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Abstract. Flux compactifications of string theory seem to require ttesence of a fine-tuned constant in the superpotential.
We discuss a scheme where this constant is replaced by a @yalajuantity which we argue to be a ‘continuous Chern—
Simons term’. In such a scheme, the gaugino condensateageséne hierarchically small scale of supersymmetry ln@ak
rather than adjusting its size to a constant. A crucial idignet is the appearance of the hierarchically small quantit
exp(—(X)) which corresponds to the scale of gaugino condensationeitUradher general circumstances, this leads to a
scenario of moduli stabilization, which is endowed with arbirchy between the mass of the lightest modulus, the gravit
mass and the scale of the soft term,oquius~ (X) Mg/ ~ (X)2mgop. The ‘little hierarchy’(X) is given by the logarithm

of the ratio of the Planck scale and the gravitino ma3§), ~ log(Mpj/mg/,) ~ 4. This exhibits a new mediation
scheme of supersymmetry breakdown, called mirage mediafie highlight the special properties of the scheme, and the
consequences for phenomenology and cosmology.

INTRODUCTION These questions are not unrelated. In four dimen-
sions, hierarchically small scales can be obtained by
Superstring theories are the most attractive candidates faimensional transmutation. The conventional approach
a unified description of all observed phenomena. Theyto address the hierarchy problem consists in generating
provide all structures necessary to accommodate the ma& hierarchically small scale of supersymmetry (SUSY)
ter content of the standard model as well as all knowrbreakdown by a non-perturbative effect, such as a gaug-
interactions. However, a commonly accepted stringy exino condensate [1]. This leads to the appearance of the
tension of the standard model has not yet emerged. ApascaleMsysy ~ Msiexp(—X) with X being a moderately
from the obvious problem to obtain the correct spectruniarge field-dependent quantity. Once SUSY is broken, the
there are further, more fundamental questions, whichmoduli get a non-trivial potential, which might result in
have to be answered if one wants to relate superstrintheir stabilization. However, it is rather difficult to olrta
theory to observation. These questions include: consistent scenarios where a stabilization of all moduli
occurs at realistic values. Furthermore, in this picture,
than the scale of gravity? one would encounter a situation where the mass of (most
' of) the moduli is of the order of the weak scale. It is,

(i) Why do we observe four space-time dimensions? qyever, known that such moduli masses lead to severe
(iii) Why do we live in de Sitter (or Minkowski) space? problems for cosmology.

The first question concerns the appearance of the weak More recently, the picture has changed due to signifi-
scalemyeax While string and Planck scaléls; andMp, cant progress in understanding the role of fluxes for mod-
are of similar size, anthyeax < Mp. To address the sec- uli stabilization [2]. The main new feature is that some of
ond question, one usually confines oneself to the problerH“e moduli can be fixed at realistic values while attaining
of finding a self-consistent compactification from ten to Masses of the ordéds;. , .
four dimensions. This includes, in particular, the stabi- SOMe important aspects of the ‘flux compactifica-
lization of the moduli, which parametrize the size andtion’ scheme are nicely illustrated by the toy example
shape of the internal space. The last question is highl?f KKLT [3] in type 1IB string theory. Here, in a first
non-trivial since string compactifications admit anti-de SteP the complex structure moduliy) and the dilaton
Sitter (adS) minima, i.e. vacua with negative vacuum en{S) get stabilized by fluxes. This results in the appearance

ergy. Itis challenging to understand in such a frameworif @ (fine-tuned) constant in the superpotential which, at

why the vacuum chosen by nature has positive (or zero)iS Stage, breaks SUSY with the scale of SUSY break-
ing being set by the size of the constant. In the second

energy. . S ) ; .
step, a gaugino condensate is included, which adjusts its

(i) Why is the scale of weak interactions so much lower
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size to this constant, thereby fixing the Kahler modu-Notice that SUSY breakdown requires non-trivial gauge-
lus (T) and restoring SUSY. At this stage, the vacuumkinetic function [4],

energy is negative. This has to be rectified in the third

step where an (ad-hoc) ‘uplifting’ is introduced, which Fi = exp(—K)DIW+fi(AA) +.... )
renders the vacuum energy positive, and then (againh other words, the gauge coupling has to be field-
breaks SUSY. Clearly, in the context of flux compacti- dependemg*2 = f. It is further possible to include the
fications one usually loses the explanation of the hierargaugino condensate in the superpotentlal [5],

chy Myeak ~ Msoft < Mpy. This hierarchy is now related

to the appearance of a small (quantized) constant in the W' = Woerturbativet C exp(—af) . ®)

superpotential, which requires a severe fine-tuning. Early attempts to incorporate gaugino condensation in
In Sec. 2, we propose a modification of the ‘flux com- heterotic) string theoryL[€.] 5] revealed the importance
pactification’ scheme where the positive features of theys 5 background flux of the field strengtt of the 2-
latter are retained while (some of) the problematic asingex antisymmetric tensor field to avoid a run-away
pects are avoided. The main novelty is that the constantiehavior of the dilaton field. This is obvious from the

the superpotential gets replaced by a dynamical quantityperfect square’ structure of supergravity [7],
This means that after the first step of moduli stabiliza-

tion SUSY is unbroken and the superpotential vanishes, SSuGra D (H — a’()\)\))z (6)
leading to zero vacuum energy at this stage. As a conse- is th ‘ field h of th ind
quence, the non-perturbative effect (gaugino condensat?ere' H is the 3-form field strength of the two-index

sets the scale of SUSY breaking rather than adjusting tgtiSymmetric tensor field® that appears in the 10d

a constant. We argue that the above-mentioned dynamﬁuperg_rawty multiplet. It is important to note that the
naive field strengtiHnaive = dB has to be amended by

cal quantity should be given by the continuous, i.e. non- . n
guantized, part of the Chern—Simons term appearing irg:hern—&mons termsi[i2, 8],
dimensional reduction from ten to four dimensions. 1
— qR— = ([ y(YM) _ (L)
In Sec. 3, we discuss the phenomenological con- H = dB \/Q(w w ) ’
sequences of the appearance of the small quantit . . .
exp(—X), which leads under rather general circum-e’/"here the Yang—Mills Chern—Simons term is given by

stances to the ‘little mass hierarchy’

()

it = T (AwFe - SAuAune) @
Mimoduti ~ (X) Mgz ~ (X)?Mott, 1)
and an analogous expression exists for the Lorentz
where(X) ~ log(Mpi/mg 5) ~ 4. As we shall see, this  Chern—Simons term.
results in a scheme with distinct properties. These prop- The ‘perfect square structurd’l(6) leads to the possi-
erties solve (or, at least, help to solve) several problem¥ility that the fluxH stabilizes the gaugino condensate
of supersymmetric extensions of the standard model. ~ (or vice versa)l[6.I5]. However, generically not all mod-
uli are stabilized. Moreover, the gaugino condensate can
no longer account for the hierarchy, since it balances the
AVOIDING QUANTIZED CONSTANTS value of the quantize#i [Q]. If one were to seH = 0,
the latter problem would not arise. However, in such a
The scenario of hidden sector gaugino condensatiofic€Nario a non-trivial value of the gaugino condtzensate
yields a very plausible explanation of the hierarchyWould now lead to a vacuum energy of ordef/M2,

Myeak < Mpi. Here, strong dynamics leads to the non-Which is inconsistent with observation. One would there-
trivial expectation value of the gaugino bilinedd [1], fore need a small, non-quantized piecebto conspire
(AA) = A3, whereA is of the order of the renormaliza- with the gaugino condensate such that the vacuum en-

tion group (RG) invariant scale, ergy (almost) vanishes. ,
Our statements rely on the non-quantized nature of the
A ~ uexp{—1/[bog?(u)]} < Mpr. (2)  Chern-Simons terms. The quantizatiortbfvas shown

in [S] for the caseH = dB and did not take into account
bo is the coefficient of theB-function. This strong the appearance of the Chern—SimonstefrifsiB =0 to
dynamics triggers a breakdown of SUSY that is
parametrized by the gravitino mass

1 When compactifying on a compact spacewith 75(K) = Zj there

N3 are fractional contributions tél, dH = 1/n [d]. It has been argued
Moz ~ 7 and Msysy ~ /Mg oMpi. (3)  that this might be used stabilize the dilatén| [10]. Howeves, find it
PI difficult to imagine that ¥n could explain the hierarchy between string

and weak scale.



leading order, it was argued in_[11] that the cancellationSimons terms are located on the boundaries,
should take place between the gaugino condensate and
the Chgrn—Simons terms, which avoid the quantization g _— dC+G/z5(X11—Xi11) (Q(YM) _ :—L‘*’l(L)) 9)
constraint. | 2
Let us spell out these arguments in more detail. We
are interested in th8mAsAp part of the Chern—Simons  Wwith dG = Tr F2+TrFZ — TrR? whereF; andF rep-
term [8) wherem, n, p are indices w.r.t. the internal resent the field strengths of the twg Eactors. It has
dimensions. As is well known, those internal componentdurther been shown in Ref._[19] that the perfect square
of the gauge fields can come in two different types: structure between the flu@ and the gaugino condensate
_ . i e generalizes to this case. Since the gauginos are also fields
(i) On the one hand, the ‘discrete Wilson lines'[12] confined to the boundaries, we consider this as a further
correspond to quantized background valuetth  4rgument for a cancellation between the gaugino con-
(ta denotes the generator) with support on NoN-yengate and the Chern—Simons terms|[20, 21], while the
contractible loops in the internal space. They takey  antized bulk contribution@ should not contribute to
values in the adjoint representation so that switchyg canceliation, thus avoiding any known guantization

ing them on does not reduce the rank of the gauge.,straint. We sketch this local cancellation in IFig. 1.
group. To understand the quantization of the ‘dis-

crete Wilson lines’Adt,, observe that an adjoint
expectation value does not break the U(1) gener-

ated byt,. Consequently, the expectation values of

‘discrete Wilson lines’ are quantized to ensure that JMN |
the zero-modes living on the above-mentioned non- Ee Cunp Es
contractible loops are single-valued.

(ii) ‘Continuous Wilson lines’|[13], on the other hand, AM 11

Ay
transform in the coset of the gauge group (which
is present before they are switched on). A generic / /
expectation value of a ‘continuous Wilson line’
does reduce the rank. Since the U(1) generategGure 1. M-theory set-upC lives in the bulk whereas
by ta is (generically) broken, there is no quantiza- poth the gaugino condensate and the (continuous) Chern—
tion constraint for ‘continuous Wilson lines’. Let Simons terms live on the branes.
us fina_ll¥ mention that in orbifold f:ompactifications Let us now summarize the outcome of the discussion
[14,115] ‘continuous Wilson lines’ emerge frorp the 5o far. We have argued that the appearance of quantized
u_ntvw:s_ted sector, and can be interpreted as ‘mattefqnstants in the superpotential should be avoided in order
fields’ in the massless spectrum/[16]. to explain the hierarchy between the Planck and the weak
It is now clear that the trilinear term of three continu- scale by a natural mechanism such as gaugino condensa-
ous Wilson lines can attain arbitrary values, and does ifion. We have also discussed that the field strehgénd
particular not suffer from quantization. It is preciseljsth an expectation value of the gaugino bilinear combine into
term, which can adjust to a gaugino condensate, thus car@ perfect squarél(6), and thdtcontains both quantized
celling the corresponding potential energy. In the follow-and continuous parts. This leads to the possibility that the
ing' we will refer to such terms as ‘continuous Chern_ContinUOUS Chern-Simons term cancels the contribution
Simons terms’. We observe that"™) and(A A ) are both ~ of the gaugino condensate to the vacuum energy.
‘a’ corrections’, thus suggesting their alignment without e have now provided all the ingredients of a modifi-
involving the quantized flux. cation of the ‘flux compactification’ scheme, which can
Further support for the cancellation between the gaugbe outlined as follows: In a first step, before the inclusion
ino condensate and the continuous Chern—Simons ter@f gaugino condensate and continuous Chern—-Simons
is provided within the framework of heterotic M-theory terms, the moduli are fixed by quantized 3-form fluxes
of Hofava and Witten [17, 18]. In M-theory, gravity lives Without breaking SUSY—i.eD;W = 0 for all fields and
in the 11d bulk whereas the gauge fields reside on th¥V = 0 in the vacuum. The inclusion of the gaugino con-
two 10d boundaries. In the 11d bulk supergravity mul-densate, in the second step, leads to SUSY breakdown.
tiplet we find a 3-index tensor fiel@ynp With the four ~ As @ consequencé/sysy is now explained by dimen-
index field strengt!G = dC + Chern—Simons terms. Di- Sional transmutation (cf. EQ](3)). At this stage, the vac-
mensionally reducing to 10 dimensions one finds thatium energy is of ordeM3,sv, i.e. unacceptably large.
Bumn descends fornCyn 11 with the corresponding re- This vacuum energy can be compensated for by the con-
lation betweerH andG. It is now clear that the Chern— tinuous Chern—Simons term. A more detailed discussion
and examples will be presented elsewhire [22].



MIRAGE MEDIATION of the fluctuation®X around the minimum is canonical,
n

Let us now investigate the phenomenological proper- K = —nlog((X)+ (X)) — — (80X + 0X)
ties of the scheme where all but one modulus are fixed (X) +(X)

by fluxes and the last one gets stabilized through non- + n — (5)( 5x) 4o (16)
perturbative effects such as a gaugino condensate. ((X)+ (X))

This amounts to a rescalingX — 0Xcan = 0X X

General structure of the scheme (v/n/Re(X)). In particular, one finds for the physical

mass of the modulus (takin) to be real and positive)

The stabilization of the last modulus is described by X
the following model-independent structure of the (effec- mx ~ Mgz X (X) .
tive) superpotential:

(17)

This enhancement of moduli masses is known to be a
rather generic feature of the non-perturbative moduli sta-
W= A+Cexp(-X). (10) biIizatign mechanisms _[23, 24]. VF\)/e have sharpened the
Here, A and X represent vacuum expectation values ofStatément, and in particular shown that this enhancement
field-dependent quantities, a@i~ Mgr The value of Occurs when (i) the K&hler potential fris Io_ganthml_c,
A has to be small compared to the string/Planck scale"fmd (ii) th_e dependence of the superpotent|al_conta|ns the
which can be achieved either through a natural mecha€xPonential term such that exp(X)) ~ A3 (with A as
nism, or through an explicit fine-tuning. The gravitino '" Eas. [2) and{3)). Using{14) we can recasl (17) as

mas will appear as
STg/2 pp my ~ Mg, x log(Mpi/mg/5) ~ m3/2><47'l2. (18)
W 52 Mg (11)

Me An example

where the Planck scale is assumed to be of order of the

string scale. The Kahler potential is (up to a constant) ~ Let us now discuss specifically the outcome in the
simple model of KKLT [3] with matter fields on D7-

K = —nlog (X+7) +... (12) Dbranes as analyzed in_[25.126]. We concentrate on the
case with the dilatofs, a Kahler modulu3 and complex
where the omission denotes the Kahler potential for matstructure modulz,. Matter superfields are denoted by
ter fields, anch is an order one constant. The scalar po-Q,. We assume to be in a region of laf§andT. Let us
tential is given by start with the D7-systen [27, 28,129, 30] 81}, 32,133, 34,
35]. The Ké&hler potential is assumed to be

V = & [KP(Daw)(DzW) -3WE?] ,  (13) } _
K = —log(S+S-|Q/?) —3log(T+T)
with the Kahler derivativeDgW = dgW + KW, and +K(Za,Za), (19)
where we seMp; = 1. The minimum occurs fdDxW ~ )
0, i.e. by Eq.[IM) for whereQ; denote matter multiplets on the D7 branes. The
gauge kinetic function is
X ~ log(Mpi/mg)5) ~ 417, (14)

f; =T (20)
where we indicate the approximate numerical value of ) )
the logarithm of the hierarchy betweem,, andMp;. for gauge bosons on the D7 _branes. The |ncll_15|on of
To arrive at zero vacuum energy, we have to arrangdluxes leads to a superpotential for the modsland
a cancellation between the terms in the bracketEdf (13¥« [E]. As a consequence, one can eliminate (‘integrate
which are, when mu|t|p||ed byK, both of the order of Out,) these fields [25 36, 37] This leads to an effective
the square of the gravitino mass. We therefore have ~ superpotential which is given by

V' |xzp) ~ M) s (15) W = W(SZa)+Cexp(-aT)+W(Q7),  (21)

. . . . . 3
where the prime indicates the derivative w.rt)Rand Where C ~ Mg, and a are constants. The term
(X) denotes the position of the minimum. To evaluate theé"®XP(—aT) represents gaugino condensation on the

physical mass, one has to make sure that the kinetic terfd7-Pranes. When analyzing the potential, we look for
minima where the&); scalars (and therefoM/(Q7) as



well) do not receive non-trivial vacuum expectation val- one of the chiral compensator which is adjusted such
ues. Extremizing the scalar potential w.i.tleads to an  that [23) holds. On the other hand, theerm of theT-
anti-de Sitter vacuum with energy |W(S,Zy)/Mp|2. modulus is suppressed (cf. EQ1(23)).
To render this vacuum realistic, one introduces an (ad Let us now explain how the suppresség term
hoc) uplifting, which may be parametrized as emerges. Before uplifting;t vanishes, and is stabi-
lized with a mass- (aT) Mg, wheremg, = €/2)W| is

D_ — (22) the (adS) gravitino mass. Uplifting does (practically) not
(T+T)T changemy, but depends of (cf. Eq. [Z2)). As a con-
) . ) ) ) sequencd is slightly moved against its original mini-
By tuningD it is possible to obtain local de Sitter vacua mym after uplifting. The shift i is easily calculated in

with energy consistent with observation. The relevanterms of the canonically normalized fluctuations around
scales appearing in such a vacuum have been calculatgge minimum (cf. Eq[(T6))

in [2€], and they are given by:

Vg =

d ! d
Ms: ~ 5x10YGeV, ~ m%|5xcan|2 = — = Vitt ~ rré/ZMlglv
ddXcan ddXcan
7
1/R ~ 10Gev,
1 6 where we used in the last relation thég is tuned such
Mzs ~ Zm ™ 10'°Gev, as to cancel the negative energy of the adS minimum,
St o , Vags= —3W|?e¢ = —3m2 /ZM,E,. This leads t@dXcan ~
—(a
Noc = Mse @02 ~ 102Gev, Mpi/(X)? so that in the shifted de Sitter minimum
Mgz ~ €mnMg ~ 101GeV,
2
mr ~ <aT)rT13/2 ~ lOGGeV, F2 N % (25)
T (X)?
Moy ~ —m S03) . 10tGev
/2 MgtR3 Gy ’ This implies that soft terms induced By are suppressed

Ma/2 againstmg, by a factor~ (X). In particular, it is the
Msoft ~  Myeak ~ an 10°GeV, (23)  same factofX), which both enhances the modulus mass
(@) and suppresses the modukigerm.

whereAgc is the dynamical scale of D7 gaugino con- Hence, the ‘gravity mediated’ (or ‘modulus medi-

densation Mgz is the red-shifted cutoff scale ob3, ated’) soft terms, being controlled Wy /T, are sup-
pressed against the gravitino mass, with the suppression

e (@) ~ mg/p/Mst andehmn ~ , /mg 5/ Mst. Go3) and factor (Fr/T)/mg, ~ Fr /Fz ~ 1/(X). This suppression
G(2,1) denote the (0,3) and (2,1) components of the fluxis comparable to a loop-factor, and therefore anomaly
G. As is obvious from the above expressions, the SUSYmediation [38, 39] becomes competitive. As a conse-
breaking componen®q 3 is substantially suppressed quence, the soft mass terms receive comparable contri-
againstG, 1), which preserves SUSY. In this case we butions both from thé -term of theT-modulus (‘grav-
haveX = aT and it will have a vacuum expectation value ity mediation’) and from the super-conformal anomaly
of order (X) ~ log(Mpi/mg,) ~ 412 as we have dis- (‘anomaly mediation’). In general, one might hence ex-
cussed earlier. pect that such a mix is a generic property of ‘sequestered’
models where the communication of SUSY breakdown
can be more suppressed than by the Planck scale. We will
SUSY mediation call this schemerhirage mediation' in the following.
Let us emphasize the two features of mirage mediation
SUSY is broken by the uplifting (cf. EqQC{P2)). To that are mostimportant for cosmology and phenomenol-
describe the SUSY breakdown in the usual language, onegy:

attributes the associatédterm expectation valueto the | 1 (oo o is governed by SUSY breakdown.

so-called chiral compensator fiel@ [2€]. To see what Yet this mass is enhanced with respect to the
this means, recall the usu:_;tl supergravity relation (inthe | 5jue of the gravitino mass (cf. EC{17)r =
absence obD-term expectation values) (X)mgz ~ 47.[2”13/2’ and thus becomes quite heavy.
F2 » The soft mass terms of the matter fields are sup-
nﬁ/z ~ Z W , (24) pressed with that same factogo ~ mgo/(X) ~
PP n13/2/4rt2. If we thus assume that the soft terms are
where the sum extends over theterm expectation val- in the region of the weak scaley/, will be in the

ues of all chiral fields. Here, the domind®itterm is the multi TeV region and thus heavy as well.



The general mass pattern of the scheme is thus deter- 1600
mined by this little hierarchyX) = |09(Mpl/ms/z) ~
412 with E 1400
= 1200
mr ~ (X)Mgp ~ (X)% Mot (26) 4
< 1000 -
Phenomenological aspects 800, .-

The above-mentioned mix of gravity and anomaly me- 4 6 |08 ( 1/%8\/%2 14 16
diation, i.e. the ‘mirage mediation’ scheme allows, at GrolH
least in substantial regions of the parameter space, tg|GURE 2 Mirage unification formg , = 40TeV, Mo :=
retain the attractive features of these mediation mech- ' P L
- I ; : Fr/T =mg)5/(4m)° anda := mg5/[Mo x log(Mpi/mg 2)] =
anisms while discarding the problematic aspects. Thg ‘tpe red (solid)/green (dashed)/blue (dash-dot/ted) ecurv
most important issues are the following: shows the evolution of the gluiré/ino/Bino mass.

- Anomaly mediation has the notorious problem of
negative mass squares for some matter fields, in par-

ticular for the sleptons. Imirage mediation, the partner (LSP) is dominated by titiggsino com-
‘gravity mediated’ contribution can render the slep- ponent in large regions of the parameter space [43,
ton mass squares positive thus leading to a consis- 41,144].

tent framework.

We have a partial solution of tH&avour problem.
First of all, anomaly mediation is flavour-blind and

thus does not cause the usual flavour problems. If, . . . .
(Locally) supersymmetric theories are often in conflict

in addition, all the fields live on the D7 branes we . i . .
have a common scalar mass from the modulus me\_/wth cosmology because they predict long-lived particles

diation. This additional feature is not a result of the whose decays spoil the succes_sful predictions from nu-
scheme itself, but a consequence of the assumptio leosynthesis. The most prominent examples for these

concerning the origin of matter fields. Nevertheless, ong—lived partic_les are the gravitino and the moduli. In

it is worthwhile to stress that in mirage mediation the mirage mediation scheme, the latter are so heavy that
the flavour problem get ameliorated, and that thethe.y decay early enough not to ?‘ﬁ.e‘:t nucleosynthesis.
scheme is flexible enough to allow for the imple- This means that the mirage mediation scheme does not

mentation of a mechanism that solves the fIavourSUﬁer from the traditional gravitino and moduli prob-
problem. lem

There is also a partial solution to tf&JSY CP-
problem coming from the special property of the

Cosmological aspects

Let us mention that there are further challenges for
moduli cosmology, which persist even if moduli are
. . rather heavy. These remaining problems include: mod-
superpot%ntlal [z:o]_ That is, the p?asez oLme uli may not find the minimum of their effective potential
terms and gaugino masses are aligned. However, all; some of them might run to the phenomenologically
the extreme_smallne;s of the various electric d'p°|eunacceptable run-away minimum [46] due to a large ini-
moments r}l'%ht require further alignment of IOhaseStial velocity [47] or get destabilized by thermal effects
(see, e.g.L[£1]). o [48,(49]. Nevertheless, there exist a few promising pro-
The scheme leads to a distinct pattern for the specposals to solve at least some of these problems (see, e.g.,

trum of the low-energy effective theory. For exam- [5d [51,[52[53]), but these solutions may require some
ple, it has been observed that the spectrum exhibits g ther ingredients.

mirage unification scale[42, 43]—i.e., the gaugino
and scalar masses meet at an intermediate scale (an

energy scale well below the GUT scale). However, SUMMARY
this mirage unification scale does not correspond to

a physical scale. It has also been argued that th
partial cancellation of the RG evolution of the soft

e presented a scheme that combines the advantages of
. . . the new ‘flux compactification’ scenarios with the tra-
lmass4ezs T‘?y ameliorate the SUSY fine-tuning probyiional jore of moduli stabilization. Different from the

em 44 14b]. usual models of ‘flux compactification’, a crucial feature

+ In contrast to most of the other schemes of SUSY s thjs scenario is that the gaugino condensate does not
breakdown, in mirage mediation the lightest super-



adjust its size to a quantized constant. Rather it sets thel.

scale of SUSY breakdown, and thus yields the expla-
nation of the observed hierarcimy,eax < Mp; without

the need of fine-tuning. We argued that the ‘continuou
Chern—Simons term’, which is comprised of ‘continuous

Wilson lines’, should adjust its size such as to cancel theyg,

vacuum energy. In particular, in this scheme there is no
need for the (ad hoc) uplifting procedure.

We further discussed the consequences of the scheme
for phenomenology and cosmology. Most importantly,
there is the little hierarchy between moduli, gravitino and.,-,

soft masses moduius~ (X)Mg/2 ~ (X)2Msof With (X) ~

log(Mpi/mg)2) ~ 41, The pattern of supersymmetry 28.

breakdown combines the features of gravity/moduli and

anomaly mediation. As we have discussed, this leads t6°-

an attractive scenario where several problems of superts,
symmetric extensions of the standard model are amelio-

rated or even solved. 31.
32.
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