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PARTIAL DIFFERENTIAL EQUATIONS FOR 3D DATA

COMPRESSION AND RECONSTRUCTION

MARCOS RODRIGUES, ABDUSSLAM OSMAN AND ALAN ROBINSON

Abstract. This paper describes a Partial Differential Equation (PDE) based method
for 3D reconstruction of surface patches. The PDE method is exploited using data
obtained from standard 3D scanners. First the original surface data are sparsely re-
meshed by a number of cutting planes whose intersection points on the mesh are
represented by Fourier coefficients in each plane. Information on the number of vertices
and scale of the surface are defined and, together, these efficiently define the compressed
data. The PDE method is then applied at the reconstruction stage by defining PDE
surface patches between the sparse cutting planes recovering thus, the vertex density
of the original mesh. Results show that compression rates over 96% are achieved
while preserving the quality of the 3D mesh. The paper discusses the suitability of
the method to a number of applications and general issues in 3D compression and
reconstruction.

PDE, 3D data compression, 3D reconstruction

1. Introduction

3D data compression and reconstruction algorithms represent enabling technologies
to a number of applications where cheap storage and secure data transmission over the
network are required. Examples of applications can be found in security, engineering,
CAD/CAM collaborative design, medical visualization, entertainment and e-commerce
among others. A number of techniques and algorithms for 3D data compression have
been proposed in the literature based on encoding both geometry and connectivity of
the mesh (e.g. [10], [15], [16], [17] ). In [10] we have proposed a method for 3D
data compression and reconstruction based on polynomial interpolation. The method
applies to data that can be defined as a single valued function, which is typical of
data acquired by standard 3D scanners. In that work we used arbitrary meshes and
proposed sampling vertices to conform to a rectangular grid pattern. This enabled
us to test the possible compression rates using polynomial interpolations to different
degrees. We demonstrated that while the polynomial compression method is appropriate
for smooth data, for complex data such as a person’s facial data the required high degree
of polynomials rendered the method unstable and suggested that alternative approaches
should be investigated.

We have been developing original methods and algorithms for fast 3D scanning for a
number of applications with particular focus on security [13, 2, 12, 11, 8, 9]. Our 3D
facial acquisition and recognition algorithms have been designed to perform in real-time
regime and offer a typical example where data compression and reconstruction together
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with secure transmission over the network are essential requirements. Some aspects of
the algorithms were tested in a real world scenario of passenger scanning at Heathrow
Airport trials in 2005. In that scenario, passengers had their face scanned in both 2D
and 3D at check-in time, then verified at passport control and at the boarding gate.
The data were securely handled by the Police who had 24 hours to perform a back end
search. If reasons existed to keep the data for longer, then the Police could place a
judicial application, otherwise all data had to be destroyed within 24 hours (as our work
with Heathrow Airport was confidential, we cannot provide references, and therefore
the discussion should be considered to be anecdotal, although the figures for airport
passenger numbers are in the public domain).

Apart from the aspects of privacy, confidentiality and security concerns, the point we
would like to make here is that without data compression, such scheme is impossible
to be made to work. About 70 million passengers go through London Heathrow per
year or almost 200,000 per day. Each high density facial scan takes about 20MB of disk
space, so we would be contemplating about 4PB (petabytes) of data per day and 1.4EB
(exabytes) per year (recall that 1PB=1015 and 1EB = 1018 bytes). To dispatch such a
vast amount of data over the network to the local police station and potentially to the
origin and destination police authorities is unworkable with current technologies.

This paper extends the authors’ work described in [10] by investigating the use of
PDE mesh surfaces to the compression and reconstruction of large data files without
loss of accuracy in the face recognition methods. The source data model typically uses
a connected mesh of vertices with triangular faces, which is the standard data type in
many 3D computer generated models, such as Wavefront and Java 3D OBJ, VRML
and COLLADA formats [3, 1, 7]. In our 3D scanning system [13, 2], the model is
a constrained version of this mesh, with rows and columns of vertices connected in a
rectangular pattern as depicted in Figure 1, conforming to the stripes in our original
projected pattern. The figure clearly shows that in mapping to 3D space we can simply
save the 3-part vector for each vertex, without the need for a separate list of faces and
vertex connections, as it is required in the 3D file formats mentioned above. This explicit
connectivity of the mesh makes interpolations a simpler and more reliable process than
with an arbitrarily connected mesh, and gives a more compact data representation, and
smaller file size (compared with OBJ, VRML and COLLADA formats).

Figure 1. Left, stripes are cast on the subject then processed and re-
constructed in 3D.
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As an alternative to the compression using polynomials we now intend to create PDE
meshes with high vertex density and comparing the compression efficiency of the resulting
data with the original data. Within the security theme, in this work we use face models
from the 3D scanner, and firstly construct a mesh with high vertex density, we call this
the “superfine mesh”. A high density mesh is necessary in order to measure Euclidean
distances on the face more accurately to produce the required accuracy and robustness
in the face recognition algorithms[8, 11]. It is clearly also important to ensure when
this PDE data is reconstructed as the superfine mesh, and used in the face recognition
process, there is no loss of accuracy in the reconstructed mesh. Therefore two questions
can be posed:

(1) what compression rates can we obtain using the PDE method, and
(2) how can we compare the accuracy the reconstructed PDE, compared with the

original superfine mesh?

Section 2 describes the compression and reconstruction method, Section 3 presents ex-
perimental results and Section 4 assesses the quality of the reconstructed mesh. Finally,
a discussion and conclusions are presented in Section 5.

2. Method

2.1. Data Preparation. The procedure can be described as follows. Given a (poten-
tially dense) generic surface patch defined as a single-valued function, the first step is
to perform a structured re-meshing aiming a reducing the vertex density [10]. This is
achieved by finding the minimum bounding box in 3D [5] and using a number of hori-
zontal and vertical cutting planes for vertex sampling. Each plane intersection defines
a line, and where this line intercepts the mesh defines a sampled vertex in the plane.
All points lying in the plane – either horizontal or vertical – can be treated as a one-
dimensional signal and subject to compression. The result of this procedure is that the
mesh is redefined as aligned vertices in the horizontal and vertical directions as depicted
in Figure 2, where only a few planes are shown for clarity.

Figure 2. left and centre: a number of horizontal and vertical planes
cut the mesh (only 3 shown here). Right, each horizontal line represents
a horizontal plane intersection on the mesh. Images from [10].
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It is important to stress here that such re-meshing operation will yield a sparse mesh
as it reduces the number of vertices in the original structure. Upon compression by the
Fourier technique described below, it only becomes possible to reconstruct the sparse
mesh. However, our objective is to recover the vertex density of the original mesh, that’s
where the PDE technique comes into play.

The number of required horizontal and vertical cutting planes depends on the mesh
complexity. Defining D1 as the distance between structured vertices in the horizontal
plane with normal vector (0, 1, 0)T and D2 between planes with normal vector (1, 0, 0)T ,
the (x, y) coordinates of any sampled vertex can be recovered for all planes k:

xr = {rD1, | r = 1, 2, . . . , k1}(1)

yc = {cD2, | c = 1, 2, . . . , k2}(2)

z = {zi, | i = 1, 2, . . . , k1k2}(3)

where (r, c) are the indices of the planes. This is significant as 2/3 of the 3D data can
safely be discarded in a sense that it is not necessary to save the actual values (x, y)
of each vertex; instead, only the global parameters D1, D2, k1, k2 are kept allowing full
reconstruction of (x, y) values in each plane. With this information at hand, from now
on we are only concerned with modelling and compressing the z-values.

2.2. Fourier Series. Once the data are in the format specified in Section 2.1, the
vertices lying in each plane can be considered as a one-dimensional signal and treated
as a Fourier series. The usefulness of the Fourier analysis is that we can break up any
arbitrary periodic function into a set of simple terms that can be solved individually
and then recombined to reconstruct the original signal to a high degree of accuracy [4].
Using the method of generalized Fourier series, the Fourier series of a function f(x) is
given by

(4) f(x) =
1
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Equations (5), (6) and (7) are the Fourier coefficients of experimental data. Each signal
describes a complex function in each plane with its own set of coefficients. By saving
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the coefficients together with the boundaries of each function and their scale it is then
possible to reconstruct faithfully the original data defined by the Fourier series. From
Equation (4) the experimental data are represented as follows:

(9) y = a0 + an cos(nπx) + bn sin(nπx) + a6 cos(nπx)

where n is a vector [1, 2, ....., N ] and N is the length of vector an. Given a signal s of
length m, the relevant coefficients in Equation (9) can be evaluated (e.g. using Matlab
built-in functions) as:

d = fft(s)(10)

M = floor((m+ 1)/2)(11)

a0 = d(1)m(12)

a6 = d(M+1)/m(13)

bn = −2 ∗ imag(d(2.....M))/m.(14)

The set of Fourier coefficients are estimated for each plane and saved in plain ASCII
format onto a file with N lines of text where the first line contains header information
followed by (N − 1) lines of data as defined in Table 1 where:

Table 1. Text file format for 3D compression using DFT

ine Line number ASCII data info

ine 1 k1 k2 D1 D2 Q
2 v1 v2 a0 a6 L an bn
. . . . . .
N v1 v2 a0 a6 L an bn
ine

1 line 1 contains header info,
2 – N lines 2 to N contain data,
k1, k2 are the scale factors or distance between two consecutive horizontal and

two consecutive vertical planes in mm,
D1, D2 are the dimensions of the data in number of rows and columns,
v1, v2 are the first and last valid vertices for each row of data,
Q the quality of the compression in percentage from 1 to 100,
a0, a6 are the scalar Fourier coefficients for each row of data,
L the vector length of Fourier coefficients,
an, bn the vector real and imaginary Fourier coefficients for each row of data.

The parameter Q is defined as the quality of the compression and is expressed in per-
centage.

2.3. PDE Modelling. We use the Laplace equation [6, 18] of the form:

(15)
∂2u

∂x2
+

∂2u

∂y2
= 0
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where x and y are spatial independent variables in Cartesian coordinates. Note that
with no derivatives in t, Laplace’s equation require no initial conditions, Because the
potential does not depend on time, no initial condition is required. Hence, we are faced
with solving a pure boundary value problem.

We discretise the solution onto a rectangular domain (m + 1) by (n + 1), with the
boundary conditions of the form

u(x, 0) = F (x), u(x, b) = G(x), 0 < x < a,(16)

u(0, y) = P (y), u(a, y) = Q(y), 0 < y < b.(17)

where the first and last row of the domain are the experimental data (the z-values of each
two consecutive cutting planes) and the problem then is to solve the Laplace equation
over the domain. This will insert vertices between the two planes recovering the original
mesh density. The series solution can be represented as

(18) u(x, y) =

∞
∑

n=1

fnan(a, y) + gnan(x, b− y) + pnbn(x, y) + qnbn(a− x, y)

where
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[nπx

a

]

sinh
[nπ(b− y)

a

]

/ sinh
[nπb

a

]

,(19)

bn(x, y) = sin
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b
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sinh
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b
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/ sinh
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b

]

,(20)

and the constants fn, gn, pn, and qn are coefficients in the Fourier sine expansions of the
boundary value functions. This implies that

F (x) =
∞
∑

n=1

fn sin
[nπx

a

]

, G(x) =
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n=1

gn sin
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a
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,(21)

P (y) =

∞
∑

n=1

pn sin
[nπy

b

]

, Q(y) =

∞
∑

n=1

qn sin
[nπy

b

]

(22)

The coefficients in the series can be computed by integration or approximate coefficients
can be obtained using the FFT as described in Section 2.2.

Here we can have either Dirichlet, von Neumann or mixed boundary conditions to
specify the four boundary conditions of the rectangular domain. If the value of the
solution is given around the boundary of the region, then the boundary value problem is
called a Dirichlet problem, whereas if the normal derivative of the solution is given around
the boundary, the problem is known as a von Neumann problem. In the experimental
results described below we use Dirichlet boundary conditions by fixing the value of the
vertices in the boundaries of the rectangular domain.

3. Experimental Results

Having obtained the sparse data through cutting planes on the 3D model, the first
step is to determine the Fourier coefficients of equations (4), (5), (6), and (7) for each
plane using the discrete versions (10) – (14). The sets of Fourier coefficients are saved
in plain text format onto a file whose structure is defined in Table 1.
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Figure 3. Left: original meshes; right: PDE reconstructed

The processing of the above data and the 3D reconstruction involves solving the PDE
as described in Section 2.3 between two consecutive cutting planes π1 and π2. The
proposed PDE methodology is highlighted as follows. Each plane contains a number
of vertices, some are valid while some are invalid. Only the valid vertices from one
plane are paired to their valid counterparts with the same index in the other plane.
The PDE surface is then defined by solving the Laplace equation between each pair of
cutting planes. Thus, the PDE boundary conditions are set between the two planes; the
x variable in the PDE defines the number of vertices we wish to interpolate between
any two planes, and the number of iterations is set to 10 for all planes. For instance, a
PDE surface with 5 steps in x means that we are generating 3 extra vertices between
the original pair of vertices.

Typical results from the approach highlighted in this paper are illustrated in Figure 3.
The left column depicts the original meshes with 162K and 181K vertices. Each of these
files saved as standard OBJ file format are around 20MB. Both meshes were subject to
the same re-meshing operation, compression via Fourier coefficients, saving to file and
reconstruction procedures. Here we give a detailed account of the top mesh: first the
mesh was cut up into horizontal planes 3.3mm apart and vertical planes 0.5mm apart;
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this resulted into 72 horizontal planes on each mesh and 563 vertical planes. Fourier
coefficients were estimated for the z-values of each of the 72 planes and saved into the
prescribed format. These operations reduced the file size from 20 MB down to 668KB, a
reduction of over 96.6% (if the file were zipped then the final size would only be 111KB,
a reduction of over 99.4%). The pictures on the right column show the reconstructed
meshes using the PDE method as described above. Due to the Nyquist sampling theorem
the reconstructed meshes are half the size of the original mesh, i.e. the number of vertices
along each cutting plane is half their original numbers; this is shown on the mesh on
top right of Figure 3. On the bottom right, we added vertices by averaging every two
neighbouring vertices. It can be clearly seen that PDE reconstruction from compressed
files as defined in this paper does preserve the quality of the mesh.

4. Assessing the Quality of 3D Reconstruction

Determining the goodness of fit or how well the 3D reconstructed data points fit the
original data can involve a number of tests including statistics summaries. Here we
perform an assessment in a number of different ways: (1) visual assessment of the data
and residuals, (2) residuals plotted against predicted values, (3) a normal-probability
plot of the residuals, and (4) the coefficient of determination R2.

By far the most meaningful way is by plotting the original and reconstructed data
sets and visually assess their quality as depicted in the examples of Figure 3. Visual
inspection suggest that there is a perceived good fit between the PDE reconstructed data
and the original data sets. However, quantitative data would allow us to objectively
compare the goodness of fit. By subtracting the PDE reconstructed from the original
mesh, we would expect that, if the two meshes were exactly the same, then the difference
would describe a zero-plane at origin with normal (0, 0, 1)T , as all vertex differences would
be zero. Figure 4 left shows such a difference surface with vertex values oscillating around
zero. Although there are small errors across the surface especially around the nose area
and at the boundaries of the mesh, such errors may not be significant enough to impair
recognition algorithms. On the right of Figure 4 it is shown a quantification of the error
surface – essentially a view of the residuals across the yz-plane. Note that the nose
region is at the centre of the plot while the left and right regions of the plot correspond
to the oscillations observed in the error surface. The majority of the errors are within
range ±1mm with the largest error approaching 2.5mm at the boundaries.

Another way of assessing the quality of the reconstructed mesh is to look at the
residuals and plot them against their predicted values. Figure 5 left depicts a scatter
plot of reconstructed against original data. For a good fit, the plot should display no
patterns and no trends, and this is verified in the plot indicating a good measure of fit.
Similarly, a normal-probability plot of the residuals should display a straight line for a
good fit. On the right of Figure 5 it can be verified that most data sets evaluated at
each plane are in straight lines, indicating a good fit.

The coefficient of determination also known as R2 indicates the percent of the variation
in the data that is explained by the model. This can be estimated by first calculating
the deviation of the original data set which gives a measure of the spread. While the
total variation to be accounted for (SST) is given by the sum of deviation squared,
the variation that is not accounted for is the sum of the residuals squared (SSE). The
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Figure 4. On the left, a visualisation of the error surface and, on the
right the quantification of such errors in mm.

Figure 5. Left: Scatter plot of Predicted Values against Residuals (a
good fit is indicated by no patterns and no trends). Right, The normal-
probability plot of the residuals (a good fit is indicated by a straight line
for each set of data)

variation in the data explained by the model is given byR2 = 1−(SSE)/(SST ) expressed
as percentage. The R2 values for the PDE interpolated data are above 0.98 for all data
sets described in this paper. Again this indicates a good measure of fit and suggests that
the method is appropriate to a variety of applications.

5. Discussion and Conclusions

We have presented a new method for Fourier-based data compression and PDE-based
data un-compression. The method is applied to meshes that can be defined as a single
valued function. The method comprises an initial step of mesh sampling by defining
a number of cutting planes in the horizontal and vertical orientations as described in
[10]. The novel method described in this paper comprise the following steps. First a
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Fourier analysis of data in each plane is performed and the Fourier coefficients together
with scale information are saved onto an ASCII file in a prescribed format. The file is
then read and each plane is reconstructed using the Fourier coefficients recovering the
sampled, sparse mesh. The high density mesh is obtained comparable to the original
mesh by solving the PDE mesh between each pair of cutting planes through the Laplace
equation.

Evaluating the success of these methods will depend on the applications in which they
are used; we make the assumption that the surfaces are fairly complex with concave and
convex local features. The face is such a case, and in Figure 4 left we see some errors
around the nostrils and, to a lesser extent, the sides of the nose in our experimental data.
In our face recognition application, because the nostrils are a known cause of errors, we
avoid making measurements in this area, so the results in our new model will not cause
significant problems. In the experiments described here, the source of some errors are
due to rounding off values of the Fourier coefficients an and bn. Rounding increases the
efficiency of data compression: for each entry in those vectors if abs(an, bn) < 0.001 the
values are rounded to zero. The percentage of rounded coefficients defines the quality
parameter; e.g. for quality=100, no rounding off is applied.

Experimental results have demonstrated that the method is highly efficient and allows
high quality full reconstruction of the original mesh. The PDE-based method allows the
recovery of the original mesh that has been compressed by over 96%. Both visual analysis
and statistical measures demonstrate the effectiveness of the method. Error surfaces
are relatively small and while it is accepted that the quality of the reconstructed data
depends on the characteristics of the original data, results indicate the generality of the
method for 3D data compression.

The method presented here is feasible for the airport scenario discussed in Section 1
and, because all compressed data (represented by the Fourier coefficients) are saved
onto relatively small plain text files, it would be amenable to fast and secure encryption
algorithms. This means that all 3D data can be efficiently and securely transmitted over
a network. Future work will be focussed on defining optimal PDE parameters aiming
at reducing error surfaces and perform sensitivity analysis concerning levels of noise,
smoothness of the surface, rounding off errors and complexity of each cutting plane.
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