is made as the limits of adjustment are rg.ther wide. In general, for a fitt made in this way, the angle which the fitted neutron makes to the direction of the recoil should be very small because the deuteron binding energy is very low and the deuteron can therefore be approximated by a proton and neutron moving in the same direction. For quasi-elastic interactions in which the recoil is genuinely a proton the fitted neutron is expected to be distributed isotropically. Two tests have been made to confirm that the 40 hypothesis is the correct interpretation of those events which also give lofits. The first test is based on the expectation that if the recoil is really a deuteron then the angle between the fitted proton and neutron should be close to zero. In fact the projected angle is exarnined rather than the spatial angle because the former is more accurately known. Figure 12 shows the distribution of the projected angle between the proton and neutron directions for all the 10 fits, the shaded part being the contribution of those events which also gave a 40 fit. The distribution has been folded about the ordinate at 0°, and covers a range 0° to 180°. It nay be seen that the shaded events form s. aarrow peak at small angles whilst the other

interactions are isotropically distributed as expected. The events in the peak are identified as genuine elastic scatters.

In the second test messured rather than fitted quantities are used. The recoil track is postulated to be a. deuteron and the events sub-divided into groups according to the momentum derived from the range. For each interaction the following quantity is calculated

$$
A=T-\beta p \cos \theta
$$

where p is the momentun, T the kinetic energy, θ the angle of emission and βc the c.m.s. velocity of the supposed deuteron. For elastic interactions it is expected that the tested quantity A should be close to zero. This follows because in the transformation relationship

$$
E^{\prime}=\gamma(E-p \beta \cos \theta)
$$

the total energy of the deuteron in the laboretory system after the collision is given by

$$
\mathrm{E}=\mathrm{w}_{\mathrm{d}}+\mathrm{T}
$$

where Mi_{d} is the rest mass of the deuteron. The total
exnergy of the deuteron in the centre of mass for an elastic collision will be

$$
E^{\prime}=\gamma W_{d}, \quad \gamma=1 / \sqrt{1-\beta^{2}}
$$

from which it follows thet I - β poos $\theta=0$.
I'he background expected for the other events has not been calculated. The distribution of the events for the momentum sub-groups is shown in figure 13 and again the shaded events are those which give $4 C$ fits. In each subgroup these events all fall into a narrow peak centred at $\mathrm{A}=0$ and the beckground is fairly isotropic. This test confirms the results of the first and it may be assumed therefore that the $4 C$ fits are the real elastic interactions and that the contamination of the selected sample is at most a few percent. The second test also shows that the fits are equally grood for all ranges of recoil.

3.51 Corrections for Scanning Loss.

Before calculating the cross sections a correction for scanning losses has been made to the number of events found. fivents are missed whilst scanning mainly because the recoil tracks are very short. Besides the loss of events having recoils of shor't range, events with longer

recoils nay also be lost where the tracks are foreshortened by steep dio in the chamber. For tracks in the film plene the minimun range detectable is about 1 nim. es pointed out jreviously. The sample has been divided as before in 'test A' according to the momentum of the recoil deuteron and for esch momentum interval a plot has been mrde of the distribution of the engle which the recoil makes with the normal to the film plane. These distributions, separately for each laborntory and conibined are shomn in figure lid. It is seen that for small momente there is a morked difference between the numbers of events measured by the two laboratories. The high loss of events with short recoils (up to 2 mm.) in the Gern scan may have been the result of a primary concern with interactions of higher multiplicities. Because of this discrepancy only the results of the E'cole Polytechnique have been used to determine crose sections for deuteron momenta less than $0.22 \mathrm{GeV} / \mathrm{c}$. Above this momentum the scemning efficiencies of taris and CBRic become comparable as may be seen from the normalised diagran of figure 15 , where the ratios of the numbers of 40 evertis found by each laboratory in the different momentum intervals are shown.

FIG. 15 Ratio of EP and CERN-DURHAM scanning efficiencles as function of recoil momentum

To correct for the losses resulting from steep tracks it is necessary to assume that the angle of dip is distributed isotropically. For each of the momentum ranges of figure 14 it is assumed also that the number of events found will reach a plateau value when the recoil makes a certain large angle with the normal to the film plane. The angle and the plateau value are defined for each interval and the corresponding corrected number of events is then calculated. The corrected number will have only the same statistical weight as the smaller number of events falling under the plsteau. Figure 16 shows the correction factors (i.e. the ratio of the corrected number to the uncorrected number) which have been determined for each of the momentun divisions. A curve has been fitted to the values which hes en asyinptotic behaviour for very large and very small recoil momenta. Using this curve the corrections have been made for the points of the differential cross section which are separated at intervals of $-t=0.02(\mathrm{GeV})^{2}$.

3.52 sxperimental Differential Cross Section

The experimentally observed differential cross section for elastic scattering of $6 \mathrm{GeV} / \mathrm{c} \pi^{+}$mesons in deuterium

is shown in figure 17. The two points closest to the origin are based on the Paris data and the other eight represent the corrected combined data. The errors shown have been calculated to have the statistical weight of the uncorrected events found under the plateaux of figure 14. The points have been plotted for a cross section per event of $2.44 \mu \mathrm{~b}$. calculated from the estimated track length scanned at Paris.

3.6 Opical Model Calculations

The differential cross section predicted by the optical model for a uniform deuteron has been calculated for a range of possible values of the radius R using the expression of E'q. 3. For a uniform nucleus the coefficient of absorption, K , may be written as

$$
K=\frac{A \bar{\sigma}}{\frac{4}{3} \pi R^{3}}
$$

from its definition given in 3.2, where A is the atomic weight and $\bar{\sigma}$ is the average total cross section for π-nucleon scattering. At $6 \mathrm{GeV} / \mathrm{c}, \bar{\sigma}=27.35 \mathrm{mb}$. (Galbreith et al., 1965) when for $R \simeq 2$ fermi the coefficient of

FIG.I7. COMPARISON OF EXPERIMENTAL DIFFERENTIAL CROSS SECTION WITH PREDICTIONS OF OPTICAL MODEL .
absorption has typically a value of about 0.13 fermi $^{-1}$. To determine the change in wave number, k_{1}, inside the nucleus using Eq.l.it is necessary to assume a value for the real potential, V_{r}. Ixamination shows that the exact value is not critical and $V_{r}=35$ meV has been taken (hvans 1955). Substituting the centre of mass values for k and p the value of k_{1} is 0.177 fermi ${ }^{-1}$.

To calculate the scattering amplitude given by 3 F .3 the expression has been divided into its real and imasinary parts each of which hos been integrated numericelly usinf, the Lilliott 303 computer. 'The inaginary part of' the forvard scattering amplitude, $\operatorname{Imf}(0)$, has been normalised to the value given by the optical theorem, sig. 4. For a total cross section at $6 \mathrm{GeV} / \mathrm{c}$ of $\sigma(\pi-d)=$ 52.8 mb . (Gi.1braith et al.,1965) tine optical value of Imf(u) is 4.68 ierni. mhe ritio of the real to inaginery parts of the forvard sontierins mplitude is found to be very emall, mout 0.02 . The differential cross section v:as calculateä for a rune of shbles in the centre of mess of 0° to 15°, correspone ine to ibout 0° to 5° in the laboretory. sor convenionce the uistribution is plotteou fine ily as dofat a ainast -t where the foilowins
relationships have been used as good approximetions for small angles
and

$$
\begin{aligned}
d \sigma / d t & =-\frac{\pi}{p^{2}} d \sigma / d \Omega \\
-t & =p^{2} \theta^{2}
\end{aligned}
$$

'the differential cross section predicted by the uniform nuclear model gives best ggreement with the observed distribution for a deuteron radius, $R=2.10$ fermi and the two distributions are shown together in figure l'7. It can be seen that reasonable agreement is obtained only up to values of -t less than $0.1(G e V)^{2}$ and the predicted secondary maximum at $-t=0.25(\mathrm{GeV})^{2}$ is not observed. experimentally. This result is not surprising since the deuteron has a diffuse structure rather than a clean edge.

A more detailed calculation has been made using the Hulthen and hard core wave functions described in iq .10 and Eq. Il. To use these wave functions in arı optical model calculation it is necessary to rewrite thern in terms of the distance from the centre of the nucleus, the halfseparation, which is considered to be equivalent to the
radial parameter of the optical model. In this form the Hulthen wave function is written ass

$$
\psi(R) \propto \frac{e^{-\gamma R}-e^{-\delta R}}{R}
$$

with $R=\frac{r}{2}$ and $\gamma=0.464$ fermi $^{-1}$ and $\delta=2.404$ fermi $^{-1}$: The density of nucleons at radius R is then proportional to $|\psi(R)|^{2}$, and is normalised to the number of nucleons in the usual way. The coefficient of absorption may then be written in the following way, using the previously given value of $\bar{\sigma}$:

$$
\begin{equation*}
K=0.743\left[\frac{e^{-\gamma R}-e^{-\delta R}}{R}\right]^{2} \text { fermi }^{-1} \tag{12}
\end{equation*}
$$

The expected value of K at the centre of the nucleus is then

$$
\begin{aligned}
K(0) & =0.743(\delta-\gamma)^{2} \text { fermi }^{-1} \\
& =2.80 \text { fermi }^{-1}
\end{aligned}
$$

and therefore, $K=0.265\left[\frac{e^{-\gamma R}-e^{-\delta R}}{R}\right]^{2} K(0)$ fermi $^{-1}$
If it is assumed that the real potential is related to the density then the change in wave number may be written from tiv. 1 as

$$
k_{I}=k V r / p \beta c=\frac{k}{p \beta c} \frac{\operatorname{Vr}(0)}{(\delta-\gamma)^{2}}\left[\frac{e^{-\gamma R}-e^{-\varepsilon R}}{R}\right] 2 \text { fermi }-1
$$

where $V_{r}(0)$ is the real potential at the centre of the nucleus given in MeV . Then for π^{+}mesons at $6 \mathrm{GeV} / \mathrm{c}$ in the laboratory system

$$
\begin{aligned}
\beta & =1 \\
\mathrm{k}_{\mathrm{c.m.s.}} & =11.13 \mathrm{fermi}^{-1} \\
\mathrm{P}_{\mathrm{c.m.s}} & =2.2010^{3} \mathrm{iveV} / \mathrm{c}
\end{aligned}
$$

and using these values

$$
\begin{equation*}
k_{1}=1.3410^{-3} v_{r}(0)\left[\frac{e^{-\gamma R}-e^{-\delta R}}{R}\right]^{2} \text { fermi }{ }^{-1} \tag{13}
\end{equation*}
$$

Using the expressions above, Eq. 12 and Eq. 13, the variation of $K s$ and $k_{1} s$ with impact parameter has been calculated and the results for K s are shown in figure 18 together with the corresponding curves for the hard core wave function and for the uniform nucleus. The curves are plotted for impact perameters up to 3 fermi, beyond wich they have values close to zero.

The real and imaginary parts of the forward scattering amplitude have been calculated from Eq. 3 using a numerical method as before but in this case with Ks and $\mathrm{k}_{1} \mathrm{~s}$ as functions of the impact paraneter ρ. The values of $K(0)$ and $V_{r}(0)$ were adjusted until the imaginary part of the

FIG. 18 VARIATION OF K\& WITH IMPACT PARAMETER P. FOR UNIFORM DEUTERON AND FOR DEUTERON DESCRIBED BY HULTHÉN AND HARD CORE WAVE FUNCTIONS.
forward amplitude, $\operatorname{Imf}(0)$, attained the value given by the optical theorem. Until recently the real part Ref(O) was believed to be zero but there are indications that it may not be negligible. An arbitrary value one tenth of that of $\operatorname{Imf}(0)$ has been adopted; the differential cross section is not sensitive to the exact value when it is small. Having normalised the distribution the complete differential cross section was computed for a range of angles 0° to 15° in the c.m.s. Again the distribution has been finally plotted as do/dt. In figure 17 the differential cross sections for the Hulthen and hard core vave functions are shown in comparison with the experimental data and also with the prediction of the uniform nucleus. The secondary maximum associated with the uniforin deuteron does not appear in either of the two predicted distributions but apart from this feature the agreement is very poor. Both distributions are too broad and the radii which would correspond to the two distributions if a uniforin model were fitted are 1.7 fermi for the Hulthen wave function and 1.85 fermi for the herd core wave function.

3.7 Impulse Model Calculations

In order to evaluate the expression, Eq. 9, given for the angular distribution we require the functions $f_{n}(q)$, $f_{p}(q)$ and $S\left(q^{\prime}\right)$ and the forms suggested by Harrington have been used. These are

$$
\begin{aligned}
f_{n}(p, q) & =i A_{n}(p) \exp \left[-a_{n}(p) q^{2}\right] \\
f_{p}(p, q) & =i A_{p}(p) \exp \left[-a_{p}(p) q^{2}\right]+\mathbb{F}_{C} \\
S\left(q^{\prime}\right) & =\exp \left(-a_{d} q^{\prime 2}\right)
\end{aligned}
$$

The parameters $A_{n}, A_{p}, a_{n}, a_{p}$, and a_{d} are functions of the incident momentum p and are chosen to fit the low momentum. transfer experimental data. F_{C} is the Coulomb amplitude and is given at these small momentum transfers in the notation of Bellettini et all. to be

$$
\mathrm{F}_{\mathrm{C}}=-\frac{2 \xi}{\mathrm{q}^{2}} \mathrm{p} \quad \text { where } \quad \mathbf{s}=\frac{\mathrm{e}^{2}}{\frac{h \beta c}{}}=\frac{1}{137 \beta}
$$

$A_{n}(p)$ and $A_{p}(p)$ are complex numbers proportional to the total cross sections for $\pi-n$ and $\pi-p$ elastic scattering
respectively. Then

$$
A_{n}(p)=f_{o n}\left(1+i \rho_{n}\right) \quad \text { and } \quad \dot{A}_{p}(p)=f_{o p}\left(1+i \rho_{p}\right)
$$

where $f_{\text {on f }}$ is an abbreviation for $\frac{p \kappa_{T}(\pi n)}{4 \pi h}$, and $f_{\text {op }}$ for $\frac{p \sigma_{T}(\pi n)}{4 \pi n}$ and ρ_{n} and ρ_{p} are the ratios for the real to
imaginary amplitudes for neutron and proton scattering respectively. Making these substitutions the differential cross section is obtained after integration to be

$$
\begin{align*}
& d \sigma / d \Omega e l=S^{2}\left(\frac{1}{2} q\right)\left[\left|f_{n}\right|^{2}+\left|f_{p}\right|^{2}+2\left(\operatorname{Ref}_{n} \operatorname{Ref} f_{p}+\operatorname{Imf} n_{n} \operatorname{Im} f_{p}\right)\right] \\
& -\frac{S\left(\frac{1}{2} \varphi\right)}{\pi p}\left[\operatorname{LI}\left(\operatorname{Im} f_{n}+\operatorname{Im} f_{p}\right)-N\left(\operatorname{Ref} f_{n}+\operatorname{Ref} f_{p}\right)\right]+\frac{\left(\frac{\left.1 n^{2}+N^{2}\right)}{(2 \pi p)^{2}}\right.}{} \tag{14}
\end{align*}
$$

iv and are given below. Written in the above form the differential cross section $d \delta / \bar{d} \Omega$ nay be evaluated numerically.
$\mathrm{M}=$
$\frac{2 \pi\left(\rho_{p} \rho_{n}-1\right) p^{2} f_{o p} f_{o n} \exp \left[-\frac{1}{8}\left(\alpha_{p}+\alpha_{n}\right) q^{2}\right]}{\left(\alpha_{d}+\alpha_{p}+\alpha_{n}\right)}-\frac{26 \pi \xi p^{2} f_{o n} \rho_{n} \exp \left(-\frac{1}{8} \alpha_{n} o^{2}\right)}{q^{2}\left(\alpha_{d}+\alpha_{n}\right)}$

$$
\begin{aligned}
& N= \\
& \frac{2 \pi\left(\rho_{p}+\rho_{n}\right) p^{2} f_{o p} f_{o n} \exp \left[-\frac{1}{8}\left(\alpha_{p}+\alpha_{n}\right) q^{2}\right]}{\left(\alpha_{d}+\alpha_{p}+\alpha_{n}\right)}-\frac{16 \pi s p^{2} f_{o n} \exp \left(-\frac{1}{8} \alpha_{n} q^{2}\right)}{q^{2}\left(\alpha_{d}+\alpha_{n}\right)}
\end{aligned}
$$

The form factor constants c_{i} in these expressions for M and IN are related to the constants a_{i} used previously thus

$$
\alpha_{i}=2 a_{i}
$$

The differential cross sections have been calculated using liq. 14 for both formal factors of the strong interaction, derived from the iulthen and hard core wave functions. The final calculations have hear made on the I.B. lw. 1620 computer in Paris using a modified CaiRN programme. For the ratios of the real and imaginary amplitudes for the proton ρ_{p} and the neutron ρ_{n} the following values have been used (Bellettini et al., 1965)

$$
\rho_{\mathrm{p}}=\rho_{\mathrm{n}}=-0.33
$$

and for the total cross sections (Galbraith et al:, labs) for $\pi-p$ and $\pi-n$ scattering

$$
\sigma_{T}(\pi p)=26.2: a b .
$$

$$
\sigma_{\mathrm{T}}(\pi \mathrm{n})=28.5 \mathrm{mb} .
$$

For the constante of the form factors similer values to those of Bellettini et al.(1965) have been used.

$$
\begin{aligned}
& \alpha_{p}=\alpha_{n}=7,5(G \in V / c)^{-2} \\
& \alpha_{\alpha}=44(G e V / c)^{-2}
\end{aligned}
$$

The results of the calculations are shown in comparison vititil the observed differential cross section in figure 19 and it can be seen that the predictions of the impulse nodel are in very good agreement with experiment. for the curve derived for each wave function has been calculated the corresponding value of x^{2} for the ten observed values of $d \sigma / d t$. It is found thet

$$
\begin{aligned}
& x^{2} \text { Hard Core }=8.58 \\
& x^{2} \text { Hulthen }=3 E .3
\end{aligned}
$$

and it may be concluded thet the hard core wave function is a satisf: ctory description of the deuteron whilst the Hulthen wave function is not.

FIG.19. COMPARISON OF EXPERIMENTAL dIFFERENTIAL CROSS SECTION WITH PREDICTIONS OF IMPULSE MODEL.

CHAPTER 4

4.1 Introduction

The majority of the secondary particles produced when meson and proton beains are in collision with nucleon targets are found to be π mesons and a feature of the interactions is the formotion of unrtable multi-pion resonences and nucleon jabors. The information learned from the kinen"tic correlation of the particles in the final state is mostly for the energy region up to about 10 GeV and generally only final states containing two to five particles have been closely examined. Comparatively little detailed information is available for interactions in which more seconcery particles are produced, largely beceuse of the small cross sections for these events and also because of the difficulties of analysis when so many different conbinations of particles must be considered. Until experimentel data are ade uately available it is difficult to devise a dynanical model for the analysis of very high multiplicity interactions but lately a group of physicists at CeRli, under the guidance of Professor Van Hove, have begun to study the theoretical aspects of the

פroblem. At the present time therefore the analysis of such interactions can only be rade in general terms following the models which have been successful in interpreting the iateractions of lower multiplicity, and in particulsur the peripheral model whose most important features are described briefly here.

4.11 The Peripheral Hiodel

A detailed analysis of inelestic interactions in which there are less than six particles in the final state shows that frequently the production takes place by way of a quasi-two-boaj intergction in which one or both of the mass centres are resonances. Such processes are found to occur usually for small momentum transfers with the decay products of the resonances collimated into the forward and backward directions of the centre of mass system. It Hey be inferred from this that there is a tendency for the directions of the incident particles to be nainteined and that therefore the interaction does not take place centrally after a head on collision but that rather the particles neet in a glancing namer. Fro: this point of view e meson scattering on a nucleor vill interact only with the outer structure of the nucleon, the mesic 'cloud' and not with its 'core'. For such peripheral interactions the long range force concerned is described, using the

Yukawa theory, in terirs of the exchange of a. virtual particle. Generally it is assumed (Ferrari gnd Sellari, 1962) that the exchanged particle is a meson since these are the lightest of the strongly interacting particles and have, therefore, the largest interaction radii. The F'eynman diagran for a two-body reaction with one meson exchange (O.M.E.) of the type

$$
a+b \rightarrow c+d
$$

is shown in figure 20 and occurs with the exchange of particle e. Generally c and d are resonances which later decay into the particles seen in the final state, sometimes by wey of other lighter resonances. the invariant square of the four-momentun transfer between particles a and cor between b and d is defined by

$$
\begin{align*}
\Delta^{2} & =-\left(p_{c}-p_{a}\right)^{2}=-\left(p_{d}-p_{b}\right)^{2} \\
& =-\left(a_{c}^{2}+m_{a}^{2}\right)+2 E_{c} E_{a}-2 \bar{p}_{c} \bar{p}_{a} \cos \theta^{F} \tag{15}
\end{align*}
$$

where the p_{i} are the four-inomenta of the particles and 0^{*} is the production angle. The notation is

$$
p_{i}=\left(E_{i}, \bar{p}_{i}\right) \text {, from which } v_{i}^{2}=E_{i}^{2}-\bar{p}_{i}^{2}=m_{i}^{2}
$$

FEYNMAN DIAGRAM FOR REACTION $a b \rightarrow c d$
FIG. 20
where $\mathrm{I}_{\mathrm{i}}, \bar{\rho}_{i}$, and in_{i} are the total energy, threemomentum and mass of the particle indicated. It follows from the conservation of four-momenturn thet $p_{e}=p_{c}-p_{a}$ and therefore $\Delta^{2}=-m_{e}^{2}$ where $m e$ is the uass of the exchange particle. Since Δ^{2} is alvays positive the interaction takes place off the mass-shell and n is a virtual mess. The matrix elenent for this reaction (see e.g. Schaitt, 1965) includes a tern, $1 /\left(\Delta^{2}+m_{e}^{2}\right)$, the propagator of the exchanged particle, and this term has a singularity in the unphysical region at the point $\Delta^{2}=-\mathbb{M}_{e}^{2}$ vihere the exchange porticle is real, ife beinég the physical iness of the particle. The influence of the propagntor upon the ditferential cross section, d $\sigma / d \Delta^{2}$, will depend on the physical mass of the exchange particle and will be greatest for the exchange of a pion because the pole will then Jie close to the physical region and the distribution will be peaked at sinall values of Δ^{2}. In a typical example of one pion exchange, the reaction at $4 \mathrm{GeV} / \mathrm{c}$

$$
\pi^{+} p \rightarrow \mathrm{H}^{\mathrm{z}++} \rho^{0}
$$

reported by the Anglo-Geruan volleborstion (1965) the distribution of Δ^{2} is peaked at 0.1 (Gev) ${ }^{2}$ and elnost all of the events occur for $\Delta^{2}<0.5(G e V)^{2}$. It is found,

Liowever, thet the differential cross section predicted by
 falls off less rapidly than the observed distribution (Jackson, l965 from data of the Saclay-ursay-Bari-Bologne Gollaboretion, 1964). By including form factors in the matrix elenent (Ferrari and Sellari, 196) it is possible to fit the experimentel distribution using the U...s.s. nodel but the fitting is largely enpirical and it is found also thet the fors factors have an energy dependence. A more setisfactory explanation can be nade if the absorptive effeets of the other open inelastic chennels are considered (Gottfried and Jackson, 1964). At high energies there are nany other open inelastic interactions competing with the quasi-two-body process and this leads to the reduction of the amplitude of the two-body process particularly for small impact parameters. The quasi-two-body interaction then depends almost entirely upon high partial waves which lead to large scattering angles and it becomes possible to predict satisfacturily the observed distribution of Δ^{2}. In peripheral interactions the resonant particles will be produced in a mixture of spin states (see e.s. Jackson, 1965) dependent upon the spin and perity of the exchange particle. Informetion may therefore be obteined about the exchange particle by observing the decay distribution of the resonances.

In the present experiment the data have been exarined to see whether the peripheral model is still applicable to the interoretation of very high multiplicity interactions. sividence for peripheralism has been looked for in the distributions of the production ancles of the seconderies and in the distributions of Δ^{2}. The effective nass plots of the differeat particle combinations have been studied to see if quasi-two-body processes occur and a systematic study has been ande of the decay distributions of the resonances which have been observed.

4.2 Rxperimental Results

From the 150,000 photographs of the interaction of π^{+}mesons in hydrogen at $4.98 \mathrm{GeV} / \mathrm{c}$ the six laboratories of the collaboration have analysed epproximetely 3,500 events in which there are six charged particles in the final state These interactions have been fitted to the following interpretations which include only non-strange particles

$$
\begin{align*}
& \pi^{+} p \rightarrow p \pi^{+} \cdot \pi^{+} \pi^{+1} \pi^{-} \pi^{-} \quad 1052 \text { events } \tag{i}\\
& \rightarrow p \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0} \quad 1595 \text { events } \tag{ii}\\
& \rightarrow \Omega \pi^{+} \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \quad-279 \text { events } \tag{iii}\\
& \rightarrow \mathrm{n} \pi^{+} \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0} \quad 152 \text { events } \tag{iv}\\
& \rightarrow p \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-}+m \pi^{0}, m>2 \quad 389 \text { events (} \mathrm{m} \text {) } \\
& \text { (} \mathrm{v} \text {) }
\end{align*}
$$

The analysis into the 4 C channel, (i), and the two 1 C chonnels, (ii) and (iii), has been made in the marner described in section 2.5 using the bubble densities of the tracks and accepting events with $x^{2} \leqslant 6$ for the 10 fits and $x^{2} \leqslant 24.5$ for the $4 C$ fits. The twio nofit channels, (iv) and (v), have been sepsrated by mesns of the squared aissing mass calculatec for each interaction froin the measured quantities.

4.21 Gross Sections

The cross sections given here have been calculated Iron the Burhem cate eutter cetermininf the average number of tracks per frene. Gorrections have been nado to take into account
i) the dip and curvature or the bean
ii) tie nuaber of tracks Leaving the side of the fiducial volume
iii) the shorter track length of particles which interact in the volume,
and the total length of track scanred has been calculated to be ($16,20 \pm 0.02$) 10^{4} metres. The error given is due mainly to the statisticel error resulting from counting tracks in only one tenth of the franes of each film. The
overall scanning efficiency is (99.3 ± 0.1) (see Chapter $2,2.13$) and the corrected total number of six-prong events is found to be 743. The total cors-asaton for the aine-pronged wreath is

$$
\sigma_{\text {Motel }}=(1.13 \pm 0.07) \mathrm{mb}
$$

The partial cross sections for the different channels are summarised in table I.

TABLE I

Channel	Partial Cross Section $\mu \mathrm{b}$.
$p \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-}$	400 ± 30
$p \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}$	600 ± 40
$n \pi^{+} \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-}$	110 ± 10
$n \pi^{+} \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}$	
$p \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-}+m \pi^{0}$	210 ± 20
$m \geqslant 2$	

A comparison of the croce sections given above with the results derived from small statistics by the Aechen-Berlin-

Bonn-ilamburg-iunich Éollaboration (1966) for the same reactions at $4 \mathrm{GeV} / \mathrm{c}$ shows that the cross sections for high multiplicity interactions have a. strong energy dependence. In channel (i), for example, the cross section at $4 \mathrm{GeV} / \mathrm{c}$ is $250 \pm 40 \mu \mathrm{~b}$. and the same cross section is given for channel (ii) at this lovier momentum.

In this dissertation a report is given of the results of the study of the 4 C events in chaniel (i).
4.22 Distributions of $1 \mathrm{MM}^{2}$ and \boldsymbol{x}^{2} for 4C events

The distribution of the inissing mess squared is shown in figure $2 l$ for the everts of this channel and as expected the distribution is peaked sharply at inm ${ }^{2}=0$ having a width of $0.0004(\mathrm{GeV})^{2}$. The distribution is skewed slightly towards positive values of man^{2} but this esymmetry is not thought to represent any significant bias of the sample. The \boldsymbol{x}^{2} distribution, shown in figure 22 is in reasonably satisfactory agreement with the theoretically predicted curve for four degrees of freedom. The sample of $4 C$ events is believed to be free from any systematic biases due to faults of measurement ox selection.

4.23 Effective siass Distributions of $p \pi^{+}, \pi^{+} \pi^{-}$, and $p \pi^{-}$

The overall effective mass distributions of the $p \pi^{+}$ and $\pi^{+} \pi^{-}$combinations are shown in figures 23 and 24 and contain three and six entries per event respectively. Both mass distributions differ greatly from the predictions of pure phase space and they show that, as in the lower multiplicity interactions in this energy region, there are large numbers of the $\mathbb{N}^{* T}(1236)$ and of the ρ resonances produced. The $p \pi^{+}$mass distribution is seen to be dominated by the $\mathrm{N}^{\text {* }}$ formation centred at 1210 lifeV. The large shift from the accepted value of 1236 MeV has been observed in other experimenta (e.s. Boldt et al., 1964) and is thought to depend on the angular momentum of the resonent state and the orbital angular momentum of the two-body decay (Jackson, 1964). The wiāth, Γ, has been estimated by fitting to the observed mass distribution a Breit Wigner shape and the best fit has been obtained for $\Gamma=125 \mathrm{weV}$. In the $\pi^{+} \pi^{-}$mass distribution the only observed enhancement is the peak centred at 730 MeV which is attributed to the production of the ρ^{0} particle. The shifting of the centre of the peak from its accepted value of 765 wleV may be due in part to interference effects as well as to an anguler momentum effect. It has not been

possible to estimate the width of the observed peak because the large background prevents the fitting from being sensitive to the value of the width. An enhancement at 670 MeV in the $\pi^{+} \pi^{-}$distribution has been reported recently for the same reaction at $4 \mathrm{GeV} / \mathrm{c}$ (Aachen-Berlin-Bonn-Hamburg-ifunich Collaboration, 1966) and it is suggested that this might be connected with the ε meson (Hagopian et al., 1965). In the present experiment which has much larger statistics there is no evidence for this enhancement which is therefore believed to be a statistical fluctuation. An estimete of the proportions of the production of the $N^{* F}$ and the ρ^{0} has been mede as follows. liess spectra have been computed by FOWL for both corbinations, $\mathrm{p} \pi^{+}$and $\pi^{+} \pi^{-}$, besed on the assumption that all the interactions take place by vay of
i) pure phase space
or, ii) the production of an N^{*}
or, iii) the procuction of a ρ°
or, iv) the production of an $\mathrm{Al}^{\text {\# }}$ and a ρ°.
The two observed effective lass distributions have then been fitted with backgrounds wirich are the sum of these four spectra in proportions which have been estinnted by
a least squares fit. Whe best fit has been obtained for the following proportions
$15 \% N^{*}, 5 \% \rho^{0}, \quad 59 \% N^{*}{ }^{\circ}$, and 21% pure phese space. Whilst it is believed that the estiantions of the total IF ${ }^{\text {ºnd }} \rho^{0}$ production, 74% and 64% respectively, are valid representations of the dat? it should be pointed out that the proportion of the correlated $N^{\pi /} \rho^{2}$ cannot be sensitively determined. Therefore the estimated Eg\% of correlated production is considered to be an upper limit and the true proportion moy lie between this figure and the 47% expected stetistically. The calculated backgrounds are shown with the experimentol distributions in the figures and the fit is seen to be satisfectory. The background spectra for all the effective mass distributions have been calculated with the proportions given and the pure phase space distributions are not shown. It is hoped in this way to avoid large devietions froin the backgrounds resulting from kinematic reflections of the H^{*} and or the ρ^{0} production.

The effective mass distribution of the $p \pi^{-}$combinotion is shown in figure 25 and no enheucenent is observed in the region of the if ${ }^{75}$ (1236).

4.24 Angular Distributions of the Secondeury Particles

The angular distributions of the sutgoing particles, proton, π^{+}and π^{-}, in the centre of mass of the interaction heve been plotted in figure 26. The protons show a pronounced peak in the backward direction between $-1<\cos \theta^{*}<$ -0.75 yith a forward-backvard ratio, F / B, of 0.52 . The secondsary π^{+}mesons are almost isotropically distributed whilst the π^{-}mesorns are peaked, though not strongly, in the forward direction. Teble II below conteins the results for the forward-backward ratios and the asymetry parameter, $(F-B) /(F+B)$, for the three distributions. F and B are numbers of entries contained in the forward and backward hemispheres respectively.

TABLiv II

Secondary	F / B	$(\mathrm{F}-\mathrm{B}) /(\mathrm{F}+\mathrm{B})$
groton	0.52 ± 0.03	0.32 ± 0.02
π^{+}	1.09 ± 0.04	0.05 ± 0.002
π^{-}	$1.2 E \pm 0.06$	0.11 ± 0.01

Plotting the overall $\mathrm{p} \pi^{+}$and $\pi^{+} \pi^{-}$angular distributions, figure 27, shows tiret the backward peaking of the proton is reflected in the rather broader distribution of the $p \pi^{+}$ whilst the forward peak of the $\pi^{+} \pi^{-}$distribution is rather inore pronounced then that of the π^{-}. This forward peak is attributed to the ρ^{0} and examination of the distribution of those $p \pi^{+}$combinations which lie in the mass region 1120 to 1320 meV , figure 28 , shovis that the M^{*} proriuction is strongly collimated in the backwards direction. From these distributions it is epparent thet an apprecieble proportion of the collisions are glancinc, sud perioheralism is therefore still important. The lack of a forward peak in the distribution of the π^{+}is not considered to be in contradiction to this in view of the large numbers of \mathbb{N}^{*} isobars which are produced backwards and whose decay products also trevel predominently in that direction.

Whilst evidence of collimation of the secondaries is found in these differential cross sections it should be noted thent the $F-B$ asymmetry is much less pronounced than in the case of interactions of smaller multiplicities. It is therefore of interest to look a.t the reflections of these anculer asymiatries in the distribution of Δ^{2} for the $p \pi^{+}$and in particular for those events which both the $\mathrm{H}^{\text {* }}$ and the ρ^{0} are produced.

FIG. 27 ANGULAR DISTRIBUTIONS IN CENTRE OF MASS.

FIG. 28
DISTRIBUTION OF PRODUCTION
ANGLE OF $\mathrm{P} \pi^{+}$COMBINATION FOR CONDITION $1120<M($ pit $)<1320 \mathrm{MeV}$

4.25 Distribution of Δ^{2} Between the Incident Proton

The overall distribution of Δ^{2} between the incident proton snd the $p \pi^{+}$combination is shown in figure 29 together with the background predicted by phase space for an equal number of events. Although the observed distribution is very broad there is a marked tendency towards lower values of Δ^{2} than would be expected for statistical production only. This represents the effect of the peak in the $p \pi^{+}$angular distribution, Δ^{2} and $\cos \Theta^{*}$ being related by íy. 15. Io illustrate the values of Δ^{2} which are associated with the most peripheral six-prong interactions and to provide a basis for comparison with values of Δ^{2} typical for quasi-two-body processes a selection hes been made of the interactions of the type

$$
\pi^{+} p \rightarrow \mathbb{N}^{*} \rho^{0} \pi^{+} \pi^{-}
$$

where the $N^{\#}$ is produced in the backwards peak, $-1<\cos \theta^{*}<-0.75$. The sample has been chosen by requiring that the mass of the $p \pi^{+}$taken as the \mathbb{N}^{*} should lie between 1120 and 1320 MeV and that the $\pi^{+} \pi^{-}$taken as the ρ^{0} should have a mass between 670 and 650 heV. The additional

FIG.29. DISTRIBUTION OF $\Delta^{2}\left(p T^{+} / p\right)$.
(a) OVERALL, 3156 ENTRES
(b) FOR $1120<\mathrm{Mp}_{1}{ }^{+}$< 1320 MEV , $670<M \pi_{2}+\pi_{1}<850 \mathrm{MEV}$, $-1<\cos \theta^{\circ}<-0.75,894$ ENTRIES.
angular condition also represents a constraint upon Δ^{2} and the phase space for the sample will, as a result of this, be peaked at small values of Δ^{2}. This distribution must, however, lie within the phase space for all the events. It can be seen in figure 29 that the observed distribution of the sample hes a significant peak outside even the overall phase space and this may be considered to be confirmation of the peripheralism of the events in which the $N^{\text {\# }}$ is procuced backwards. The peak is centred at $0.8(\mathrm{GeV})^{2}$, and it is apparent that, although the tendency to small values of Δ^{2} is si.gnificent, the momentum transfers typical of a peripheral interaction of high multiplicity are much larger than those cheracteristic of quasi-two-body interactions with four or five particles in the final state. Small partial waves evidently are still of importance for peripheral interactions of high multiplicity. Greater momentum transfers are to be expected generally for interactions of higher multiplicity simply in order to create the larger number of particles but it seems unlikely that quasi-two-body interactions should occur with such high values of Δ^{2} unless the exchange particle were particularly massive. It fay be that the peripheralism of the six-pronged interactions has a more compliceted explenstion in teras of multiperipheral diagrans with several vertices (Amati and Stanghellini, 1962)
4.26 Three-pion Effective Hass Distributions,

The results have been examined for evidence of the production of the A_{1} and A_{2} particles both of which are reported to decay principally by way of the $\pi \rho$ mode (Chung et al., 1964 and others). Inere is still some uncertainty concerning the enhancement, seen in the region of 1100 ireV in the $\pi \rho$ mass distributions of these experiments, which is tentatively attributed to tile A_{1} resonance. Deck (1964) has suggested that the peak could be the result of lin inemitic effects whereby $\pi \rho$ masses just above threshhold are favoured. Certainly the indeoendently reported enhancements winich are found in both cherged and neutral modes cannot be exploined as stetisticel fluctuations. Ihe interoretation of the peak at 1320 liev in the πp system as a genuine resonance is well established and enhancements hove nlso been observed at this mass in the $k \bar{K}$ and π systens (Chung et al., 1964 and the Anclo-Gerion Collaborition, 1964). If these are decay modes of the same particle then the quantum nurnbers of the A_{2} are established to be, in the usual notation, $J^{P G}=2^{+-}$. The isospin is $I=1$ found from the observation of both charged
and neutral forns of the A_{2}.
The present experiment should be very suitable to observe resonances which decay into a ρ^{0} and a. π^{+}or π^{-} as there is abundant formation of the ρ^{0} and there are additionel pions besides those asaciated with the N^{*} and the ρ^{0}. Furtherrore, it has been oointed out that the peripheralism of the six-pronged events is not dominnted so conpletely by high pertiol waves as are four and five pronged interactions so that kinematic effects dependent upon very low lomentum trensfers should not be important. The overall effective nass distributions for the $\pi^{+} \pi^{+} \pi^{-}$ and $\pi^{+} \pi^{-} \pi^{-}$co binations are shown in fí:ures 30 and 31 . Surorisinely there are no significent ennencenents in either distribution. The background of the $\pi^{+} \pi^{-} \pi^{-}$oistribution is not in good agreement with the observed spectirum but tuis is thousht to be the result of some dynanical reflections of the proaction wich cannot be includea in the conputetion of the beckerrounc usine fury. If the iness dietribulions for the two pion cobbinations above are plotted with the requirenent thet one $\pi^{+} \pi^{-}$conbination should lie in the anss region or the ρ° (670 to 850 ireV) there is still no irdication of any resonence production.

Unly when the adidional condition is imposed thet there should be a p^{+}combinstion in the mess region of the $\mathrm{N}^{\text {F }}$ Hovint backvaris ($-1<\cos 0^{\text {F }}<-0.75$) is any evidence for a $\pi \rho$ resonance observed. Fiteure 32 shovis the effective mass distribution for the $\rho^{0} \pi^{+}$combination in these events which must largely be of the kind

$$
\pi^{+} p \rightarrow i v^{ \pm} \rho^{0} \pi^{+} \pi^{-}
$$

and an enncnoement is seen, centred at 1300 beV, which nay be sttributeble to the A_{2}. The distribution has been plotted tozether wi.th a normelised control distribution produced for the same nass restrictions but for the angular region $-i .75<\cos 0^{F}<0$. Agninst this beckground the enhancement hes about a three standerd deviation effect. The shaller enhancement observed in the same distribution at about 1000 .ieV is about two standard deviations above the beckground but it has the asymmetric appearance of a statisticel fluctuation. In the complementary aistribution. for the $\pi^{-} p^{0}$ with the sone conditions there are no enhancements and this casts doubt upon the peok at 1300 weV in the $\pi^{+} \rho^{0}$ syste:A. The surprising result of this study seems to be that in the six-pronged interactions there is essentially no production of the A_{1} or A_{2} particles in

FIG. 32.
Effective Mass of $\pi_{2}^{+} \pi \pi_{1}^{-} \pi_{3}^{+}$for
$1120<M\left(p \pi_{i}^{t}\right)<1320$ Mev.
$600<M\left(\pi_{2}^{+} \pi_{1}^{-}\right)<850$ Mev.
and
(a). $-1<\cos 0 p \pi_{i}^{+}<-0.75$.
(b) $0.75<\cos 0$ $0 \pi_{i}^{+}<0$.
spite of the general importance of ρ^{0} formation. In vievi of the lack of evidence for the production of the A_{2} which is considered to be a genuine resonance it is not possible to put forward any evidence areinst the A_{I}.
4.27 Four-pion 梃fective hass Distribution $\pi^{+} \pi^{+} \pi^{-} \pi^{-}$

The effective mass distribution of the $\pi^{+} \pi^{+} \pi^{-} \pi^{-}$ combination is shown in figure 33 and it can be seen that in spite of the rather poor agreement of the background there are no statisticelly sienificsnt enhancements. Any important quasi-two-body processes involving the $N^{\#}$ and a four-pion resonance are therefore considered to be unlikely. Imoosing various conditions on to the selection of events does not heve the effect of revealing any peaks winich are difficult to see on account of the background. Both the f° meson and the recently reported g particle (Goldberg et al., 2965), which has a. nass of about 1670 lifeV, may be expected to decay into this four-pion mode but peaks in these regions are not seen end no conclusions cen be derived about the upper limit of the brenching ratios of these particles into two end four pions until the full analysis hes been made of the four-prorised events.

4.28 tigher Hiucleon Isobars
the possible production of hisher nucleon isobars bein: proauced in the jnteraction and leter decayine into the N^{*} hes been jnvertisated by looking for enhancenents in the effective mass distributions of the combin tions $\mathrm{p} \pi^{+} \pi^{+}$, $0 \pi^{+} \pi^{-}, \mathrm{p} \pi^{+} \pi^{-} \pi^{-}$, and $p \pi^{+} \pi^{+} \pi^{-}$vhich are shown in figures 34 to 37. The bacferrounds are not all in very good agreerent but none of the deviations seem to be statistically significant and they are not enhanced by Fking selections of those events in which a $0 \pi^{+}$combinetior in the ilkss region of the $\mathrm{N}^{\mathbb{F}}$. oves backwaras. It seens that hisher nucleon isobars are not efeature of the sixpronged internctions. Taking into account the negative results in the searcin for the multi-pion resonances (other then the ρ°) it is clear that the quesi-two-body processes which are fevoured in four and five particle finel states d) aot occur with appreciable frequency for these interactions of higher multiplicity.
i. 20 Decay Distribution of the $\pi^{+} \pi^{-}$
the distri'uation of the decsy antle of the dipion conin tions in the ρ° bend has been examined in a

A3W O2 甘3d SNOIIVNIEWOS JO \&38WNN

sample of peripheral events of the type

$$
\pi^{+} p \rightarrow N^{\pi++} \rho^{0} \pi^{+} \pi^{-}
$$

The usual constraints upon the nass sud engle oí the iv ${ }^{*++}$ have been imposed, $1120<\sin _{\mathrm{p}}+1<1320: \mathrm{ieV}$ and $-1<\cos 0^{*}<-0.75$ respectively, and the ρ^{0} ness resion has been triken between 670 and 850 i.eV. The angle of decay, $\dot{\theta}_{\overline{\mathrm{d}}}$, has been defined as the angie between the direction of the π^{+-}meson in the centre of mess of the ρ° and the direction of the ρ°. The resulting distribution for the concitions given is shown in figure 38(a). The distributian does not apoesr to be consistent with isotrogy and a curve of the forin $1+a \cos ^{2} \theta_{d}$ heis been fitted by θ lerst squares method. ror the ten observed values of cose $\hat{c i e c e g}$ the value of x^{\prime} for the best fit, $1+1.65 \cos ^{2} \tilde{\alpha}^{2}$, is 20.5 and may be compared vith $x^{2}=29.5$ for an isotropic distribution. In case the effect might be the result of kinematic reflections from the pion decaying from the nucleon isobar two control regions have been plotted, figures $38(\mathrm{~b})$ end (c), for the dipion ness regions on either side of the ρ° band, 490 to $570 \therefore \mathrm{AV}$ and 350 to 1010 i:eV. Both distributions are essentially isotropic and it is believed therefore that tho decay anymetry of tho ρ^{0} region is a real effect indiceting a spin polarization of the resonpace in ite

FIG. 38. Decay distribution of $\pi_{2}^{+} \pi_{1}$ for $1120<\mathrm{MP}_{1} \mathrm{H}_{1}^{+}<1320 \mathrm{Mev}$
and $-1<\cos$ ot $\mathrm{PT}+<-0.75$
(a) 67.0 - $\mathrm{M}_{2}^{+} \boldsymbol{\pi}^{-1}<850 \mathrm{Mev}$

474 entries.
(b) $\quad 490<M_{प_{2}^{+}} \pi_{i}^{-i}<67.0 \mathrm{Mev}$

564 entries.
(c) $850<M_{\pi_{2}^{+}}^{+} \pi-\leqslant 1010 \mathrm{Mev}$ 1.53 entrics.
production. To confirin this tentetive conclusion experiments at higher energies would prove helpful as the control region 850 to 1010 MeV does not contain meny everts in the present experiment.

COITCLUSIOMS

An experinent has been reported in vhich the elastic scattering of $6 \mathrm{GeV} / \mathrm{c} \pi^{+}$mesons in deuterium has been investigated. The observed differential cross section is in very grod egreenent with the prediction of the impulse approximation to high energy difffrection scattering when the deluteron form factor is derived from a hard core wave function. It is shown that the fiflthen wave function does not provide an adequate description of the structure of the deuteron. The diffuseness of the deuteron does not allow the opticel model dsscription of elastic scettering to be -extended to this light nucleus.

In a second experiment which has been reported on the hith multiplicity interactions of $5 \mathrm{GeV} / \mathrm{c} \pi^{+}$mesons in hydrogen the partial cross sections have been determined for the aifferent channels leading to six charged perticles in the final state and these have been shown to be increasine rapidly with energy. The 4 C chanel is doninated by the production of the $\mathrm{N}^{*}(1236)$ and of the ρ°; there is no evidence to show that these are the products of the decays of heavier resonaices. There is a surprising absence of any significant enhnncenents in the $\pi \rho$ systen and in particular there is no evidence for the A_{1} and apparently
only a small number of A_{2}^{+}particles are formed. The examination of the effective mass distribution of the four-pion combination, $\pi^{+} \pi^{+} \pi^{-} \pi^{-}$, does not reveal any evidence for the four-pion decay modes of the f^{0} or the g particles. The ρ° is therefore essentially the only pion resonance observed in the interactions. The search for higher nucleon isobars hes also produced no positive result and it seems thet quasi-two-body processes do not play any significant part in intervctions of very high multiplicity.

The angular distributions of the secondaries, and in particular that of the $p \pi^{+}$combinations in the N^{*} mass region, show that a significant proportion of the resonances are produced in Elancing collisions. In view of the absence of quasi-two-body processes it seems unlikely that the interactions take place by the exchange of a single particle; such an exchange particle would have to be very masrive to lead to the comparitively broad angular distrihutions. Perhaps a multi-peripheral model with several vertices should be used to explain the association of the two pions which do not take part in the N^{*} and ρ° resonances. The six particle final state is apparently
reached through a more complicated production mechanism than that of four and five particle systems and is dependent upon smaller partial waves.

A decay asymmetry of the ρ^{0} is observed in the most. peripheral interactions which seens to be the result of polarization of its angular momentum at production. Confirmation of this effect should be looked for in experiments at higher energies where possible kinematic effects could be more easily distinguished.

ACKIVOMLEDGM,

The author wishes to thank Professor G.D. Rochester for his encouragement and for his interest in the work. The author is especially indebted to Drs. A.J. Apostolakis and J.V. iajor who have provided guidence for this work at all stages. He wishes to thank the other colleagues with whon he has worked and in particular Dr. A.D. Nartin for many helpful oiiscussions. Of the nany members of the technical staff who heve assisted in various ways the author would like to thank ivrs. L. Errington,
 for their painstaking vork in the scanning and messurement of the photographs, iiiss C. Guyll and ilr. R. White for assistance with the preparation of diagrams, and wir. E. Lincoln, wr. w. hounsey and itr. D. Jobling for their help jin building the measuring tables. He would also like to thank liss R. Noble for typing the thesis in its final draft. Thenks are due to the personnel a.t CERN who enabled the exposures to take place. The author would like, finally, to thank the D.S.I.R. for a maintainence grant during three years and for trevelling grants.

Rewheminces

Aachen-Berlin-Eonn-ilamburg-Munich Collaboration, 1966, DESY Report DESY 66/11

Ainati D. and Stanghellini A., 1962, inuovo Úimento, 26, 896.

Anglo-Gerinen Collaboration: Aachen-ierlin-Bonn-Birmingham-Hamburg-London (I.C.)-iunich, 1964, Phys. Letters, 10, 226, 1965, Phys. Rev., 138, B 897.

Bellettini G., Cocconi G., Diddens A.iT., Lillethun if.,
 1965, Phis. Letters: 19, 341, 1966, iuclear Physics, 79, 609.
 Fienri J.F., עevy F., Zoyen J., Pripstein. ., Cueserc J., and Iren A., 1964. Phys. Rev., 133, BE20

Eurhop i.:i.S.,
1962. Proceedincs of the CDEA Haster School, 275.
juag s.U., Dahl O.I., Haraj I.if., tess R.I., kalbfleischG.R. King J., iiller D.H., and Suitr (f.A. 1964, Phys. Rev. Letters, 12, 621.

Deck R.i'.
1964, Phys. Letters, 13, 169
ivene R.D.,
1955, ithe Ato inc incleus, 315.
i'ernined B., Berber R., drylor T.B.,
1949, Fhrs. Rev.: 7e, 135?

Fernbach S., Green I.A., datson ii.M.,
1951, Phys. Rev., 82, 980.

Ferrari $\dot{\text { A. }}$, and Selleri F.,
1962, iTuovo Gimento Suppl.s 24, 453.
Fowler P.ri., and Perkins D.H.,
1956, Private Commication quoted in
Allen J. H.: Apostolakis A.J., Lee Y.T., inajor J.V., Perez Ferreire $\dot{4}$.

1959, Hhil.iog.; 4 ́ㅗ, 858.
Iranco V., and Glauber E.J.,
1966, Phys. Rev., 142, 1195
Galbraith $\% ., J e n k i n s$ s. $H .$, Kycia T.F., Leontic B.A.,

1965 , fhys. Rew, 138,8913
Ğartenhaus $\mathrm{s} .$,
1.955, Phys. Rev., 100, 900.

Goldberg J., and Perreau J.w.,
1963, Gexi Intermal Report, C\&RN 63-12

Goldberé l., Judd F., Vegni G., Winseler H., Fleury P., Huc J., Lestienne K., De Rosny G., Vanderhaghen R., 1965, Phys. Letters, 17, 354.

Gottfried K., and Jackson J.D.,
1964, Nuovo Cimento, 34, 735.
dagopian V., Selove W., Alitti J., Baton J.P., !eveu-Rene !. Gessaroli R., and Romano A., 1965, Phys. Rev. Letters; $14,1077$.

Harrington D.R., 1964, Phys. Rev., 135, B350

Jackson J.D.,
1964, Uxilil Internal Report 8622/TH. 416
1965, Revs. hodern Phys., 37, 484, from data of
Saclay-Orsay-Bari-Bologna Collaboration,
1964, Proceedings of Dubma cionference.

Keil s., and meale $4 . W$. 1963, CeRH: Internal Report, CARN/IC/02 63-3.

Kellner G.,
1965, CLAR Internal Report, CERN/TC/NBC 65-4

Kirillova Li., INiritin V., Pantuev V., Strunov L., Khachaturyan i.i., Khristov L., Shafranova L. ., Korbel \&., Rob L., Damyanov S., Zlatanov V., Jordanov V., Dalkhazhav N. Huvdendorgh D., 1964, Dubna Preprint, $\dot{L}-1820$

Lock 'ri.O.,
1960, High znergy Physics, 45

Morg.vesit hi.J.,
1958, Fucle:n Physics, 7, 113
Schmitt iv.,
1965, Proceedings of the GRFit isster School, 1, 1.

Telford W. T.,
1963, Applied Optics, 2, 981.

