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ABSTRACT

Antimicrobial resistance poses a serious challenge to global public health. In this
study, fifty bacterial strains were isolated from the sediments of a freshwater lake
and were screened for antibiotic resistance. Out of fifty isolates, thirty-three isolates
showed resistance against at least two of the selected antibiotics. Analysis of 16S
rDNA sequencing revealed that the isolates belonged to ten different genera, namely
Staphylococcus (n = 8), Bacillus (n = 7), Lysinibacillus (n = 4), Achromobacter (n=3),
bacterium (n = 3), Methylobacterium (n = 2), Bosea (n = 2), Aneurinibacillus (n = 2),
Azospirillum (n = 1), Novosphingobium (n = 1). Enterobacterial repetitive intergenic
consensus (ERIC) and BOX-PCR markers were used to study the genetic relatedness
among the antibiotic resistant isolates. Further, the isolates were screened for their
antimicrobial activity against bacterial pathogens viz., Staphylococcus aureus (MTCC-
96), Pseudomonas aeruginosa (MTCC-2453) and Escherichia coli (MTCC-739), and
pathogenic fungi viz., Fusarium proliferatum (MTCC-286), Fusarium oxysporum
(CABI-293942) and Fusarium oxy. ciceri (MTCC-2791). In addition, biosynthetic genes
(polyketide synthase II (PKS-II) and non-ribosomal peptide synthetase (NRPS))
were detected in six and seven isolates, respectively. This is the first report for the
multifunctional analysis of the bacterial isolates from a wetland with biosynthetic
potential, which could serve as potential source of useful biologically active metabolites.

Subjects Microbiology
Keywords BOX-PCR, Antibiotic susceptibility, PKS II, ERIC-PCR, NRPS, 16S rRNA gene

INTRODUCTION

Bacteria play a vital role in benthic food web, nutrient recycling and decomposition
of various organic compounds in aquatic environments (Fischer, Wanner ¢ Pusch, 2002).
Sediment is a special habitat among the aquatic ecosystem and the numbers of microbes are
much higher than the corresponding water bodies (Zinger et al., 2011). The bacteria isolated
from such ecosystems have an ecological significance like resistance to antibiotic which
would have been adopted in the due course of selection processes (Nair, Chandramohan
& Loka-Bharathi, 1992; Silva ¢& Hofer, 1995).

One major challenge with reference to human health is the spreading and appearance of
antibiotic resistance among the pathogens (Martinez & Baquero, 2014; Huang et al., 2016).
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This can be tackled by the discovery of new antibiotics having an alternate mode of action
which can eliminate disease causing pathogenic microbes. Screening of microorganisms
from their natural habitat is an important step for the isolation of therapeutic compounds
(Newman & Cragg, 2012). As a result, researchers are trying to look for new organisms
which have the potential to produce novel antibiotics from unexplored habitats (Oskay,
Tamer ¢ Azeri, 2004). Aquatic microorganisms are of special interest as they have not been
exploited extensively compared to terrestrial microbes (Zhang et al., 2005).

Many molecular techniques have been developed in recent years for assessing genomic
diversity of bacteria. Molecular identification of bacteria was performed by 16S rRNA gene
sequencing as it is most conserved region and less prone to mutations (Kaushlesh et al.,
2012). PCR fingerprinting methods like enterobacterial repetitive intergenic consensus
(ERIC)-PCR and BOX-PCR has been extensively used to study genetic relationship as they
have discriminatory capability in differentiating different genera of bacteria (Versalovic,
Koeuth ¢ Lupski, 1991; Rademaker et al., 2000). Tamdil is a reservoir freshwater lake
situated 110 kms from Aizawl, the capital of Mizoram, North East India. The lake
is reconstructed as a part of building fishing reservoirs by the Fisheries Department,
Government of Mizoram, and is one of the 115 wetlands in India identified under the
National Wetland Conservation Programme (vide D.O.No.J/2201/01/10-CS(W)).

The aim of the present study was to assess the diversity of cultivable bacteria from
the sediments of the freshwater Tamdil Lake, to study their antimicrobial activities, their
resistant to frequently used antibiotics and genetic relationship among the organisms.
Investigating the bacterial population in fresh water sediments is of great importance in
the general understanding of the aquatic ecosystem.

MATERIALS AND METHODS

Sample collection

Water sediment samples were collected from five different locations of Tamdil Lake
(23° 44'20.4"N and 92°57'10.8'E) during the month of April and May 2013 in a sterile
screw capped tube and brought into Molecular Microbiology and Systematics Laboratory,
Department of Biotechnology, Mizoram University (Fig. S1). The samples were stored at
4 °C till processed.

Isolation and antibiotic susceptibility profiling

Isolation was done using serial dilution method as described by Brown (2005) with few
modifications. Purified bacterial isolates were grown in nutrient broth and incubated at
37 °C, 150 rpm for 72 h. The grown bacterial suspension was spread on Muller Hinton agar
(MHA) media using a sterile spreader. The plates were dried before placing the diffusion
discs containing antibiotics. Susceptibility of the isolates to 12 different antibiotics was
performed following Kirby Bauer disk diffusion method as described by Robert et al. (2009)
as per National Committee for Clinical Laboratory Standards (NCCLS). Commercially
available discs containing gentamicin (10 pg); Norfloxcin (30 pg); tetracycline (30 pg);
ampicillin (10 pg); erythromycin (15 pg); streptomycin (30 pg); methicillin (5 pg);
ofloxacin (5 pg); kanamycin (5 pg); furazolidone (50 pg); ketoconazole (50 pg) and
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nitrofurantoin (200 png) were used. Antibiotic sensitivity was observed by measuring the
diameters of the inhibition zone in mm and categorized as resistant, intermediate and
sensitive to antibiotics.

Genomic DNA extraction, 16S rRNA gene amplification and
phylogenetic analysis

Genomic DNA was isolated by using bacterial DNA extraction kit (Invitrogen Life
technologies) as per manufacturer’s protocol. The 16S rRNA gene fragment was amplified
by using universal primers—PA: 5-AGA GTT TGA TCC TGG CTC AG-3') and PH:
5-AAG GAG GTG ATC CAG CCG CA-3' (Qin et al., 2009). Reaction was carried out in a
total volume of 25 pl consisting 1.0 pl of genomic DNA (50 ng), 0.2 pl of each primer (10
pmol), 2.0 ul of deoxynucleotide triphosphates (2.5 mM each), 2.5 ul of 1X PCR buffer,
0.2 pl of Taqg DNA polymerase (1 U/ pl) and 15.9 pl MilliQ grade water. PCR was performed
on Veriti thermal cycler (Applied Biosystem, Singapore) under following conditions: initial
denaturation at 95 °C for 4 min, followed by 30 cycles of denaturation at 94 °C for 30 s,
annealing at 57.5 °C for 40 s and extension at 72 °C for 1.3 min with a final extension
step at 72 °C for 10 min. A negative control reaction mixture without DNA template of
bacteria was also included with each set of PCR reactions. The amplified PCR product
was run on 1.5% agarose gel and visualized under gel documentation system Bio-Rad
XR+ system (Hercules, CA, USA). The amplified products were purified using Purelink
PCR Purification Kit (Invitrogen Life technologies) and were sequenced commercially at
Sci-Genome Labs Pvt. Ltd, India.

ERIC-PCR fingerprinting

The primer sequences ERIC-1R (5-CACTTAGGGGTCCTCGAATGTA-3’) and ERIC-2F
(5'-AAGTAAGTGACTGGGGTGAGCG-3") were used to amplify the regions of bacterial
genome positioned between the ERIC sequences as described by Versalovic, Koeuth ¢
Lupski (1991). PCR amplification was carried out on a Veriti thermal cycler (Applied
Biosystem, Singapore) in a total reaction volume of 25 pl. The reaction mixture consist of
DNA template (50 ng)—2.5 pl, 10X reaction buffer—2.5 pl, ANTP mix (10 mM)—2 pl,
10 pmol of each primer (ERIC 1R and ERIC 2F), 1 ul of MgCI2 (25 mM), and 2 U of Taq
DNA polymerase (In-vitrogen, USA). PCR was performed under following conditions:
initial denaturation at 95 °C for 7 min and then subjected to 30 cycles of denaturation
at 94 °C for 1 min, annealing at 50 °C for 1 min and extension at 65 °C for 8 min with

a final extension step at 65 °C for 16 min. A negative control reaction mixture without
DNA template of bacteria was also included with each set of PCR reactions. The amplified
products were separated by electrophoresis on a 2% agarose gel using 1X TAE buffer. The
PCR bands were analyzed under UV light and documented using a BioRad Gel Doc XR™
system (Hercules, CA, USA).

BOX-PCR fingerprinting

BOXAIR PCR fingerprinting was done using primer sequences BOXAIR (5'-CTACGG
CAAGGCGACGCTGACG-3' as described by Rademaker et al. (2000). PCR amplification
was performed in a total volume of 25 pl reaction mixture, containing 50 ng of genomic
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DNA, 2.5 pl of 10X Taq Buffer, 1.5 pl of MgCl2, 2.0 pl of 2.5 mM dNTPs (2.5 mM), 1 pl
of 10 pmol BOXAIR primer, 1 pl of DMSO (10%), 0.5 pl of BSA (10 mg/ml) and 1 pl
of 2 U Taq DNA polymerase. The DNA was amplified under the following conditions:
initial denaturation at 95 °C for 7 min followed by 30 cycles at 94 °C for 1 min, at 55 °C for
1 min, and at 65 °C for 8 min with a final extension step at 65 °C for 10 min. The amplified
products were separated and visualized as stated above.

Screening for antibacterial activity

The selected isolates were screened for their antibacterial activity against three pathogenic
bacterial strains; Staphylococcus aureus (MTCC-96), Pseudomonas aeruginosa (MTCC-
2453) and Escherichia coli (MTCC-739), all were obtained from the Microbial Type
Culture Collection, Institute of Microbial Technology (IMTECH), Chandigarh. Pure
isolates were grown in nutrient broth for extract preparation. The grown cultures were
centrifugation at 8,000 rpm for three min and the supernatant was used for screening of
antimicrobial activity by using agar well diffusion method (Saadoun & Muhana, 2008).
The test pathogenic bacteria were spread on nutrient agar plate and wells were prepared
using sterile cork borer of 6 mm diameter. A total of 50 pl clear supernatant of bacterial
isolates were dispensed into each wells and the plates were incubated at 37 °C for 24 h.
The antimicrobial activities of the isolates were observed by measuring the diameter of the
inhibition zone around each well.

Screening for antifungal activity

All the isolates were screened for their antagonistic activity against three plant pathogenic
fungi viz. Fusarium proliferatum (MTCC-286), Fusarium oxysporum (CABI-293942) and
F.usarium oxy. ciceri (MTCC-2791) by dual culture in vitro assay (Bredholdt et al., 2007). All
plates were inoculated at 28 °C for seven days and percentage of inhibition was calculated
by using the formula: C — T /C %100, where, C is the colony growth of fungal pathogen in
control, and T is the colony growth in dual culture.

Detection of biosynthetic gene sequences (PKS Il and NRPS)

The potential antagonistic isolates were subjected for the amplification of genes for
KS domains of Polyketide synthase (PKS-II) and the adenylation domains of non-
ribosomal peptide synthetase (NRPS). NRPS gene fragments were amplified using
degenerate primers: A3F 5'-GCSTACSYSATSTACACSTCSGG-3’ and A7R 5'-SASGTCV
CCSGTSGCGTAS-3" (Ayuso-Sacido & Genilloud, 2005). The degenerate primers, KSIF
5'-TSGCSTGCTTGGAYGCSATC-3" and KSIR 5-TGGAANCCGCCGAABCCTCT-3/,
were used for amplifying PKS-1I (Yuan et al., 2014). The PCR products were visualized
under gel documentation system as stated above.

PKS Il (50 nL)

For PKS II gene amplification, we used 3 pL of template DNA, 5 pL 10X buffer, 1 uL of
MgCl, (25 mM), 1 pL DMSO (10%), 5 pL of ANTP (2.5 mM), 1.8 nL each primer (10
mM) and Taq DNA polymerase (2U). PCR conditions as follows: 5 min at 95 °C, followed
by 35 cycles of 1 min at 95 °C, 1 min 30 s at 58 °C and 2 min at 72 °C, followed by a 10-min
extension at 72 °C.
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NRPS (50 nL)

For NRPS gene amplification, we used 3 pL template DNA, 5 pL 10X buffer, 1 pL of MgCl,
(25 mM), 1 uL DMSO (10%), 5 pL ANTP (2.5 mM) 2 pL each primer (10 mM) and Taq
DNA polymerase (2U). PCR conditions as follows: 5 min at 95 °C, followed by 35 cycles of
1 min at 95 °C, 2 min at 59 °C and 4 min at 72 °C, followed by 10 min extension at 72 °C.

Statistical Analysis
DNA Sequences were compared with NCBI GenBank database using BlastN search
program and sequences were aligned using the Clustal W software packaged in MEGA 5.05
(Thompson et al., 1997; Kumar et al., 2012). Suitable model was selected according to the
lowest BIC (“Bayesian Information Criterion”) and the highest AIC (“‘Akaike Information
Criterion”) scores. The phylogenetic tree was constructed by Neighbour joining method
using MEGA 5.05 with Kimura 2-parameter model (R = 1.53) (Kimura, 1980), taking
E. coli as an out group. The robustness of the phylogenetic tree was tested by bootstrap
analysis using 1,000 replicates using p-distance model (Felsenstein, 1985).

Polymorphic DNA band were recorded in binary form i.e., 1 in case of presence
of band and 0 when there is no band, to generate a binary matrix (Sneath ¢ Sokal,
1973) for ERIC and BOX. The binary matrix was used to calculate the Simple Matching
(SM) coefficient, phylogenetic tree was constructed using the Unweighted Pair Group
Method with Arithmetic Mean (UPGMA) method (Lopez & Alippi, 2009) using Numerical
Taxonomy SYStem (NTSYS version 2.2).

RESULTS

Isolation of bacteria

A total of fifty cultivable bacteria were isolated from the sediment of Tamdil Lake, exhibiting
distinct colony characteristics like size, opacity, pigmentation and texture. The colonies of
bacterial strains were soft, sticky and also observed with white, red and yellow colours. The
microscopic analysis indicates that 67% of the isolates were gram positive and 33% were
gram negative bacteria.

Antibiotic sensitivity assay

A total of 12 standard known antibiotics were used to screen bacterial strains for their
antibiotic sensitivity pattern (Table 1). Out of 50 bacteria examined, 33 strains showed
resistance to at least two of the antibiotics tested. All the selected isolates showed resistance
against methicillin and ampicillin (100% each). Most of the isolates were susceptible to
tetracycline (n = 32) followed by norfloxacin (n =29), genatamycin (n = 27), furazolidone
(n=24) and ketoconazole (n =23). The parentage degree of resistance to erythromycin,
streptomycin, kanamycin, nitrofurantoin and ofloxacin was 51.5, 48.4, 39.3, 33.3 and 24.2,
respectively. All the isolates were more sensitive against gentamicin except BPSWACI14, 83
and 109. The isolates BPSWACY, 14, 82, 83, 84, 108 and 109 showed resistance against six
out of 12 antibiotics tested which might be good candidates for antibiotics production.
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Table 1 Antibiotic sensitivity profile of bacterial isolates against 12 tested standard antibiotics.
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Antibiotic susceptibility

—
i

Gen

of

Nx

E

es!
&3

&

Z
-

BPSWAC1
BPSWAC3
BPSWAC4
BPSWAC5
BPSWAC6
BPSWAC7
BPSWAC9
BPSWAC14
BPSWAC20
BPSWAC26
BPSWAC39
BPSWAC41
BPSWAC79
BPSWACS80
BPSWACS81
BPSWACS2
BPSWACS3
BPSWACS84
BPSWACS5
BPSWAC90
BPSWAC91
BPSWAC92
BPSWAC93
BPSWAC94
BPSWAC107
BPSWACI108
BPSWACI109
BPSWACI110
BPSWACI111
BPSWACI112
BPSWACI113
BPSWACI114
BPSWACI115

=~ ”® ”®®®”®”® PP ®I®TPFIIRPRIAIRIIAIRIRIRIAIRIRIAIRI A >
1 T R R R O R R O B R O R O N I R R O R R R O I R O R T O R S R R R 7 T R S R
N R R R R R I R O R R R R RO R T R - I O R R O R R R - R R - R R B 7 R 7 B R R

7 P® ™I IAI I I AIRIRRIRRRIRIRIRIIIIIIIAIRIRIAIRIRIARIRIAI AL

R IR R R I R R R R T R R R R T R B R R R R R R R R R T R - B - - R - R R R RO

S
S
I

R
S
S
R
R
I

I

S
R
R
S
S
R
S
R
R
S
R
S
R
S
S
R
R
S
I

S
S
S
I

»w L v = v ¥ ™ W ®Y»EE W =g Wi " W LW Y= ®»h o ®»E WL — g = »ln

NN R N R R R RN I RO N R R R R 7 B - C I - R - B R R 7 SR R I - R I S - R R - R RO

R I R R R R R B R R R R S R - B R - R - I O R R R O R - B R - - I R R B B 7 ST R S R

N R R R TR R R R R R I R - R - B R R R R B R R B R R R - R R - I 7 R 7 ST R R

Notes.

Degree of sensitivity: >10 mm, Sensitive; 5.0-9.9 mm, intermediate; 0.0-4.9 mm, resistant.
Gen, Gentamicin (10 ©g); Nx, Norfloxcin (30 ug); T, Tetracycline (30 pg); A, Ampicillin (10 ug); E, Erythromycin

(15 ng); S, Streptomycin (30 ng); M, methicillin (5 ug); Of, ofloxacin (5 ng); K, Kanamycin (5 n); Fr, Furazolidone

(50 pg); Kt, Ketoconazole (50 pg); Nf, Nitrofurantoin (200 png).

ERIC-PCR fingerprinting

The ERIC-PCR fingerprinting of the isolates yielded a discriminatory patterns with genomic

size ranging from approx. <100 bp to 3.0 kb. A dendrogram (Fig. 1A) was constructed

by using Jaccard similarity coefficients and the UPGMA method. Dendrogram generated
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Figure 1 Dendrogram generated from (A) ERIC-PCR and (B) BOX-PCR genomic fingerprints of bacterial isolates using Ntsys 2.0.

by ERIC-PCR divided the isolates into two clusters (A & B). Cluster A was bigger and
divided into 2 sub-clusters (Al and A2). Cluster A consist of 25 isolates belonging to the
genus Staphylococcus, Lysinibacillus, Azospirillum, Bacillus, Bacterium and Aneurinibacillus.
Cluster B consist of 8 isolates comprising different genera belonging to Novosphingobium,
Bosea, Methylobacterium and Achromobacter. Isolates BPSWAC82 and BPSWAC93 showed
100% similarity and were identified as Methylobacterium based on 16S rRNA gene sequence.
This result agreed with the phylogenetic tree of the 16S rDNA with bootstrap supported
value of 88%.

BOX-PCR fingerprinting

BOX-PCR fingerprinting of a total of 33 isolates showed specific patterns corresponding
to particular genotypes and size recognizable bands were between <100 bp to 3 kb. A
dendrogram generated from BOX-PCR analysis comprised of two major clusters (A & B).
Cluster A was larger containing 24 isolates whereas cluster B consist of nine isolates. Cluster
A is divided into 2 sub-cluster (A1 and A2). Staphylococcus and Lysinibacillus were grouped
together in cluster A1 whereas Achromobacter, Bacillus and Aneurinibacillus were grouped
together in cluster A2. Cluster B is also divided into two sub-cluster (B1 and B2) comprising
of different genera belonging to Bacterium, Azospirillum, Methylobacterium, Bosea and
Novosphingobium (Fig. 1B). BOX-PCR analysis demonstrated high discriminatory ability
by constructing genus-specific clusters that were able to differentiate all the different genera
reported in this study.

Evaluation of antimicrobial activity

The selected 33 isolates based on their antibiotic susceptibility profile were tested for
antimicrobial activities against bacterial pathogens (Staphylococcus aureus, Pseudomonas
aeruginosa and Escherichia coli) and fungal pathogens (Fusarium proliferatum, F. oxysporum
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Table 2 In vitro antagonistic activity of selected bacterial isolates against fungal and bacterial pathogens and detection of biosynthetic genes.

Isolate no. NCBI Percentage of inhibition (PI + SD) Zone of inhibition in mm (ZI & SD) PKSII NRPS

accession

no

F. oxysporum F. oxy. ciceri F. proliferatum  E. coli P. aeruginosa . aureus
BPSWACY9  KM?243385  0.00° 0.00? 0.00? 940.1° 64029 940.18° = =
BPSWAC14 KM405299  60.50 & 0.00°  64.38 £0.17>  0.00? 940.1° 12 4 0.2 10 £0.05 + +
BPSWAC20 KM405305  0.00° 58.9 & 0.26"%  0.00° 10 £ 0.1° 8 4 0.10°% 9£0.2% - +
BPSWAC82 KR857324  73.68 +0.012"% 61.64 & 0.02*4%  73.68 +0.12>  940.05*° 12 +0.15 94 0.05° + +
BPSWACS83 KR857325  65.78 £ 0.28"¥%  0.00° 0.00° 7 £0.25%%¢ 8 4 (.05 - - -
BPSWAC84 KR857326  0.00% 39.72 4 0.001%4M 47,36 £ 0.02%% 94 0.0 12 4 0.3% 10402  + 4+
BPSWAC90 KT232317  47.36 4 0.03%4™ 452 4 0.02°4M  47.36 4 0.14%% 8 4 0.02°4 7 £ 0,155 - + +
BPSWACI108 KT429618  60.50 +0.03%  39.72 & 0.09*¢™M 47.36 4-0.08%% 94+0.02* 6+0.15° 940.1° + +
BPSWAC109 KT429619 50 = 0.045°d™ .00 0.00? 940.1*° 94 0.05%¢ 11£01%  + +
Notes.

Mean (+SD) followed by the same letter(s) in each column are not significantly different at P < 0.05 using Duncan’s new multiple range test, (4) and (—) indicates the presence
and absence of PKS II and NRPS genes.

and F. oxy. ciceri). Out of 33 isolates, nine strains exhibited antibacterial activity against
two tested pathogens (Table 2). Only two isolates BPSWAC82 and BPSWAC108 showed
positive activity against all the bacterial and fungal pathogens. Isolate BPSWAC82 showed
highest activity against F. oxysporum (73.68%) and F. proliferatum (73.68%), whereas
BPSWACI14 was found high activity against F. oxy.ciceri (64.38%). On the other hand,
isolate BPSWAC20 had acute activities against bacterial pathogens E. coli (10 mm), whereas
BPSWACI109 exhibited highest activity against S. aureus (11 mm) (Table 2).

Detection of PKS and NRPS genes in selected strains

Six isolates out of 33 strains visualised band in type II polyketide synthases (PKS-II)
with an amplification size of 600 bp (Fig. 52), whereas nonribosomal peptide synthetases
(NRPS) genes were detected in seven isolates (21.2%) with expected size of 700 bp
(Fig. S2). Isolates BPSWACI14, 82, 84, 90, 108 and 109 showed positive amplification
products with both the degenerate primers for PKSII and NRPS respectively (Table 2).
Isolates BPSWAC21 showing band against NRPS primers also indicated the highest
antimicrobial activities against E. coli pathogens. Isolate BPSWACI14 identified as
Novosphingobium sp. and showed antimicrobial biosynthetic potential in both genes.
This isolates was found as rare genera among them and may be useful for isolation of
natural products.

Sequence alignment and phylogenetic analysis

The isolated 33 strains were sequenced by amplification of 16S rRNA gene. All the partial
16S rRNA sequences were aligned using BLAST analysis and deposited in NCBI GeneBank
having an accession no. The results showed that the isolates were classified into ten different
genera. Majority of the isolates belongs to Staphylococcus (25% ), followed by Bacillus (21%),
Lysinibacillus (12%), Achromobacter (9%), Bacterium (9%) Methylobacterium (6%), Bosea
(6%), Aneurinibacillus (6%), Azospirillum (3%) and Novosphingobium (3%) (Fig. 2). The
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Figure 2 Pie chart showing the distribution of bacteria in water sediment of Tamdil Lake.

16S rRNA gene sequences by BlastN exhibited high level of sequence 98—-100% similarity
confirmed that seven isolates could be members of genus Staphylococcus. The sequences
of the three isolates (BPSWACS5, BPSWAC6 and BPSWACY) showed high identity (99%)
to the genus Bacterium whereas isolate BPSWAC14 and BPSWAC26 exhibited high
identity (88%) to the genus Novosphingobium and Achromobacter respectively. Maximum-
likelihood and neighbor-joining methods were used for the construction of phylogenetic
tree. The phylogetic tree generated by both methods showed that all Staphylococcus strains
as well as other genera except Novosphingobium sp. forms a major clade I along with
the type strains retrieved from databases. Most of the rare genera like Novosphingobium
sp., Bosea sp. and Methylobacterium sp. clustering to form another clade II in Maximum
likelihood tree (Fig. 3B) under the bootstrap value of 30% respectively. However, the
neighbour joining tree did not cluster Bosea sp. and Methylobacterium sp. together in clade
II (Fig. 3A).

Nucleotide sequence accession numbers

All the isolates were identified by sequencing 16S rRNA gene and the sequences were
deposited in NCBI-GenBank and the accession numbers of bacterial isolates are KM243378;
KM243379; KM243380; KM243381; KM243382; KM243383; KM243385; KM405299;
KM405305; KM405311; KR703476; KR703477; KR857321; KR857322; KR857323;
KR857324; KR857325; KR857326; KR857327; KT232317; KT232318; KT232319;
KT232320; KT232321; KT429617; KT429618; KT429619; KT429620; KT429621;
KT429622; KT429623; KT429624; KT429625.
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Figure3 (A) Neighbor-joining phylogenetic tree based on 16S rRNA gene of bacteria identified from Tamdil Lake. (B) Maximum likelihood phy-
logenetic tree based on 16S rRNA genes. Numbers at branches indicate bootstrap values of neighbour-joining analysis (>50%) from 1,000 replicates.

DISCUSSION

There is an urgent need of new and novel antimicrobials with the development of multiple
drug resistant microbes (Wise, 2008). Several studies were carried out by various researchers
to investigate the occurrence and distribution of antibiotics resistant bacteria in water
ecosystems (Baya et al., 1986; Herwig, Gray ¢ Weston, 1997; Mudryk ¢ Skorczewski, 1998).
The chances of finding new bioactive compounds is much higher from the bacteria
isolated from unexplored habitats (Bredholdt et al., 2007) which have become significant
for discovering novel compounds (Saadoun & Gharaibeh, 2003).

In this study, an attempt has made to isolate bacteria from the sediment of Tamdil Lake,
a wetland present in Mizoram, Northeast India. Water sediments contain around 30% of
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the earth’s biomass and are a key ecological niche for novel microorganisms (Whitman,
Coleman & Wiebe, 1998). We reported 50 cultivable bacteria isolated from a wetland located
in Mizoram, Northeast India. Microscopic analysis confirmed 67% as gram positive and
33% as gram negative bacteria which is in agreement with the finding of Zhuang et al.
(2003) and Gontang, Fenical & Jensen (2007).

All the isolates were determined for their antibiotics susceptibility profiling using twelve
standard antibiotic impregnated discs. We detected significant antibiotic resistance to
most of the antibiotics under investigation. Thirty-three isolates were selected which
showed resistance to methicillin and ampicillin (100% each). All the isolates were
resistant to ampicillin supported by the findings of Falcao et al. (2004), Scoaris et al.
(2008) and Reboucas et al. (2011) and were susceptible to tetracycline (96.6%). Among
33 isolates, Bacterium (BPSWAC9), Novosphingobium (BPSWAC14), Methylobacterium
organophilium (BPSWACS2), Lysinibacillus sp. (BPSWAC83), Bosea sp. (BPSWAC84),
Aneurinibacillus aneurinilyticus (BPSWAC108) and Bacillus sonorensis (BPSWAC109)
showed resistant against 6 out of 12 antibiotics tested and might be a good candidate
for further investigation. To best of our knowledge, this is the first time reported that
Novosphingobium sp. (BPSWAC14), Methylobacterium organophilium (BPSWAC82), and
Bosea sp. (BPSWAC84) showed multi antibiotics resistance. Multiple drug resistance of
these isolates could be due to some pollutants in the lakes. Multiple bacterial resistances to
antibiotics had earlier been reported in aquaculture environments (Hatha et al., 2005).

The genomic relatedness of the selected isolates was studied using ERIC and BOX-
PCR fingerprinting. The dendrogram generated by ERIC-PCR divided the isolates into
two groups (A and B), Staphylococcus, Lysinibacillus, Azospirillum, Bacillus, Bacterium
and Aneurinibacillus falls under cluster A. Cluster B consist of Novosphingobium, Bosea,
Methylobacterium and Achromobacter, which was in agreement with the findings of De-
Bruijn (1992). ERIC-PCR has previously demonstrated useful for genotyping Vibrio
parahaemolyticus as well, isolated from aquatic system in North China (Xu et al., 2016).
The dendrogram generated by BOX-PCR also consist of cluster A and B. Staphylococcus,
Lysinibacillus, Achromobacter, Bacillus and Aneurinibacillus were grouped together in cluster
A. Cluster B of different genera belonging to Bacterium, Azospirillum, Methylobacterium,
Bosea and Novosphingobium which was in agreement with the findings of Lee ef al. (2012).
BOX-PCR fingerprinting shows that it is very useful technique to differentiate between very
closely related bacterial strains identification and has been applied to study the great genetic
diversity at species level (Versalovic, Koeuth ¢ Lupski, 1991). In this study, we observed
that genetic variation was very high among the 33 isolates, when analyzed by BOX-PCR
fingerprinting and among them Staphylococcus sp. was the dominant species (25%). The
finding from our study was in agreement with previously reports of Ali (2014).

A significant antimicrobial activity of bacteria was detected in this study against
both Gram positive and Gram negative bacteria. Interestingly, those seven isolates that
showed most resistance against antibiotics also showed antagonistic activity also. Two
isolate Methylobacterium organophilum (BPSWACS82) and Aneurinibacillus aneurinilyticus
(BPSWAC108) showed positive activity against all the bacterial and fungal pathogens.
BPSWACS2 showed highest activity against F. oxysporum (73.68%) and F. proliferatum
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(73.68%). In addition, the anti fungal activity of Methylobacterium spp. against Fusarium
udum, F. oxysporum, Pythium aphanidermatum, and Sclerotium rolfsii was also reported
(Poorniammal, Sundaram ¢ Kumutha, 2009). Bacillus sonorensis (BPSWACI109) exhibited
highest activity against S. aureus which was in accordance with (Rakesh et al., 2011). A
significant antibacterial activity of the genus Bacillus was also reported recently (Etyermez
¢ Balcazar, 2016) and several species of Bacillus produce antimicrobial peptides which are
commercially available (Leaes et al., 2016).

Nonribosomal peptides and polyketides are two different families of natural products
which are the major source of pharmaceutical products (Walsh, 2004), synthesised by
nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) respectively
(Khater, Anand & Mohanty, 2016). Detection of these genes has been generally used for
assessing biosynthetic potential of culturable and non-culturable microorganisms (Minowa,
Araki & Kanehisa, 2007). In this study, PKS type II and NRPS genes were detected in six
isolates and seven isolates respectively. Interestingly, biosynthetic genes were detected
in those isolates showing antimicrobial activities which further proved the existence of
biosynthetic gene clusters and may be responsible for the production of antimicrobial
secondary metabolites. Both PKS II and NRPS genes were detected in the isolated
strains like Bacillus sonorensis (BPSWAC 109), Aneurinibacillus aneurinilyticus (BPSWAC
108), lysinibacillus fusiformis (BPSWAC 90), Bosea sp. (BPSWAC 84), Methylobacterium
organophilium (BPSWAC 82) and Novosphingobium sp (BPSWAC 14). Earlier studies
reported the presence of biosynthetic genes like PKS and NRPS in Bacillus spp. and some
other firmicutes (Straight et al., 2007; Aleti, Sessitsch ¢ Brader, 2015) but, to our knowledge
this is the first time for the report of PKS II and NRPS gene in Novosphingobium and Bosea sp.

All the bacterial isolates were characterized by sequencing the 16S rRNA gene; most
isolates showed 98—100% identity with NCBI BlastN sequences. Bacteria (n = 33) isolated
from the sediment samples were diverse and represented two bacterial phyla (Proteobacteria
and Firmicutes). Microorganisms belonging to Firimicutes (gram positive) were the leading
group in the samples which was in accordance with the studies of Zhuang et al. (2003) and
Gontang, Fenical & Jensen (2007) of marine sediments but in contrast with the findings of
gram negative bacteria as a dominant bacteria isolated from lake water (Panneerselvam ¢
Arumugam, 2012). Maximum-likelihood and neighbor-joining methods showed that all
Staphylococcus strains as well as other genera except Novosphingobium sp. forms a major
clade I with an exception of Bacterium morphologically similar with Staphylococcus sp.
and hence clustered together along with the type strains. Most of the rare genera like
Novosphingobium sp., Bosea sp. and Methylobacterium sp. clustering to form another clade
I1, consistent with the findings of previous studies (Shukla et al., 2011; Ganesan, 2013).

CONCLUSION

Fifty bacterial strains were isolated from the sediment of a freshwater lake and screened for
antibiotic resistance and thirty-three isolates showed resistant against at least two of the

selected twelve antibiotics. Genotyping using the 16S rRNA gene sequencing distinguished
them into ten different genera with staphylococcus as dominant genus. Screening for anti-
microbial activity revealed eight isolates with the potential to produce antimicrobials, which
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further proved the potential for the production of these compounds was further verified
by the detection of PKS and NRPS biosynthetic genes. This is the first reported occurrence
of two rare isolates (Novosphingobium and Bosea sp.) from a wetland with biosynthetic
potential, which can be exploited for the search of biologically active metabolites
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