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ABSTRACT
Inferring the history of isolation and gene flow during species divergence is a central
question in evolutionary biology. The European river lamprey (Lampetra fluviatilis)
and brook lamprey (L. planeri) show a low reproductive isolation but have highly
distinct life histories, the former being parasitic-anadromous and the latter non-
parasitic and freshwater resident. Here we used microsatellite data from six replicated
population pairs to reconstruct their history of divergence using an approximate
Bayesian computation framework combined with a random forest model. In most
population pairs, scenarios of divergence with recent isolation were outcompeted
by scenarios proposing ongoing gene flow, namely the Secondary Contact (SC) and
Isolation with Migration (IM) models. The estimation of demographic parameters
under the SCmodel indicated a time of secondary contact close to the time of speciation,
explaining why SC and IM models could not be discriminated. In case of an ancient
secondary contact, the historical signal of divergence is lost and neutral markers
converge to the same equilibrium as under the less parameterized model allowing
ongoing gene flow. Our results imply that models of secondary contacts should be
systematically compared to models of divergence with gene flow; given the difficulty
to discriminate among these models, we suggest that genome-wide data are needed to
adequately reconstruct divergence history.

Subjects Aquaculture, Fisheries and Fish Science, Ecology, Evolutionary Studies, Genetics,
Molecular Biology
Keywords Speciation, Gene flow, Divergence history, Approximate Bayesian computation,
Random forest, Lampetra fluviatilis, Lampetra planeri

INTRODUCTION
Understanding the spatio-temporal conditions favouring species emergence is a
fundamental question in evolutionary biology. One long standing controversy concerns
the geographical setting promoting species divergence (Butlin, Galindo & Grahame,
2008; Fitzpatrick, Fordyce & Gavrilets, 2008). Theory predicts that the accumulation of
genetic incompatibilities is rather straightforward under allopatric conditions without
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gene-flow (Turelli, Barton & Coyne, 2001; Coyne & Orr, 2004; Barton & de Cara, 2009). In
contrast, speciation with gene flow theoretically requires (i) strong divergent selection
and non-random mating, (ii) high genetic variance and (iii) non-random association of
traits under disruptive selection and those involved in assortative mating (Dieckmann &
Doebeli, 1999;Gavrilets, 2003;Gavrilets, 2014;Coyne & Orr, 2004). Importantly, the current
geographical distribution of contemporary species may not reflect the initial conditions of
divergence as most species may have undergone alternative phases of splits and contacts
over historical periods (Hewitt, 1996; Hewitt, 2004; Hewitt, 2011; Bierne et al., 2011). As
a result, reconstructing the history of demographic events that have shaped the genetic
architecture of present-day populations is of primary importance to understand how
speciation operates and infer the role of gene flow during divergence. The accuracy of this
reconstruction will depend on an adequate statistical method for demographic inferences,
but also on the relevance of the sampling scheme.

Simulation-based methods are helpful for inferences although the tested models often
do not entirely reflect the complexity of the usually unknown demographic history of
the populations studied (Wakeley, 2008). For instance, several studies using full likelihood
approaches implemented in the IMand IMaprograms (Hey & Nielsen, 2004;Hey & Nielsen,
2007; Hey, 2010) have compared isolation with migration (IM) models against a model of
strict isolation (SI) and revealed a widespread effect of gene flow during divergence (e.g.,
Pinho, Harris & Ferrand, 2008; Niemiller, Fitzpatrick & Miller, 2008; Strasburg & Rieseberg,
2008). However, this method makes a number of simplifying assumptions (Strasburg &
Rieseberg, 2010; Strasburg & Rieseberg, 2011) and does not allow reconstructing complex
scenarios with several parameters, due to computation burden or intractable likelihood
computation. Thus the complexity of demographic events may have been missed (Nielsen
& Wakeley, 2001; Hey, 2010). For example, most of these studies failed to distinguish
between primary versus secondary differentiation (i.e., allopatric divergence followed by
secondary contacts) hence no general conclusion about the ubiquity of either mechanism
during speciation could be drawn yet. Recent advances in coalescent theory (Wakeley, 2008)
and Bayesian methods (Tavare et al., 1997; Beaumont, Zhang & Balding, 2002; Beaumont,
2010; Csilléry et al., 2010) now allow for explicit tests of alternative and complex models of
divergence. In particular, approximate Bayesian computation (ABC) bypasses the need to
compute full likelihoods, as this is not possible or computationally too intensive for complex
models with many parameters and large datasets (Beaumont, Zhang & Balding, 2002). ABC
has been used with success to test alternative models of divergence in various taxa and
provided useful information on the level of interspecific introgression and complexity
of demographic history underlying population divergence (Fagundes et al., 2007;
Duvaux et al., 2011; Roux et al., 2013; Roux et al., 2014; Nadachowska-Brzyska et al., 2013;
Nater et al., 2015).

Several studies have focussed on a single population pair to infer the history of divergence
but drawing general conclusionsmay be complicated with such a reduced sampling scheme.
On the other hand, studies of replicated pairs of diverging populations have proven very
useful to understand the genetic mechanisms of divergence and speciation by showing that
populations can independently evolve similar reproductive barriers in the face of ongoing
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gene-flow (e.g., Schluter & McPhail, 1993; Nosil, Crespi & Sandoval, 2002; Colosimo et al.,
2005; Johannesson et al., 2010). Such results were generally interpreted as evidence for
parallel adaptation of diverging populations due to the recent action of natural selection.
However, alternative scenarios of divergence including secondary contacts after periods of
allopatry have rarely been investigated (Bierne, Gagnaire & David, 2013; Butlin et al., 2014;
Welch & Jiggins, 2014).

Lampreys are jawless vertebrates (agnathans) thought to have diverged from the
gnathostomes lineage (jawed vertebrates) approximately 590 million years ago (Hedges
et al., 2015). Most lampreys occur as pairs of closely related species reproducing in the
same rivers but with very distinct adult life history strategies. Within such pairs, one
taxon migrates at sea and adopts a parasitic-hematophagous life style while the other is
freshwater-resident, non-parasitic and does not feed at the adult stage (Docker, 2009).
Despite a large number of evolutionary and developmental studies in lampreys (Heimberg
et al., 2010; Shimeld & Donoghue, 2012; Smith et al., 2013; Lagadec et al., 2015), there is a
high uncertainty about taxonomic relationships among these so called lamprey ‘paired’
species (Docker, 2009). For instance, the European river lamprey (Lampetra fluviatilis) and
brook lamprey (L. planeri) display marked morphological differences at the adult stage:
individuals of the anadromous and parasitic river lamprey are on average 2.2 times longer
than resident and non-parasitic brook lampreys but adults of both species can be found
on the same spawning ground (Lasne, Sabatié & Evanno, 2010) and this size difference
likely forms the most important prezygotic barrier to gene-flow (Beamish & Neville, 1992;
Rougemont et al., 2015). The genetic differentiation between these two taxa is usually low
when measured either with allozymes (Schreiber & Engelhorn, 1998), mtDNA (Espanhol,
Almeida & Alves, 2007; Blank, Jürss & Bastrop, 2008) or microsatellites markers (Bracken et
al., 2015; Rougemont et al., 2015) and these species have been hypothesized to be different
ecotypes of a single species (Docker, 2009). Only two studies, based on a single population
pair, reported a strong differentiation between L. planeri and L. fluviatilis (Mateus et al.,
2013; Mateus et al., 2016). The only large scale phylogeographic study based on mtDNA
revealed a very low level of divergence that was hypothesized to result from ongoing gene
flow or very recent divergence following postglacial dispersion (Espanhol, Almeida & Alves,
2007; Mateus et al., 2016). However, it is known that widespread mtDNA introgression
among sympatric taxa can easily obscure their taxonomic relationships (Shaw, 2002).
However, phylogeographic approaches do not allow contrasting alternative scenarios
of divergence and do not address gene flow following divergence. As a consequence,
relatively little is known so far on the history of divergence between L. fluviatilis and L.
planeri and most studies concluded on a prominent role of recent postglacial divergence
(Espanhol, Almeida & Alves, 2007; Bracken et al., 2015) or ecological processes (Salewski,
2003). Overall, few studies have used a wide number of pairs of river and brook lamprey
connected by gene flow and realistic scenarios of demographic history have never been
modelled.

Recently Rougemont et al. (2015) studied ten pairs of sympatric and parapatric
populations of L. fluviatilis and L. planeri and found varying levels of genetic differentiation
ranging from strong gene flow (FST = 0.008) to important genetic differentiation
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(FST = 0.189) depending on population pairs. They concluded that these two species
may represent partially reproductively isolated ecotypes, a statement that was consistent
with the low degree of reproductive isolation measured in experimental crosses (Hume
et al., 2013; Rougemont et al., 2015). However, this pattern of low genetic differentiation
observed in several population pairs can be explained by two opposite hypotheses: (i)
ongoing divergence with gene flow or (ii) secondary contact after a period of allopatry that
did not allow the accumulation of sufficient reproductive barriers, including endogenic
barriers. Here we investigated the demographic history of divergence between river and
brook lampreys by testing five models of divergence including these two competing
scenarios with an ABC approach based on microsatellite data from six population pairs of
Lampetra.

MATERIALS AND METHODS
Sampling and genotyping
L. fluviatilis and L. planeri samples were collected from 2010 to 2014 in 6 population pairs
from northern France (data from Rougemont et al., 2015 and Fig. 1). Three pairs coexist in
sympatry (Aa, Bethune andOir Rivers) and 2 pairs are not strictly sympatric because a small
obstacle occurs on the first river (Hem), while in the second case, populations are located
8 km apart, on the same stream section (Bresle). The last pair is parapatric (Risle), but with
a moderate FST value similar to what is observed in sympatric populations (Rougemont
et al., 2015). We focused on pairs highly connected by gene flow previously identified
in Rougemont et al., study because in disconnected pairs, inferences on the long term
history of divergence may be biased by the recent effect of genetic drift in isolated L. planeri
populations. In parapatric situations L. planeri populations were generally geographically
isolated in upper parts of rivers due to anthropogenic barriers to migration with no
opportunity for gene flow with L. fluviatilis. The sampling included temporal replicates on
the Oir (2010, 2011 and 2014), Bresle (2011 and 2014), and Risle rivers (2011 and 2014).
A set of 13 microsatellites was used to genotype a total of 727 individuals following the
protocol described in Gaigher et al. (2013).

Summary statistics
Given the lack of genetic differentiation between samples collected in different years in the
same river, they were merged together (Rougemont et al., 2015). Similarly, we pooled brook
lamprey individuals sampled in upstream and downstream areas on the Aa and Hem river
as these two groups were not significantly differentiated (Table S1). We also pooled river
lamprey individuals from the Aa and Hem rivers given the lack of differentiation between
these populations (Rougemont et al., 2015). Summary statistics were then computed for
each pooled sample. As summary statistics used for comparison between simulated
and observed datasets, we computed the average and standard deviation values of: the
number of alleles (A), Allelic richness (Ar), observed and expected heterozygosity (Ho
and He), allele size in base pairs, the Garza-Williamson index (GW, Garza & Williamson,
2001), GST (Nei1, 973) and δµ2 (Goldstein et al., 1995). The GW index (M ratio) aims
at assessing reductions in effective population size and is calculated as M = A

R+1 with
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Figure 1 Map of sampling sites across the channel area. River names match those given in Table 2 and Fst values are given for each population
pair.

A is the number of alleles for a given loci in each population and R is the allelic range.
Following (Excoffier, Estoup & Cornuet, 2005) we add 1 to the denominator to avoided
dividing by zero in case of a monomorphic sample. Goldstein et al. δµ2 is a measure
of genetic distance developed for microsatellite data defined as δµ2= (µ1−µ2)2 where
µ1 and µ2 represents the average number of allelic size differences within populations
1 and populations 2 respectively. Each statistics was computed within populations as
well as globally except for the Gst and δµ2 which are pairwise statistics. All statistics
were computed using R scripts (R Development Core Team, 2011) available on github at
https://github.com/QuentinRougemont/MicrosatDemogInference.

Testing alternatives demographic scenario
ABC coalescent simulations
For each population pair we used an approximate Bayesian computation (Beaumont,
Zhang & Balding, 2002; Csilléry et al., 2010) framework to statistically compare five
alternative models of demographic history (Fig. 2): (1) the two studied populations
derive from a single panmictic gene pool (PAN); (2) a strict isolation model between
sister populations (SI); (3) an isolation with migration model (IM); (4) a model allowing
ancient migration but recent isolation (AM) and (5) a model of secondary contact after
past isolation (SC). The PAN model assumes a single panmictic population with constant
population size. The SI model assumes a strict and instantaneous split of the ancestral
population into two daughter populations with constant size and no subsequent gene-flow.
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Figure 2 Different scenario of divergence between L. planeri and L. fluviatilis. Five models with differ-
ent parameters are tested and compared. Two null models: stict Isolation (SI) and Panmixia (PAN). Three
models of migration: isolation with constant migration (IM), ancient migration (AM) and secondary con-
tact (SC). The following parameters are shared by all models: τdiv : number of generations since divergence
time. θA,θLf , θLp : effective population size of the ancestral population, of L. fluviatilis and L. planeri respec-
tively. τisol is the number of generations since the two ecotypes have stopped exchanging genes. τsc is the
number of generations since the two ecotypes have entered into a secondary contact after a period of iso-
lation. M12 and M21 represent the number of migrants expressed in 4.Nm units per generation withm the
proportion of population made of migrants from the other populations.

The IMmodel assumes continuous gene-flow between daughter populations after the initial
split at constant rate over generations. The AM model assumes gene-flow between the two
diverging populations during the first generations following the split of the ancestral
population. The SC model describes the split of an ancestral population in two isolated
daughter populations, the two evolving lineages then experience gene flow through a
secondary contact starting TSC generations ago. For IM, AM and SC models, the number
of migrants was scaled byM = 4.N0.m, withM1 the number of migrants from L. fluviatilis
to L. planeri and M2 the number of migrants from L. planeri to L. fluviatilis and m the
fraction of the population made of migrants from the other population at each generation.
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Coalescent simulations were performed using the ms software (Hudson, 2002) assuming
an infinite-site model of mutation, in which most parameters are scaled by the effective
population size of an arbitrarily chosen reference population (Nref) with impact on
conclusions drawn by the ABC analysis. Each model was also characterized by a scaled
effective population size θ : θA/θRef,θlf /θRef,θlp/θRef where θRef= 4NRefµ,µ representing
the mutation rate per generation. Patterns of genetic diversity suggested that river lamprey
populations display a greater Ne than populations of brook lamprey (Rougemont et al.,
2015). Thus, θlf was sampled on the interval 0–3 and θlp in the interval 0-max (θlf ). θRef was
set to 1 (i.e., we assumed NRef= 1,000 and µ= 2.5e−4). Nref was chosen based on prior
knowledge of possible population size in lampreys (Q Rougemont et al., 2015, unpublished
data). µ was chosen according to values frequently observed in fishes (Shimoda et al.,
1999; Steinberg et al., 2002; Yue, David & Orban, 2006) and other vertebrates species (e.g.,
Nance et al., 2011). The panmictic model was only characterized by the unique effective
mutation rate θ which was also modelled on the interval 0–3. All models (except PAN) also
incorporated the scaled time of divergence, τsplit/4NRef, where τsplit is the time measured
in number of generations and drawn from a uniform distribution in the interval 0–25.
The two parameters τiso (AM model) and τsc (SC model) were computed from uniform
distributions defined on the interval 0–τsplit. Since the genetics and ecology of lampreys is
poorly known, we chose to include commonly used parameters from the literature (Pinho
& Hey, 2010) after exploring different combinations of uninformative priors following
Cornuet, Ravigné & Estoup (2010) (Table 1). Binary simulated data frommswere converted
into microsatellite data using a generalised stepwise mutation model (GSM) in which the
probability of changes of the repeat number in each mutation event was modelled by a
geometrical parameter α distributed following a uniform prior distribution sampled on the
interval 0–0.5. All computations were run in R and took into account differences in sample
size for each of the thirteen loci. Summary statistics were computed from the transformed
microsatellite data. One million simulations composed of the thirteen microsatellite loci
were computed under each demographic model. All R code used for ABC computation is
available at https://github.com/QuentinRougemont/MicrosatDemogInference.

Model selection
ABC approach
We evaluated the posterior probabilities of each demographic model using an ABC
framework implemented in the abc package in R (Csilléry, François & Blum, 2012). We
compared all models at a time by computing posterior probabilities using a feed forward
neural network based on a nonlinear conditional heteroscedastic regression in which the
model is considered as an additional parameter to be inferred. This procedure allows taking
into account correlations of summary statistics and distortion hence reducing the problem
of curse of dimensionality (Blum & François, 2010). In the rejection step, we retained the
0.02% simulations closest to the observed summary statistics, which were subsequently
weighted by an Epanechnikov kernel that peaks when Sobs= Ssim. The regression step was
performed using 50 neural networks and 15 hidden layers.
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Table 1 Prior for all models. θA,θ1,θ2 = effective mutation rate for the ancestral, river lamprey and
brook lamprey populations respectively.M1,M2,MAnc = Effective migration rate for the ancestral, river
lamprey and brook lamprey populations respectively. τ = divergence time, τisolτsc divergence time under
the ancient migration model and time of secondary contact respectively.

Parameters Models Prior

θA= 4NAncµ SI, IM, AM, SC Uniform [0–3]
θ1= 4N1µ SI, IM, AM, SC, PAN Uniform [0–3]
θ2= 4N2µ SI, IM, AM, SC Uniform [0–(θ1)]
M1=M2= 4N1m IM, SC Uniform [0–20]
MANC= 4N1m AM Uniform [0–20]
τ = 4N1t SI, IM, AM, SC Uniform [0–25]
τisol= 4N1t AM Uniform [0–τ ]
τsc= 4N1t SC Uniform [0–τ ]

Notes.
SI, strict isolation; IM, isolation with migration; AM, ancient migration; PAN, Panmixia; SC, secondary contact model.

Table 2 Estimates of populations genetic parameters for each pair of river and brook lamprey populations.N , number of individuals used for
ABC analysis; Ar, Allelic richness; He, expected heterozygosity; GW, Garza-Williamson Index. Population are classified by increasing order of ge-
netic differentiation.

Pop River name N Lf N Lp FST Ar Lf Ar Lp He Lf He Lp GW Lf GW Lp 1µ2

OIR Oir 104 74 0.028 4.45 3.61 0.52 0.508 0.525 0.622 0.204
BET Bethune 14 14 0.028 3.51 3.36 0.516 0.471 0.452 0.464 0.507
RIS Risle 75 75 0.033 3.84 3.92 0.503 0.472 0.497 0.421 0.842
HEM Hem 30a 65b 0.077 4.21 3.53 0.504 0.477 0.406 0.487 1.633
AA Aa 34a 69b 0.084 4.21 3.76 0.514 0.522 0.406 0.505 0.915
BRE Bresle 93 80 0.091 4.14 4.91 0.49 0.49 0.466 0.263 34.37

Notes.
aFor the ABC inference, individuals of river lamprey from the AA and Hem (FST = 0) river were pooled together to obtain a sample size similar to the one of brook lampreys.
bBrook lamprey samples from the AA and Hem rivers are composed of upstream and downstream samples from the Rougemont et al. (2015) study.

ABC cross-validation
We performed model checking to compute the classification error rate of the inferred
model using pseudo-observed simulated datasets (PODS). We randomly selected 1,000
PODS from one million of simulations computed under each simulated model. We used
the same ABC selection procedure as above to estimate the probability of the PODS.
Knowing the true model we then computed the type I error rate that corresponds to the
risk of excluding the previously inferred scenario when it is the true and the type II error
rate that corresponds to the risk of selecting the previously inferred scenario when it is
false following Cornuet, Ravigné & Estoup (2010). The most important here was the type
II error that, with regards to the selected dataset, corresponds to the risks of erroneously
selecting the focal scenario. We validated the accuracy of our procedure by performing the
same analysis in pairwise model comparisons of all models of divergence with gene flow
(AM, IM, SC) against the model of strict isolation. We also pairwise compared all models
of divergence against the model of panmixia. We again computed type I and type II errors
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using 1,000 PODS taken randomly from the prior distribution and running again the same
ABC model selection procedure as above.

Random forest model selection and cross-validations
In parallel to our ABC based model selection and cross-validation procedure we explored
the ability of a random forest algorithm (Breiman, 2001) to discriminate the different
models and to estimate which summary statistics were the most informative. Random
forest (RF) is a machine-learning algorithm whose use has recently been advocated for
model choice in ABC inference to circumvent curse of dimensionality problems and
those linked to the choice of summary statistics (Pudlo et al., 2014). This approach is a
non-parametric classification algorithm that uses bootstrapped decision trees to perform
classification using a set (p) of defined predictor variables (here the summary statistics).
Multiple (i.e., hundreds to thousands) decision trees are grown and merged together
and the ensemble makes up the forest (Breiman, 2001). Simulations that are not used
in tree building at each bootstrap (the so called out-of-bag simulation OOB) are then
used to compute the OOB error rate, which provides a direct method for cross-validation
(Breiman, 2001; Cutler et al., 2007). This method allows reducing the dimensionality of
the data (Cutler et al., 2007) but also estimating the relative importance of variables (here
the summary statistics) through rankings. Variable importance is measured by random
permutations of the specified variable in OOB observations and new predictions are then
obtained and compared to the original OOB data (Cutler et al., 2007). One particularly
attracting feature of random forest is its insensitivity to strong correlations and high noise
within data (Pudlo et al., 2014). In addition, the RF analysis has the advantage of being
computationally far less extensive than the ABC cross validation procedure.

We first constructed 6 random forests (one by river) using the randomForestSRC
package in R (Ishwaran et al., 2008; Ishwaran & Kogalur, 2015) allowing for parallelization
and fast computations. We grew 1,000 trees on subsets of 50,000 simulated datasets (5%)
that were used as a training set. Prior analysis using different numbers of trees and training
set sizes indicated that the OOB errors reached stationarity using between 500–1,000 trees
(see also Fig. 3), so we did not grow bigger forests that would have required extensive
computations. All summary statistics were included to get an estimation of the importance
of each variable. This allowed us to estimate the OOB error rate for each comparison, which
is similar to a prior error rate in ABC inference (Pudlo et al., 2014). Ultimately our forest
was used as a prediction tool to compute the probability that our observed data belongs to
one of the 5 alternatives models.

Parameter estimation and cross-validation
Parameter estimation was performed for the best models using nonlinear regressions. We
first used a logit transformation of the parameters on the 2,000 best replicate simulations
providing the smallest Euclidian distance δ (Csilléry, François & Blum, 2012). We then
jointly estimated parameters’ posterior probability using the neural network procedure
implemented in the abc package. We obtained the best model by weighted nonlinear
regressions of the parameters on the summary statistics using 50 feed-forward neural
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networks and 15 hidden layers. We performed posterior predictive checks for cross-
validation in an attempt to check the ability of our parameter estimates to generate data
summary statistics close to the observed summary statistics. For each best model, we
selected 10,000 samples drawn from the posterior distribution obtained after parameter
estimation (from the abc package) and simulated 10,000 new datasets by using againms and
custom R scripts. We then again plotted the distance between our observed original values
and our new simulations and computed the p-value for each statistic as the proportion of
values that were larger or smaller than the observed value.

RESULTS
Population diversity and divergence
A total of 6 populations pairs (727 individuals in total)were analysed using 13microsatellites
markers. As already observed (Rougemont et al., 2015), the averaged allelic richness of river
lamprey populations was significantly higher than that of brook lampreys (ArLf = 3.43,
ArLp= 3.116, p= 0.0010, Table 2). However, there was no significant difference in expected
heterozygosity between river lamprey (He Lf = 0.507) and brook lamprey (He Lp= 0.46).
(p= 0.208). The global genetic differentiation between river and brook lampreys was
FST = 0.061 (99%CI [0.044–0.079]) and pairwise FST ranged from 0 to 0.192 (Table S1).
The differentiation among river lamprey populations was significantly lower (FST = 0.002)
than among brook lamprey populations (FST = 0.109) (p= 0.003). No river lamprey
population differed significantly from the others whereas all brook lamprey populations
were significantly differentiated (Table S1). The pairwise differentiation between river
lamprey and brook lamprey within each river ranged from 0.028 (Oir and Bethune) to
0.091 in the Bresle River and was significant in all cases but the Bethune River (Table S1).

Model comparison and misclassification
The classical ABC model-choice and random forest approaches generally yielded similar
results as detailed in Table 3. In all population pairs, the model of strict isolation (SI) and
of ancient migration followed by a period of strict isolation (AM) were clearly rejected.
In two population pairs (Aa and Bresle), the best supported model by both model-choice
approaches was the SC model. In the Bethune River, the best supported model by both
methods was the IMmodel. In two cases (Hem and Risle), none of the methods was able to
accurately discriminate between the two scenarios (SC and IM model). Finally, in the Oir
River the two methods gave incongruent results with the model of panmixia (PAN) being
the best supported model under the ABC framework, while the RF failed to distinguish
between the IM and SC models.

Cross-validations using the ABC framework indicated that the SI and PANmodels were
correctly classified in all rivers. The PAN model had very low type II errors across all rivers
(Table S2) as well as low type I errors in pairwise model comparisons (Table S3). Type II
errors for SI and AM comparisons were high (Table S2 and Table S3) but this was a minor
concern here as these models were not supported by our data. Cross-validations comparing
the two most probable models (IM and SC) indicated a high risk of selecting the IM model

Rougemont et al. (2016), PeerJ, DOI 10.7717/peerj.1910 10/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.1910/supp-2
http://dx.doi.org/10.7717/peerj.1910/supp-2
http://dx.doi.org/10.7717/peerj.1910/supp-2
http://dx.doi.org/10.7717/peerj.1910/supp-2
http://dx.doi.org/10.7717/peerj.1910/supp-2
http://dx.doi.org/10.7717/peerj.1910/supp-2
http://dx.doi.org/10.7717/peerj.1910/supp-2
http://dx.doi.org/10.7717/peerj.1910


Table 3 ABC classification (posterior probability) and random forest (RF) prediction of each model of
speciation in each river.

MODEL

SI IM AM SC PAN

RIVER ABC RF ABC RF ABC RF ABC RF ABC RF

AA 0 0 0.27 0.39 0.01 0.06 0.72 0.54 0 0
BET 0 0 0.45 0.57 0 0.02 0.46 0.35 0.08 0.06
BRE 0.01 0.02 0.12 0.24 0.14 0.12 0.73 0.62 0 0
HEM 0 0 0.42 0.53 0.01 0.05 0.57 0.42 0 0
RIS 0 0 0.46 0.47 0 0 0.54 0.52 0 0
OIR 0 0 0.15 0.46 0 0.02 0.14 0.47 0.71 0.05
Average 0.00 0.00 0.31 0.44 0.03 0.05 0.53 0.49 0.13 0.02

Table 4 Random forests out-of-bag confusionmatrix and classification error.Data based on 6 random
forests, each composed of 1,000 trees based on a trained set of 50,000 simulated predictor variables (sum-
mary statistics). The response variable is the demographic model. Proportions of correctly classified de-
mographic models are in bold. The grey italic values represent models with high error rates. Simulation
between rivers differed only by the number of individual loci simulated and produced very similar values
that were subsequently averaged over each demographic model.

Predicted model (Averaged over each river) Averaged OOB
error rate

Observed AM I IM PAN SC
AM 78.0% 16.7% 2.4% 0.0% 2.9% 21.99%
I 25.2% 73.6% 0.6% 0.0% 0.6% 26.38%
IM 1.6% 0.2% 57.2% 0.8% 40.1% 42.76%
PAN 0.0% 0.0% 0.2% 99.7% 0.1% 0.30%
SC 2.1% 0.3% 43.6% 0.6% 53.3% 47.12%

instead of the SC model in all rivers (averaged type II error = 0.4025). In contrast, the risk
of selecting the SC model instead of the IM was low (averaged type II error = 0.057).

To gain further insights into the performance of ourmodel selection procedure we tested
if a random forest approach could help confirming the validity of the empirically rejected
models and distinguishing between the IM and SC models. The RF results confirmed that
the models of strict isolation, ancient migration and panmixia were classified with a high
accuracy (Table 4, Fig. 3 and Fig. S1). The overall error rate (28.79%) hid very different
accuracies depending on models. Average OOB errors in pairwise analyses of IM versus SC
models were as high as 45% demonstrating that it was generally not possible to correctly
classify simulated data in their correct categories (see details in Table 4 and Fig. S1). The
estimation of variable importance (Fig. 3 and Fig. S1) indicated that the most informative
variables were systematically the mean and variance of GST and of δµ2, generally followed
by the estimators of allelic richness and expected heterozygosity in each population and
globally (Fig. 3, Fig. S1 and Table S4).
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Table 5 Estimates of demographic parameters under the model of ongoing migration (IM) and secondary contact (SC) in each river.

River Model Ne Lf Ne Lp Ne ancestral
population

Migration
from Lp to Lf

Migration
from Lf to Lp

Split time Time
secondary
contact

median [95HPD] median [95HPD] median [95HPD] median [95HPD] median [95HPD] median [95HPD] median [95HPD]

AA IM 1310[930–2020] 410[290–680] 2290[2260–2350] 0.0025[0.0018–0.0032] 0.003[0.0027–0.003] 268000[246000–282000]

SC 1480[760–2550] 390[270–620] 1850[1600–2110] 0.0022[0.002–0.0025] 0.0032[0.003–0.0033] 191200[168000–230000] 89200[61400–108000]

BET IM 1620[1260–2350] 940[430–1540] 1650[1500–1780] 0.0029[0.0027–0.0032] 0.0035[0.0033–0.0037] 29800[24200–34200]

SC 1930[1280–2630] 940[570–1420] 1160[1030–1300] 0.0024[0.002–0.0027] 0.0033[0.0032–0.0038] 322000[265600–396400] 164600[116000–212800]

BRE IM 1020[440–2450] 310[120–790] 1360[440–2370] 0.0004[0.0004–0.0015] 0.002[0.0006–0.0039] 274000[99800–453800]

SC 1610[910–2720] 740[220–1500] 1440[320–2620] 0.0017[0.0004–0.0041] 0.0025[0.0007–0.0046] 268000[140800–446400] 20400[3800–124600]

HEM IM 1000[710–194] 190[130–310] 2600[2480–2700] 0.002[0.0017–0.0027] 0.0042[0.0039–0.0044] 240000[191200–270000]

SC 860[660–1280] 350[80–880] 1680[1200–1880] 0.0031[0.0028–0.0034] 0.0024[0.002–0.0029] 278000[231400–328800] 99400[85400–110000]

RIS IM 840[600–1540] 620[620–880] 840[770–930] 0.0021[0.0015–0.003] 0.0025[0.0018–0.0031] 197000[181800–209400]

SC 1360[840–2320] 640[640–1030] 1010[660–1520] 0.0036[0.0034–0.004] 0.0037[0.0036–0.0038] 226000[168600–320400] 91200[42600–151800]

Average IM 1158[788–1710] 494[318–840] 1748[1490–2026] 0.0020[0.0016–0.0027] 0.003[0.0025–0.0036] 201760[148600–249880] [–]

SC 1448[890–2300] 612[356–1090] 1428[962–1886] 0.0026[0.0021–0.0033] 0.003[0.0025–0.0037] 257040[194880–344400] 92960[61840–141440]

OIR PANa 2050[1940–2180]

Notes.
Ne, effective population size; Lf , Lampetra fluviatilis; Lp, Lampetra planeri.

aThe PAN model is controlled by a single parameter the effective population size of the single population (made of both Lf and Lp backgrounds).
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Figure 3 Curves of out-of-bag errors rates and estimation of variable importance.Data based on one random forest, each composed of 1,000
trees obtained from a trained set of 50,000 simulated predictor variables (summary statistics). The response variable is the demographic model. Ex-
ample taken from the Aa river. Estimation for the remaining rivers yielded similar results and are presented in Table S2 and Fig. S1.
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Parameters estimation from the best models
We estimated the parameters in each population pair for both the IM and SC models that
we failed to distinguish and for the PAN model in the Oir population pair (Table 5, see
also Table S6 for untransformed values). The accuracy of posterior parameters estimation
varied among population pairs, with the Aa, Hem, Bethune and Risle presenting accurate
parameters estimation under both the IM and SC model. In general Ne estimates from
the IM model were slightly more accurate than those from the SC model. Under both
models, we generally observed a reduction of Ne in both river and brook lampreys as
compared to their ancestral populations. Under the IM model, the respective median
effective population size (NeLf and NeLp) of the river lamprey and brook lamprey were on
average 1.54 and 5.35 times smaller than the ancestral population. Under the SC model,
the (averaged) median effective population sizes were 1.09 and 2.86 times smaller in
river lamprey and brook lamprey respectively than their ancestral populations (Table 5).
Estimates of Ne were on average 2.96 times larger in river lampreys than in brook lampreys
under the IM model. Under the SC model estimates of Ne were 2.54 times larger in river
lampreys than in brook lampreys. Under both the IM and SC models we also noted a
slight tendency towards higher migration from river lamprey to brook lamprey with a
small deviation from the 1:1 ratio: averaged m ratio = 2.14 and 1.22 under IM and SC
respectively but 95% CI’s overlapped in 3 out of 5 cases (Table 5). Estimates of divergence
time and timing of secondary contact (SC only) yielded variable results and were not always
accurately estimated (Table 5). Estimates from the Aa and Hem population pairs were the
most accurate under both scenarios. Overall estimates of split times were congruent under
the SC model but revealed that populations would have come into secondary contact for
a long period with the averaged time of secondary contact representing more than one
third of the time since divergence. Finally, simulations of the Oir population pair were
summarized by a single parameter (the effective mutation rate of a panmictic population)
that was estimated with high accuracy (Table 5).

Posterior predictive checks
We performed posterior predictive checks in order to assess the ability of the models to
accurately reproduce summary statistics close to our observed statistics based on 10,000
simulated datasets drawn from the posterior distribution and computed the robustness of
our inference. Under both the IM and SCmodels we consistently found some statistics that
differed significantly from our observed data, indicating that the best proposed models
could not reproduce exactly the observed datasets. Genomic variances in heterozygosity
and in allelic number are respectively underestimated and overestimated by the best
estimated models. In some cases the mean Garza-Williamson index was not accurately
reproduced and underestimated (Table S5). Similarly, in three cases, the variance in FST
did not yield accurate results (Table S5 and Fig. S2). Under the PANmodel (Oir population
pair) we found that the variance in allelic richness and the Garza Williamson index were
not accurately reproduced by our data (Table S5). These departures between simulations
and observations probably reflect complex features in the real genomic divergence history
of lampreys that our models did not capture. For instance, the proposed models do not
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allow temporal variation inmigration rates or partial linkage tomolecular targets of natural
selection with various effects, from positive to balancing selection.

DISCUSSION
Our goal was to test whether we could discriminate alternative scenarios of divergence
between river and brook lampreys using a set of microsatellite markers and an ABC
approach. We were able to reject the models of strict isolation and of ancient migration.
For one population pair (Oir), the model of panmixia received the best support, whereas
in other population pairs it was not possible to discriminate divergence with ongoing gene
flow from a model of allopatric divergence followed by secondary contact.

Difficulty in distinguishing between ongoing migration and secondary
contact
In spite of the availability of large amount of genetic data and computer resources,
few studies have explicitly tested alternative models of divergence (e.g., Ross-Ibarra,
Tenaillon & Gaut, 2009; Duvaux et al., 2011; Roux et al., 2013; Roux et al., 2014; Butlin et
al., 2014). While populations may diverge (and eventually become reproductively isolated)
under various demographic scenarios, our results indicate that distinguishing between
primary differentiation (divergence with gene-flow) versus allopatric divergence followed
by secondary contact remains difficult when using a limited number of neutral markers,
even with advanced computational tools. Indeed, ABC as well as RF cross-validation clearly
showed that the two models were wrongly classified almost half the time. The SC model
tended to display a larger proportion of simulations wrongly classified into the IM model,
a result that can be explained by the higher complexity of this model that displays one
supplementary parameter and is inherently more difficult to infer. In contrast, even though
the OOB error rate was high in the IM model, it tended to display fewer simulations
wrongly classified into the SC model. Given the inherent difficulty to correctly classify the
SC model even when it is true, our support for this model in some cases seems conservative
and may suggest that it could be the true model under which lampreys have diverged.

Our inability to distinguish between a scenario of isolation withmigration and secondary
contact is in accordance with theoretical expectations from Bierne, Gagnaire & David
(2013). Using a simple modelling approach they showed how genetic environmental
associations at neutral markers such as microsatellites can be quickly lost after secondary
contacts and then reach migration/drift equilibrium together with a pattern of isolation
by distance, which is the pattern observed in the studied lamprey populations (see
Rougemont et al., 2015). This was indeed expected under the relatively highmutation rate of
microsatellite loci that allows neutral equilibrium to be rapidly attained. Bierne, Gagnaire
& David (2013) applied their model to the well-studied freshwater/marine stickleback
system (e.g., Colosimo et al., 2005; Hohenlohe et al., 2010; Hohenlohe et al., 2012), which
shares several characteristics with the lamprey system: a single nearly panmictic marine
population and small and potentially independent freshwater populations. The application
to the stickleback model showed that introgression proceeded independently between
the different streams and was strongly asymmetric from the migratory to the resident
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populations, which is similar to the pattern we observed here (Table 5) under both the
isolation with migration model and the secondary contact model. Although we cannot
accurately infer the symmetry of migration, the migration appeared slightly higher from
river lamprey to brook lamprey in some rivers (Table 5).

The difficulty in distinguishing the two models is further explained by the fact that
when allopatric divergence is short and secondary contacts are very long, the SC model
converges to the same signal as that obtained under the IM model. The same difficulty is
expected when comparing a model of ancient migration in which migration lasts a short
amount of time and is followed by a long period of divergence without gene flow to a
model of strict isolation. Accordingly, these models could not be clearly distinguished in
our cross-validations (e.g., Table 4).

The failure to reject panmixia in the Oir River can also be explained in the light of Bierne,
Gagnaire & David (2013) conclusions. It could be linked to the low genetic divergence
observed (FST = 0.028) especially given the small number of markers we used, but this
pattern of nearly panmixia can also be attributed to a stronger introgression in this system
than in all other investigated streams. In this river the mean size of river lampreys (225 mm,
n= 134) was much smaller than the size observed in other sites (mean = 303 mm, n=
389). Assuming that size difference is the most important cause of reproductive isolation
(Beamish & Neville, 1992) a smaller size difference may facilitate mating of the two ecotypes
and subsequent genome swamping. In both cases, inferences from this system based on
neutral markers are necessarily difficult as this pattern may be explained by strong gene
flow after an isolation period as well as by a very early stage of ongoing divergence.

Demographic parameter estimations and new insights on
lamprey history
We observed asymmetries in effective populations size between river lamprey (averaged
median = 1,448; 95% CI [890–2,300] under SC, 1,158 and 95% CI [788–1,710] under
IM) and brook lamprey (averaged median = 612; 95% CI [356–1,090]; and 494 95% CI
[318–840] under SC and IM respectively). The greater estimates of effective population
size in river lamprey reflect the idea that homing is moderate in this species and population
size as well as gene flow are large (Rougemont et al., 2015; Spice et al., 2012) resulting in
a situation similar to that observed in the panmictic populations of marine sticklebacks
(Hohenlohe et al., 2010; Hohenlohe et al., 2012). We also observed reductions in effective
population size of each resident brook lamprey population as compared to the ancestral
populations (averagedmedian= 1,428; 95%CI [962–1,886]; andmedian= 1,748 with 95%
CI [1,490–2,026] under SC and IM respectively). Such a reduction is expected following the
independent river colonization by founding individuals from the resident ecotype (Bierne,
Gagnaire & David, 2013).

Estimates of divergence times suggested that the two ecotypes may have split around
201,000 years ago (95% CI [148,000–250,000]) under the IM model and around
257,000 years ago (95%CI [195,000–344,000]) under the SCmodel (assuming a generation
time of 5 years, Potter & Potter (1971)). Such estimates are rather similar to what was
observed in Dicentrarchus labrax (Tine et al., 2014). Consequently, it seems unlikely
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that the divergence was initiated rapidly, following the recent glacial retreats around
10,000–15,000 years ago (Bernatchez & Wilson, 1998; Aldenhoven et al., 2010) as often
proposed to explained ecotypic divergence in various aquatic species (e.g., Schluter &
Nagel, 1995; Espanhol, Almeida & Alves, 2007; Bracken et al., 2015; Mateus et al., 2016).
Importantly, under the SC model, the secondary contact would have started around
92,000 years ago, representing more than one third of the total divergence time between
the two species. Such an ancient secondary contact implies that the genetic signature of
historical geographic isolation carried by neutral markers may have been lost. In these
conditions, neutral markers can converge to the same state than the one observed under
primary differentiation explaining again the difficulty of discriminating the two models
(Barton & Hewitt, 1985; Charlesworth, Nordborg & Charlesworth, 1997; Bierne, Gagnaire
& David, 2013). The SC model implies the accumulation of some Dobzhansky-Muller
incompatibilities in allopatry when the two ecotypes started to diverge. While both theory
(Orr, 1995) and empirical evidence (Moyle & Nakazato, 2009; Matute et al., 2010; Wang,
White & Payseur, 2015) predict that DMI should accumulate faster than linearly in time,
our result suggest a limited amount of isolation. The period of isolation was certainly too
short to allow for sufficient DMI to accumulate and to develop strong barriers to gene flow.
This would likely explain the low differentiation observed for mtDNA (Espanhol, Almeida
& Alves, 2007; Blank, Jürss & Bastrop, 2008; Bracken et al., 2015) and is fully compatible
with the observation of viable F1 hybrids (Hume et al., 2013; Rougemont et al., 2015).

Another question we started to address is the origin of parallel divergence observed
between river lamprey and brook lamprey. The process of recent and independent
postglacial divergence with gene flow (parallel divergence) either from standing genetic
variation or de novo mutations seems a conceptually simple explanation often used to
explain divergence between freshwater resident and anadromous (or marine) stickleback
(Schluter & Nagel, 1995). Similar scenarios have been proposed in lampreys (e.g., Espanhol,
Almeida & Alves, 2007; Bracken et al., 2015; Mateus et al., 2016). However, models of
divergence with gene flow did not receive higher support than models of secondary contact
and divergence time estimates appeared older than the onset of glacial retreats. Alternative
scenarios involve either multiple independent secondary contacts between populations
inhabiting different refugia or secondary contact between anadromous parasitic and
freshwater resident populations each having diverged in a different ancestral place. Under
this scenario a spatial re-assortment of alleles involved in non-parasitism would allow the
recolonization of neighboring rivers (i.e., the transporter hypothesis; Schluter & Conte,
2009; Bierne, Gagnaire & David, 2013;Welch & Jiggins, 2014). Considering (i) the relatively
small scale of investigation and (ii) the nearly panmictic situation in river lamprey; the
hypothesis of a spatial re-assortment of ancestral variation by migration between adjacent
rivers appears more parsimonious. In this case, the history of divergence would reflect a
re-interpretation of the transport hypothesis under a scenario of secondary differentiation
rather than primary differentiation. The major conceptual difference is the existence of
the brook lamprey background before the recent colonization of rivers. This latter process
may have arisen either through hybrid genotypes colonizing rivers or transport of alleles
broken up by recombination and at low frequency in the river lamprey background.
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While the global divergence implies secondary contact, it is debatable whether the spatial
re-assortment process constitutes divergence with gene flow or secondary contact hence
the difficulty in distinguishing between the two models. Disentangling these scenarios of
primary versus secondary differentiation under the transporter hypothesis is challenging
and may be addressed by combining genome wide data with historical modelling among
multiple pairs of populations. Our results also suggest that the RF method provides a
valuable complement to the standard ABC model comparison (Robert et al., 2011; Pudlo
et al., 2014; Marin et al., 2014). The two methods provided similar outcomes in terms of
model choice and subsequent cross-validations except in one population pair (Oir River).
Our ability to distinguish between SC and IM was low in both cases. In line with Pudlo
et al. (2014) we find that the RF approach possesses a series of advantages over the ABC
approach such as (1) fast model choice procedure with simultaneous cross validation
through OOB computations, and (2) considerable reduction of computational time.
Estimating variable importance can be particularly interesting when a large set of variables
are used without prior knowledge about the pertinence of the summary statistics used. The
choice of summary statistics is an important process in ABC methodology (Csilléry et al.,
2010). RF may provide such an objective tool that may be complementary to conventional
ABC model choice and cross validation procedure. Note however, that the neural network
method provided in the abc package, performed very well and provided similar results to
the RF model.

CONCLUSION AND PERSPECTIVES
Our study shed new light on the demographic processes that have shaped the current
genetic makeup of population pairs of European river and brook lampreys. In particular,
we were able to reject a scenario of divergence in strict isolation and a scenario of ancient
sympatric divergence. The scenario of panmixia was also supported only once and it is thus
unlikely to be a generalizable scenario across the species range. However, it was not possible
to firmly discriminate the SC or IMmodels but it is likely that distinguishing between these
alternatives scenarios is complicated in cases of ancient secondary contacts, especially when
investigations are performed with a limited number of neutral markers. In particular,
detecting secondary contact may require sufficiently long allopatric divergence and a time
of secondary contact that represents only a small portion of the total divergence time. This
study thus illustrates the necessity of explicitly exploring alternatives models of divergence
before concluding on the prevalence of rapid parallel speciation (Bierne, Gagnaire & David,
2013). In addition, similar analyses may help understanding the divergence between other
lamprey species pairs inwhich interspecific gene flowhas been described (e.g., Ichthyomyzon
unicuspis and I. fossor, Docker, Mandrak & Heath, 2012). Finally, combining modelling
approach with a higher number of markers and allowing for heterogeneous migration
rate among loci (e.g., Roux et al., 2013; Roux et al., 2014; Tine et al., 2014), variation of
migration rate in time and variation of effective population size along the genome,
may allow fine-tuning demographic investigations and provide further insight onto the
prevalence of secondary contacts versus speciation with continuous gene-flow in nature.
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