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Min and Max Scorings for Two-Sample Ordinal Data 
GEORGE KIMELDORF, ALLAN R. SAMPSON, and LYN R. WHITAKER* 

To analyze two-sample ordinal data, one must often assign some increasing numerical scores to the ordinal categories. The 
choice of appropriate scores in these types of analyses is often problematic. This article presents a new approach for reporting 
the results of such analyses. Using techniques of order-restricted inference, we obtain the minimum and maximum of standard 
two-sample test statistics over all possible assignments of increasing scores. If the range of the min and max values does not 
include the critical value for the test statistics, then we can immediately conclude that the result of the analysis remains the same 
no matter what choice of increasing scores is used. On the other hand, if the range includes a critical value, the choice of scores 
used in the analysis must be carefully justified. Numerous examples are given to clarify our approach. 

KEY WORDS: Cochran-Armitage procedure; Isotonic regression; Monotone scales; Ordinal data; Scoring; t test; Two-sample 
problem. 

1. INTRODUCTION 

Suppose that we have data drawn from two populations 
or treatments where each observation falls into one of k 
levels of an ordinal categorization. For instance, in a clin­
ical trial the populations may correspond to active and con­
trol treatments, and the ordinal responses may be the phy­
sician's evaluation of the patient's change from study start 
as one of: very improved, moderately improved, no change, 
slightly deteriorated, or very deteriorated. The typical goal 
is to assess whether or not there is a difference between the 
two treatments. A variety of statistical methods are em­
ployed in this setting [see Miller (1986, chap. 2), Hett­
mansperger (1984, chap. 3), and Agresti (1984)]. These 
include the Wilcoxon-Mann-Whitney test, the Cochran­
Armitage procedure, scored t tests, binomial proportions 
tests where the ordinal categorization is dichotomized (the 
ordinal dichotomy may be, for example, "improved" ver­
sus "not improved"), and also tests based on log-linear 
models. In using one of these procedures to analyze data, 
the practicing statistician, wondering if another procedure 
might produce different results, may, in fact, report a va­
riety of these test results for these two-sample ordinal data 
sets. Since there is arbitrary scoring in some of these pro­
cedures, there conceptually appears to be a limitless set of 
possible results to report. 

In this article we propose a new approach to reporting 
results of analyses of this type of data. We begin by noting 
that these previously noted and commonly used test statis­
tics can essentially be viewed as monotone functions of a 
certain statistic with increasing numerical scores assigned 
to the categories. We then present a simple solution to the 
problem of computing the maximum and the minimum of 
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this statistic over all possible assignments of increasing 
scores. These results then lead us to propose reporting both 
the maximum and minimum values of the corresponding 
test statistic when analyzing such data. Obviously, when 
either min and max statistics both produce statistically sig­
nificant results or both produce insignificant results, infer­
ences are immediate: any increasing scoring produces the 
same results concerning whether or not the two populations 
differ. We call this case nonstraddling. In the straddling 
case, we become aware that care and interpretability are 
important in choosing the numeric scores by which we ana­
lyze the data. Further discussion concerning this latter case 
is presented. 

In Section 2, we review various two-sample procedures 
for ordinal data and represent them in terms of a monotone 
function of a certain correlation based on increasing scores. 
We introduce the optimization notions in detail in Section 
3 and present the computational aspects for these in Section 
4. Section 5 offers a brief discussion, and proofs are in the 
Appendix. 

2. TWO-SAMPLE ORDINAL PROCEDURES: A REVIEW 

Suppose that the data are drawn from two populations or 
treatments denoted for convenience as 0 and 1, where the 
data are ordinal and each observation falls into one of k 
levels. The levels are denoted as L 1 < · · · < Lb where < 
denotes the underlying experimental ordering. It is usual to 
represent such two-sample data in tabular form as in Table 
1, where, for example, m; is the number of observations 
from population 0 that fall into level L;. 

To assess whether or not there is a difference between 
these populations, a variety of simple statistical procedures 
are currently used in practice. The nonparametric Wil­
coxon-Mann-Whitney two-sample test is often used in this 
setting (see Hettmansperger 1984). When there is a natural 
ordinal dichotomous grouping of the levels, populations are 
sometimes compared by computing a x2 statistic from the 
resultant 2 x 2 table. Another common approach is to as­
sign increasing scores x1 ::s: · · · ::5 xk (x1 orf xk) to the ordinal 
levels L 1, ••• , Lb and then use the usual two-sample t test 
based on these scores. In this t test approach, implicitly 
assumed is that the sample sizes m and n are "sufficiently 
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Table 1. Two-Sample Data 

Levels 

L, L2 Lk Total 

Population 0 m, m2 mk m 
1 n, n2 nk n 

Total m, + n, m2 + n2 mk + nk N 

large" enough to justify the t distribution as a good ap­
proximation to the null hypothesis reference distribution. 
The t statistic computed with arbitrary increasing scores x1, 

... , xk becomes 

[ 
k ] 1/2 

x (A 1 - A0)/ ~ (m; + n;)xT - mA~ - nAi , 

where A0 = L m;cJm and A1 = L n;cJn. In the same spirit, 
the Cochran-Armitage statistic [e.g., Agresti (1990, sec. 
4.4.3) or Mantel (1963)] is a function of such scores, namely, 

C(x1, ••• ,xk) = [(N-1)112r]2 , (2.1) 

where r = r(xi. ... , xk) is the Pearson correlation coeffi­
cient based on the scores Xi. ... , xk and values 0 and 1 
assigned to populations, that is 

(N - 1) 112r(x1, ••• , Xn) = [(N - 1)/N] 112(mn)1/ 2 

X (A1 -Ao)/[~ (m; + n;)xT - N-1(mA0 + nA1)2 ]
112

• 

The null hypothesis asymptotic distribution of the C statis­
tic is a x2 distribution with 1 df. Often, the Cochran-Ar­
mitage test is made into a two-sided test by comparing (N 
- 1)112r to a standard normal distribution. 

As is well known (e.g., Woodward and Overall 1977, p. 
170), the C statistic and the t 2 statistic are nearly identical 
in value. To see this, note that 

t 2(x1, .. . , xk) = [(N - 2)/(N - 1)]112 

x (C(x1, ... , xk))/(1 - C(x1, ... , xk)/(N - 1)). 

Thus for large N, both statistics' values will be approxi­
mately the same. No matter the sample size, however, t 2 

is a strictly increasing function of C. Most interesting to 
observe is that 

t(xi. ... , xk) == (N - 2)112 

is also a strictly increasing function of r(xi. ... , xk), as is 
the C statistic itself. 

The choice of which scores to employ for either the t 

statistic or the C statistic can be problematic. See Graubard 
and Korn (1987) for a nice discussion in this setting about 
the choice of ·scores and their effects on the results of the 
analysis. Some typically used scoring systems in data anal­
yses include: 1, ... , k, which are called uniform scores or 
equal-spacing scores; R1, ••• , Rb which are marginal mid-
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rank scores; R 1/N, ... , RJN, which are ridits (e.g., Pleiss 
1981, Sec. 9.4); and R 1/(N + 1), ... , RJ(N + 1), which 
are called modified ridit scores (Lehman 1975). In fact, in 
conducting the Cochran-Armitage test, the FREQ proce­
dure of SAS (SAS Institute, Inc. 1985) allows the user the 
choice of the preceding scores as well as arbitrary user­
provided scores. 

Interestingly, various choices of scores for the t test or 
the Cochran-Armitage test reduce those procedures to other 
related procedures. For example, the assignment of mar­
ginal midrank scores essentially reduces the t test to the 
Wilcoxon-Mann-Whitney two-sample test (e.g., Conover 
and Iman 1981, sec. 2). Utilization of the scores x 1 == 0, 
... , xi == 0, xi+ 1 == 1, ... , xk == 1 reduces the C statistic to 
[(N - 1)/N] x (x2), the statistic for the 2 x 2 table, where 
levels L1 , ••• , Li are grouped and Li+ 1 , ••• , Lk ari!· grouped. 
We note that, for the latter special case, Miller and Sieg­
mund (1982) and Halpern (1982) considered the problem 
of choosing the scores for dichotomizing the ordinal levels 
that maximize the x2 statistic and studied the effects of op­
timization on the distribution of the resultant x2 statistic. 

A standardly used log-linear model in this case (see Agresti 
1984) can be parameterized as 

and 
log E(m;) = µ, + A0 + A;, 

log E(n;) == µ, + A 1 + A; + f3x;, 

i = 1, ... , k, 

i = 1, ... , k, 

where the increasing scores X; (i = 1, ... , k) are assigned. 
It is known [e.g., Agresti (1984, note 2, p. 98) or Agresti 
(1990, sec. 8.1.6)] that the efficient score statistic for test­
ing whether or not /3 == 0 is essentially the t test for cor­
relation with the noted scores. For further discussion of this 
test, see Agresti (1990, chap. 8) or Agresti, Mehta, and 
Patel (1990). 

To reiterate, the scored t statistics and the C statistic are 
monotone functions of r(x1, ... , xk) and are essentially 
equivalent tests. Furthermore, for particular choices of scores, 
these tests reduce to the nonparametric Wilcoxon-Mann­
Whitney and also to the grouped 2 x 2 x2 test. 

3. USING OPTIMIZED STATISTICS 

In the general context of ordinal categorical data analy­
sis, Agresti ( 1984) writes 

sometimes it is not obvious how to assign scores .... In such 
cases it is informative to assign scores a variety of "reason­
able n ways to check whether substantive conclusions depend 
on the actual choice. (p. 97) 

This approach to using a variety of scores in analysis ap­
pears to be a fairly standard practice among statisticians 
analyzing data. Rather than computing the t statistic or the 
C statistic for a variety of scores, we propose that a more 
basic calculation be made. For the t statistic, the statistician 
should find both the minimum and the maximum of t(x1, 

... , xk) over all nondegenerate increasing scores. Similarly, 
when working with the Cochran-Armitage procedure the 
statistician should compute the minimum and maximum of 
C(xi. ... , xk), or of its one-sided version (N - 1)112r(x1, 

... , xk). We employ the obvious notations for these values 
tMIN• tMAX• and CMIN• CMAX· 
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The usefulness of such calculations is immediately ap­
parent. Suppose we want to test the alternative that Popu­
lation 1 values are "larger" than for Population 0 using a 
scored t statistic and the t distribution as the approximating 
null distribution. If we find tMIN > t'f;_2 , then we would 
know that any possible scoring system would produce a 
significant level-a result; that is, rejection of the null hy­
pothesis does not depend on the choice of scores. Con­
versely, if tMAx < t'f;_ 2 , then no choice of scores can pro­
duce a significant a-level result for this one-sided null 
hypothesis. However, if the optimized t statistics straddle 
t'f;_ 2 (i.e., tMIN < t'f;_2 < tMAx), the choice of reasonable or 
meaningful scoring systems becomes crucial, and attention 
should be paid to the values x 1, ••• , xk at which the mini­
mum and maximum occur. Since the t distribution is an 
approximation to the true null distribution, care must be 
taken in this approach when exact (permutation) distribu­
tions are used to compute the null distribution of t(x1, ••• , 

xk). For example, conceptually both tMIN and tMAx could 
slightly exceed t'f;_ 2 , and yet the exact distribution for spe­
cific scores could yield a level of significance greater 
than a. 

As noted in Section 2, we see that the t statistic and the 
one-sided C statistic are both monotonically increasing 
functions of r(xi. ... , xk). Hence, if we compute 

(3.1) 

where the maximum is taken over the set {x 1 ::5 • • • ::5 xb 
X1 ~ xk}, and 

(3.2) 

where the minimum is taken over the set {x1 ::5 ::5 xb 
x 1 ~ xk}, we can immediately use these to compute tMAX• 
tMIN• and CMAX• CMIN· For this reason, we only consider 
optimizing r(x 1, ••• , xk). 

Due to the location and scale invariance of correlation, 
the optimizing values x 1 ::5 • • • ::5 xk (x1 ~ xk) are not unique. 
Specifically, if r(xf, .. . , xt) = rMAX• then r(axf + {3, .. . , 
axZ + {3) = rMAX for any choices of a> 0 and {3. For ease 
of interpretation we usually require that the optimum scores 
satisfy x 1 = 0 and xk = 1. At the same time, this require­
ment also ensures that the scores will be nondegenerate. 
(For convenience, in the proofs in the Appendix, we some­
times use other constraints for x 1, ••• , xk; for example, we 
employ the mean and variance constraints that 2.(m; + n;)xj 
N = K 1 and 2.(m; + n;)~/N = K2 , respectively.) 

The notion of stochastic ordering plays an important role 
in whether or not the optimized correlations straddle 0. The 
data from Population 1 are said to be stochastically greater 
than the data from Population 0 if 

(nj + · · · + nk)/n 2': (mj + · · · + mk)/m, (3.3) 

for j = 2, ... , k, that is, if the empirical distribution of the 
data from Population 1 is stochastically greater than the em­
pirical distribution of the data from Population 0. If the 
inequality in (3.3) is reversed, then the Population 1 data 
are said to be stochastically smaller than the Population 0 
data. If neither stochastically smaller or larger conditions 
hold, the data from these two populations are incomparable 

with respect to stochastic ordering. One well-known sto­
chastic ordering result states that the data from Population 
1 are stochastically greater (smaller) than that of Population 
0 if and only if r(x1, ••• , xk) 2': 0 ( :5 0), for all possible 
increasing scores. 

Consider again the tMAX discussion. If the Population 1 
data are stochastically greater than the Population 0 data, 
then we know tMIN 2': 0. On the other hand, if the data from 
Population 1 are stochastically smaller than those from 
Population 0 then tMAx :5 0, and if they are incomparable, 
tMIN ::5 0 :5 tMAx· This leads us to the important observation: 
If the two data sets are stochastically incomparable, then 
there exist scores for which the t test will not reject the null 
hypothesis against a one-sided or two-sided alternative (for 
any a :5 .5). 

Other solutions to similar types of optimization problems 
have been considered in differing, but related, contexts by 
Breiman and Friedman (1985), by Nishisato (1980), and by 
Kimeldorf, May, and Sampson (1982). 

4. COMPUTATION 

In this section, we describe in detail the steps required 
to compute the scores that minimize and maximize the cor­
relation r(x1 , ••• , xk). As. will be illustrated, the computa­
tion of these scores can easily be done with a simple hand 
calculator. The proofs that these computations do give scores 
that maximize and minimize the correlations are left to the 
Appendix. We begin by checking to see whether the em­
pirical distributions of the two populations are stochasti­
cally ordered, and if so, in what direction. This entails 
checking (3.3) with both directions for the inequalities. Note 
that this check depends only on the observed frequencies 
m1 , ••• , mk and n1 , ••• , nk and not on any particular choice 
of scores. 

For clarity, we separately consider the computation in 
three cases: Population 0 data are (1) stochastically greater 
than, (2) stochastically less than, or (3) stochastically in­
comparable with Population 1 data. Consider now case (3) 
where the populations are incomparable. Then the scores 0 
= xf :5 · · · :5 xZ = 1 .that maximize r(x1, ••• , xk) are found 
by first solving for the scores yf :5 · · · :5 YZ that minimize 
the weighted sum of squares 

k 

L (m; + n;){n;/(m; + n;) - y;}2, (4.1) 
i=l 

among y 1 :5 · · · :5 Yk· These scores yf :5 · · · :5 yt are the 
isotonic regression of n;/(m; + n;) with weights m; + n;. 
There are a variety of algorithms (see Robertson, Wright, 
and Dykstra 1988) that can be used to compute yf, ... , YZ. 
Among these is the simple and elegant pool adjacent vio­
lators algorithm (PAYA) that we use in our examples. The 
fact that the populations are not stochastically ordered in­
sures that yt > yf; thus, a simple linear transformation 

x1 = (YJ' - yf)/(yt - yf), i = 1, ... , k, (4.2) 

gives the scores, with xf = 0 :5 · · · :5 xZ = 1, where r(xf, 
... , xt) = r(yf, ... , yt). The scores 0 = zf :5 · · · :5 zZ 
= 1 that minimize r(x1 , ••• , xk) are found similarly by first 
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fmding scores Y1 ::5 • • • ::5 y; that minimize the weighted 
sum of squares 

k 

L (m; + n;){mJ(m; + n;) - y;}2, (4.3) 
i=I 

among Y1 ::5 • • • ::5 Yk· Here, yf, ... , y; are the isotonic 
regression of m;/(m; + n;) with weights m1 + n1 and can 
also be computed using PAV A. Again, the absence of sto­
chastic ordering ensures that y; - yf > 0, and the linear 
transformation of (4.2) gives the required scores 0 = zt ::5 

••• ::5 z; = 1. 
Now consider the case that the Population 1 data are sto­

chastically greater than the Population 0 data. The scores 
0 = xt ::5 • • • ::5 4 = 1 that maximize the correlation are 
found using the procedures in (4.1) and (4.2). The scores 
0 = zt ::5 • • • ::5 z; = 1 that minimize the correlation cannot 
be found using isotonic regression techniques. These scores 
are shown, however, to occur at a monotone extreme point, 
that is, a point where zt = 0 for 1 ::5 i ::5 j and zt = 1 for 
j + 1 ::5 i ::5 k for somej = 1, ... , k - 1. Therefore, simple 
calculation of the correlation for the k - 1 monotone ex­
treme points will suffice to identify zt, ... , zt, the mon.­
otone extreme point with the smallest correlation. Note that 
the monotone extreme points correspond to all ordinal di­
chotomizations of the levels. 

Finally, consider the case that the Population 0 data are 
stochastically greater than Population 1 data. Scores O = 
xt ::5 • • • ::5 xt = 1, that maximize the correlation, now are 
a monotone extreme point. Thus one needs to compute r(x1, 

... , xk) for the k - 1 monotone extreme points and let xt, 

... , 4 be the monotone extreme point with the largest cor­
relation. The scores 0 = zf ::5 • • • ·:5 z; = 1 that minimize 
correlation are found using the isotonic regression tech­
niques given in (4.3). 

We conclude this section with three examples, which for 
explicitness we analyze using t tests. The first set of data 
(Table 2) is based on data from Koopmans (1987, p. 425) 
that were collected to compare the severity of case dispo­
sitions in the juvenile courts between boys and girls in a 
certain county in New Mexico. A random sample of court 
records of 152 males and 156 females was selected and 
classified as "(1) counseled and released; (2) one interven­
tion by the probation department; (3) two or more inter­
ventions; and (4) referral to juvenile court." 

For these data the empirical distribution for males is sto­
chastically larger than the empirical distribution for fe­
males. The scores xt = xf = xt = 0, xt = 1 maximize 
the correlation (rMAx = - .235) and can be found by cal­
culating the correlation for each monotone extreme point. 
To compute scores to minimize the correlation, we find the 
isotonic regression of mJ(m; + n;) with weights m; + n;. 
Since the scores mJ(m; + n;) are increasing in i (see Table 
2), the isotonic regression is yt = mJ(n1 + m;), i = 1, ... , 
4. Therefore, zf = 0, zf = .3836, zt = .7937, zt = 1.0000, 
and rMIN = -.317. Both tMIN = -5.85 and tMAX = -4.22 
indicate that the null hypothesis that boys and girls receive 
the same court treatment should be rejected at any reason­
able level of significance. 

The second set of data, using the data (Devore and Peck 
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Table 2. Severity of Juvenile Court Case Dispositions 

Males (0) 
Females (1) 

m1/(n1 + m1) 

63 
107 

.3706 

Source: Koopmans (1987). 

41 
35 

Levels 

2 3 

.5395 

18 
7 

.7200 

30 
7 

4 

.8108 

1986, p. 636) given in Table 3, compares smokers' and 
nonsmokers' opinions of an antismoking ad. The empirical 
distributions of opinion for smokers and nonsmokers are 
not stochastically ordered. The isotonic regression yf, ... , 
y; partitions { l , ... , k} into blocks called level sets. On 
each level set the value of y is the weighted average of nJ 
(m1 + n;) over the level set using the weights (m1 + n1). 

PAVA identifies the level sets in a sequence of steps. At 
the first step look for a pair where nJ(m1 + n1) > n1+i/ 
(m1+1 + n1+1) [or mJ(m1 + n;) > m1+i/(m1+1 + n1+ 1)]. These 
two values are pooled to form one block with weights (m1 

+ n1 + m1+1 + n1+ 1) and value (n1 + n1+ 1)/(m1 + n1 + mi+1 
+ n1+1) [or (m1 + m1+1)/(m1 + n1 + mi+1 + ni+ 1)]. At each 
successive step there is one fewer value, and a new pair is 
identified to pool. The algorithm stops when values for the 
blocks are nondecreasing. From Table 4 we see that the 
isotonic regression of nJ(m1 + n1) with weights (m; + n1) 

is yf = yf = yt = .7260, yt = .7439, and yt = .7841. 
Thus xt = xf = xt = 0, xt = .3086, and xt = 1 maximize 
the correlation, and rMAx = .054 with tMAX = 1.045. The 
isotonic regression of mJ(n1 + m;) with weights (m1 + n1) 

is yf = .2051, yf = .2500, yt = yt = yt = .2698, and, 
therefore, the scores zf = 0, zf = . 7492, and zf = zt = 
zt = 1 minimize the correlation with rMIN = - .042 and 
tMIN = - . 811. Neither tMIN nor tMAx exceed any usual crit­
ical value (a < .1), thereby showing that there is no dif­
ference between smokers' and nonsmokers' responses to the 
ad. 

We note that, in this example, because the data were not 
stochastically comparable, we knew a priori that there were 
scores that would not allow rejecting a two-sided or one­
sided alternative. As the calculations indicate, however, no 
possible monotonically increasing scoring can produce a 
significant result. 

The third set of data (Agresti 1984, p. 30) compares 
changes in size of ulcer crater under two treatments A and 
B; see Table 5. 

For this data the empirical distribution of crater size un­
der treatment A can be shown to be stochastically less than 
the empirical distribution of crater size under treatment B. 

Table 3. Opinions of Antismoking Ad 

Opinions 

Strongly Strongly 
dislike Dislike Neutral Like like 

Smoker (0) 8 14 35 21 19 
Nonsmoker (1) 31 42 78 61 69 

Source: Devore and Peck (1986) 
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Table 4. Pool Adjacent Violators Algorithm for Data in Table 3 

2 3 4 5 

nif(m; + n;) .7949 .7500 .6903 .7439 .7841 

First pool (n1 + n.)/(m1 + n1 + m. + n2) = 73/95 = .7684 

Second pool 

m,/(m1 + n;) .2051 .2500 .3097 .2561 .2159 

First pool 

Second pool 

(m3 + m4)/(m3 + n3 + m4 + n4) = 56/195 = .2872 

(m3 + m4 + ms)/(m3 + n3 + m4 + n4 + ms + ns) = 75/278 = .2698 

The scores zf = z! = z! = 0, and zt = 1 that minimize 
the correlation (rMIN = .177) can again be found by cal­
culating the correlations for all monotone extreme points. 
To maximize the correlation, we find the isotonic regres­
sion of nJ(m; + n;) with weights m; + n;, to obtain xf = 
0, x~ = .4164, x! = xt = 1, and rMAx = .304. Here tMIN 

= 1.42 and tMAX = 2.508. Assuming a two-sided alterna­
tive with a traditional level of significance, we find that 
there are, in this straddling case, some scores that produce 
significance and some-scores that do not produce signifi­
cance. 

5. DISCUSSION 

Rather than maximize or minimize the t statistic or C 
statistic over the set of all possible assignments of increas­
ing scores, the set of possible assignments might be con­
strained further. For example, we may want to restrict our 
attention to "symmetric" scorings in which X;+ 1 - x; = xk-i+1 
- xk-i· Alternatively, we might want to restrict our atten­
tion to scorings satisfying certain inequality constraints, such 
as x3 - x2 ::5 2(x2 - x1). If the set of scorings is restricted, 
then the simple algorithms presented here are no longer ap­
plicable. On the other hand, as long as the constrained set 
x1, x2 , ••• , xk of scores form a convex subspace of k space, 
the values rMIN and rMAX• as well as the scorings at which 
they are obtained, can be computed. An algorithm useful 
in this case is presented in Robertson et al. (1988), and 
further algorithms allowing the computation of both rMIN 

and rMAX appear in a dissertation by Gautam (1991). 
In our experience with applying our proposed min and 

max technique to reported data in the literature, we have 
found that the nonstraddling cases occur more often than 
we might have originally expected. In such cases we be­
lieve that our approach allows for a strong scientific state­
ment concerning the significance or insignificance of the 
difference between the two populations or treatments. 

Obviously, the straddling case is more problematic in its 
interpretation for the statistician doing the analysis. To be 

Table 5. Change in Size of Ulcer Crater 

Treatment Larger 

A 12 
B 5 

Source: Agresti (1984). 

<2/3 
Healed 

10 
8 

'?::.2/3 
Healed 

4 
8 

Healed 

6 
11 

clear, we are not in any way advocating that the optimizing 
scores be used to suggest interpretable scores that would 
make results significant or insignificant according to the ex­
perimental purpose. We assert, however, that the scientific 
meaning of the scores that produce both significance and 
insignificance must be examined in the context of the ex­
periment for their relevance. More experience with our ap­
proach may indicate further avenues of interpretation in this 
ambiguous case. Perhaps one might use the degree of over­
lap of the max and min statistics relative to their appropriate 
critical value as an indication of the strength of experi­
mental evidence. This overlap could be measured on the 
scale of the statistic or on the scale of "p values." Another, 
perhaps more interesting, approach is rooted in the ideas of 
Diaconis and Efron (1985). One might compute the (k -
2)-dimensional volume 'Of the increasing scores that pro­
duce significance and compare it in a suitable fashion to 
the volume of increasing scores that do not produce sig­
nificance. Nonetheless, this straddling case, we expect, will 
always be somewhat difficult in its interpretability due to 
the inherent ambiguity in the data. 

In summary, we note that if, for example, both tMAX and 
tMIN fall (or don't fall) in the usual t critical region, we 
know that any increasing scoring must produce a significant 
(or insignificant) result based on at test with that scoring. 
Consequently, our systematic approach is preferable to one 
where the statistician nonsystematically tries a number of 
possible different scorings. Thus we think that any analyses 
of two-sample ordinal data should include the maximuni 
and minimum values of the appropriate test statistic, as well 
as the increasing scores that produce each of these. Further 
development is required if we attempt to use optimized sta­
tistics for testing. If, for example, we use tMAx and tMIN as 
test statistics in their own right, their asymptotic distribu­
tions under the null hypothesis are obviously not a standard 
t distribution. (For fixed sample size, however, under the 
null hypothesis, we note that the distribution of tMIN is sto­
chastically less than the distribution of the t statistic with 
any scores which, in turn, is stochastically less than the 
distribution of tMAx). Finally, we caution that, in the strad­
dling case, care must be taken to scientifically justify the 
choice of scores on which inference is based. 

APPENDIX: PROOFS 
Let (U, V) have joint probability mass function based on the 

observed frequencies and define Poi= P(U = 0, V = J) = m/N 
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and plj = P(U = 1, V = J) = njN, for 1 s j s k. For i = 0, 
1, let V; be the random variables with P(V; = j) = P(V = j I U 
= i). Finding the scores that maximize and minimize the corre­
lation between populations is equivalent to finding functions cp* 
and c/J*, respectively, to maximize and minimize corr(U, g(V)) 
among the scoring functions g E C, where C = {g:{l, .. ., k} -
R 1, g is nondecreasing, g(l) < g(k)}. Stochastic ordering (or lack 
thereof) of Vi and V0 is equivalent to stochastic ordering of the 
empirical distributions based on the data from the two popula­
tions. We note that minimizing corr(U, g(V)) is equivalent to 
maximizing corr(l - U, g(V)), that is, c/J* can be found by re­
labeling the populations and then maximizing the correlation based 
on data from the relabeled populations. Thus we concentrate on 
solving for cp* that maximizes corr(U, g(V)) among g E C. 

We consider two cases when solving for cp*: V1 is not sto­
chastically less than V0 (i.e., either V1 is stochastically greater 
than, but not equal in distribution to V0 , or V1 and V0 are not 
stochastically ordered), and the case V1 is stochastically less than 
V0 • Solutions for cp* follow as corollaries for the analogous cases 
V1 is not stochastically greater than V0 , and V1 is stochastically 
greater than V0 • 

Theorem A.I. Suppose V1 is not stochastically less than V0 • 

Then cp* is the isotonic regression of nJ(m; + n;) with weights 
m; + n;. 

Proof. Following the arguments of Robertson et al. (1988, p. 
379), we show that maximizing corr(U, g(V)) among g E C is 
equivalent to maximizing corr(U, g(V)) among g EC', where C' 
= {g E C: E[g(V)] = E[U] and E[Ug(V)] = E[g2(V)]}. To see 
that these two problems are equivalent, let h EC. If cov(U, h(V)) 
s 0, then his not a candidate to maximize corr(U, h(V)) because 
Vi not stochastically less than V0 implies the existence of a g E 
C such that cov(U, g(V)) > 0. If cov(U, h(V)) > 0 then define 

g(V) = E(U) + (h(V) - E[h(V)])cov(U, h(V))/var(h(V)). 

Then it is clear that g E C' and corr(U, g(V)) = corr(U, h(V)). 
Let g EC' 

corr(U, g(V)) = cov(U, g(V))/[var(U) var(g(V))]1/2 

= [cov(U, g(V))/var(U)]112 
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Corollary A.I. Suppose V1 is not stochastically greater than 
V0 , then cp* is the isotonic regression of mJ(m; + n;) with weights 
m; + n;. 

Thus Theorem A.1 and Corollary A. l provide solutions for both 
<P* and <P* when V1 and V0 are not stochastically ordered. 

Now suppose that V1 is stochastically less than V0 . Corollary 
A .1 gives c/J*; however, the previous isotonic regression tech­
niques cannot be used to find <P*. To find c/J*, we need the fol­
lowing definition and theorem. 

Definition. Letf: s- R, where Sis a nonempty convex sub­
set of Rk. The function/ is said to be quasiconvex if, for each x, 
y ES, 

/(Ax + (1 - A)y) s max (f(x),J(y)), A E [O, l]. 

Theorem A.2. (Bazaraa and Shetty 1979, Theorem 3.5.3) 
Suppose f: S - R is a quasiconvex function and S ~ Rk is a 
compact polyhedral. Then f attains its maximum at an extreme 
point of S. 

Because correlation is scale and location invariant, maximizing 
corr(U, g(V)) among/ E C is equivalent to maximizing corr(U, 
g(V)) among g E H = {h: h E C, h(l) = 0 and h(k) = l}. 

Let g = (g(l), ... , g(k)) be the vector representation of g E 
C and define S = H andf(g) = corr(U, g(V)). We additionally 
use the notation cov(U, g), var(g) to denote the obvious quan­
tities. Then Sis the compact polyhedral in Rk defined by the linear 
constraints g(l) = 0, g(k) = 1, and g(i) - g(i - 1) ~ 0, for 2 
s i s k. The extreme points of S are {g: g(i) = 0, 1 s i s j, 
g(i) = 1, j + 1 sis k, for 1 s j s k - 1}. To see thatf(g) is 
quasiconvex, note that, because Vi is supposed stochastically less 
than V0 , cov(U, g) s 0, for all g E S, and cov(U, g) is linear in 
g. Furthermore, the denominator Vvar(U)var(g) ofj(g) is strictly 
positive and easily shown to be convex for g E S. Since f(g) is 
the ratio of a negative concave function of g and a strictly positive 
convex function of g, thenf(g) is quasiconvex (Bazaraa and Shetty 
1979, problem 3.39). Thusf(g) attains its maximum among the 
extreme points of S, and we have the following result. 

TheoremA.3. Suppose V1 is stochastically less than V0 • Then 
= [1 - E(U - g(V))2 /var(U)] 112. 

In addition 

(A. l) for some 1 s j s k - 1, cp*(i) = 0, for 1 s i s j, and cp*(i) = 
1, for j + 1 s i s k. 

k 

E[(U - g(V))2] = L [g2(i)po; + (1 - g(i))2pli] 
i=l 

k 

= L {(po; + Pli)[Pli(Pli + Po;)-1 - g(i)]2 
i=l 

(A.2) 

where k is a constant not depending on g. Thus, from (A.1) and 
(A.2), we see that maximizing corr(U, g(V)) is equivalent to min­
imizing 

k 

L {(po; + Pli)P1J(pli +Po;) - g(i)}2 
i=l 

k 

= N-1 2: (m; + n;){nJ(m; + n;) - g(i)}2 (A.3) 
i=l 

among g E C'. Let cp* be the isotonic regression of nJ(m; + n;) 
with weights (m; + n;). Simple calculations and the properties of 
cp* summarized in Robertson et al. (1988, theorems 1.3.2 and 
1.3.3) verify that cp* does minimize (A.3) among g E C'. Thus 

corr(U, cf>*(V)) = max corr(U, g(V)). 
gEC 

Corollary A.3. Suppose Vi is stochastically greater than V0 • 

Then for some i s j s k - 1, cp*(i) = 0 for 1 s i s j and cp*(i) 
= 1 for j + 1 s i s k. 

Finally, Theorem A.1 and Corollary A.3 give solutions for cp* 
and cp* when V1 is stochastically greater than V0• Similarly, the 
solutions for cp* and cp* are given by Theorem A.3 and Corollary 
A.1 when V1 is stochastically less than V0 • 

[Received February 1990. Revised May 1991.] 
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