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ABSTRACT
Background. The Zika virus was first discovered in 1947. It was neglected until a major
outbreak occurred on Yap Island, Micronesia, in 2007. Teratogenic effects resulting in
microcephaly in newborn infants is the greatest public health threat. In 2016, the Zika
virus epidemic was declared as a Public Health Emergency of International Concern
(PHEIC). Consequently, mathematical models were constructed to explicitly elucidate
related transmission dynamics.
SurveyMethodology. In this review article, two steps of journal article searching
were performed. First, we attempted to identify mathematical models previously
applied to the study of vector-borne diseases using the search terms ‘‘dynamics,’’
‘‘mathematical model,’’ ‘‘modeling,’’ and ‘‘vector-borne’’ together with the names of
vector-borne diseases including chikungunya, dengue, malaria, West Nile, and Zika.
Then the identified types of model were further investigated. Second, we narrowed
down our survey to focus on only Zika virus research. The terms we searched for
were ‘‘compartmental,’’ ‘‘spatial,’’ ‘‘metapopulation,’’ ‘‘network,’’ ‘‘individual-based,’’
‘‘agent-based’’ AND ‘‘Zika.’’ All relevant studies were included regardless of the year
of publication. We have collected research articles that were published before August
2017 based on our search criteria. In this publication survey, we explored the Google
Scholar and PubMed databases.
Results. We found five basic model architectures previously applied to vector-borne
virus studies, particularly in Zika virus simulations. These include compartmental,
spatial, metapopulation, network, and individual-based models. We found that Zika
models carried out for early epidemics were mostly fit into compartmental structures
and were less complicated compared to the more recent ones. Simple models are
still commonly used for the timely assessment of epidemics. Nevertheless, due to the
availability of large-scale real-world data and computational power, recently there has
been growing interest in more complex modeling frameworks.
Discussion. Mathematical models are employed to explore and predict how an
infectious disease spreads in the real world, evaluate the disease importation risk,
and assess the effectiveness of intervention strategies. As the trends in modeling of
infectious diseases have been shifting towards data-driven approaches, simple and
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complex models should be exploited differently. Simple models can be produced in
a timely fashion to provide an estimation of the possible impacts. In contrast, complex
models integrating real-world data require more time to develop but are far more
realistic. The preparation of complicated modeling frameworks prior to the outbreaks
is recommended, including the case of future Zika epidemic preparation.

Subjects Mathematical Biology, Epidemiology, Infectious Diseases
Keywords Deterministic, Intervention, Import risk, Stochastic, Epidemic model, Zika

INTRODUCTION
Zika is a single-stranded RNA flavivirus, a member of the Flaviviridae family (Lopes, Miyaji
& Infante, 2016). The virus is genetically related to some others responsible for encephalitis
in humans, including chikungunya, dengue, Japanese encephalitis, West Nile, and the
yellow fever virus (Lucey & Gostin, 2016; Goeijenbier et al., 2016; Vest, 2016). Zika is one of
the arboviruses transmitted by Aedes mosquitoes. The main vectors are Aedes aegypti and
Aedes albopictus (Al-Qahtani et al., 2016). These mosquitoes are mostly found in tropical
and subtropical regions (Petersen et al., 2016).

The Zika virus was first discovered in rhesus monkeys in 1947 while researchers were
studying yellow fever in Zika Forest, Uganda, and it was isolated from Aedes africanus
mosquitoes the subsequent year (Dick, Kitchen & Haddow, 1952). The first human isolation
was recorded in Nigeria six years later (MacNamara, 1954; Petersen et al., 2016). For
decades, the viral infection was sporadically reported in Africa and Southeast Asia (Hayes,
2009; Goeijenbier et al., 2016). The first large outbreaks occurred on Yap Island, Federated
States of Micronesia, in 2007 (Duffy et al., 2009). In this epidemic, 49 confirmed cases were
found together with another 59 probable cases. It was estimated that up to 73% of the Yap
Island residents were asymptomatically infected (Duffy et al., 2009;Kindhauser et al., 2016).
The episodes of large-scale Zika virus outbreaks happened in 2013, when the virus migrated
to French Polynesia, a French territory located in the South Pacific. This outbreak was the
largest recorded at the time (Cao-Lormeau et al., 2014; Cao-Lormeau et al., 2016; Musso,
2015). Overall, 19,000 suspected cases were estimated throughout the epidemic’s course
(Cao-Lormeau et al., 2014). The first evidence of Guillain-Barré syndrome related to the
Zika virus was also seen in this historic outbreak (Cao-Lormeau et al., 2016). Subsequently,
the virus from French Polynesia dispersed to many countries in the Pacific Ocean, finally
reaching Easter Island, Chile, in 2014 (Tognarelli et al., 2015). The virus seems to have
established well on the continent, especially in Latin American countries (Shi et al., 2016).
For example, the autochthonous transmissionwas first confirmed in Brazil in 2015 (Zanluca
et al., 2015) and the Brazilian Ministry of Health estimated the number of suspected cases
at 440,000 to 1,300,000 that year. The Zika infection was also linked to the unusual rising
incidence of microcephaly in newborn infants (Mlakar et al., 2016; De Oliveira & Da Costa
Vasconcelos, 2016; Heymann et al., 2016) together with some other neurological disorders
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including Guillain-Barré syndrome (De Oliveira et al., 2017). On February 1, 2016, the
World Health Organization (WHO) Director-General declared Zika virus outbreaks in
Latin American countries as a Public Health Emergency of International Concern (PHEIC)
(Heymann et al., 2016). As of March 9, 2017, vector-borne Zika virus transmission was
found in 84 countries, territories, or subnational areas (WHO, 2017).

In addition to Zika, in the twenty-first centurymany emerging and reemerging infectious
diseases threaten the human race. With rapid globalization, these diseases are often
disseminated at unprecedented speed. The epidemics of severe acute respiratory syndrome
(SARS) in 2003 and the H1N1 influenza pandemic of 2009 are excellent evidence in the
first decade (Mackey & Liang, 2012). More recently, we face new threats almost every year,
for example, the Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi
Arabia in 2012 (De Groot et al., 2013), the Ebola virus in the West African region in 2014
(WHO Ebola Response Team, 2014). In such epidemics, the real-time evaluation of the
ongoing situation is vitally important. To serve this purpose, mathematical modeling
has been exploited to monitor the outbreak progression, predict the trend of disease
transmission, and tailor related control strategies (McVernon, McCaw &Mathews, 2007;
De Jong & Hagenaars, 2009).

Infectious disease modeling is an interdisciplinary approach. Modelers are obligated
to comprehend not only the mathematical frameworks but also the biological knowledge
behind the epidemics (Rock et al., 2014). Recently, mathematical modeling has been well
established as an epidemiological tool. It has been used to combat many infectious diseases.
The very first mathematical model was traced back to the work of Daniel Bernoulli in the
eighteenth century. Bernoulli employed a simple model to estimate life expectancy due to
variolation practices in smallpox epidemics (Bernoulli, 1766). However, the modern era
of infectious disease modeling was actually initiated a century ago with a mosquito-borne
model proposed by Sir Ronald Ross. Ross developed a set of mathematical equations to
illustrate how malaria parasites were transmitted between mosquitoes and humans (Ross,
1911). The model was later complemented by the work of Macdonald (MacDonald, 1952),
and finally became the well-known Ross-Macdonald models. This modeling framework
still plays an important role in research on malaria and other mosquito-borne diseases
(Smith et al., 2012). Nevertheless, there were also many other scientists working on malaria
transmission dynamics. For instance, Kermack and McKendrick incorporated the law of
mass action into the Ross model and proposed new and modern compartmental models
(Kermack & McKendrick, 1927; Kermack & McKendrick, 1932; Kermack & McKendrick,
1933) that later became themost widely used basic structures in infectious diseasemodeling.

The present review aims to provide an overview of mathematical modeling methods,
particularly those developed for Zika virus transmission. However, it is not possible to
cover, in a review, all kinds of mathematical models applied to infectious disease studies.
In this review, we describe some common models developed thus far. We explain different
approaches ranging from simple compartments to sophisticated models integrating real-
word data. The idea is to provide some basic knowledge of mathematical projections before
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further exploring the models, particularly those developed for Zika virus transmission. We
also discuss recent advances and trends of research in the infectious disease modeling.

SURVEY METHODOLOGY
We attempt to cover different types of mathematical models applied to the study of
vector-borne disease, particularly the Zika virus. First, we provide basic knowledge on
methodological approaches in order to facilitate non-mathematical background readers.
We therefore initiated our survey to investigate previously publishedmodeling frameworks.
Subsequently, we further explore specifically the use of models in the study of the Zika
virus. In our publication survey, we used the Google Scholar (https://scholar.google.com/)
and PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) databases to search for the relevant
peer-reviewed journal articles. In the first step, we used the search terms ‘‘dynamics,’’
‘‘mathematical model,’’ ‘‘modeling,’’ and ‘‘vector-borne’’ together with the names of
vector-borne diseases including chikungunya, dengue, malaria, West Nile, and Zika. Then,
we expanded our search to include the related models identified by the prior screening. The
secondary search terminologies included ‘‘compartmental,’’ ‘‘spatial,’’ ‘‘metapopulation,’’
‘‘network,’’ ‘‘individual-based,’’ and ‘‘agent-based.’’ In the second step, we examined only
the models applied to Zika virus simulations. We strictly searched for publications focusing
on the applications of mathematical modeling in Zika virus research. The search terms
were then designated as the names of the modeling techniques described earlier AND
‘‘Zika.’’ We consistently excluded unrelated studies throughout the review process. For
the publications that met our criteria, we intensively reviewed their modeling methods,
categorized into the modeling types and compared to other related studies we found. The
papers with irrelevant methodology were then removed.

As we tried to capture all available studies, the publication year was unrestricted.
However, the mathematical modeling approach in the Zika virus study has recently
emerged. Hence, most of the research was recently published. We have collected research
articles that were published before August 2017 based on our search criteria.

RESULTS
We found five basic model architectures previously applied to vector-borne research. These
include compartmental, spatial, metapopulation, network, and individual-based models.
We reviewed these accordingly.

Basic compartmental model
In the classical compartmental model, the whole population is divided into groups
according to individual health status (Hethcote, 2000). For example, in the SIR model, the
population is split into the compartments of susceptible (S, healthy individuals), infectious
(I, diseased and contagious individuals), and recovered (R, immune individuals). During
the course of disease transmission, each individual may progress across the compartments,
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with the rate illustrated by these ordinary differential equations (Fig. 1A):

dS
dt
=−

βSI
N
,

dI
dt
=
βSI
N
−γ I , and

dR
dt
= γ I ,

(1)

where β denotes the transmission rate, dictating the speed at which susceptible individuals
become infectious, and γ represents the recovery rate, which defines how fast the infectious
individuals recovered from the disease. The force of infection in this case is defined asβI/N ,
where N is the total population. In this simplest case, it is assumed that the dynamics of
disease transmission are much faster than the dynamics of demographic processes, for
example, births, deaths, and migration; hence, these demographic dynamics can be
ignored. In addition to SIR, other forms of compartmental models exist, for instance, SI,
SIS, SIRS, SEIR, SEIRS, MSIR, MSEIR, and MSEIRS, among others. E and M are acronyms
for exposed (individuals already exposed to the disease but not yet infectious) andmaternal
(those with maternal immunity), respectively. The inclusion of different compartments
is based on the nature of the diseases (Hethcote, 2000). The models have been applied to
many emerging infectious diseases, for example, avian influenza (De Jong & Hagenaars,
2009), Ebola (Browne, Gulbudak & Webb, 2015; Khan et al., 2015; Santermans et al., 2016;
Asher, 2017), HIV/AIDS (Akpa & Oyejola, 2010; Luo et al., 2015), and many others.

One of the most important parameters that is always measured in the compartmental
model is the basic reproduction number R0. The R0 is defined as ‘‘the average number
of secondary cases produced by a single infectious individual in a totally susceptible
population in the initial stage of the outbreak’’ (Hethcote, 2000; Rock et al., 2014). The R0

is regarded as a threshold at which the epidemic is still progressing. The infection may
persist and the transmission continues if the R0 is greater than 1, whereas the epidemic is
going to cease in the long term when the R0 is otherwise (Hethcote, 2000; Rock et al., 2014;
Sidiki & Tchuente, 2014). This parameter is estimated by β/γ in the SIR framework (Rock
et al., 2014). Nonetheless, the R0 varies considerably from disease to disease. For example,
the approximate R0 for measles, mumps, and polio is 16, 12, and 5, respectively (Glomski
& Ohanian, 2012). Furthermore, the R0 values are also different in the same disease but
at a different place and time. For example, during the 2014–2015 Ebola virus outbreaks,
the R0 values were 1.71 for Guinea, 1.83 for Liberia, and 2.02 for Sierra Leone (WHO
Ebola Response Team, 2014). Therefore, the R0 is not likely referable across spatiotemporal
entities.

Vector-borne compartmental model
The models applied for vector-borne diseases are still globally based on the standard
compartmental model. Nonetheless, the compartments designed to visualize the dynamics
of vector populations are always incorporated. Indeed, the vector-borne model accounts
for a multi-species approach involving interspecies disease transmission. Hosts and vectors
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E. Network model

A. Compartmental model

S

I

R

B. Vector-borne 

compartmental model

SH EH
IH RH

SM EM IM

C. Spatial model

D. Metapopulation model F. Individual-based model

K(x)

Patch 1

Patch 2

Figure 1 Conceptual frameworks of different epidemic models. The colors represent epidemiological
status: susceptible (S, blue), exposed (E, gray), infectious (I, red), and recovered (R, green). (A) Basic SIR
compartmental model. Individuals are assumed to be well-mixed and are classified only according to their
epidemiological status. (B) Vector-borne compartmental model. The subscripts H and M denote human
and mosquito, respectively. Both host and vector individuals are assumed to be well-mixed and are clas-
sified only according to their epidemiological status. (C) Spatial model. Individuals are located at differ-
ent locations. The transmission of infection between an infectious individual and a susceptible individual
at distance x may occur with probability K (x). (D) Metapopulation model. The entire population is di-
vided into two distinct subpopulations, each with independent disease transmission dynamics, together
with interactions between subpopulations. The subpopulation in each patch is mixed homogeneously. (E)
Network model. The model is formed by at least two basic components: vertex and edge. Vertices are con-
nected by edges defined by the relationship of interest such as trade or travel. Infectious diseases are mod-
eled to spread via the edges in this model. (F) Individual-based model. In this most complicated model,
the stochastic epidemiological dynamics for each individual can be explicitly simulated with a set of char-
acteristics including epidemiological status, spatial location, interaction preference, behavior traits, etc.

Full-size DOI: 10.7717/peerj.4526/fig-1

must be present; otherwise, the pathogen cannot spread. The most notable model may
refer to the Ross-Macdonald models (Ross, 1911; MacDonald, 1952) for the transmission
of malaria. However, the vector-borne models are often represented in the SEIR and
SEI frameworks for human and vector compartments, respectively (Fig. 1B). Here, we
demonstrate a model developed to illustrate Zika virus transmission (Funk et al., 2016):
Hosts
dSH
dt
=−λHSH ,

dEH
dt
= λHSH −δHEH ,
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dIH
dt
= δHEH −γH IH ,

dRH

dt
= γH IH , (2)

Mosquitoes

dSM
dt
=ϑM −λMSM −µMSM ,

dEM
dt
= λMSM − (δM +µM )EM , and

dIM
dt
= δMEM −µM IM ,

where the subscriptsH andM stand for the host andmosquito, respectively. The parameters
λ,δ,ϑ , and µ represent the force of infection, incubation rate, birth rate, and death rate,
respectively. The forces of infection for humans and mosquitoes were calculated as:

λH = apHmIM and (3)

λM = apM
IH
NH

,

where a is the mosquito biting rate, pH is the probability that a bite from an infectious
mosquito will lead to infection in human, pM is the probability of a mosquito being
infected from biting an infectious human, NH is the number of human individuals, and m
represents the number of mosquitoes contacting one human.

To get a better understanding of the range of dynamics in these vector-borne diseases,
we calculate the number of secondary human cases generated from an average human
case, incorporating the cycle of transmission through the vector. To do so, we start with
one freshly infected human. From this primary human case, the expected number of
infected mosquitoes is the product of the infectious duration in humans, the rate of disease
transmission, and the probability that a newly infected mosquito will progress to the
infectious stage : ( 1

γH
)λM ( δM

δM+µM
). Similarly, the expected number of human individuals

infected by an infectious mosquito is calculated as ( 1
µM

)λHNH . Thus, the R0 is given by the
product of these two terms (Rock et al., 2014)

R0=

(
1
γH

)
λM

(
δM

δM +µM

)(
1
µM

)
λHNH =

a2pMpHmδM
γHµM (δM +µM )

. (4)

It is noteworthy that this value of R0 that includes a complete cycle of transmission is
the square of the value calculated using the next-generation matrix approach (Diekmann,
Heesterbeek & Roberts, 2010); however, they agree on the invasion threshold.

Like direct-contact diseases, the R0 for vector-borne epidemics varies across space–time
settings. For example, the R0 for the dengue virus in Brazil ranged from 2–103 in different
epidemics in the country from 1996–2003 (Tabachnick, 2016). For Zika, the R0 in the
outbreaks on Yap Island was estimated between 4.3 and 5.8 in 2007, whereas the value was
found at 1.8–2.0 in the French Polynesian epidemics in 2013–2014 (Nishiura et al., 2016a).
In the recent Zika virus epidemic in Columbia in 2015–2016, the R0 was approximately
2.2–14.8 (Nishiura et al., 2016b).
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Spatial epidemic model
According to the first law of geography proposed by Waldo Tobler, ‘‘everything is related
to everything else, but near things are more related than distant things’’ (Tobler, 1970).
This idea has become a fundamental concept of spatial studies. Spatial epidemiology is
a field concerning the geographical distributions of disease incidences (Lawson, 2013).
The most primitive tool is disease mapping. However, spatial modeling is much more
advanced. This method incorporates the spatial features of disease occurrences and disease
transmission behaviors. In many cases, diseases were observed to spread around the index
case. One of the best examples is the airborne virus foot-and-mouth disease (FMD). The
FMD virus is capable of transmission by air up to 60 km on land and up to 250 km above
water bodies (Lee et al., 2013). In addition, spatial cluster causes closer places to become
more vulnerable (Lessler et al., 2016a; Lessler, 2016b). To calculate the spatial probability,
the transmission kernel is calculated. The transmission kernel is defined as the probability
distribution of distances between the infectious premise and other related places (Lessler et
al., 2016a; Lessler, 2016b). The estimation of this parameter can be performed using various
forms, for example, exponential (E), Gaussian (G), and fat-tailed (F) methods, which are
demonstrated as

KE (x)=αe−αx ,

KG(x)=
α
√
π
e−α

2x2, and

KF (x)=
α

4
e−α

1/2x1/2,

(5)

where α denotes the kernel parameter (Szmaragd et al., 2009).
The spatial epidemic models have also been applied to vector-borne diseases. For

instance, in the studies of dengue (Delmelle et al., 2016; Sardar & Saha, 2017; Vincenti-
Gonzalez et al., 2017), West Nile (Crowder et al., 2013; Harrigan et al., 2014; Lin & Zhu,
2017), and Zika (Fitzgibbon, Morgan & Webb, 2017), different modeling approaches were
used. In the study of the dengue virus, a power-law form time-dependent transmission
kernel (Sardar & Saha, 2017), hot-spot detection and risk factor analysis (Vincenti-Gonzalez
et al., 2017), and geographically weighted regressionmodel (Delmelle et al., 2016) were used
to illustrate how the virus spreads. In theWest Nile virus study, a weighted ensemble model
(Harrigan et al., 2014) and a spatially explicit model incorporating land-use and climate
variables (Crowder et al., 2013) as well as a reaction–diffusion model using a spatial–
temporal risk index (Lin & Zhu, 2017) were constructed to explain the spatial diffusion
of the virus under different circumstances. For Zika, spatially dependent differential
equations were employed to describe the 2015–2016 Zika outbreak in Rio de Janeiro
Municipality in Brazil (Fitzgibbon, Morgan & Webb, 2017). A location-specific projection
was also performed to estimate the magnitude of Zika virus infections in childbearing
women on the American continent (Perkins et al., 2016).

Metapopulation model
The term ‘‘metapopulation’’ was coined by Richard Levins in 1969 (Levins, 1969) to
systematically delineate the dynamics of insect pest population in farms. However, the
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term and its concepts have been widely expanded to different scientific communities
including epidemiology. Metapopulation assumes that the whole population is divided
into different discrete spatial subgroups called ‘‘patches.’’ The subpopulation mixes
homogeneously whereas the contact between the patches only occurs at some rates (Rock
et al., 2014). Consequently, we can fit compartmental models such as SIR and SEIR into
each patch to better project how the disease of interest spreads within the subgroups (Rock
et al., 2014;Wang & Li, 2014). At this point, the metapopulation becomes the combination
of compartmental and spatial epidemic models. This approach allows us to simulate a very
large population with a well-defined spatial distribution (Banos et al., 2015).

For a SIR-based metapopulation model, a suitable modified version of the classical SIR
approach, Eq. (1), would be

dSi
dt
=−λiSi,

dIi
dt
= λiSi−γ Ii, and

dRi

dt
= γ Ii,

(6)

where the subscript i indicates the parameters and variables that are particular to patch i.
The force of infection, λi, incorporates transmission from both the infectious individuals
within patch i and the infectious individuals from patch j. The exact formula of λi depends
on the assumed mechanism of transmission and the strength of the interaction between
the patches. In general, the force of infection is expressed as (Rock et al., 2014; Sornbundit,
Triampo & Modchang, 2017)

λi=

n∑
j=1

βij
Ij
Nj
, (7)

where βij is the transmission rate from the infectious individuals in patch j to the susceptible
individuals in patch i, Nj is the total number of individuals in patch j, and n is the number
of patches.

In vector-borne disease modeling, the ideas of metapopulation have already been deeply
imbedded. The models always involve different subgroups, that is, the hosts and vectors. In
many cases, spatial distribution patterns were concurrently considered. As demonstrated in
a previous dengue study (Lee & Castillo-Chavez, 2015), a two-patch model was constructed
to explore the influence of between-patch human movements on viral transmission
dynamics. In the patches, the SEIR and SEI models were architected for human and
mosquito populations, respectively. This was done to imitate how diseases spread within
subpopulations. Another example is a study on the impact of human movement on the
dynamics and persistence of vector-borne diseases at the city scale (Adams & Kapan, 2009).
The authors constructed metapopulation models which assume that human population
lives in a home patch free of mosquitoes but moves to and fro patches with immobile
mosquito subpopulations. Different human movement patterns were represented by
different connection patterns between human and mosquito subpopulations. It was found
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that more variable human movement pattern increases the influence of the large vector
population patches in establishing new foci of transmission and enhances pathogen
persistence (Adams & Kapan, 2009). In Zika virus research, a metapopulation-typed model
was constructed to investigate the effects of sexual transmission and human migration
in the spread of the virus (Baca-Carrasco & Velasco-Hernández, 2016). Recently, Zhang
et al. expanded the Global Epidemic and Mobility Model (GLEAM) (Balcan et al., 2010),
a metapopulation model integrating real-world demographic data and human mobility
patterns, to incorporate data on mosquito density and entomological-related parameters.
The expanded GLEAM model was employed to analyze the spread of the Zika virus in
the Americas. It was estimated that the first introduction of the virus to Brazil may have
occurred between August 2013 and April 2014 (Zhang et al., 2017).

Network model
In fact, the interactions between actors inmathematical models are governed by the concept
of the contact network. It is assumed in the homogeneous compartmental model that all
individuals are linked by a regular random pattern (Bansal, Grenfell & Meyers, 2007). On
the other hand, the heterogeneous models, namely spatial and metapopulation, possess
different assumptions that take into account the higher realistic contact structures. The
idea of a contact network emerged from the mathematical graph theory and was first used
in social sciences. Two fundamental components that form a network are called ‘‘vertex’’
and ‘‘edge’’ (Lanzas & Chen, 2015). A vertex is a unit of interest for an individual, a group
of people, a village, a city, or even an entire country. An edge is the link between a pair
of vertices. The edge represents the bond between vertices, which is important in disease
transmission, such as animal movement or human transportation. The interaction is
further divided into directed and undirected (Martínez-López, Perez & Sánchez-Vizcaíno,
2009), of which the directed links dictate the incoming and outgoing edges; for example,
flight itineraries, whereas the undirected approach does not consider directions, such as
co-author networks. In epidemiology, contact network modeling has often been used to
investigate disease transmission in both humans (Vazquez-Prokopec et al., 2013; Machens
et al., 2013) and animals (Craft, 2015; Rossi et al., 2017). The network structure exploration
is helpful for targeting risk actors and tailoring prevention and control strategies.

Determining a ‘‘real’’ network structure requires knowledge of all individuals in a
population and all possible relationships among them. In large networks, this is an
impractical and time-consuming task. However, several techniques have been exploited
to approximate the structure of the network, for example, a radio-based wearable device
was used to identify high-resolution close proximity interactions (less than 1.5 m) among
75 individuals dwelling in 5 different households in rural Kenya (Kiti et al., 2016). The
study makes it possible to collect a high-resolution human contact data without any direct
observations. Similar wireless sensor was also used to explore social contact interactions
among students, teachers and staff in an American high school (Salathé et al., 2010).
The network structure can also be approximated using movement data, for example,
airline route maps (Hufnagel, Brockmann & Geisel, 2004) or livestock movement patterns
(Wiratsudakul et al., 2014; Chintrakulchai, Vuttichai & Wiratsudakul, 2017; Khengwa et al.,
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2017). However, these data sources have the disadvantage that the network generally links
sub-populations or groups of hosts rather than being a network between individuals.
Alternatively, the spatial contact proximity can be detected from mobile phones (Eagle,
Pentland & Lazer, 2009) or other Global Positioning System (GPS) data-loggers (Vazquez-
Prokopec et al., 2013). Data retrieved from these devices make the contact network to be
more realistic which further improve the accuracy of related epidemic models.

Besides using approximated ‘‘real’’ networks, several forms of computer-generated
networks have also been employed in previous studies. Examples of these ‘‘idealized’’
networks include a random network (Erdös & Rényi, 1959; Gilbert, 1959), in which each
pair of nodes is connected randomly, and a scale-free network (Barabási & Albert, 1999),
where the probability that a node is connected is proportional to its degree. These
computer-generated networks are proven to be useful in some aspects of infectious disease
transmission (Keeling & Eames, 2005; Pastor-Satorras et al., 2015). A bipartite network,
a network whose nodes are divided into two separate groups with a scale-free degree
distribution, was also used to simulate vector-borne disease transmission (Bisanzio et
al., 2010). The authors found that the spread of disease strongly depends on the degree
distribution of the two classes of nodes.

The contact network has also been used to describe disease transmission patterns in
mosquito-borne diseases. For instance, a previous study employed a contact-tracing
investigation to identify possible contact-site clusters. The authors suggested that
house-to-house human movement was likely to indicate how the dengue virus spread
spatially (Stoddard et al., 2013). This contact-identification technique is applicable to other
mosquito-borne diseases, including Zika (Scatà et al., 2016; Saad-Roy, Van den Driessche
& Ma, 2016).

Individual-based model
The individual-based approach, also known as the agent-based model, allows us to mimic
the complexity of individual interactions. Each individual can be explicitly simulated with
a set of characteristics including spatial location, interaction preference, behavior traits, etc.
Moreover, these state variables dictate how individuals interact with each other. However,
they can change over time (DeAngelis & Grimm, 2014). Exploitation of the micro-level
pattern (the bottom-up method) can prevent the rough estimation that inevitably occurs
from the top-down approaches, for example, the compartmental model. The individual-
based model is powerful for the integration of different scales and datasets. Therefore, it
has been applied to various fields of scientific studies (El-Sayed et al., 2012; Merler et al.,
2015; Matheson, Satterthwaite & Highlander, 2017). However, the trade-off between the
model complexity and technological requirementsmust be considered. The realistic models
integrating large-scale real-word data apparently demand more sophisticated machines
(Lanzas & Chen, 2015). Individual-based models have been extensively applied to diseases
that require highly unique individual features such as HIV/AIDS (White et al., 2014),
influenza (Eichner et al., 2014), tuberculosis (Graciani Rodrigues, Espíndola & Penna, 2015),
and Ebola (Merler et al., 2015). In mosquito-borne diseases, individual-based models were
previously used to describe the transmission dynamics of the chikungunya virus (Dommar
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et al., 2014), the dengue virus (Chao, Longini & Halloran, 2013), malaria (Pizzitutti et al.,
2013), and the Zika virus (Matheson, Satterthwaite & Highlander, 2017). It is noteworthy
that state-of-the-art structures, including the individual-based, metapopulation, and
network models, are not necessarily more realistic than compartmental models. Indeed,
the advantage of these modeling structures is that modelers are allowed to fully integrate
the models with large-scale real-world data. Consequently, such models are believed to be
highly realistic (Lessler et al., 2016a; Lessler, 2016b). A graphical presentation of the basic
models described in this review is illustrated in Fig. 1.

Mathematical modeling for Zika virus epidemics
The Zika virus has been circulating among human beings for more than 70 years. However,
it has been in the sights of modelers for just a decade following a series of outbreaks on
Yap Island. Since then, a number of models have been proposed. This study compared
some examples based on model structures and discussed the uses of mathematical models
in Zika import risk estimation and intervention planning.

Model architectures
As shown in Table 1, it is noticeable that Zika models carried out for early epidemics were
less complicated compared to the more recent ones. To our knowledge, the compartmental
approach was a fundamental framework for other sophisticated models that were recently
developed. In Zika modeling, all early works were fit into compartmental structures. It was
relatively fast and convenient to start with existing knowledge from other related diseases
and change the relevant parameters for the Zika virus. However, the compartmental model
was still regularly used as a backbone for later models.

Compartmentally, the crisscross transmission between humans andmosquitoes has been
popularly simulated. However, the models specially designed for only one (Monaghan et
al., 2016; Riou, Poletto & Boëlle, 2017; Scatà et al., 2016) or even another species (Althouse
et al., 2015) were also observed. Focusing on the model architecture, SEIR was usually
used for humans whereas SEI was commonly used for mosquitos. In addition, a model
focusing only on human compartments was recently proposed (Castro et al., 2017).
Nonetheless, other compartmental orientations were occasionally proposed, for example,
the susceptible-infectious-recovered (SIR) (Perkins et al., 2016), the susceptible-exposed-
asymptomatic-infectious-recovered (SEAIR) (Gao et al., 2016), the susceptible-preventive
isolated-infectious-recovered (SipIR), and the unaware-aware-faded (UAF) models (Scatà
et al., 2016).

Spatial models were developed to demonstrate how the Zika virus moves across
geographical spaces. Frequently, the spatial framework was complementarily driven by
other types of models (Zinszer et al., 2017; Fitzgibbon, Morgan & Webb, 2017). The most
prominent advantage of the spatial models is their visualizing power. Apparently, the
maps generated from spatial modeling were the most comprehensible tools for the general
public compared to other model outputs. Hence, their final products, viral distribution
maps, were frequently exploited in public communication through various channels such
as governmental authorities, mainstream media, and even informal online platforms. The
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Table 1 Examples of mathematical models used in Zika virus studies, 2007–2017.Note that a model is marked as ‘‘compartmental’’ only when
the population is divided into groups according to only their health status.

Period Location (Country/
Region/Continent)

Population
(Compartments)

Model architecture References

C
om

pa
rt
m
en
ta
l

Sp
at
ia
l

M
et
ap

op
ul
at
io
n

N
et
w
or
k

In
dv

.—
ba

se
d

2007–2012 Micronesia Human (SEIR)
Mosquito (SEI)

X Funk et al. (2016)

2007, 2013–2014,
2014

Micronesia,
French Polynesia,
New Caledonia

Human (SEIR)
Mosquito (SEI)

X Champagne et al. (2016)

2013–2014 French Polynesia Human (SEIR)
Mosquito (SEI)

X Kucharski et al. (2016)

2013–2016 French Polynesia,
French West Indies

Human (SIR) X Riou, Poletto & Boëlle (2017)

2014–2017 American continent Human (SEIR)
Mosquito (SEI)

X Zhang et al. (2017)

2015 American continent Human (SIR) X Perkins et al. (2016)
2015–2016 Brazil Human (SI)

Mosquito (SI)
X Fitzgibbon, Morgan & Webb (2017)

2015–2016 Brazil Human (ND) X Zinszer et al. (2017)
2015–2016 Brazil, Colombia,

El Salvador
Human (SEAIR)
Mosquito (SEI)

X Gao et al. (2016)

2016 United States Human (SEIR) X Castro et al. (2017)
2016 Brazil Human (SEIR)

Mosquito (SEIR)
X Matheson, Satterthwaite & Highlander (2017)

ND Brazil Non-human primates (SIR)
Mosquito (SI)

X Althouse et al. (2015)

ND Worldwide Human (ND)
Mosquito (ND)

X Alaniz, Bacigalupo & Cattan (2017)

ND ND Human (SIR/SEIR)
Mosquito (SI)

X X Baca-Carrasco & Velasco-Hernández (2016)

ND ND Human (SIR)
Mosquito (SI)

X X Saad-Roy, Van den Driessche & Ma (2016)

ND ND Human (SIR, SipIR, UAF) X Scatà et al. (2016)

Notes.
ND, Not designated.

diseasemapswerewidely used to increase public awareness and to design specific prevention
and control strategies for Zika (Rodriguez-Morales et al., 2016) and other emerging diseases
(Coburn & Blower, 2013; Emmanuel, Isac & Blanchard, 2013; Koch, 2015).

We found that the early metapopulation, network, and individual-based models
were mostly structured without geographical or timeframe references (Table 1) (Scatà
et al., 2016; Baca-Carrasco & Velasco-Hernández, 2016; Saad-Roy, Van den Driessche & Ma,
2016). It seemed difficult to immediately fit the real-world data into these sophisticated

Wiratsudakul et al. (2018), PeerJ, DOI 10.7717/peerj.4526 13/30

https://peerj.com
http://dx.doi.org/10.7717/peerj.4526


frameworks. However, not long after the Zika epidemic started in Brazil, a data-driven
metapopulation model incorporating large-scale real-world data was presented (Zhang
et al., 2017). The GLEAM model (Balcan et al., 2010) was expanded to incorporate data
on mosquito density and other entomological-related parameters (Zhang et al., 2017).
Inclusion of these real-world data into the model is believed to improve the ability of the
model to reproduce the observed data and reliably predict future epidemic dynamics.

Import risk model
Disease transmission models are developed to explore how a pathogen spreads in an
epidemic zone. However, the disease, especially a virus, may spread across the globe
overnight. Therefore, an import risk model is used in this assessment. A particular
framework is designed to quantitatively assess the likelihood of viral importation into
a certain territory. Such a model was previously built to evaluate the importation risk of
different emerging diseases, for instance, the Ebola virus (Chen et al., 2014;Wiratsudakul et
al., 2016), MERS-CoV (Nishiura et al., 2015; Nah et al., 2016), and severe acute respiratory
syndrome (SARS) (Goubar et al., 2009). For the Zika virus, the imported cases were well
documented in many countries on different continents (Pyke et al., 2014; Bachiller-Luque,
2016; Jang et al., 2016; Sokal et al., 2016; Zhong et al., 2016; Hashimoto et al., 2017; Xiang
et al., 2017). The import risk models are necessary to foresee the probability of Zika
importation into other unaffected countries. As Brazil was recently in the spotlight for
Zika epidemics, models focused on the Zika virus escaping the country were increasingly
produced. In particular, models considering the risk of mass gatherings for international
events such as the Olympic games were recently proposed (Grills et al., 2016; Massad,
Coutinho & Wilder-Smith, 2016; Burattini et al., 2016). Herein, we described three basic
methods used in import risk estimation, deterministic and stochastic risk estimation and
risk estimation by force of infection.

Deterministic risk estimation
This method roughly calculated the probability of Zika virus importation into different
countries around the world via commercial air travel. In a previous model, the virus was
designated to spread from Brazil (Quam &Wilder-Smith, 2016). The risk was formulated as
RI =T×I×P , where the risk (RI ) is the product of the number of air passengers (T ) who
traveled from the Zika epidemic areas, the estimated infectious incidence per individual
(I ), and the probability of infection in the travel period (P). The results suggested that
584–1,786 Zika cases may have been exported from Brazil during the 2014–2015 epidemics.

Stochastic risk estimation
This process takes into account the stochasticity of travel volumes. The model was
previously employed to estimate the risk of Ebola virus importation into the top 20
destination countries of travelers departing from the three Ebola epidemic countries
in West Africa (Wiratsudakul et al., 2016). The risk was estimated using the binomial
distribution Rn,e,t = Binom(Tn,e,t × In,e,t ), where Rn,e,t represents the risk of viral
importation into country n from affected country e at time t whereas Tn,e,t and In,e,t
denote the corresponding number of flight travelers and outbreak country incidence,
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respectively. This simulation indicated that the risk of importing the Ebola virus during
the peak of the epidemics could have reached 0.73 in Ghana, where the highest number of
air passengers were observed.

Risk estimation by force of infection
This method was previously used in the import risk assessment for dengue virus diffusion
from Brazil to other countries during the 2016 summer Olympic games (Ximenes
et al., 2016). First, the force of infection λ was estimated from a Gaussian function
λ(t )= C1exp

[
−
(t−C2)

2

C3

]
F(t ), where C1 determines the highest incidence, C2 is the

peak incidence time, and C3 is the period of incidence function. F(t ) represents the
ad hoc function, which is written in a logistic form as F (t )= 1

1+exp(−C4(t−C5))
, where C4

and C5 are the rate of incidence acceleration and the initial infection time, respectively.
Subsequently, λ was used to calculate the risk of dengue infection during times t1 and
t2 as π(t1,t2)= 1−exp

[
−
∫ t2
t1 λ(s)ds

]
. This model scenario indicated that the number of

asymptomatic dengue cases among tourists may have reached 206 during the study period.

Intervention model
Apart from disease dynamic illustration, mathematical models also functioned as a basic
framework to assess the effectiveness of different interventional strategies. For example, a
simulated outbreak scenario was examined for the performance of control measures against
highly pathogenic avian influenza in Ontario, Canada (Lewis et al., 2015). An import risk
model was tested for the mitigation capability of pandemic Ebola outbreaks through
commercial air travel restrictions (Wiratsudakul et al., 2016). The intervention models
were also constructed for Zika. A previous study exploited the prior knowledge of rubella
control to construct a Zika virus simulation. Rubella is a classic example of teratogenic
agents causing viruses in humans. In addition, the body of knowledge on rubella in terms
of virology, epidemiology, and mathematical modeling has been well documented (Metcalf
& Barrett, 2016). This is an excellent example of a modeling framework derived from other
well-known diseases. An intervention model for a related emerging disease could be well
supported in a timely fashion using such solid mathematical environments.

Theoretical network modeling was also used in the strategic planning for Zika virus
outbreak alleviation (Scatà et al., 2016). The model selectively removed some specific
vertices in the network based on the eigenvector-like centrality and awareness values.
Their findings highlighted the importance of heterogeneity and public awareness in the
control of infectious diseases under different socioeconomic conditions. Prospectively, the
authors planned to include an analogy of HIV epidemics into the sexual transmission of
Zika as well as an economic impact evaluation of the disease (Scatà et al., 2016). For the
economic aspects, a model addressing the cost-effectiveness of Zika control interventions
was proposed (Alfaro-Murillo et al., 2016). The research team created a user-friendly online
tool that was flexible enough to include new parameters and provided a real-time analysis.
The program facilitated the financial allocation and assessed its effectiveness. Another
example is the economic appraisement of a newly established policy. In the United States,
blood centers were ordered to test for the Zika virus to prevent transfusion-transmitted
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infection. An economic model was built to assess the implementation costs and to suggest
alternatives to reduce them (Ellingson et al., 2017). The model was essential for predicting
the overall investments and selecting the most cost-effective one. In addition to financial
management, other supporting facilities should also be considered. A previous study
used a modeling approach to assess the requirement of healthcare resources in real-time
(Andronico et al., 2017). The authors claimed that their model could provide an accurate
prediction.

According to our examples, there are several ways to simulate strategic manipulation
using mathematical models. Most modelers designed their models based on existing or
newly established policies in order to guide policy makers and precisely meet the needs
of societies. However, the field data accuracy and baseline simulations directly affect the
prediction power of strategic models. One must seriously consider these factors before
translating models into practices.

Perspectives on Zika virus epidemic models
We noticed that the compartmental model is still commonly used for the timely assessment
of epidemics. However, much more complex modeling frameworks (metapopulation,
network, and individual-based models) have been of increasing interest due to the recent
availability of large-scale real-world data and computational power. As we know, the
computational capacity of modern computers is presently very high. This allows us to
deploy a sophisticated model to observe the changes and predict the trends of disease
dynamics in real-time. Moreover, the model will help policy makers choose the most
appropriate intervention to fight outbreaks and further assess the corresponding results in
a timely manner. In Zika virus modeling, state-of-the-art structures (the metapopulation,
network, and individual-based models) have been increasingly developed using advanced
computational capacity. In other diseases such as Ebola, the real-word data was placed
into a complicated individual-based modeling framework. The study made it possible to
produce a more realistic output reflecting the actual outbreak situations (Merler et al.,
2015).

‘‘Big data’’ is an emerging field arising from the extremely large amount of data available
together with the advancement in computer infrastructures. In biomedical informatics,
large-scale health-related data shared among health professionals are undoubtedly
beneficial for the unprecedented development of healthcare services (Bellazzi, 2014).
Automated modeling could be enabled with the integration of big data and machine
learning (Furqan et al., 2017). The future of infectious disease modeling including vector-
borne diseasesmay alter the classicalmethods.Multiplemodeling outputsmay be generated
automatically right after raw data are entered into computers. However, there are some
challenges, for example, the reproducibility of the results as well as privacy and data reuse
issues (Bellazzi, 2014).

In epidemiology, big data are increasingly being used to estimate disease spread and
investigate effectiveness of interventions. Recent works in infectious disease dynamics have
been characterized by an increasing focus on data-driven approaches. For example, the
mobile call data records (CDRs) have been used to explain the dynamics of large-scale Ebola

Wiratsudakul et al. (2018), PeerJ, DOI 10.7717/peerj.4526 16/30

https://peerj.com
http://dx.doi.org/10.7717/peerj.4526


outbreaks in West Africa (Wesolowski et al., 2014). The CDR-based transmission models
have also been employed to analyze the spread of rubella disease in Kenya (Wesolowski et al.,
2015). The individual-based model that integrates detailed geographical and demographic
data, andmovements of individuals was used to estimate the transmission of Ebola virus and
investigate the effectiveness of interventions in Liberia (Merler et al., 2015). For Zika, the
data-driven metapopulation model integrating real-world demographic, human mobility,
socioeconomic, temperature, and vector density data has also been used to analyze the
spread of the Zika virus in the Americas (Zhang et al., 2017). These emerging data-driven
approaches further allow themetapopulation, network, and individual-basedmodels better
simulating the real epidemics.

In general, epidemic models can be used either as predictive tools or as a means of
understanding fundamental epidemiological processes. However, prediction is perhaps
the most obvious use of epidemic models. These allow us to predict the population-level
epidemic dynamics from an individual-level knowledge of epidemiological factors, and
assess the effectiveness of intervention strategies. As the trends in modeling of infectious
diseases have been shifting towards data-driven approaches (Lessler et al., 2016a; Lessler,
2016b), the model complexity itself may hamper the use of models by nonspecialists and
public health practitioners. These complex modeling architectures should be translated
into a comprehensible environment. The modelers may adopt some strategies taught
in classes on translational medicine to evaluate how to turn epidemic models into
practices. Alternatively, user-friendly interfaces are helpful for health professionals to
include mathematical models in their strategic plans. For example, the GLEAM framework
provides a user-friendly and easy-to-use graphical tool for general modelers and public
health agencies (http://www.gleamviz.org). This is an excellent initiation of the translation
of complex mathematical models into a touchable framework. The results presented by
Zhang et al. (2017) were also delivered via user-friendly and easy-to-read graphics on
a web application (http://www.zika-model.org/). Therefore, an alliance with computer
and graphical scientists is encouraged. Moreover, some educational mobile applications
are suggested to acquaint the general public and especially younger generations with
epidemic simulations. An excellent example is a simulation game available at the App Store
and Google Play called Plague Inc. (Ndemic Creations, Bristol, UK). The game makes
mathematical models feel touchable and not too difficult, leading to more familiarity and
acceptance.

To fully implement mathematical modeling, one must persuade policy makers to
include the methods and try to prove that they are necessary. In this case, the translation
of mathematical language into political contexts is crucial. Moreover, simple and complex
models should be exploited differently. Simple models can be produced in a timely fashion
to provide an estimation of the possible impacts. In contrast, complex models require
more time to develop but are far more realistic. The models are much more powerful in
terms of predictive capability. The preparation of complicated models before outbreaks is
recommended.
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CONCLUSIONS
Mathematical models can be used either as predictive tools or as a means of understanding
fundamental epidemiological processes. This review provides basic knowledge of different
mathematical models used in studies of disease dynamics. We demonstrated how the
models were applied during the course of Zika virus outbreaks and discussed the uses
of mathematical models in Zika import risk estimation and intervention planning. We
found that Zika models carried out for early epidemics were less complicated compared
to the more recent ones. The compartmental model is still commonly used for the
timely assessment of epidemics. However, more complex modeling frameworks including
metapopulation, network, and individual-based models have been of increasing interest
due to the recent availability of large-scale real-world data and computational power.
Inclusion of these real-world data into the model is believed to improve the ability of the
model to reproduce the observed data and reliably predict future epidemic dynamics.
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