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Abstract Two types of interacting dark energy models are
investigated using the type Ia supernova (SNIa), observa-
tional H(z) data (OHD), cosmic microwave background
shift parameter, and the secular Sandage–Loeb (SL) test. In
the investigation, we have used two sets of parameter pri-
ors including WMAP-9 and Planck 2013. They have shown
some interesting differences. We find that the inclusion of
SL test can obviously provide a more stringent constraint
on the parameters in both models. For the constant coupling
model, the interaction term has been improved to be only a
half of the original scale on corresponding errors. Comparing
with only SNIa and OHD, we find that the inclusion of the
SL test almost reduces the best-fit interaction to zero, which
indicates that the higher-redshift observation including the
SL test is necessary to track the evolution of the interaction.
For the varying coupling model, data with the inclusion of
the SL test show that the parameter ξ at 1σ C.L. in Planck
priors is ξ > 3, where the constant ξ is characteristic for the
severity of the coincidence problem. This indicates that the
coincidence problem will be less severe. We then reconstruct
the interaction δ(z), and we find that the best-fit interaction is
also negative, similar to the constant coupling model. How-
ever, for a high redshift, the interaction generally vanishes at
infinity. We also find that the phantom-like dark energy with
wX < −1 is favored over the ΛCDM model.

1 Introduction

The accelerating expansion of the universe is an extraor-
dinary discovery of modern cosmology following Hubble’s
discovery of the expansion. A number of independent cos-
mological probes over the past decade have supported this
phenomenon. Examples include observations of the type Ia
supernova (SNIa) [1], the large scale structure [2], and the
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cosmic microwave background (CMB) anisotropy [3]. After
this discovery, several theoretical attempts have been made
to explain it. They generally include the dark energy, mod-
ified gravity, and the local inhomogeneous model. Among
the numerous candidates of dark energy, the ΛCDM model
with a cosmological constant is considered to be the sim-
plest and most robust from the point of view of observations.
However, the theoretical magnitude of this constant from the
particle physical theory is about 120 orders larger than the
constraint from observations. As a result, such a trivial cos-
mological constant falls into the entanglement of two notable
problems. One is the fine-tuning problem, which asks why
the observed value of cosmological constant energy density
ρΛ is so small [4,5]. The other is the coincidence problem [6]
which asks why the order of the magnitude of the inapprecia-
ble cosmological constant is the same as the present matter
density with the expansion of universe, i.e., ΩΛ0 ∼ Ωm0.
Generally, we believe that the evolution of the cosmic com-
ponent of the energy density should satisfy ρi ∝ a−3(1+wi )

during the expansion of our universe, where wi is its equa-
tion of state and a is the cosmic scale factor. Thus, the energy
density of the cosmological constant with wΛ = −1 should
not change, while the energy density of the matter would
decrease with a−3. From the observations, however, they are
comparable at the present epoch. Some approaches have been
raised to reconcile this problem, such as the odd anthropic
principle [7–9] and the “tracker field” model [10]. In the latter
approach, dark energy is no longer a constant, but some scalar
fields which are usually in the form of the quintessence [11],
phantom [12], k-essence [13], as well as quintom [14] fields.
Nevertheless, they cannot get rid of the suspicion of fine-
tuning of model parameters in such models. Moreover, the
nature of the dark energy is still mysterious. An interesting
alternative is the interacting model which assumes an inter-
action between matter and dark energy. In this initial phe-
nomenological form [15], the evolution of the dark energy
density ρX is assumed to follow a ratio relation, namely,
ρX ∝ ρmaξ and ΩX ∝ Ωmaξ , where the scaling parame-
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ter ξ is a constant to mirror the severity of the coincidence
problem. Especially, this model can recover to the ΛCDM
and self-similar solutions [16,17] for the case ξ = 3 and
ξ = 0, respectively. Because the interaction term in this
form is redshift dependent, this model is usually called the
varying coupling model. Different from the varying model,
a constant coupling model with constant interaction term is
also provided [18,19] in which the matter density may not
follow the common relationship ρm ∝ a−3. The formulas in
this model are plump, such as the ones of the general type
ρX/ρm = f (a) [20] where f (a) is a function of the scale
factor a, or the specific interaction term models [21]. Obser-
vationally, a large amount of observational data, such as the
SNIa, CMB, the baryonic acoustic oscillation (BAO), and
the observational H(z) data (OHD), are widely used to place
constraints on these coupling models. For the constant cou-
pling model, investigations in Refs. [19,22] deem that a large
coupling can change the evolution of the universe during the
matter-dominated epoch. For the varying coupling model,
investigations [23–25] found that SNIa and BAO data can-
not provide stringent constraints on the parameter ξ until
inclusion of the CMB data. We note that the above obser-
vations apart from the CMB mainly focus on the redshift
z < 2. Therefore, a probe at higher redshift is necessary and
is expected to better track the evolution of the universe.

In 1962, Sandage [26] proposed a promising survey named
redshift drift to directly probe the dynamics of the cosmic
expansion. In 1998, Loeb [27] found that this effect could
be achieved by many techniques. One of them is to collect
the secular variation of the expansion rate during the evo-
lution of the universe from the wavelength shift of a quasar
(QSO), Lyα absorption lines. Therefore, this observation is
usually named the Sandage–Loeb (SL) test. According to the
schedule, a new-generation European Extremely Large Tele-
scope (E-ELT) would monitor the cosmic expansion history
from the QSOs Lyα absorption lines in the region z = 2−5
where other observations are inaccessible. For a complement,
it is useful for us to revisit the interacting dark energy mod-
els using this test. Recently, Liske et al. [28–30] simulated
some SL data using the Monte Carlo method. From previous
work, we find that it generally produces excellent constraint
on the cosmological models, such as the holographic dark
energy [31], modified gravity models [32], new agegraphic,
and Ricci dark energy models [33]. More recently, Li et al.
[34] found that the SL test is able to significantly break degen-
eracies between model parameters of f (R) modified grav-
ity, and f (T ) gravity theory, when combined with the latest
observations. More importantly, the SL test could identify
the dark energy model with an oscillating equation of state
and the models beyond general relativity with varying grav-
itational coupling, where the SNIa is no option [35]. In this
paper, we would extend the analysis on the coupling dark
energy models to a deeper redshift interval by virtue of the

SL test. Following previous work, we shall concentrate on
two common interacting models: (1) a model with constant
interaction term δ [18,19] and (2) a varying coupling model
with term δ(z) initially proposed by Dalal et al. [15].

The paper is organized as follows. In Sect. 2, we intro-
duce the basic equations of the phenomenological interacting
models. In Sect. 3, we illustrate the corresponding observa-
tional data and constraint methods. In Sect. 4, we display the
constraint result from observational data. Finally, we summa-
rize our main conclusion and present a discussion in Sect. 5.

2 Phenomenological interacting models

The interacting cosmological model is an alternative way to
solve the coincidence puzzle. In this paper, we will consider
two fossil models with interaction between matter and dark
energy, namely, the constant coupling and varying coupling
models. Throughout this paper, we assume a flat FRW uni-
verse with Ωm + ΩX = 1 and a constant equation of state
(EoS) wX of the dark energy. The Friedmann equation under
such assumptions is

3H2 = 8πG(ρm + ρX ). (1)

The conservation equations for these interacting models
should read

ρ̇m + 3Hρm = +Γρm, (2)

ρ̇X + 3H(ρX + pX ) = −Γρm, (3)

where H = ȧ/a is the Hubble parameter, Γ is the inter-
action term. The dot denotes the derivative with respect to
the cosmic time. Note that the total energy density is con-
served, although the individual energy density may not obey
the conservation law. For convenience, we commonly define
a dimensionless interaction term

δ = Γ/H. (4)

Generally, a positive δ (δ > 0) denotes energy transfer from
dark energy to matter, while energy would be transferred
from matter to dark energy for δ < 0.

2.1 Constant coupling model

For the ΛCDM model, evolution of the matter energy density
should obey the relation ρm ∝ a−3. In order to reconcile the
coincidence problem, the constant coupling model states that
the evolution of the matter density does not always satisfy
the above relation, but that there is a small modification to
it. The energy density of matter in this case usually can be
written as [18,19,22]

ρm = ρm0a−3+δ = ρm0(1 + z)3−δ, (5)
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where ρm0 is the matter energy density today. The parameter
δ, which should be constrained by the observational data,
indicates a deviation of the matter density evolution from the
regular relation. Assuming a constant EoS wX of the dark
energy, we obtain the energy density of the dark energy from
(3) as

ρX = ρX0(1 + z)3(1+wX )

+ρm0
δ

δ + 3wX

[
(1 + z)3(1+wX ) − (1 + z)3−δ

]
, (6)

where ρX0 is the dark energy density today. We note that the
corresponding dark energy density no longer obeys the rela-
tion ρX ∝ a−3(1+wX ), and it presents a decaying component
in the second term of (6). The expansion rate, therefore, can
be obtained following the Friedmann equation (1) as

E2(z) = ΩX0(1 + z)3(1+wX )

+1 − ΩX0

δ + 3wX

[
δ(1 + z)3(1+wX ) + 3wX (1 + z)3−δ

]
,

(7)

where the dark energy density parameter today is ΩX0 =
8πGρX0/(3H2

0 ). The present matter density parameter is
thus Ωm0 = 1 − ΩX0. Based on the relationship between
deceleration factor q(z) and expansion rate E(z), the transi-
tion redshift (where q(z) = 0) from a decelerating expansion
to an accelerating expansion is given by

zt =
[

3wX

3wX + 1

(1 − ΩX0)(δ − 1)

3wXΩX0 + δ

] 1
3wX +δ − 1. (8)

According to the suggestion by WMAP-9 [36], we fix the
present dark energy density parameter as ΩX0 = 0.724,
wX = −1.14, and then we plot the transition redshift at dif-
ferent interaction terms δ in Fig. 1. As introduced in Sect. 1,
accelerating expansion has been confirmed by many obser-
vations. Therefore, the transition redshift should be positive.
In fact, much literature found that zt may be less than unity.
Thus, we obtain from Fig. 1 that the interaction term should
be δ < 1. We find that the transition redshift slowly increases
with the increase of δ. Interestingly, a model-independent
transition redshift test can also precisely determine δ. For
example, as Riess et al. [37] evaluated from the SNIa at z > 1
using the Hubble Space Telescope, the transition redshift is
zt = 0.46 ± 0.13. Then the corresponding interaction term
can be estimated at −1.21 < δ < −0.16.

2.2 Varying coupling model

The varying coupling model considered in this section is
the classical scenario proposed by Dalal et al. [15]. Within
the underlying theoretical assumptions, the relation between
dark energy and matter densities is

ρX ∝ ρmaξ , ΩX ∝ Ωmaξ , (9)
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Fig. 1 Transition redshift zt at different interaction term δ with fixed
ΩX0 = 0.724 and wX = −1.14 for the constant coupling model

where the constant ξ characterizes the severity of the coin-
cidence problem. Especially, this model can recover ΛCDM
and self-similar solutions [16,17] for the case ξ = 3 and ξ =
0, respectively. For the FRW universe with Ωm + ΩX = 1,
the dark energy density parameter ΩX can be solved based on
(9). From the conservation equations (2) and (3), we obtain
the interaction term [22]

δ(z) = δ0

ΩX0 + (1 − ΩX0)(1 + z)ξ
, (10)

where δ0 = −(ξ + 3wX )ΩX0 is the interaction term today
and ΩX0 is the dark energy density parameter today. We note
that the interaction is absent when ξ = −3wX , which denotes
the standard cosmology. Inversely, the case ξ �= −3wX cor-
responds to a non-standard cosmology. With the interaction
term δ, the dimensionless Hubble parameter can be obtained
from the Friedmann equation (1) [22]

E2(z)=(1+z)3 [
1−ΩX0+ΩX0(1 + z)−ξ

]−3wX /ξ
. (11)

The free parameters (ΩX0, ξ , wX ) eventually can be deter-
mined by the observational data. Following the above pro-
cedure in the constant coupling model, we can obtain the
corresponding transition redshift from the deceleration fac-
tor q(z) = 0 as

zt =
[

1 − ΩX0

ΩX0 (−3wX − 1)

]−1/ξ

− 1. (12)

Fixing the parameters ΩX0 and wX suggested by the WMAP-
9, we plot the transition redshift for different ξ in Fig. 2.
We find that the positive transition redshift requires constant
ξ > 0. With the increase of ξ , the transition redshift generally
decreases. In the following section, we will carry out the
observational constraints on these coupling models.
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Fig. 2 Transition redshift zt at different parameter ξ for the varying
coupling model

3 Observational data

The observational constraints on the interacting dark energy
models have been performed using the SNIa, BAO, OHD,
CMB. The first three observations mainly focus on the red-
shift range 0 < z < 2. As a complement to previous work,
we mainly forecast the ability of future SL tests into the deep
redshift 2 < z < 5. To track the evolution of the interac-
tion over the redshift, we do not use all the observational
data, but we only apply the most general SNIa and OHD at
low redshift and the CMB for an early epoch as examples.
However, we should note particularly that some priors on the
parameters are needed in the calculation. Recently, two mis-
sions with high precision were released, i.e., WMAP-9 [36]
and Planck 2013 [38]. For the Planck 2013 results, a low
value of the Hubble constant H0 and a high value of mat-
ter density parameter Ωm0 are reported. This tension with
other measurements immediately widely aroused people’s
concern. Therefore, in order to examine the effect of differ-
ent priors on the parameters estimation, we will use the two
sets of priors.

3.1 SNIa

The SNIa data are usually presented as the luminosity dis-
tance modulus. The updated available observation is from
the Union2.1 compilation [39], which accommodates 580
data points. They are discovered by the Hubble Space Tele-
scope Cluster Supernova Survey over the redshift interval
z < 1.415. Theoretically, the luminosity distance modulus is
usually presented in the form of the difference between the
apparent magnitude m and the absolute magnitude M ,

μth(z) = m − M = 5log10 DL(z) + μ0, (13)

where μ0 = 42.38−5log10h and h is the Hubble constant H0

in units of 100 km s−1 Mpc−1. The corresponding luminosity
distance function DL(z) can be expressed as

DL(z) = (1 + z)
∫ z

0

dz′

E(z′; p)
, (14)

where p stands for the parameter vector of each dark energy
model embedded in the expansion rate parameter E(z′; p).
Commonly, parameters in the expansion rate E(z′; p) includ-
ing the annoying parameter h can be determined by the gen-
eral χ2 statistics. However, an alternative way is to marginal-
ize over the “nuisance” parameter μ0 [40–42]. The rest of the
parameters without h can be estimated by minimizing

χ2
SN(z, p) = A − B2

C
, (15)

where

A(p) =
∑

i

[μobs(z) − μth(z;μ0 = 0, p)]2

σ 2
i (z)

,

B(p) =
∑

i

μobs(z) − μth(z;μ0 = 0, p)

σ 2
i (z)

,

C =
∑

i

1

σ 2
i (z)

. (16)

In fact, this program has been widely used in the cosmologi-
cal constraints, such as the reconstruction of the dark energy
[43], the parameter constraint [44], and the reconstruction of
the energy condition history [45].

3.2 OHD

The Hubble parameter H(z) = ȧ/a is a key determining
factor in the research of expansion history of the universe,
because it has great relevance to various observations. In
practice, we measure the Hubble parameter as a function of
the redshift z. Observationally, we can deduce H(z) from the
differential ages of galaxies [46–48], from the BAO peaks in
the galaxy power spectrum [49,50] or from the BAO peak
using the Lyα forest of QSOs [51]. In addition, we can also
theoretically reconstruct H(z) from the luminosity distances
of SNIa using their differential relations [52–54]. Practically,
the available OHD have been applied to constrain the stan-
dard cosmological model [48,55] and some other FRW mod-
els [56–58]. Interestingly, the potential of future H(z) obser-
vations in parameter constraint has also been explored [59].
In this paper, we use the latest available data listed in table
1 of Ref. [60], which accommodates 28 data points. The
parameters can be estimated by minimizing

χ2
OHD(z, p) =

∑
i

[H0 E(zi ) − Hobs(zi )]2

σ 2
i

. (17)

We have found that the nuisance parameter H0 is embed-
ded in (17). Therefore, in order to be immune from the
influence of parameter H0, we need to marginalize over it
with a prior. In the calculation, we use the Gaussian prior
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H0 = 70.0 ± 2.2 km s−1 Mpc−1 suggested by WMAP-9
[36] and H0 = 67.3 ± 1.2 km s−1 Mpc−1 from Planck 2013
[38], respectively.

3.3 CMB

The CMB experiment measures the temperature and polar-
ization anisotropy of the cosmic radiation in the early epoch.
It generally plays a major role in establishing and sharp-
ening the cosmological models. The shift parameter R is a
convenient way to quickly evaluate the likelihood of the cos-
mological models. For the spatial flat model, it is expressed
as

R = √
Ωm0

∫ zs

0

dz′

E(z′; p)
, (18)

where zs = 1090.97 is the decoupling redshift [36,61].
According to the observation, we estimate the parameters
by minimizing the corresponding χ2 statistics

χ2
R =

(
R − 1.728

0.016

)2

. (19)

3.4 Sandage–Loeb test

The Sandage–Loeb (SL) test, i.e., the use of the redshift drift
Δz, was first proposed by Sandage [26] in 1962. It is a very
high potential measurement to directly probe the dynamics
of cosmic expansion. In later decades, many observational
candidates like masers and molecular absorptions lines were
put forward [27]. At present, the E-ELT will be equipped
with a high resolution, an extremely stable, ultra high preci-
sion spectrograph named the COsmic Dynamics EXperiment
(CODEX), which is designed to be able to measure such sig-
nals in the near future. The scheduled E-ELT plans to measure
the spectral shift of high-redshift QSOs [62]. These spectra
are not only immune from the noise of the peculiar motions
relative to the Hubble flow, but also they have a large number
of lines in a single spectrum [63].

A signal emitted by a source at time tem can be observed at
time t0. Because of the expansion of the universe, the source’s
redshift should be given through the scale factor

z(t0) = a(t0)

a(tem)
− 1. (20)

Over the observer’s time interval Δt0, the source’s redshift
becomes

z(t0 + Δt0) = a(t0 + Δt0)

a(tem + Δtem)
− 1, (21)

where Δtem is the time interval-scale for the source to emit
another signal. It should satisfy Δtem = Δt0/(1 + z). The

observed redshift change of the source is thus given by

Δz = a(t0 + Δt0)

a(tem + Δtem)
− a(t0)

a(tem)
. (22)

A further relation can be obtained if we keep the first order
approximation,

Δz ≈
[

ȧ(t0) − ȧ(tem)

a(tem)

]
Δt0. (23)

Clearly, the observable Δz is a direct change of the expan-
sion rate during the evolution of the universe. In terms of the
Hubble parameter H(z) = ȧ(tem)/a(tem), it can be simpli-
fied as

Δz

Δt0
= (1 + z)H0 − H(z). (24)

This is also known as the McVittie equation [64]. Taking a
standard cosmological model as an example, we find that the
redshift drift at low redshift generally appears to be negative
with the predominance of the matter density parameter Ωm0.
This feature is often regarded as a method to distinguish dark
energy models from LTB void models at z < 2 (especially
at low redshift) [65]. Unfortunately, the scheduled CODEX
would not be able to measure the drift at such low z, since the
target Lyα forest can be measured from the ground only at z ≥
1.7 [28]. However, this expectation can be met by the precise
HI 21 cm absorption line observations [66]. Observationally,
it is more common to detect the spectroscopic velocity drift,

Δv

Δt0
= c

1 + z

Δz

Δt0
. (25)

It can usually be detected at the order of several cm s−1 year−1.
Obviously, the velocity variation Δv is enhanced with the
increase of the observational time Δt0.

For the capability of CODEX, the accuracy of the spectro-
scopic velocity drift measurement was estimated by Pasquini
et al. [63] using the Monte Carlo simulations

σΔv =1.35

(
S/N

2370

)−1 (
NQSO

30

)−1/2 (
1+zQSO

5

)q

cm/s,

(26)

with q = −1.7 for 2 < z < 4, or q = −0.9 for z > 4,
where S/N is the signal-to-noise ratio, NQSO and zQSO are,
respectively, the number and redshift of the observed QSO.
According to currently known QSOs brighter than 16.5 in
2 < z < 5, we adopt the assumption in Refs. [63] with
NQSO = 30 and a S/N of 3000. Using the simulations, the
SL test has been widely applied in the model constraints
[31,34,67,68], assumed to be uniformly distributed among
specific redshift bins. Following previous work, we would
like to examine the ability of the SL test on the interact-
ing dark energy models of concern. The mock Δv data for
10 years are assumed to obey a uniform distribution among
the redshift bins: zQSO = [2.0 2.5 3.0 3.5 4.0 4.5 5.0] in the
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Fig. 3 Comparison between the simulated Δv over 10 year observa-
tional time and theoretical expectations of the evaluated a constant cou-
pling model and b varying coupling model for different parameters. For
model a, we change the interaction term δ and fix the other parameters
under the best estimation by Guo et al. [22]. For model b, we change
the parameter ξ and fix the other parameters as the best estimation by
Cao et al. [24]. The simulated data points with error bars are estimated
by (26) in the fiducial model

fiducial concordance cosmological model. Their errors can
be calculated from the estimation of (26). Similar to the χ2

statistics of OHD, we should use some priors in the calcula-
tion. As introduced above, we use two sets of priors. During
the simulation, the parameters of the fiducial ΛCDM model
are given by the best-fit values of WMAP-9 [36] and Planck
2013 [38]. For example, the matter density parameter sug-
gested by the WMAP-9 measurement is Ωm0 = 0.279, while
Planck 2013 reports a higher value, i.e., Ωm0 = 0.315.

In Fig. 3, we plot the predicted Δv for different mod-
els with different parameters. We find that the predicted Δv

curves extend away from each other at high redshift. In fact,
it is useful to precisely determine the parameters. Comparing
with the simulated Δv, we find that the parameters are con-
strained in the narrow regions. For example in the constant
coupling model, if we fix wX and ΩX0 as the best estima-
tion by Guo et al. [22], we find that the interaction term
δ ∼ [−0.3, 0.2] seems to be favored as shown in panel (a).
For the varying coupling model, the parameter ξ ∼ [2.5, 4]

seems to be favored when we fix the other parameters as the
best estimation by Cao et al. [24]. Nevertheless, a precise
determination of the parameters should minimize the corre-
sponding χ2 statistics,

χ2
Δv(z, p) =

∑
i

[Δvmodel(zi ) − Δvdata(zi )]2

σ 2
Δv(zi )

, (27)

where Δvmodel(zi ) is the theoretical expectation of the eval-
uated dark energy models, i.e., the constant and varying cou-
pling models. Δvdata(zi ) is for the mock data produced in
the fiducial ΛCDM model, and σ 2

Δv(zi ) is the corresponding
error estimated by (26).

In general, we often perform a joint analysis by combining
several types of observational data in order to better constrain
the cosmological models. In this paper, we will, respectively,
perform the likelihood fit by adding different types of obser-
vational data in order to test the evolution of the interaction
term.

4 Constraint on the coupling models

By performing the χ2-test using different datasets, we are
able to give the constraint on the parameters, and we recon-
struct the evolution of the interaction term. Because we have
used two sets of parameter priors in the calculation, we would
like to report the constraint results, respectively.

4.1 WMAP-9 priors

For the constant coupling model, we implement the likeli-
hood analysis using different datasets and display the corre-
sponding contour constraints of parameters (wX , δ) in Figs. 4
and 5, after marginalizing over the current dark energy den-
sity parameter ΩX0. For the observational data combination
SNIa+OHD+CMB, they give a very severe constraint on
the interaction term, δ = −0.01 ± 0.02(1σ ) ± 0.04(2σ ),
which represents a weak but negative interaction between
dark energy and matter. The rest of the EoS parameters and
the dark energy density are also constrained to a good level,
wX = −1.015+0.14

−0.17 (2σ ) and ΩX0 = 0.72+0.04
−0.04(2σ ). In order

to forecast the ability of the SL test, we add the simulated SL
test data with current data, and we show the results in the mid-
dle panel of Fig. 4. We find that the SL test effectively reduces
the contour constraint region. Especially, the key parameter
interaction term is more stringently constrained, which can
be seen from the marginalized probability distribution (PDF)
of δ in the bottom panel. The corresponding constraints are
δ = −0.01 ± 0.01(1σ )±0.02(2σ ), wX = −1.01+0.10

−0.11(2σ ),

and ΩX0 = 0.72+0.02
−0.01(2σ ), respectively. Previous work

found that the observational data apart from the CMB cannot
constrain the interacting models well. We perform the same
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Fig. 4 Contours correspond to 68.3 %, 95.4 % confidence levels and
the marginalized probability distribution of δ with different datasets for
the constant coupling model. The prior is from WMAP-9 [36]

likelihood test from the joint analysis of SNIa and OHD and
obtain δ = 0.39+0.40

−0.90(2σ ), which is much more rough com-
pared with the inclusion of CMB. As stated by Guo et al. [22],
this is because a large coupling can change the cosmological
evolution during the matter-dominated epoch. In order to fur-
ther track the evolution of the interaction with the expansion
of the universe, we extend our analysis to the higher redshift
using the SL test in Fig. 5. We find that the inclusion of the
SL test much improves the constraint, δ = 0.10+0.25

−0.36(2σ ).
The contour constraint region at 2σ level with the SL test
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Fig. 5 Same as Fig. 4 but for different datasets

is even smaller than the constraint without SL at 1σ level.
The marginalized PDF of the interaction δ is not only nar-
rowed with a high significance, but it also moves towards
zero.

For the varying coupling model, we perform the same
likelihood test using the current observational data with or
without SL test, respectively. For the combination of all con-
sidered current observational data, we find that they can pro-
vide fair constraints on the parameters. For example, the EoS
and dark energy density parameters are wX = −1.02+0.14

−0.16

(2σ ), ΩX0 = 0.72+0.04
−0.04 (2σ ), respectively. The parameter
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Fig. 6 Contours correspond to 68.3 %, 95.4 % confidence levels for
the varying coupling model with different datasets. The prior is from
WMAP-9 [36]

ξ = 3.12+0.31
−0.29 (1σ )+0.66

−0.57 (2σ ) shows that the coincidence
problem is still severe. From (10), we find that the sign of
the interaction term completely depends on the current value
δ0 = −(ξ + 3wX )ΩX0. Using the constraint results, we
reconstruct the current interaction, δ0 = −0.04+0.26

−0.28 (1σ ),
which shows that the interaction today is weak but has a
negative best-fit value from the available observations. This
is consistent with previous results [22]. For forecasting the
power of the SL test, we also include the mock SL data in the
bottom panel of Fig. 6. The allowed region of the parameters
is obviously reduced, which is the same as in the constant
coupling model. The parameters in this case are found to
be wX = −1.01+0.10

−0.11 (2σ ), ΩX0 = 0.725+0.02
−0.02 (2σ ), and

ξ = 3.07+0.20
−0.19 (1σ )+0.41

−0.37 (2σ ). Moreover, the phantom-like
dark energy (wX < −1) is slightly favored over the ΛCDM
model. The interaction is thus reconstructed in Fig. 10 with
a current value δ0 = −0.02+0.17

−0.19 (1σ ). We find that the best-
fit interaction is negative but with relatively large errors for
the low redshift, which is a hint that we have energy transfer
from matter to dark energy. We also note that the interaction
δ(z) decreases with the increase of redshift z and approaches
zero at infinity.
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Fig. 7 Contours correspond to 68.3 %, 95.4 % confidence levels and
the marginalized probability distribution of δ with different datasets for
the constant coupling model. The prior is from Planck 2013 [38]

4.2 Planck priors

Under the Planck priors, we plot the results of the con-
stant coupling model in Figs. 7 and 8. The available dataset
SNIa+OHD+CMB shows that the interaction term is δ =
−0.02+0.02

−0.01 (1σ)+0.04
−0.03 (2σ). Although the central value

changes slightly to higher values, this estimation is consistent
with the result in WMAP-9 prior, i.e., −0.05 < δ < 0.03
within 2σ C.L. The rest of the parameters, wX = −1.03+0.15

−0.17

(2σ) and ΩX0 = 0.71+0.04
−0.04 (2σ), also agree with the results
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Fig. 8 Same as Fig. 7, but for different datasets

in WMAP-9 prior. With the inclusion of the SL test, we find
that the constraint on the interaction term is δ = −0.02+0.007

−0.016

(1σ)+0.02
−0.03 (2σ). We should note that the interaction in this

scenario is negative at high confidence level, i.e., −0.05 <

δ < 0, which is different from the result of WMAP-9,
−0.03 < δ < 0.02 (2σ). That is, the Planck prior favors
an energy transfer from matter to dark energy with high sig-
nificance. As described in above subsection, Guo et al. [22]
found that a large interaction is not allowed at high redshift.
In order to track the key redshift spot, we have to revisit
the constraint of observations at low redshift. We find that
a combination of SNIa and OHD in the Planck priors gives
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Fig. 9 Contours correspond to 68.3 %, 95.4 % confidence levels for
the varying coupling model with different datasets. The prior is from
Planck 2013 [38]

Fig. 10 Reconstruction of the interaction term δ(z) using the total con-
sidered data for the varying coupling model. The shaded region corre-
sponds to the errors of δ(z) at 1σ C.L. The central solid and dashed
curves are the best-fit δ(z). The light-colored region and red solid curve
correspond to the reconstruction in WMAP-9 prior; the thick-colored
region and the red dashed curve correspond to the reconstruction in the
Planck 2013 prior
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δ = 0.33+0.23
−0.34 (1σ)+0.41

−0.91 (2σ), a similar estimation to the
result in WMAP-9 priors. However, this result immediately
changes with the inclusion of SL test. The combination SNIa,
OHD, and SL leads to δ = 0+0.24

−0.35 (2σ). Firstly, we once
again find evidence for the power of the SL test in this sce-
nario, i.e., the contour constraint region at 2σ level with the
SL test is comparable with the constraint without SL at 1σ

level, which is the same as the situation in WMAP-9 priors.
Secondly, the central value of the interaction term directly
changes from 0.33 to 0, which is shown in the bottom panel
of Fig. 8. Comparing the PDF of Figs. 5 and 8, we find that
the Planck 2013 priors move the constraint towards the direc-
tion of non-interaction, faster than the constraint in WMAP-9
priors.

For the varying coupling model, we also perform the
related analysis in the Planck 2013 priors and plot the con-
straints in Fig. 9. The available data combination shows
ξ = 3.18+0.33

−0.30 (1σ). Similar to the constant coupling model,
the new priors make the results from current observational
data change slightly, which can be witnessed from the com-
parison between the top panel of Figs. 6 and 9. However, we
note that the Planck priors promote an important change on
the SL test. By including the SL test with current observa-
tional data, they give a bigger estimation on the key param-
eter, ξ = 3.34+0.23

−0.21 (1σ)+0.47
−0.41 (2σ). Firstly, we should note

that the errors of ξ are significantly reduced with the inclusion
of the SL test. Secondly, it is very important that the param-
eter ξ > 3 at 1σ C.L. As stated above, the constant ξ char-
acterizes the severity of the coincidence problem. If ξ = 3,
this model can recover the ΛCDM model, and the coinci-
dence problem is still alive. Obviously, ξ > 3 at 1σ C.L.
indicates that the coincidence problem will be less severe.
Moreover, the EoS of dark energy wX = −1.07+0.06

−0.06 (1σ),
which indicates that the combination including the SL test
in this prior remarkably favors a phantom-like dark energy.
The terms ξ + 3wX = 0 and ξ + 3wX �= 0, respectively,
denote the standard cosmology without interaction and non-
standard cosmology. The reconstruction from data including
the SL test is ξ+3wX = 0.13+0.29

−0.27 (1σ). The interaction term

today is δ0 = −0.09+0.19
−0.20 (1σ), which is slightly stronger

than the result δ0 = −0.02 in WMAP-9 priors. We then
reconstruct the δ(z) and compare it with the reconstruction
under WMAP-9 priors in Fig. 10. We find that they behave
in the same way for a high redshift. For a low redshift, the
interaction in the Planck priors is slightly stronger. Moreover,
the reconstruction with errors at 1σ C.L. prefers δ < 0, i.e.,
an energy transfer from matter to dark energy.

5 Conclusion and discussion

The constant δ [18,19] and varying coupling δ(z) dark energy
models [15] have been revisited using the secular Sandage–

Loeb (SL) test. The SL test is in the inaccessible redshift zone
for recent observations, such as the SNIa, OHD, and BAO
at z < 2 and the CMB at z � 1090. We have extended the
analysis to the epoch at 2 < z < 5 using the secular redshift
drift of the QSO spectra. For convenience of the calculation,
we use different priors from the WMAP-9 [36] and Planck
2013 [38], respectively.

For the constant coupling model, the current observation
combinations in the two sets of priors both give a weak inter-
action term, which is consistent with previous results [22].
By including the simulated SL test data, we find that they
can more stringently constrain the corresponding parameters;
the interaction in the WMAP-9 priors is δ = −0.01 ± 0.01
(1σ) ± 0.02 (2σ), which has been improved to be only half
of the original scale on the errors. We should also note that
the interaction in the Planck priors is negative at 2σ C.L.,
which favors an energy transfer from matter to dark energy.
As stated by Guo et al. [22], a large interaction is not allowed
during the standard matter-dominated epoch; otherwise it
can modify the CMB angular-diameter distance. We, there-
fore, analyze the interaction from late time observations. We
extend the analysis to the redshift interval 2 < z < 5 and
compare it with a combination of SNIa and OHD. We find that
the SL test can much more stringently constrain the param-
eters. The best fit of the interaction term in the Planck prior
is directly reduced from 0.33 to zero. Therefore, the higher-
redshift observation including the SL test is necessary for
revealing how the interaction gradually changes with the cos-
mic evolution.

For the varying coupling model, the relation ρX ∝ ρmaξ is
imposed on the density evolution of the cosmic components.
Combining the SL test with the current observational data, we
find that they can present a more narrowed constraint, which
behaves similar to the constant coupling model. In this sce-
nario, the key parameter ξ characterizes the severity of the
coincidence problem. The ΛCDM model can be reduced for
the case ξ = 3. The terms ξ + 3wX = 0 and ξ + 3wX �= 0,
respectively, denote the standard cosmology without interac-
tion and non-standard cosmology. From the likelihood test in
Planck 2013 priors, we find the term ξ + 3wX = 0.13+0.29

−0.27
(1σ). Importantly, the parameter ξ at 1σ C.L. in Planck pri-
ors is ξ > 3, which indicates that the coincidence problem
will be less severe. We also reconstruct the interaction δ(z)
in Fig. 10. It is found that the best-fit δ(z) is negative at low
redshift and generally vanishes for high redshift. Moreover,
the errors of the reconstructed δ(z) are remarkable at low red-
shift. However, the phantom-like dark energy with wX < −1
is favored over the ΛCDM model.

An investigation using the SL test on the constant coupling
model shows that the interaction with errors up to redshift
z ∼ 5 cannot be neglected. Therefore, it is also reasonable
for us to deduce that the observations at higher redshift, such
as the gamma-ray burst may be useful to detect the interacting
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model, because some of them even can be monitored at the
redshift z ∼ 8. We should also note that the inclusion of
the SL test with a small sample can significantly narrow the
contour region from the large sample data, which can be
found evidence for in Figs. 5 and 8. Furthermore, the SL
test is immune against the model-dependence, calibration of
the standard candle, and the peculiar motion of the observed
objects. Therefore, we could expect that future SL tests will
play an important role to constrain the cosmological models.
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