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Abstract 

 

A novel method for the electrochemical template synthesis of surface-imprinted magnetic 

polymer microrods for protein recognition is proposed. The polymer was 



electrodeposited into sacrificial cylindrical microreactors, the internal walls of which 

were previously modified with a target model protein, avidin, by simple physisorption. 

The electropolymerization was performed from a mixture of 3,4-ethylenedioxythiophene, 

poly(styrenesulfonate) (PSS) and PSS-coated superparamagnetic nanoparticles resulting 

in the formation of inherently electroconductive polymers confined to the volume of the 

microreactor. Here we show that: (i) the template synthesis within cylindrical 

microreactors results in polymer rods with dimensions matching that of the reactor, (ii) 

the incorporation of superparamagnetic particles induces magnetic properties that allow 

for efficient collection and manipulation of the microrods released from the microreactors 

in magnetic field even from dilute solution, (iii) the protein coating on the internal walls 

of the microreactors is shown to generate molecular imprints on the surface of the 

polymeric rods. This latter property was demonstrated by comparative binding 

experiments of a fluorescent avidin derivative to the surface-imprinted and non-imprinted 

magnetic polymer microrods. 
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Introduction 

 

Molecular imprinting is a general method to create selective recognition sites in synthetic 

materials, primarily polymers [1-4]. The imprinting is performed by polymerizing 

properly selected functional monomers in the presence of a target species, which acts as a 

molecular template. Thus, removal of the target after polymerization leaves behind 

binding sites complementary in size and functionality with the target enabling their 

preferential rebinding. Such materials with “molecular memory” were found to be useful 

in a wide range of applications as selective sorbents [5, 6], catalysts [7], selective sensing 

materials [8-10], etc. In spite of many successful applications and with products on the 

market MIPs are still facing major challenges, especially when switching from low 

molecular weight targets to biomacromolecules such as proteins [11]. The large 

molecular size induces mass transport limitations for removal and rebinding in the three-

dimensional polymer network. Other complication may arise from conformational 

changes of the biomacromolecules and cross reactivity due to the large number of 

functionalities.  

The most promising direction to overcome difficulties in the template removal and 

rebinding is surface imprinting, which generates binding sites exclusively on the surface 

of the imprinted material. This can be accomplished on planar surfaces or on the surface 

of nano- or microparticles. The first format is preferred for sensing applications where the 

MIP layer is deposited on a suitable electrochemical, piezoelectric or surface plasmon 



resonance based transducer. The second format, namely the surface imprinted 

nanoparticles offer the possibility of using such materials for a wider range of 

applications involving cleanup, separation and sensing, with clear benefits in terms of 

faster binding kinetics experienced in general on micro- and nanoparticulate reagents as 

compared with planar surfaces. However, handling of micro- and nanoparticles becomes 

difficult in heterogeneous assays with classical filtration, dialysis or centrifugation 

separation methodologies. Clearly the most advantageous approach would be to impart 

superparamagnetic properties to nanoparticle MIPs. Therefore magnetic MIP 

nano/microparticles have a promising perspective in heterogeneous bioassays because 

their stability, selectivity is conjugated with the ease of separation from the unbound 

analyte by magnetic field gradient [12]. Two general approaches to functionalize 

magnetic nanoparticles with molecularly imprinted polymers emerged: (i) the surface of 

the particles is modified with a thin layer of polymer (core-shell particles) or (ii) the 

magnetic nanoparticles (MNP) are dispersed in the polymeric matrix (multicore 

particles). 

Different polymerization methods can be used to achieve the above mentioned 

morphologies. Suspension and emulsion polymerization and the variations thereof [13-

26] usually create multi-core polymeric beads with embedded magnetic nanoparticles. 

These methods require a good synthetic skill to obtain uniform particles with appropriate 

morphology. Possible problems are leakage of magnetic particles from the beads 

especially at low pH values, low incorporation efficiency resulting in low magnetization 

[13] and unfavorable optical properties due to surface bound magnetite [27].  



The growth a thin MIP layer on the surface of the magnetic nanoparticle results in 

core-shell magnetic MIPs. As a consequence of the procedure the magnet is fully 

encapsulated by the thin imprinted polymer layer, thereby leading to high incorporation 

efficiency [28-37]. 

 While all these techniques are based on chemical polymerization we have recently 

introduced new strategies to surface imprint electrosynthesized electrically conducting 

polymers with biomacromolecules [38, 39]. These are based on sacrificial template 

synthesis using various geometry microreactors with their inner wall modified with the 

target protein to generate surface imprinted polymers. Our effort was directed to 

synthesize surface grafted microstructures for selective recognition of proteins largely 

benefiting from the advantages of well-controlled electropolymerization reactions that 

enabled the precise confinement of the structures to the volume of the microreactors. 

Owing to the wider applicability of surface imprinted nano- and microparticles here we 

explored the feasibility of downscaling the procedure to generate smaller microparticles 

in solution phase imparting them with superparamagnetic properties for easy handling. 

Accordingly we are reporting for the first time the synthesis of surface imprinted 

magnetic nanoparticles prepared by electropolymerization for protein recognition. 

 



 

 

Scheme 1: Preparation of the surface imprinted magnetic microrods using a track-etched 

PC membrane as a sacrificial mold.  

 

Experimental 



 

Materials 

 

Disk-shaped hydrophobic PVPF (polyvinylpyrrolidone free) track-etched polycarbonate 

membranes (PC membranes) with pore diameters of 1 and 0.1 µm, respectively, were 

purchased from GE Water & Process Technologies (Trevose, PA, USA). Poly(sodium 4-

styrene-sulfonate) (PSS, MW ~70,000), 3,4-ethylenedioxythiophene (EDOT), avidin 

(Av, MW 68,000), fluorescein isothiocyanate labeled avidin (avidin-FITC), and bovine 

serum albumin (BSA, MW 67,000) were purchased from Sigma-Aldrich (St. Louis, MO, 

USA). FluidMAG-PS magnetic nanoparticles (25 mg/mL) with magnetite core and 

poly(sodium 4-styrene-sulfonate) shell having a hydrodynamic diameter of 100 nm, were 

purchased from Chemicell GmbH (Berlin, Germany). Dichloromethane (DCM) was 

obtained from Merck, (Darmstadt, Germany). All proteins were dissolved in pH 8.0 

phosphate buffer (0.01 M) prepared from analytical grade KH2PO4 and K2HPO4. The 

washing solution (PBS Tween 20) consisted of pH 8.0 phosphate buffer (0.01 M) 

potassium chloride (0.15 M) and Tween-20 (0.05%). Ultrapure water (18 MΩ·cm, 

Millipore Corporation, USA) was used for the preparation of all aqueous solutions. 

 

Apparatus 

 

Electrochemical polymerization was performed in a 200 µL cell using a 2 mm diameter 

gold-disk working electrode (CH Instruments, Inc., Austin, TX, USA), a Pt counter 

electrode and a Ag/AgCl reference electrode. The electrodes were connected to an 



Autolab Pgstat 12 potentiostat/galvanostat (Eco Chemie B.V., Utrecht, The Netherlands). 

The electrodes were cleaned by wet polishing in two successive steps using a laboratory-

made circular polisher as well as Gamma Micropolish II deagglomerated 1.0 µm and 0.05 

µm alumina suspension (Buehler, Lake Bluff, IL, USA), respectively. 

Quantitative fluorescence intensity measurements were done with an epifluorescent 

microscope formed by a conventional inverted microscope (IX71 with TH4-200 halogen 

light source, Olympus) combined with a xenon illuminating system (75W, ebx75 

isolated, LEJ, Jena, Germany), a fluorescent mirror unit (U-MSWB2, Olympus), a Pan 

Fluorite objective 20x with aperture 0.4 (Olympus) and a 7.1 Megapixel digital camera 

(C-7070, Olympus). The mirror unit had excitation, dichromatic mirror and emission 

wavelengths as follows: 420-480, 500 and 515 nm, respectively. All fluorescent images 

were taken using the same camera settings (80 ISO, 4s exposure time, 4.8 aperture). 

Scanning electron microscopic imaging was performed using a SEM instrument (JEOL 

JSM-5500LV, JEOL, Tokyo, Japan) equipped with energy dispersive X-ray spectroscopy 

(EDS). The iron content of magnetic rods and the FluidMAG-PS magnetic nanoparticles 

was determined by using electrothermal and flame atomization atomic absorption 

spectrometry, respectively. The flame AAS measurements were carried out on a Varian 

Techton AA6 AAS spectrometer with manual impulse nebulization adapter, air-acetylene 

flame with 10 cm burner at a wavelength of 248.3 nm and spectral bandwith of 0.2 nm. 

The electrothermal atomization AAS measurements were performed using a Perkin-

Elmer HGA-500 pyrolytic graphite furnace accommodating 10-20 µl sample volume, , at 

a wavelength of 385.9 nm and spectral bandwith of 0.2 nm. 

 



Methods 

 

Preparation of PEDOT:PSS magnetic microrods 

 

The imprinted and non-imprinted rods were prepared using an electrochemical template 

synthesis method depicted in Scheme 1. Hydrophobic track-etched PC membranes with 1 

µm diameter cylindrically shaped pores were used as sacrificial microreactors for 

growing the polymeric microrods involving the following succession of steps: 

a) electrode preparation 

The gold electrodes were first polished with alumina suspension and ultrasonicated in 1:1 

(v/v) water:isopropanol for 5 min. After this pretreatment the electrode was rinsed with 

deionized water and kept in water until used. The wet PC membrane disk was placed on 

the electrode and fixed with a custom made Teflon ring. For the imprinted rods the 

electrode-membrane assembly was incubated in 10 µL template protein solution (1 mg/ml 

avidin-FITC) for 30 min, followed by a thorough rinsing with ultrapure water to remove 

the unbound proteins. 

b) electropolymerization 

After the electrodes were assembled, the electrochemical cell was filled with 200 µL of 

deoxygenated aqueous monomer solution containing 0.01 M EDOT, 0.0125 M PSS and 

12.5 mg/ml FluidMAG-PS magnetic nanoparticles. Electrochemical synthesis of the 

PEDOT:PSS:FluidMAG-PS microrods was performed at constant potential (E = 0.75 V 

vs. Ag/AgCl/3 M KCl). The electropolymerization was stopped before having 



overgrowth of the polymer outside of the pores, i.e., when the pores were filled with the 

polymer composite. In the setup used this corresponded to a charge of 5 mC. 

c) Separation of the magnetic microrods 

The membrane containing the synthesized microrods was first mechanically detached 

from the electrode surface placed in a 1.5 mL glass vial and then subjected to a series of 

washing and rinsing steps with the aim of extracting the magnetic microrods. In all 

subsequent steps 1 mL of solvent was added to the vial containing the rods and the 

solution was shaken gently for 5 min. Before the solutions were removed by a 

micropipette the magnetic microrods were collected at the bottom of the vial for 3 min 

using a neodymium magnet. The extraction procedure consisted of the following 

successive steps: (i) incubation in 1M NaOH, for 20 min to remove excess avidin from 

the surface of the PC membrane and enable its dissolution in DCM (ii) rinsing with 

water:methanol solution (50:50 v/v), (iii) drying the membrane , (iv) dissolving it in 

DCM, (v) washing the microrods 4 times with DCM to completely remove any residual 

PC. Final rinses were done using a solution of methanol and water (50:50 v/v) for three 

times.  

Before the shaking steps, the vial was placed in an ultrasonic bath (Realsonic 40-S, 

Realtrade Co., Hungary, 37 kHz nominal frequency with 350-500 V amplitude) for a few 

seconds to re-suspend all the rods. Also, at each separation step the successful collection 

of the magnetic microrods was confirmed by optical microscopy. 

 

Epifluorescence measurements 

 



Ten µg of magnetic rods was placed in a vial with 200 µL of 10-2 mg/mL bovine serum 

albumin (BSA) to block the non-specific binding sites. After 8 min incubation the rods 

were separated by magnetic field from the solution, which was removed by using a 

micropipette. The rods were washed with 200 µL aliquots of PBS Tween 20 buffer for 3 

min and were collected again by a magnetic field for 2 min. To visualize the rebinding of 

the template avidin, the rods were incubated in avidin-FITC solutions of different 

concentration, each time for 28 min followed by a 2 min magnetic separation. To remove 

nonspecifically bound proteins, the rods were washed first with 400 µL of PBS Tween 20 

and then with PB for 3 min. The collected rods were resuspended in 50 µL PB and all of 

them were spotted onto a glass microscope slide for imaging. 

All images were taken in a dark environment using fixed settings on the epifluorescent 

microscope and on the camera.  

To evaluate the amount of bound protein, we took a fluorescence picture of the rods. The 

fluorescence intensity was calculated as the mean green intensity over the rods. 

 

Determination of the iron content of the magnetic microrods and the FluidMAG-PS 

magnetic nanoparticles by atomic absorption spectrometry (AAS) 

 

FluidMAG-PS nanoparticles and PEDOT:PSS polymer rods were collected by filtration 

on a 10 mm diameter PVPF track-etched polycarbonate membrane filter with a pore 

diameter of 100 nm. The PC membrane was transferred into a small quartz crucible. 0.2 

ml high purity nitric acid (63%) was added then the sample was dried under an IR lamp. 

The crucible was placed into a furnace and ashed at 650oC for 2 h. The residue was 



dissolved in 0.2 mL 1:1 mixture of cc. HNO3 and cc. HCl then supplemented with 

deionized water to a final volume of 3 mL. The iron content of FluidMAG-PS 

nanoparticles was determined by flame-AAS method while graphite furnace AAS method 

was used for the PEDOT:PSS polymer rods. 

 

Magnetization measurement of the polymer microrods and the FluidMAG-PS magnetic 

nanoparticles 

Magnetization measurements were carried out using a SQUID magnetometer (Magnetic 

Property Measurement System - Quantum Design Inc., San Diego, CA, USA). 

FluidMAG-PS nanoparticles and PEDOT:PSS polymer rods were collected by filtration 

using a PVPF track-etched polycarbonate membrane filter with a pore diameter of 100 

nm. The folded membrane was placed into a gelatin-based capsule for the magnetization 

measurements in order to avoid the loss of polymer rods. 

The diamagnetic background from the filter and the capsule were separately determined 

and found to be at least two orders of magnitude smaller than the signal from the sample. 

After the subtraction of this baseline, the magnetization curves were normalized to 1 mg 

magnetite (Fe3O4) content, as determined by AAS measurements, both in case of the 

FluidMAG-PS nanoparticle and the PEDOT:PSS polymer rod samples. 

 

Results and Discussion 

 

Preparation of surface imprinted magnetic microrods 

 



Magnetic surface imprinted polymer rods have been prepared by the modification of a 

protein imprinting method introduced by our group to generate cylindrical microrods 

grafted on a solid electrode surface [39]. Here we used as a sacrificial mold for the 

confinement of the polymerization polycarbonate track-etched membranes with ca. one 

order of magnitude smaller diameters, i.e. membranes with uniform cylindrical pores of 1 

µm diameter and 7 µm length.  This type of membrane is hydrophobic in nature, 

therefore proteins can readily adsorb onto it from aqueous solutions. This offers 

straightforward means for simple physisorption of the target protein, avidin, without the 

need for multistep chemical synthesis or any pretreatment. Adsorption of avidin into the 

pores of the PC membrane has been verified using a fluorescence-labeled protein, avidin-

FITC. The membrane was incubated with different concentrations of the labeled avidin 

for 30 min. The adsorption isotherm can be seen in Figure 1.  
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Figure 1: Avidin-FITC adsorption on the surface of polycarbonate membrane from 

different concentration solutions. The inset shows the fluorescent microscope image of 

the PC membrane incubated with 0.1 mg/mL avidin-FITC. The bar in the inset 

corresponds to 10 µm. 

 



Monolayer coverage has been achieved at 1 mg/ml protein concentration so from further 

on this concentration has been used for the protein immobilization. 30 min incubation 

time was sufficient to saturate the surface of the hydrophobic membrane with the protein. 

PEDOT:PSS has been chosen as the polymer matrix based on several considerations: (i) 

PEDOT:PSS is highly conductive (10 S/cm [40]), therefore electropolymerization allows 

for unhindered spatially directed polymer growth in the membrane pores [41], (ii) 

polymerization of the EDOT monomer in the presence of PSS can be carried out in 

aqueous environment, which is a clear advantage when imprinting proteins (iii) the 

PEDOT:PSS matrix shows low nonspecific protein adsorption [38, 39]. To impart 

magnetic properties to the polymer, commercially available superparamagnetic 

nanoparticles were mixed into the pre-polymerization solution. We have chosen Fe3O4 

nanoparticles with a hydrodynamic diameter of 100 nm, because this is the minimum size 

of multidomain-core particles that are in-batch separable by an external magnetic field. 

Very importantly, they were pre-functionalized with poly(styrenesulfonate), the same 

polymer as the dopant, supposedly enhancing their encapsulation in the polymer matrix 

by charge compensation, i.e. the positive charge on the electrosynthesized PEDOT chains 

are compensated by the negatively charged magnetic nanoparticles owing to their PSS 

coating. The 1 µm PC membrane pore diameter has been chosen accordingly, to allow 

free access of the magnetic nanoparticles into the pores. 

 

The surface imprinted magnetic PEDOT:PSS polymer rods were electrosynthesized in 

the avidin modified membrane pores using constant potential voltammetry until the pores 



were filled up completely with the polymer. A characteristic current transient recorded 

during electropolymerization is shown in Figure 3.  
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Figure 3: Current transient recorded during the electropolymerization of a mixture of 

0.01 M EDOT, 0.0125 M PSS and 12.5 mg/ml FluidMAG-PS in the pores of a PC 

membrane having an adsorbed layer of avidin on the pore walls. The inset shows the 

charge vs. time during polymerization. 

 

The initial increase in the current density indicates the instantaneous formation of a thin 

layer of conducting polymer underneath the membrane on the electrode from the 

penetrated monomer solution [39]. When the monomers are depleted from this thin layer 

the growth of the polymer is confined exclusively to the pores. This corresponds to the 

current maximum at ca. 20 seconds. After this point the current is decreasing rapidly to 

the value determined by the diffusion limited transport of the monomer within the pores. 

As the pore is gradually filled up with the electrically conductive PEDOT/PSS the 

diffusion path length of the monomers from the bulk solution is also shortened resulting 

in a close to linear increase in the current. The breakpoint observed at 260 seconds 



demarks a steeper increase of the current corresponds to the complete pore filling. If the 

electropolymerization is performed further the PEDOT:PSS film grows hemispherically 

around the pores at the solution facing surface of the membrane. To limit the polymer 

growth to the pore interior the polymerization had to be stopped at the characteristic 

breakpoint which is revealed only if the polymerization time exceeds this value. As the 

synthesis of the microrods has proven to be very reproducible in terms of the electrical 

charge required to fill up the pores, therefore, the polymerization in each synthesis cycle 

was stopped at 5 mC. After completing the polymerization the membrane was detached 

from the gold electrode surface and the polycarbonate membrane was dissolved in 

dichloromethane. This was followed by sequential washing steps to remove the organic 

solvent and reconstitute the microrods in water. Washing was done batchwise, collecting 

the magnetic particles using a magnetic separator, aspirating the liquid and reconstituting 

the particles in the next solvent by ultrasonication for 3 s. Finally, the surface imprinted 

magnetic particles were obtained as dispersion in aqueous phase which facilitates their 

use in applications where biological antibodies might otherwise be utilized. Non-

imprinted magnetic nanoparticles for comparison have been fabricated also without 

adsorbing avidin onto the PC membrane beforehand. 

 

Morphological characterization of the magnetic microrods by optical and scanning 

electron microscopy 

  

Optical microscope images of the particles were taken showing mostly separate, 

dispersed rods, including some aggregates (Figure 4). 



     

a.                                                                 b. 

Figure 4: Optical microscope images of surface imprinted magnetic microrods at 

different magnifications. 

 

Taking a closer look at the microrods with scanning electron microscope revealed that 

many of these aggregates are, in fact, partially fused polymer particles which are formed 

due to the intercrossing pores in the PC membrane (Figure 5).  

 

  

                               a.                                                              b. 

Figure 5: Typical SEM images of non-imprinted (a) and surface imprinted (b) magnetic 

PEDOT:PSS microrods.  (Note that the magnifications are slightly different.) 

 



There is no distinct difference at the magnification used for inspection between the 

surface morphology of non-imprinted and surface imprinted particles. The microrods 

have relatively high aspect ratio as determined by the geometry of the PC mold, i. e., their 

diameter is approx. 1 µm, equal to the pore diameter, while their length is around 7 µm, 

equal to the thickness of the membrane. They are robust as we found that they withstand 

short ultrasonication without breaking apart. 

 

Encapsulation efficiency of FluidMAG-PS magnetic nanoparticles into the magnetic 

microrods 

 

We hypothesized that the charge compensation mechanism will result in an efficient 

incorporation of the PSS coated magnetic nanoparticle. To find out the encapsulation 

efficiency we determined the iron content of the magnetic microrods as this can only 

originate from the magnetite content of the incorporated magnetic nanoparticles. AAS 

measurements revealed that the FluidMAG-PS magnetic nanoparticles contained approx. 

44 % w/w iron in the form of magnetite, while the iron content of the magnetic microrods 

was ca. 5.1 % w/w. This implies that the FluidMAG-PS content of the magnetic polymer 

rods is approximately 12 % w/w. The initial polymerization mixture contains 79 % w/w 

magnetic nanoparticle besides the EDOT monomer (5 % w/w) and the PSS (16 % w/w). 

This means that the polymer rods contain roughly 6.5 times less magnetic nanoparticles 

than the polymerization mixture. The reason for this is related with the competition 

between the two negatively charged species, PSS and FluidMAG-PS, to compensate in-

situ the positive charge of PEDOT chains formed during electropolymerization. 



However, the diffusion of the much larger size FluidMAG-PS within the pores is 

obviously slower than that of free PSS. The diffusion coefficient of FluidMAG-PS is 

estimated to be 2.5×10-8 cm2/s using the Stokes-Einstein equation while that of PSS is 

5×10-6 cm2/s [42]. While increasing the FluidMAG-PS/PSS ratio in the polymerization 

could have increased the amount of magnetic nanoparticles incorporated in the polymer 

microrods, this was unnecessary since the magnetic separability of the rods was adequate 

with this composition too. Of note, preliminary experiments shown that higher 

FluidMAG-PS content considerably decreased the rate of polymer growth while lower 

FluidMAG-PS/ PSS ratio (0.025 M PSS vs. 2.5 mg/mL FluidMAG-PS) resulted in rods 

that were not magnetic enough to be collected efficiently within a reasonable time. 

 

Magnetic properties of the magnetic polymer rods 

 

The main goal of the measurements described below was to verify that the FluidMAG-PS 

magnetic nanoparticles incorporated in the polymer rods transmit their magnetic 

properties to the microrods thus enabling the efficient magnetic collection and separation 

of the polymer particles. 

Magnetic properties of the FluidMAG-PS nanoparticles and microrod samples were 

characterized by two methods. The field dependence of their magnetization (M-H curve) 

was measured at room temperature with a superconducting quantum interference device 

(SQUID). The feasibility of magnetic collection of the rods from dilute suspensions using 

a permanent (NdFeB) magnet was demonstrated in routine assay conditions by optical 

transmission measurements. 



The corresponding magnetization curves of the FluidMAG-PS nanoparticles and 

microrod samples are shown in Figure 6. 
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Figure 6: Magnetization curves of the FluidMAG-PS nanoparticles (curve#1) and the 

PEDOT:PSS microrod samples (two independent batches: curve #2 and #3) normalized 

to 1 mg quantity of. (The error bars for the microrod samples are mostly related to the 

uncertainty of the magnetite content determination. The reproducibility of the 

magnetization measurement introduces negligible error.) 

 

For both types of samples, the magnetization curves show superparamagnetic behavior at 

room temperature. No remanent magnetization is observed within the precision of the 

measurement when the M-H curve is recorded with decreasing magnetic field. For both 

types of samples a fast saturation of the magnetization is observed in the field range of 2-

4 kOe (0.2-0.4 T). According to these results the magnetic properties of the magnetic 

nanoparticles remain intact during the polymerization. The difference observed between 

the magnetization of the two batches of rod samples dominantly originates from the error 

in the determination of their magnetite content. These results also support the 



reproducibility of our method for the synthesis of rods with high magnetic nanoparticle 

content.  

 

As described in the previous section, the polymerized microrod samples containing 

magnetic nanoparticles show superparamagnetic properties with a low field of saturation, 

which opens a way for their magnetic collection similarly to conventional magnetic 

nanoparticles [43]. To confirm and quantify this separation process we carried out optical 

transmission measurements at λ=635 nm using a red laser as illumination source on a 

suspended PEDOT:PSS microrod sample containing 0.3 mg/mL microrod in 

water:methanol mixture (50:50 v/v). Initially the suspension was ultrasonicated for 1 

minute to avoid the aggregation of the microrods. The light path length within the 

suspension was 3 mm. During the magnetic collection process we recorded the 

transmitted light intensity change in time, as a measure of the particle concentration, 

while carrying out the following steps: (i) the microrod suspension was stirred using a 

micropipette, (ii) after the swirling ceased (100 s) a NdFeB rod magnet was placed near 

the cuvette generating a magnetic field perpendicular to the incident light beam. 

Movement of the magnet was carried out by a linear translation stage which ensured the 

precise and quick positioning, thus the transition period between the zero- and finite-field 

states was limited to ~1 s. Time dependence of the transmission upon the magnetic 

collection is shown in Figure 7 where the different curves correspond to different magnet 

positions i.e. different magnetic fields (see Table 1), while the inset shows the zero 

magnetic field case, where the subsidence caused by gravity can be observed. 
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Figure 7: Temporal dependence of the light transmission in aqueous PEDOT:PSS 

microrod suspensions in static magnetic fields used to collect the rods from the 

suspensions. The different curves (#1, #2 and #3) correspond to different strength of the 

magnetic field as summarized in Table 1. Insertion of the magnet corresponds to t=0s. 

The results of fitting with exponential decay according to the formula T=1-c·exp(-t/τ ) 

are also indicated by dashed lines for each curve in the graph together with the 

corresponding values of the relaxation time, τ. The inset shows time dependence of the 

light transmission measured without magnetic field (curve #4). 

 

As shown in Figure 7, the transmission increases exponentially after the application of 

magnetic field (indicated as t=0 s in Figure 7) and approaches the level of 100% 

corresponding to the transmission of the water filled sample cell without the microrods. 

In this timeframe the measured transmission can be fitted well with the formula T=1-

c·exp(-t/τ ), where c is the reduction of the transmission in the zero-field initial state due 

to light absorption and scattering of the rods (being proportional to the rod concentration) 



and τ is the time constant of the magnetic collection. Thus, the density of beads in the 

suspension exponentially decreases in time during the magnetic collection. The time 

constants determined by the fitting for different positions of the magnet are listed in 

Table 1. 

 

 Magnet position
a
 

[cm] 

H
b
 

[kOe]
 

∂H/∂r
c
 

[kOe/cm] 

τ
d 

[s]
 

#1 0.5 3.18 3.8 20 

#2 1.1 1.62 1.6 50 

#3 2.3 0.54 0.4 110 

#4 infinity 0 0 1385 

Table 1: Time constants of the magnetic collection measurement at different distances 

from the magnet. Labels #1-#4 correspond to those used in Fig. 7. 

adistance between the pole of the rod-shape magnet and the light spot, 

bstrength of the magnetic field, 

cspatial derivative of the magnetic field (along the axial direction) at the light spot, 

dthe corresponding time constants of the magnetic collection measurements. 

 

Changing the position of the magnet varies the strength of the magnetic field at the 

location of the light spot and accordingly the magnetization of the microrods. Hence, the 

magnetic force acting on the microrods, (i.e. ( )0μ= ⋅m Hm Hm Hm H∇∇∇∇F , where µ0 is the permeability 

of vacuum and m is the magnetic dipole moment of a rod), can be efficiently controlled 

along with the timescale of the magnetic separation. In the field range of our study the 



relaxation time was found to be inversely proportional to the magnetic force. As can be 

seen in Table 1 the rod-like NdFeB magnet used in the present study generates a 

magnetic field with a relatively slow spatial variation. Scaling up of the magnetic force 

by an order of magnitude can be easily achieved using optimally shaped magnets or by 

arrangements based on several permanent magnets, which makes such magnetic 

separation efficient for rods with considerably lower level of magnetic nanoparticle 

content as well. 

One can observe in Figure 7 a relatively high noise at an early stage of the experiments 

which decays with longer times. This is due to the fluctuation caused by the rods moving 

in or out of focus in the very small focal spot size (10-100 µm) of the light beam. The 

noise is gradually reduced in time as the rods get collected by the magnet, i.e., cleared 

away from the detection volume. Similar reduction of noise occurs during sedimentation 

by gravity. 

 

Selective binding of avidin on the surface imprinted magnetic microrods 

 

The existence of selective protein binding sites on magnetic avidin-imprinted 

PEDOT:PSS microrods has been verified by measuring the adsorption isotherm of 

avidin-FITC on both the imprinted and non-imprinted polymer. The microrods were 

incubated with different concentration of the template protein, washed and visualized by 

a fluorescence microscope. Fluorescence intensity of the particles was calculated and 

plotted against the concentration of the incubating solution. Figure 8 shows the binding 

isotherms of non-imprinted and surface imprinted microparticles. 
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Figure 8: Binding curve of avidin-FITC on the non-imprinted and avidin imprinted 

PEDOT:PSS microrods (the error bars indicate the repeatability of 3 replicate 

measurements on the same sample). 

 

As can be seen from the experiment the amount of the template protein bound by the 

imprinted microrods far exceeds that of the non-imprinted rods. The microrods prepared 

in the presence of the target protein bind approximately 5 times more avidin than the non-

imprinted ones indicating the success of the imprinting process to create selective 

recognition sites on the polymer surface. This difference between imprinted and non-

imprinted polymer is substantially higher than what was achieved in a similar approach 

that used wide-pore silica beads as sacrificial microreactors and free-radical crosslinking 

polymerization for surface imprinting of proteins [44]. 

 

Conclusion 



 

For the first time, we have synthesized micron-sized surface imprinted magnetic particles 

by the template polymerization method that are able to selectively capture a target protein 

from the sample solution. PEDOT:PSS microrods containing superparamagnetic 

nanoparticles were generated by electropolymerization in uniform cylindrical pores of a 

track-etched polycarbonate membrane, the walls of which had been modified with the 

target protein, avidin by simple physical adsorption. Dissolution of the membrane 

resulted in a suspension of micrometer-size polymer rods with selective avidin binding 

sites on their surface. Magnetization measurements verified the successful incorporation 

of the magnetite nanoparticles. The results showed that they can be collected efficiently 

from solution using permanent magnets employed in classical magnetic nanoparticle 

assays and can be redispersed afterwards. This is an advantage in ligand binding assays 

where the surface imprinted microrods can serve as antibody substitutes. As a proof of 

concept the applicability of the PEDOT:PSS microrods for the selective binding of avidin 

has been verified by fluorescence microscopy measurements. Due to their high specific 

surface area, large magnetic susceptibility, low remanent magnetization, simplicity of 

preparation, and high affinity towards the target protein, surface imprinted magnetic 

PEDOT:PSS microrods appear to be potential candidates in binding assays, in drug 

delivery and in trace enrichment of specific targets.  
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