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The action of the primitive Steenrod–Milnor
operations on the modular invariants

NGUYỄN SUM

We compute the action of the primitive Steenrod–Milnor operations on generators
of algebras of invariants of subgroups of general linear group GLn = GL(n,Fp) in
the polynomial algebra with p an odd prime number.

55S10; 55P47, 55Q45, 55T15

1 Introduction

Let p be an odd prime number. Denote by GLn = GL(n,Fp) the general linear group
over the prime field Fp and Tn the Sylow p–subgroup of GLn consisting of all upper
triangular matrices with 1 on the main diagonal. For any integer d, 1 ≤ d ≤ p− 1, we
set

SLd
n = {ω ∈ GLn; (detω)d = 1}.

It is easy to see that SLd
n is a subgroup of GLn and SLp−1

n = GLn . Each subgroup of
GLn acts on Pn = E(x1, . . . , xn) ⊗ Fp(y1, . . . , yn) in the usual manner. Here and in
what follows, E(., . . . , .) and Fp(., . . . , .) are the exterior and polynomial algebras over
Fp generated by the indicated variables. We grade Pn by assigning dim xi = 1 and
dim yi = 2.

Dickson [1] showed that the invariant algebra Fp(y1, . . . , yn)GLn is a polynomial algebra
generated by the Dickson invariants Qn,s, 0 ≤ s < n. Huỳnh Mùi [6, 7] computed
the invariant algebras PTn

n and PSLd
n

n for d = 1, p − 1, (p − 1)/2. He proved that PTn
n

is generated by Vm , 1 ≤ m ≤ n, Mm,s1,...,sk , 0 ≤ s1 < . . . < sk < m ≤ n and that
PSLd

n
n is generated by Ld

n, Qn,s, 1 ≤ s < n, M(d)
n,s1,...,sk , 0 ≤ s1 < . . . < sk < n. Here

Vm,M
(d)
n,s1,...,sk are Mùi invariants and Ld

n,Qn,s are Dickson invariants (see Section 2).
Note that M(1)

n,s1,...,sk = Mn,s1,...,sk .

Let A(p) be the mod p Steenrod algebra and let τs, ξi be the Milnor elements of
dimensions 2ps − 1, 2pi − 2 respectively in the dual algebra A(p)∗ of A(p). In [5],
Milnor showed that as an algebra,

A(p)∗ = E(τ0, τ1, . . .) ⊗ Fp(ξ1, ξ2, . . .).
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350 Nguyễn Sum

Then A(p)∗ has a basis consisting of all monomials

τSξ
R = τs1 . . . τskξ

r1
1 . . . ξrm

m ,

with S = (s1, . . . , sk), 0 ≤ s1 < . . . < sk,R = (r1, . . . , rm), ri ≥ 0. Let StS,R ∈ A(p)
denote the dual of τSξ

R with respect to that basis. Then A(p) has a basis consisting of
all operations StS,R . For S = ∅,R = (r), St∅,(r) is nothing but the Steenrod operation
Pr . So, we call StS,R the Steenrod–Milnor operation of type (S,R).

We have the Cartan formula

StS,R(uv) =
∑

S1∪S2=S
R1+R2=R

(−1)(dim u+`(S1))`(S2)(S : S1, S2) StS1,R1(u) StS2,R2(v),

where R1 = (r1i), R2 = (r2i), R1 + R2 = (r1i + r2i), S1 ∩ S2 = ∅, u, v ∈ Pn , `(Si) is the
length of Si and

(S : S1, S2) = sign
(

s1 . . . sh sh+1 . . . sk

s11 . . . s1h s21 . . . s2r

)
,

with S1 = (s11, . . . , s1h), s11 < . . . < s1h , S2 = (s21, . . . , s2r), s21 < . . . < s2r (see Mui
[7]).

We denote Stu = St(u),(0), St∆i = St∅,∆i , where ∆i = (0, . . . , 1, . . . , 0) with 1 at the
i–th place. In [7], Huỳnh Mùi proved that as a coalgebra,

A(p) = Λ(St0,St1, . . .)⊗ Γ(St∆1 ,St∆1 , . . .).

Here, Λ(St0,St1, . . .) (resp. Γ(St∆1 ,St∆2 , . . .)) denotes the exterior (resp. polyno-
mial) Hopf algebra with divided powers generated by the primitive Steenrod–Milnor
operations St0, St1, . . . (resp. St∆1 ,St∆2 , . . .).

The Steenrod algebra A(p) acts on Pn by means of the Cartan formula together with
the relations

StS,R xk =


xk, S = ∅, R = (0),

ypu

k , S = (u), R = (0),

0, otherwise,

(i)

StS,R yk =


yk, S = ∅, R = (0),

ypi

k , S = ∅, R = ∆i,

0, otherwise,

(ii)

for k = 1, 2, . . . , n (see Steenrod and Epstein [10] and Sum [13]). Since this action
commutes with the action of GLn , it induces actions of A(p) on PTn

n and PSLd
n

n .
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The action of StS,R on the modular invariants of subgroups of general linear group has
been studied by many authors. This action for S = ∅, R = (r) was explicitly determined
by Hưng and Minh [2], Kechagias [3], Madsen and Milgram [4] and Sum [13]. Smith
and Switzer [9], Wilkerson [14] and Neusel [8] have studied the action of St∆i on the
Dickson invariants.

The purpose of the paper is to compute the action of the primitive Steenrod–Milnor
operations on generators of PTn

n and PSLd
n

n .

The rest of the paper contains three sections. In Section 2, we recall some needed
information on the invariant theory and compute the action of the primitive Steenrod–
Milnor operations on the determinant invariants. In Section 3, we compute the action
of the primitive Steenrod–Milnor operations on Dickson and Mùi invariants. Finally,
we give in Section 4 some formulae from which we can describe our results in terms of
Dickson and Mùi invariants.

Acknowledgements The author is grateful to the referee for his valuable comments
on the first manuscript of this paper.

2 Preliminaries

Definition 2.1 Let (ek+1, . . . , em), 0 ≤ k < m ≤ n, be a sequence of nonnegative
integers. Following Dickson [1] and Mùi [6], we define

[k; ek+1, . . . , em] =
1
k!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 · · · xm
... · · ·

...
x1 · · · xm

ypek+1

1 · · · ypek+1
m

... · · ·
...

ypem

1 · · · ypem
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The precise meaning of the right hand side is given in [6]. For k = 0, we write

[0; e1, . . . , em] = [e1, . . . , em] = det(ypej

i ).

In particular, we set

Lm,s = [0, 1, . . . , ŝ, . . . ,m], 0 ≤ s ≤ m ≤ n,

Lm = Lm,m = [0, 1, . . . ,m− 1],

Mm,s1,...,sk = [k; 0, . . . , ŝ1, . . . , ŝk, . . . ,m− 1],
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for 0 ≤ s1 < . . . < sk < m ≤ n. Each [k; ek+1, . . . , em] is an invariant of SL1
m

and [e1, . . . , em] is divisible by Lm . Then, Dickson invariants Qn,s and Mùi invariants
M(d)

n,s1,...,sk and Vm are defined by

Qn,s = Ln,s/Ln, M(d)
n,s1,...,sk

= Mn,s1,...,sk L
d−1
n and Vm = Lm/Lm−1.

Here, by convention, L0 = [∅] = 1.

Now we prepare some data in order to prove our main results.

Lemma 2.2 Suppose e` 6= ej for ` 6= j, u ≥ 0. Then we have

Stu[k; ek+1, . . . , en] =

{
(−1)k−1[k − 1; u, ek+1, . . . , en], k > 0,

0, k = 0.

Proof Let I be a subset of {1, . . . , n} and let I′ be its complement in {1, 2, . . . , n}.
Writing I = {i1, i2, . . . , ik} and I′ = {ik+1, ik+2, . . . , in} with i1 < i2 < . . . < ik and
ik+1 < ik+2 < . . . < in . We set

xI = xi1xi2 . . . xik ,

[ek+1, ek+2, . . . , en]I = [ek+1, ek+2, . . . , en](yik+1 , yik+2 , . . . , yin)

σI =
(

1 2 . . . n
i1 i2 . . . in

)
∈ Σn,

where Σn is the symmetric group on n letters. Using the Laplace development, we have

[k; ek+1, ek+2, . . . , en] =
∑

I

sign σIxI[ek+1, ek+2, . . . , en]I.

From the relation ii, we see that Stu[ek+1, ek+2, . . . , en]I = 0. Then, using the Cartan
formula, we get

(1) Stu[k; ek+1, ek+2, . . . , en] =
∑

I

sign σI Stu(xI)[ek+1, ek+2, . . . , en]I.

In [7, 5.2], Mùi showed that

Stu(xI) = (−1)k−1[k − 1; u](xi1 , xi2 , . . . , xik , yi1 , yi2 , . . . , yik ).

Hence, using (1) and the Laplace development we obtain the lemma.

Lemma 2.3 Suppose e` 6= ej for ` 6= j, ek+1 < ej for j > k + 1. Then we have

St∆i[k; ek+1, . . . , en] =

{
[k; i, ek+2, . . . , en], ek+1 = 0,

0, ek+1 > 0.
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Proof Suppose ek+1 > 0. From the relations i and ii and the Cartan formula, we easily
obtain

St∆i x` = 0, St∆i ypej

` = pejypej +pi−1
` = 0,

for ` = 1, 2, . . . , n and j = k + 1, k + 2, . . . , n. From this, we get

St∆i[k; ek+1, . . . , en] = 0.

If ek+1 = 0 then St∆i ypej

` = 0, for ` = 1, 2, . . . , n and j = k + 2, . . . , n, and

St∆i ypek+1

` = St∆i y` = ypi

` .

Hence, using the Laplace development and the Cartan formula, we obtain

St∆i[k; ek+1, ek+2, . . . , en] = [k; i, ek+2, . . . , en].

To make the paper self-contained, we give here a proof for the following theorem, which
will be needed in the next section.

Theorem 2.4 (Sum [12]) Let (e1, e2, . . . , en) be a sequence of nonnegative integers
and 0 ≤ k < n. We have

[e1, e2, . . . , en−1, en + n− 1]

=
n−2∑
s=0

(−1)n+s[e1, e2, . . . , en−1, en + s]Qpen

n−1,s + [e1, e2, . . . , en−1]Vpen

n ,(2)

[k; ek+1, . . . , en−1, en + n] =
n−1∑
s=0

(−1)n+s−1[k; ek+1, . . . , en−1, en + s]Qpen

n,s .(3)

Proof We recall Mùi’s formula in [6],

[k; ek+1, . . . , en] =

(−1)k(k−1)/2
∑

0≤s1<...<sk

(−1)s1+...+sk Mn,s1,...,sk [s1, . . . , sk, ek+1, . . . , en]/Ln.

Hence, it suffices to prove the theorem for k = 0.

The proof of the theorem proceeds by induction on n. It is easy to see that the theorem
holds for n = 1. Suppose n ≥ 2 and the theorem holds for n− 1.
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354 Nguyễn Sum

Using the Laplace development and the inductive hypothesis, we have

[e1, . . . , en−1, en + n− 1]

=
n−1∑
t=1

(−1)n+t[e1, . . . , êt, . . . , en−1, en + n− 1]ypet
n + [e1, . . . , en−1]ypen+n−1

n

=
n−1∑
t=1

(−1)n+t
( n−2∑

s=0

(−1)n+s[e1, . . . , êt, . . . , en−1, en + s]Qpen

n−1,s

)
ypet

n

+ [e1, . . . , en−1]ypen+n−1

n

=
n−2∑
s=0

(−1)n+s
( n−1∑

t=1

(−1)n+t[e1, . . . , êt, . . . , en−1, en + s]ypet
n

)
Qpen

n−1,s

+ [e1, . . . , en−1]ypen+n−1

n

=
n−2∑
s=0

(−1)n+s[e1, . . . , en−1, en + s]Qpen

n−1,s

+ [e1, . . . , en−1]
n−1∑
s=0

(−1)n+s−1Qpen

n−1,sy
pen+s

n .

Since Vn =
∑n−1

s=0 (−1)n+s−1Qn−1,sy
ps

n , the relation (2) holds for n.

Now we prove the relation (3) for n. By a direct calculation using (2) and the relation
Qn,s = Qp

n−1,s−1 + Qn−1,sV
p−1
n , we get

[e1, e2, . . . , en−1, en + n]

=
n−1∑
s=1

(−1)n+s−1[e1, . . . , en−1, en + s]Qpen+1

n−1,s−1 + [e1, . . . , en−1]Vpen+1

n

=
n−1∑
s=1

(−1)n+s−1[e1, . . . , en−1, en + s]Qpen

n,s

− [e1, . . . , en−1, en + n− 1]V (p−1)pen

n

+
( n−2∑

s=1

(−1)n+s[e1, . . . , en−1, en + s]Qpen

n−1,s + [e1, . . . , en−1]Vpen

n

)
V (p−1)pen

n .
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Combining this equality and the relation (2) we obtain

[e1, e2, . . . , en−1, en + n] =
n−1∑
s=1

(−1)n+s−1[e1, . . . , en−1, en + s]Qpen

n,s

−(−1)n[e1, . . . , en−1, en]Qpen

n−1,0V (p−1)pen

n .

Since Qn,0 = Qn−1,0Vp−1
n , the relation (3) holds for n.

This completes the proof of Theorem 2.4.

3 Main results

Observe that using the Cartan formula and the relations i and ii, we obtain Stu x = 0
for either x = Qn,s or x = Vn . So, in this section we only compute St∆i x for
x = Qn,s,Vn,M

(d)
n,s1,...,sk and Stu M(d)

n,s1,...,sk .

Theorem 3.1 For any integers i, n, s with 0 ≤ s < n and i ≥ 1, we have

St∆i Qn,s = (−1)n[0, 1, . . . , ŝ, . . . , n− 1, i]Lp−2
n .

Proof Since Ln,s = LnQn,s , using the Cartan formula, we get

(4) St∆i Ln,s = Ln St∆i Qn,s + Qn,s St∆i Ln.

According to Lemma 2.3, we have

St∆i Ln,s =

{
[i, 1, 2, . . . , ŝ, . . . , n], s > 0,

0, s = 0.

In particular, St∆i Ln = [i, 1, 2, . . . , n− 1].

If s = 0 then St∆i Ln,s = 0 and

St∆i Ln = [i, 1, 2, . . . , n− 1]

= (−1)n−1[1, 2, . . . , n− 1, i].

Combining (4) and the above equalities, we get

St∆i Qn,0 = −(St∆i Ln)Qn,0/Ln

= (−1)n[1, 2, . . . , n− 1, i]Qn,0/Ln.

Since Qn,0 = Lp−1
n , the theorem holds.
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If s > 0 then St∆i Ln = [i, 1, 2, . . . , n − 1] and St∆i Ln,s = [i, 1, 2, . . . , ŝ, . . . , n].
Hence, using Theorem 2.4, we get

St∆i Ln,s =
n−1∑
t=0

(−1)n−1+t[i, 1, 2, . . . , ŝ, . . . , n− 1, t]Qn,t

= (−1)n−1[i, 1, 2, . . . , ŝ, . . . , n− 1, 0]Qn,0

+ (−1)n−1+s[i, 1, 2, . . . , ŝ, . . . , n− 1, s]Qn,s

= [i, 1, 2, . . . , n− 1]Qn,s − [i, 0, 1, . . . , ŝ, . . . , n− 1]Qn,0.

Combining (4), the above equalities and the relation Qn,0 = Lp−1
n , we get

St∆i Qn,s = (St∆i Ln,s − Qn,s St∆i Ln)/Ln

= −[i, 0, 1, 2, . . . , ŝ, . . . , n− 1]Qn,0/Ln

= (−1)n[0, 1, 2, . . . , ŝ, . . . , n− 1, i]Lp−2
n .

The following was proved in Smith and Switzer [9] by another method.

Corollary 3.2 (Smith–Switzer [9]) For any integers i, n, s with 0 ≤ s < n and
1 ≤ i ≤ n, we have

St∆i Qn,s =


(−1)s−1Qn,0, i = s > 0,

(−1)nQn,0Qn,s, i = n,

0, otherwise.

Proof Suppose i = s. According to Theorem 3.1, we have

St∆s Qn,s = (−1)n[0, 1, . . . , ŝ, . . . , n− 1, s]Lp−2
n

= (−1)s−1[0, 1, . . . , n− 1]Lp−2
n

= (−1)s−1Lp−1
n = (−1)s−1Qn,0.

If i < n and i 6= s then [0, 1, . . . , ŝ, . . . , n− 1, i] = 0. Hence, St∆i Qn,s = 0.

St∆n Qn,s = (−1)n[0, 1, . . . , ŝ, . . . , n− 1, n]Lp−2
nIf i = n then

= (−1)nLn,sLp−2
n

= (−1)nLp−1
n Qn,s

= (−1)nQn,0Qn,s.

The corollary follows.
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Now, we show that our formula in Theorem 3.1 implies Wilkerson’s formula in [14]. To
do this, we need the following.

Proposition 3.3 (Sum [12]) Let (ek+1, ek+2, . . . , en) be a sequence of nonnegative
integers with 0 ≤ k < n and e` 6= ej for ` 6= j. Then

Pr[k; ek+1, ek+2, . . . , en] =


[k; ek+1 + εk+1, ek+2 + εk+2, . . . , en + εn],

if r =
∑n

j=k+1 εjpej with εj ∈ {0, 1},
0, otherwise.

This proposition can easily be proved by using the Laplace development, the Cartan
formula and the relations i and ii.

From the formula in Theorem 3.1, one gets Wilkerson’s formula as follows.

Theorem 3.4 (Wilkerson [14]) For any integers 0 ≤ s < n ≤ i, we have

St∆i+1 Qn,s = Ppi
St∆i Qn,s.

Proof Applying Theorem 3.1, the Cartan formula and Proposition 3.3, we get

Ppi
St∆i Qn,s = (−1)nPpi

([0, 1, . . . , ŝ, . . . , n− 1, i]Lp−2
n )

= (−1)n
∑

r

Pr([0, 1, . . . , ŝ, . . . , n− 1, i])Ppi−r(Lp−2
n ),

where the sum runs over all

r = ε0p0 + ε1p1 + . . .+ εs−1ps−1 + εs+1ps+1 + . . .+ εn−1pn−1 + εipi

with εj ∈ {0, 1} for any j and r ≤ pi .

If εi = 0 then r < p0 + p1 + . . .+ pn−1 and

2(pi − r) > 2(pi − (p0 + p1 + . . .+ pn−1))

= 2(pi − pn + 1 + (p− 2)(p0 + p1 + . . .+ pn−1))

> 2(p− 2)(p0 + p1 + . . .+ pn−1) = dim Lp−2
n .

This implies Ppi−r(Lp−2
n ) = 0.

Since r ≤ pi , if εi = 1 then εj = 0 for j 6= i and r = pi . Hence, using the above
equalities and Proposition 3.3, we obtain

Ppi
St∆i Qn,s = (−1)nPpi

([0, 1, . . . , ŝ, . . . , n− 1, i])Lp−2
n

= (−1)n[0, 1, . . . , ŝ, . . . , n− 1, i + 1]Lp−2
n

= St∆i+1 Qn,s.
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Next, we compute the action of St∆i on Mùi invariants.

Theorem 3.5 For any positive integers i, n, we have

St∆i Vn = (−1)n−1[0, 1, . . . , n− 2, i]Lp−2
n−1.

Proof Since Ln = Ln−1Vn , applying the Cartan formula, we get

(5) St∆i Ln = Ln−1 St∆i Vn + Vn St∆i Ln−1.

Using Lemma 2.3 and Theorem 2.4, we have

St∆i Ln−1 = [i, 1, 2, . . . , n− 2],

St∆i Ln = [i, 1, 2, . . . , n− 2, n− 1]

=
n−2∑
s=0

(−1)n+s[i, 1, 2, . . . , n− 2, s]Qn−1,s + [i, 1, 2, . . . , n− 2]Vn

= (−1)n[i, 1, 2, . . . , n− 2, 0]Qn−1,0 + [i, 1, 2, . . . , n− 2]Vn.

Combining (5), the above equalities and the relation Qn−1,0 = Lp−1
n−1 , we get

St∆i Vn = (St∆i Ln − Vn St∆i Ln−1)/Ln−1

= (−1)n[i, 1, 2, . . . , n− 2, 0]Qn−1,0/Ln−1

= (−1)n−1[0, 1, 2, . . . , n− 2, i]Lp−2
n−1.

Corollary 3.6 For any integers 0 < i ≤ n, we have

St∆i Vn =


0, i < n− 1,

(−1)n−1Qn−1,0Vn, i = n− 1,

(−1)n−1Qn−1,0(Qp
n−1,n−2Vn + Vp

n ), i = n.

Proof If i < n− 1 then [0, 1, . . . , n− 2, i] = 0. Hence, St∆i Vn = 0.

For i = n − 1, we have [0, 1, 2, . . . , n − 2, n − 1] = Ln = Ln−1Vn . Hence, from
Theorem 3.5, we get

St∆n−1 Vn = (−1)n−1Lp−1
n−1Vn = (−1)n−1Qn−1,0Vn.

Let i = n. A direct computation shows

[0, 1, . . . , n− 2, n] = Ln,n−1 = LnQn,n−1

= Ln−1Vn(Qp
n−1,n−2 + Vp−1

n ).
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From the above equalities, Theorem 3.5 and the relation Lp−1
n−1 = Qn−1,0 , we obtain

St∆n Vn = (−1)n−1Qn−1,0(Qp
n−1,n−2Vn + Vp

n ).

The corollary follows.

Theorem 3.7 Set s0 = 0. Then St∆i M(d)
n,s1,...,sk equals

(−1)st−tM(d)
n,s0,...,ŝt,...,sk

, s1 > 0, i = st, 1 ≤ t ≤ k,

(−1)n−1(d − 1)Mn,s1,...,sk [1, 2, . . . , n− 1, i]Ld−2
n , i ≥ n, s1 = 0,

(−1)n−1
(
(−1)k[k; 1, . . . , ŝ1, . . . , ŝk, . . . , n− 1, i]Ld−1

n

+(d − 1)Mn,s1,...,sk [1, 2, . . . , n− 1, i]Ld−2
n
)
, i ≥ n, s1 > 0,

0, otherwise.

Proof Applying Lemma 2.2, we have

St∆i Mn,s1,...,sk =

{
[k; i, 1, . . . , ŝ1, . . . , ŝk, . . . , n− 1], s1 > 0,

0, s1 = 0.

If i = st then [k; i, 1, . . . , ŝ1, . . . , ŝk, . . . , n− 1] = (−1)st−tMn,s0,...,ŝt,...,sk .

If i ≥ n then

[k; i, 1, . . . , ŝ1, . . . , ŝk, . . . , n− 1] = (−1)n−k−1[k; 1, . . . , ŝ1, . . . , ŝk, . . . , n− 1, i].

Thus the theorem is proved for d = 1.

For d > 1, using Lemma 2.2 and the Cartan formula, we have

St∆i Ld−1
n = (d − 1)Ld−2

n St∆i Ln,

St∆i Ln = (−1)n−1[1, 2, . . . , n− 1, i],

St∆i M(d)
n,s1,...,sk

= St∆i(Mn,s1,...,sk )L
d−1
n + (d − 1)Mn,s1,...,sk L

d−2
n St∆i Ln.

Combining the above equalities we obtain the theorem.

Theorem 3.8 For 1 ≤ d ≤ p− 1, we have

Stu M(d)
n,s1,...,sk

=


(−1)k+st−tM(d)

n,s1,...,ŝt,...,sk
, u = st,

(−1)n−1[k − 1; 0, . . . , ŝ1, . . . , ŝk, . . . , n− 1, u]Ld−1
n , u ≥ n,

0, otherwise.

Geometry & TopologyMonographs 11 (2007)



360 Nguyễn Sum

Proof Since Mn,s1,...,sk = [k; 0, . . . , ŝ1, . . . , ŝk, . . . , n − 1], applying Lemma 2.2, we
get

Stu Mn,s1,...,sk = (−1)k−1[k − 1; u, 0, . . . , ŝ1, . . . , ŝk, . . . , n− 1].

If 0 ≤ u ≤ n− 1 then

[k − 1; u, 0, . . . , ŝ1, . . . , ŝk, . . . , n− 1] =

{
(−1)st−t+1Mn,s1,...,ŝt,...,sk , u = st,

0, otherwise.

If u > n− 1 then we have

[k − 1; u, 0, . . . , ŝ1, . . . , ŝk, . . . , n− 1]

= (−1)n−k[k − 1; 0, . . . , ŝ1, . . . , ŝk, . . . , n− 1, u].

The theorem is proved for d = 1.

Since Stu Ln = 0, using the Cartan formula, we get

Stu(M(d)
n,s1,...,sk

) = Stu(Mn,s1,...,sk )L
d−1
n .

The theorem now follows from the above equalities.

By the analogous argument as given in the proof of Theorem 3.4, we can show that the
Wilkerson formula also holds for Mùi invariants.

Theorem 3.9 For any integers i, u ≥ n, we have

St∆i Vn = Ppi−1
St∆i−1 Vn,

St∆i+1 M(d)
n,s1,...,sk

= Ppi
St∆i M(d)

n,s1,...,sk
,

Stu+1 M(d)
n,s1,...,sk

= Ppu
Stu M(d)

n,s1,...,sk
.

Remark 3.10 Using Theorem 2.4 and the above results, we can compute the action of
the primitive Steenrod–Milnor operations on the modular invariants in terms of Dickson
and Mùi invariants for i, u ≥ n. For example, by a direct calculation, we easily obtain

St∆n+1 Qn,s = (−1)nQn,0(Qp
n,n−1Qn,s − Qp

n,s−1),

St∆n+2 Qn,s = (−1)nQn,0(Qp2+p
n,n−1Qn,s − Qp2

n,n−2Qn,s + Qp2

n,s−2 − Qp
n,s−1Qp2

n,n−1).

Here, by convention, Qn,t = 0 for t < 0.

St∆n+1 Vn = (−1)n−1Qn−1,0
(
(Qp2+p

n−1,n−2 − Qp2

n−1,n−3)Vn + Qp2

n−1,n−2Vp
n + Vp2

n
)
,

Stn M(d)
n,s1,...,sk

=
k∑

t=1

(−1)n−1+k−tM(d)
n,s1,...,ŝt,...,sk

Qn,st ,

St∆n M(d)
n,s1,...,sk

= (−1)n−1
( k∑

t=1

(−1)tM(d)
n,s0,...,ŝt,...,sk

Qn,st + dM(d)
n,s1,...,sk

Qn,0

)
,
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where s0 = 0 and s1 > 0. If s1 = 0 then

St∆n M(d)
n,s1,...,sk

= (−1)n−1(d − 1)M(d)
n,s1,...,sk

Qn,0.

Furthermore, the computation of the action of the primitive Steenrod–Milnor opera-
tions on the modular invariants in terms of Dickson and Mùi invariants by the use of
our results in this section is more convenient than that by using Wilkerson’s formula.
For example, to compute St∆n+2 Qn,s by using Wilkerson’s formula, we need to com-
pute Ppn+1

(Qn,0(Qp
n,n−1Qn,s − Qp

n,s−1)) in terms of Dickson invariants. But computing
Ppn+1

(Qn,0(Qp
n,n−1Qn,s − Qp

n,s−1)) is more difficult than that of [0, 1, . . . , ŝ, . . . , n −
1, n + 2].

4 On the description of the determinant invariants in terms
of Dickson and Mùi invariants

In this section, we study the problem of description of the determinant invariants
in terms of Dickson and Mùi invariants. The explicit formulae for the determinant
invariants in terms of Dickson and Mùi invariants are useful tools for computing the
action of the cohomology operations on the modular invariants.

In general, it is difficult to give explicit formulae for this problem. In particular, for
n = 2, 3, we can explicitly compute [u, v], [u, v,w] in terms of Mùi invariants and
[u, v], [u, v, v+1] in terms of Dickson invariants, where u, v,w are nonnegative integers.

Note that the problem of description of [u, v,w] in terms of Dickson invariants is
complicated. It is still open.

Proposition 4.1 For 0 ≤ u < v < w, we have

[u, v] =
v−1∑
s=u

Vpv−ps+1+pu

1 Vps

2 ,(6)

[u, v,w] =
v−1∑
s=u

[u, s + 1][v,w]L−ps+1

2 Vps

3 +
w−1∑
s=v

[u, v][s + 1,w]L−ps+1

2 Vps

3 .(7)

Proof The relation (6) is proved by induction on v. We prove (7) by induction on v,w.
Applying Theorem 2.4, we can easily prove the following by induction on v

(8) [u, v, v + 1] =
v−1∑
s=u

[u, s + 1]Lpv−ps+1

2 Vps

3 .
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Since Lpv

2 = [v, v + 1], the relation (7) holds for w = v + 1.

Let w = v + 2. By a direct computation using Theorem 2.4 and (8), we have

[u, v, v + 2] = [u, v, v + 1]Qpv

2,1 + [u, v]Vpv

3

=
v−1∑
s=u

[u, s + 1]Lpv−ps+1

2 Vps

3 Qpv

2,1 + [u, v]Vpv

3 .

We observe that (L2Q2,1)pv
= [v, v + 2], Lpv+1

2 = [v + 1, v + 2]. Hence, the relation (7)
holds for w = v + 2. Suppose that (7) holds for w and w + 1. It is easy to see that

[w + 1,w]Qpw

2,0 = −Lpw+1

2 .

Hence, using Theorem 2.4 and the inductive hypothesis, we get

[u, v,w + 2] = [u, v,w + 1]Qpw

2,1 − [u, v,w]Qpw

2,0 + [u, v]Vpw

3

=
( v−1∑

s=u

[u, s + 1][v,w + 1]L−ps+1

2 Vps

3

+
w∑

s=v

[u, v][s + 1,w + 1]L−ps+1

2 Vps

3

)
Qpw

2,1

−
( v−1∑

s=u

[u, s + 1][v,w]L−ps+1

2 Vps

3

+
w−1∑
s=v

[u, v][s + 1,w]L−ps+1

2 Vps

3

)
Qpw

2,0 + [u, v]Vpw

3

=
v−1∑
s=u

[u, s + 1]
(
[v,w + 1]Qpw

2,1 − [v,w]Qpw

2,0

)
L−ps+1

2 Vps

3

+
w∑

s=v

[u, v]
(
[s + 1,w + 1]Qpw

2,1 − [s + 1,w]Qpw

2,0

)
L−ps+1

2 Vps

3 .

This equality and Theorem 2.4 imply the relation (7) for w+2, completing the proof.

Now, we compute [u, v] in terms of L2 and Q2,1 .

Let αi(a) denote the i–th coefficient in p–adic expansion of a nonnegative integer a.
That means

a = α0(a)p0 + α1(a)p1 + α2(a)p2 + . . . ,

for 0 ≤ αi(a) < p, i ≥ 0. We set αi(a) = 0 for i < 0.
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Denote by I(u, v) the set of all integers a satisfying

αi(a) + αi+1(a) ≤ 1, for any i,
αi(a) = 0, for either i < u or i ≥ v− 2.

The following was proved in Sum [11] for p = 2.

Proposition 4.2 Under the above notation, we have

[u, v] =
∑

a∈I(u,v)

(−1)aLpu+p(p−1)a
2 Q

pv−1−pu

p−1 −(p+1)a
2,1 .

Proof The proof is by induction on v. Obviously, I(u, u + 1) = I(u, u + 2) = {0} and
[u, u + 1] = Lpu

2 , [u, u + 2] = Lpu

2 Qpu

2,1 . Hence, the proposition follows with v = u + 1
and v = u + 2. From the definition of the set I(u, v), we obtain

(9) I(u, v + 2) = I(u, v + 1) ∪ (pv−1 + I(u, v)),

where pv−1 + I(u, v) = {pv−1 + a ; a ∈ I(u, v)}.

Combining Theorem 2.4, the inductive hypothesis and the relation Q2,0 = Lp−1
2 , we get

[u, v + 2] = [u, v + 1]Qpv

2,1 − [u, v]Qpv

2,0

=
( ∑

a∈I(u,v+1)

(−1)aLpu+p(p−1)a
2 Q

pv−pu

p−1 −(p+1)a
2,1

)
Qpv

2,1

−
( ∑

a∈I(u,v)

(−1)aLpu+p(p−1)a
2 Q

pv−1−pu

p−1 −(p+1)a
2,1

)
Qpv

2,0

=
∑

a∈I(u,v+1)

(−1)aLpu+p(p−1)a
2 Q

pv+1−pu

p−1 −(p+1)a
2,1

+
∑

a∈I(u,v)

(−1)pv−1+aLpu+p(p−1)(pv−1+a)
2 Q

pv+1−pu

p−1 −(p+1)(pv−1+a)
2,1 .

From this equality and (9), we see that the proposition is true for v + 2, so the proof is
completed.

Now, we compute [u, v, v + 1] in terms of L3,Q3,1,Q3,2 .

Denote by J(u, v) the set of all integers a satisfying

αi(a) ≤ 1 and αi(a) + αi+1(a) + αi+2(a) ≤ 2, for any i,
αi(a) = 0, for either i < u or i ≥ v− 2.
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It is easy to see that for any a ∈ J(u, v), there exists uniquely an expansion

a = a0 + pi1 + pi1+1 + a1 + . . .+ pik + pik+1 + ak,

with i0 = u− 3 < i1 < . . . < ik < ik+1 = v− 1, ij+1 − ij ≥ 3 and aj ∈ I(ij + 3, ij+1)
for 0 ≤ j ≤ k .

We define the functions bu,v, cu,v : J(u, v)→ Z by setting

bu,v(a) =
pv−1 − pu

p− 1
− (p + 1)a + p(pi1 + . . .+ pik ),

cu,v(a) = a0 + a1 + . . .+ ak.

Proposition 4.3 Under the above notation, we have

[u, v, v + 1] =
∑

a∈J(u,v)

(−1)aLpu+p(p−1)a
3 Qbu,v(a)

3,1 Qcu,v(a)
3,2 .

The proof of the proposition is based on some lemmas.

Lemma 4.4 For 0 ≤ u < v,

J(u, v + 3) = J(u, v + 2) ∪ (pv + J(u, v + 1)) ∪ (pv + pv−1 + J(u, v)).

Here, for x ∈ Z and A ⊂ Z, we write x + A = {x + a ; a ∈ A}.

bu,v+3(a) = pv+1 + bu,v+2(a),
cu,v+3(a) = cu,v+2(a), for a ∈ J(u, v + 2),

bu,v+3(pv + a) = bu,v+1(a),
cu,v+3(pv + a) = pv + cu,v+1(a), for a ∈ J(u, v + 1),

bu,v+3(pv + pv−1 + a) = bu,v(a),
cu,v+3(pv + pv−1 + a) = cu,v(a), for a ∈ J(u, v).

This lemma can easily be proved by computing directly from the definitions of J(u, v),
bu,v and cu,v .

Lemma 4.5 For any 0 ≤ u < v, we have

[u, v + 3, v + 4] = [u, v + 2, v + 3]Qpv+1

3,1

− [u, v + 1, v + 2]Qpv+1

3,0 Qpv

3,2 + [u, v, v + 1]Qpv+1+pv

3,0 .
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Proof A direct calculation using Theorem 2.4 gives

[u, v + 3, v + 4] = [u, v + 2, v + 3]Qpv+2

2,0 + [u, v + 3]Vpv+2

3

= [u, v + 2, v + 3](Qpv+1

3,1 − Qpv+1

2,1 V (p−1)pv+1

3 )

+ ([u, v + 2]Qpv+1

2,1 − [u, v + 1]Qpv+1

2,0 )Vpv+2

3

(since Q3,1 = Qp
2,0 + Q2,1Vp−1

3 )

= [u, v + 2, v + 3]Qpv+1

3,1

− ([u, v + 1, v + 2]Qpv+1

2,0 + [u, v + 2]Vpv+1

3 )Qpv+1

2,1 V (p−1)pv+1

3

+ [u, v + 2]Qpv+1

2,1 Vpv+2

3 − [u, v + 1]Qpv+1

2,0 Vpv+2

3

= [u, v + 2, v + 3]Qpv+1

3,1

− [u, v + 1, v + 2]Qpv+1

2,0 V (p−1)pv+1

3 (Qpv+1

2,1 + V (p−1)pv

3 )

+ ([u, v + 1, v + 2]− [u, v + 1]Vpv

3 )Qpv+1

2,0 V (p−1)(pv+1+pv)
3 .

Using Theorem 2.4 and the relations Q3,2 = Qp
2,1 + Vp−1

3 , Q3,0 = Q2,0Vp−1
3 , we obtain

the lemma.

Proof of Proposition 4.3 The proof is by induction on v. For v = u + 1, u + 2, u + 3
the proposition is obvious. Suppose that it is true for v, v + 1, v + 2. Using Lemma 4.5,
the inductive hypothesis and the relation Q3,0 = Lp−1

3 , we get

[u, v + 3, v + 4] =
∑

a∈J(u,v+2)

(−1)aLpu+p(p−1)a
3 Qpv+1+bu,v+2(a)

3,1 Qcu,v+2(a)
3,2

+
∑

a∈J(u,v+1)

(−1)pv+aLpu+p(p−1)(pv+a)
3 Qbu,v+1(a)

3,1 Qpv+cu,v+1(a)
3,2

+
∑

a∈J(u,v)

(−1)pv+pv−1+aLpu+p(p−1)(pv+pv−1+a)
3 Qbu,v(a)

3,1 Qcu,v(a)
3,2 .

Combining this equality and Lemma 4.4, we see that the proposition holds for v + 3.
Hence, the proposition is proved.
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