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Abstract  

Thoron (220Rn) is the second most abundant radon isotope in our living environment. 

In some dwellings it is present in significant amount which calls for its identification and 

remediation. Indoor thoron originates mainly from building materials. In this work we have 

developed and tested an experimental technique to measure thoron generation rate in building 

material samples using RAD7 radon-thoron detector. The mathematical model of the 

measurement technique provides the thoron concentration response of RAD7 as a function of 

the sample thickness. For experimental validation of the technique an adobe building material 

sample was selected for measuring the thoron concentration at nineteen different sample 

thicknesses. Fitting the parameters of the model to the measurement results, both the 

generation rate and the diffusion length of thoron was estimated. We have also determined the 

optimal sample thickness for estimating the thoron generation rate from a single 

measurement.  
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Symbols 

 cross-sectional area of the cylindrical sample holder (m2) :ܣ

 thoron activity concentration (Bq m-3) :ܥ

 diffusion coefficient in the sample (m2 s-1) :ܦ

 thoron generation rate in the sample (Bq m-3 s-1) :ܩ

 height of the sample holder (m) :ܪ

: thickness of the sample (m) 

݆: activity flux of thoron (Bq m-2 s-1) 

L: partition coefficient of thoron between water and air phase (-) 

m: water saturation (-) 

 air flow rate induced by the RAD7 radon-thoron detector (m3 s-1) :ݍ

 time (s) :ݐ

ܸ: rest of the volume of the sample holder above the sample (m3) 

 elevation (m) :ݖ

 ௗ: diffusion length of thoron in the sample (m)ݖ

 (-) partition corrected porosity :ߚ

 (-) porosity :ߝ

 reciprocate of the diffusion length (m-1) :ߛ

 decay constant of thoron (s-1) :ߣ

 

Introduction 

The only gaseous isotope of the 232Th decay chain is 220Rn (thoron) which, similarly to 
222Rn (radon) in the 238U decay chain, is omnipresent in our living environment. Its 

contribution to the average effective dose to people from natural background radiation is 

estimated to be about an order of magnitude smaller than that of radon (UNSCEAR, 2000) 

due to its short half-life (55.6 s). However, several studies (e.g. Sciocchetti et al., 1992; 

Németh et al., 2005; Shang et al., 2005; Yamada et al., 2005; Yonehara et al., 2005) show 

high thoron activity concentrations in some dwellings. In most of these cases thoron 

originates from building materials made by soil and mud, like in case of adobe dwellings in 

Hungary. Significant amount of thoron can enter buildings from this type of walls; hence the 

measurement of thoron generation rate in building material samples can be highly useful to 

characterize radiation safety of these materials (Tuccimei et al., 2006). In one of our ongoing 
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study, in which tens of Hungarian adobe building material samples are tested for radiation 

safety purposes (e.g. Szabó et al., 2013), the development of an appropriate experimental 

method to measure thoron generation rate became necessary. Ujić et al. (2008) published a 

method using SSNTD detectors, in this paper we present an experimental technique 

developed for this purpose using RAD7 radon-thoron detector. 

 

Experimental setup 

The schematic view of the experimental setup is shown on Fig.1. It consists of a 

cylindrical shape aluminum sample holder with cross-sectional area of ܣ ൌ 38.5 ܿ݉ଶ and 

height of ܪ ൌ 9.5 ܿ݉; plastic tubing; a gas-drying unit filled with desiccant (CaSO4 with 3% 

CoCl2 as indicator); an aerosol filter and a RAD7 radon-thoron detector (Durridge Co., 2013). 

All connections are insulated by parafilm (product of the Pechiney Plastic Packaging 

Company). Unlike radon, thoron cannot leak in significant amount from the experimental 

setup due to its very short half-life. 

 

 
 

Fig.1.: Schematic representation of the experimental setup. The tone of arrows together with c and c/2 

represent the decreasing thoron concentration along the air flow’s path. The measurable thoron 

concentration in the air above the sample (c) depends on the sample thickness (h) and the properties 

of the sample. The sample holder has a height indicated by H and a cross-sectional area indicated by 

A. V means the volume above the sample in the sample holder and q is the air flow rate induced by the 

pump of the RAD7 radon-thoron detector (Durridge Co. Inc., 2000). 
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The cylindrical shape sample with a thickness of h occupies the bottom part of the 

sample holder. Thoron is generated by the decay of 224Ra atoms present in the solid phase of 

the sample. Part of these atoms is emanated into the pore space of the sample. Thoron 

generation rate (ܩ) in the sample is defined as the activity of thoron that is emanated into the 

pore space of unit bulk volume of the sample in unit time (Bq m-3s-1). We assume that the 

only transport process that results in thoron exhalation from the sample is molecular diffusion. 

Thoron that diffuses into the air-filled part of the sample holder (with volume: ܸ ൌ ܪሺܣ െ

݄ሻ) is sampled continuously by a RAD7 detector. The RAD7 detector induces a stable air 

circulation through the system at the calibrated rate of ݍ ൌ 11 ܿ݉ଷିݏଵ (Durridge Co., 2013). 

This flow rate is high enough to ensure that the air is mixed sufficiently and thoron is 

distributed uniformly both in the air-filled space in the sample holder and in the measuring 

chamber of the RAD7 detector.  

Under steady state conditions the RAD7 detector provides and displays the activity 

concentration of thoron that is sampled at the end of its inlet tubing. In this closed system, 

thoron concentration grows to within 3% of its secular equilibrium state in about five minutes. 

The RAD7 factory calibration for thoron is based on a standard RAD7 inlet filter, a 3-foot 

long, 3/16 inch inner diameter vinyl hose, and a small (6 inch) drying tube. Because of the 

short half-life of thoron, the volume of the measurement chamber (750 cm3) and the calibrated 

flow rate, the activity concentration of thoron in the detector cell is estimated to be about half 

of its value at the sampling point. This decay mainly happens in the RAD7, and it is negligible 

in the plastic tubes and the gas-drying unit. For these reasons, the RAD7 displays the double 

of the concentration that is in its detector cell. As a further consequence, the thoron 

concentration of air that returns into the air volume of the sample holder in our experimental 

setup is also half of the concentration that is found there under steady state conditions. This 

causes significant attenuation which is taken into account in our model calculation. 

 

Model 

In this section we derive the formula to calculate the thoron concentration (ܥ, (Bqm-3)) 

in the air-filled volume of the sample holder, which is measured and displayed by the RAD7 

detector in our experimental setup. Because of the cylindrical symmetry of the sample holder, 

thoron concentration in the pore space of the sample, ܥሺݖሻ, depends only on the elevation 

coordinate (ݖ). Diffusion of thoron in the sample is described by the steady state transport 

equation: 
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where D is the thoron diffusion coefficient in the sample (m2 s-1), λ is the decay constant of 

thoron (0.0125 s-1) and ߚ ൌ ሺ1 െ݉ ൅  is the partition corrected porosity taking into ߝሻ݉ܮ

account porosity (ߝ), water saturation (݉) and the partition coefficient of thoron between 

water and air phase (ܮ) (Andersen, 1992). We apply no flux boundary condition on the bottom 

of the sample container, i.e. 
ௗ஼ሺ௭ሻ

ௗ௭
ቚ
௭ୀ଴

ൌ 0. The boundary condition on the top surface of the 

sample states that the activity concentration of thoron in the pore space of the sample equals 

that in the air-filled volume of the sample holder, ܥሺݖ ൌ ݄ሻ ൌ  The rate of change of thoron .ܥ

activity concentration in the air-filled volume of the sample holder is described by the 

following differential equations, which however, under steady state conditions, reduces to an 

algebraic equation: 
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where ݆ ൌ  െܦ 
ௗ஼ሺ௭ሻ

ௗ௭
ቚ
௭ୀ௛

is the diffusion flux of thoron on the top surface of the sample. This 

system of equations can easily be solved for the thoron concentration measured in the air-

filled volume of the sample holder and displayed by RAD7, ܥ, which is expressed here as a 

function of the thickness of the sample: 

 

ሺ݄ሻܥ ൌ
ܩ

ߚߣ ൅
ܪሺߣሼߛ െ ݄ሻ ൅ ሻሽܣሺ2/ݍ

tanhሺ݄ߛሻ

 , 

 

where ߛ ൌ ඥܦ/ߚߣ (m-1) is reciprocating ݖௗ, the diffusion length of thoron in the sample (m). 

 

Measurements 

For experimental validation of the method we have selected an adobe building 

material sample (originated from Gyomaendrőd, Békés County, SE-Hungary), and measured 

the dependence of thoron activity concentration as a function of the sample thickness. The 

sample has a comparably hard, stable structure which makes it possible to cut and rasp it to 



6 

 

the appropriate sizes and carry out the measurements. The sample was shaped to the size of 

the best possible fit in the sample holder with the maximum thickness such that it was still 

possible to seal the chamber. The gap between the sample sides and the inner wall of the 

sample holder was filled up with the powder of the sample material to restrict thoron 

exhalation to the top surface only. In this experiment, sample thickness was reduced from 

8.35 cm to 0.85 cm in nineteen non-equal steps. Thoron concentration measurements were 

carried out by the RAD7 detector for at least 4 hours with 15 minutes integrating time 

intervals, and arithmetic average and standard error (standard deviation of separate 

measurement results divided by the root of number of measurements) was calculated from 

these measured values for each sample thickness. 

 

Results and discussion 

Experimental results of thoron concentration measurement as a function of sample 

thickness is presented on Fig.2. together with the curve of best fit of the model formula. 

Origin data analysis and graphing software was used to fit the model. 

 

Fig.2.: The measured thoron concentration (c) (quadrates) as a function of the sample thickness (h) in 

the experiment and the best fit of the formula of the model calculation (line). The fixed parameters and 

the results of the fit (bold numbers) are presented in the right bottom corner. On the figure we present 

the fit fixed value of β = 0.56. Note that the Y axis starts at 300 Bq m-3. 
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We found that the developed formula describes very well the experimental results. It is 

possible to determine the thoron generation rate, as well as the γ parameter for the selected 

adobe sample via a non-linear curve fitting. We have also tried to fit the parameter ߚ, 

however considering it as a free fitting parameter resulted in physically meaningless result. 

However, we have found that constraining its value between meaningful range (0 ൏ ߝܮ ൏

ߚ ൏ ߝ ൏ 1ሻ has negligible effect on the fitted values of thoron generation rate and diffusion 

length. Therefore, it is meaningful to apply a fixed value for ߚ in the fitting procedure either 

by estimating its value or by obtaining it from independent measurements of the porosity and 

water saturation of the sample.  

In the case when the porosity and the water saturation is known we can also make an 

estimate of the diffusion coefficient and consequently of the diffusion length. The diffusion 

coefficient can be estimated for example as 

 

ܦ ൌ ௔ܦߚߝ expሺെ6݉ߝ െ 6݉ଵସఌሻ, 

 

where ܦ௔ ൎ 1.1 ∙ 10ିହ݉ଶିݏଵ is the diffusion coefficient of thoron in air (Rogers & Nielson, 

1991). In our experiment we have obtained the value of ߛ ൌ 73 േ 5 ݉ିଵ as a result of 

nonlinear curve fitting. This value can also be accepted as a good estimate for other similar 

adobe samples. When ߚ and ߛ is known, thoron generation rate can be obtained from a single 

measurement. For routine measurements, when large number of samples has to be measured 

this is an advantage, because measuring the model predicted curve is difficult and requires a 

lot of effort and time both in preparing the sample and carrying out the measurements. 

The optimum thickness of the sample is in the middle of the height of the sample 

holder at around 5 cm. Here deviations in sample thickness do not cause high levels of 

uncertainty (Fig.2.) and it also provides high thoron concentrations, which makes the 

measurement more precise.  

 

Conclusions 

In this work we have developed and validated a new experimental technique to 

measure thoron generation rate in building material samples using RAD7 radon-thoron 

detector. The developed mathematical model of the measurement technique described well 

the thoron concentration response of RAD7 as a function of the sample thickness. Fitting the 

parameters of the model to the measurement results, both the generation rate and the diffusion 
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length of thoron in the sample material was estimated. For the purpose of large scale 

measurements making reasonable assumptions we have determined an optimal sample 

thickness (5 cm) for estimating the thoron generation rate from a single measurement.  
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