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Abstract. We show that an MHD-instability driven dynamo (IDD) operating in a hot
accretion disk is capable of generating energetically adequate magnetic flux deposition
rates above and below a mildly advective accretion disk structure. The dynamo is
driven by the magnetorotational instability (MRI) of a toroidal field in a shear flow
and is limited by the buoyancy of ‘horizontal’ flux and by reconnection in the turbulent
medium. The efficiency of magnetic energy deposition is estimated to be comparable
to the neutrino losses although an MHD collimation mechanism may deem this process
a more viable alternative to neutrino-burst–driven models of γ-ray bursts.

I INTRODUCTION

The combined redshift and fluence measurements of at least five γ-ray burst
sources plus very large photon energy detections in certain bursts and tight size
constraints derived from the rapid risetimes of burst triggers strongly suggest that
the release of energy is highly focused by the central engine that propels a γ-
ray burst. In spite of the very large γ-ray energy requirements, the efficiency of
energy deposition into electromagnetic channels is likely to be very poor if the
burst is driven by a neutrino burst in analogy to the processes thought to give
birth to supernovæ (MacFadyen & Woosley 1998, 1999) or if the burst involves
major energy losses to gravitational radiation such as might be the case in compact
object merger scenarios (Rasio and Shapiro 1994, Davies et al. 1994, Ruffert &
Janka 1998). Indeed, these measurements pose a serious energy budget problem
for arguably all gravitational collapse powered models of γ-ray bursts if the energy
release is not moderately collimated.
An attractive solution to this problem starts with a (directional) Poynting-flux

dominated outflow (Thompson 1994, Mészáros & Rees 1997) under the premise
that such a flow may carry very little baryonic contamination if deposited along a
centrifugally (or gravitationally) evacuated funnel such as the angular momentum

1) e-mail: araya@twinkie.gsfc.nasa.gov

http://arxiv.org/abs/astro-ph/0001192v2


axis of a black hole-accretion disk system. Yet, formal motivation for an external
field of the desired strength and topology has yet to be investigated in this setting.
We motivate a reasonable set of heuristic two dimensional dynamo equations for

magnetic field components in the comoving frame of a mildly advective disk under
the premise of negligible generation of meridional field (invoking Parker’s undulate
instability to promote the growth (loss) of vertical (horizontal) field is questionable
in turbulent disks where the turbulence is fed by MRI’s). A self-consistent turbulent
steady state is achieved when the non-linear damping rate of the turbulent cascade
equals the inverse of the linear growth timescale (Zhang, Diamond & Vishniac
1994). Accretion disk models are far from being self-consistent in this respect.
The heuristic dynamo equations account for field generation by the shear flow and

by the non-axisymmetric MRI in Paczyński’s pseudo-potential well Φ ∝ (r− rg)
−1

where rg = 2GM/c2; with flux buoyancy and turbulent reconnection providing
for field loss terms. The model predicts azimuthally averaged field components
and depends explicitly on the magnetic Mach number of the turbulence (assumed
Alfvenic), on local pressure ratios, and on the relativistic generalization of the shear
parameter (ARel

Oort = Oort’s A constant).

II DYNAMO EQUATIONS AND SCALINGS

In Lagrangian coordinates

∂tBϕ =
Br

τ
S

− Bϕ

τ
B

− Bϕ

τr
and ∂tBr =

Bϕ

τ
M

− Br

τ
B

− Br

τr
. (1)

The shear flow is parameterized linearly by a relativistic generalization of Oort’s
first constant (Novikov & Thorne 1974), τ−1

S
= 2AOort = γ2dln rΩ, where γ is the

bulk Lorentz factor of the flow. Shear forces the radial wavenumber of perturbations
to evolve according to kr(t) = k0

r − 2Akϕt.
We use exact analytical MRI scalings from Foglizzo & Tagger (1995). With

αϕ ≡ B2
ϕ/(8πp) and Â ≡ A/Ω < 0, the maximum growth of non-axisymmetric

MRI modes occurs for wavenumber

kϕ ≡ η
Ω

vAlf
ϕ

αϕ≪1−→ {2Â + (1 + αϕ)Â
2} Ω

vAlf
ϕ

(2)

at a rate, τ−1
M , that obeys

|Â|2τ 2
M

αϕ≪1−→ 1 + αϕ(2 + Â) (3)

as long as kϕ >
∼1/r. On the other hand, in a very strongly sheared flow

−Â > 1 + (2αϕ + 1)−1, (4)

the slow branch of MHD propagation (to which the toroidal MRI belongs) is desta-
bilized into a radial interchange mode (T. Foglizzo, Priv. Comm.) in accordance
with the Rayleigh criterium.



A plausible mechanism that promotes baryon unloading from field lines is tur-
bulent pumping (Vishniac 1995a) by the MRI which must favorably compete with
turbulent diffusion of matter back onto flux ropes. Under this assumption, the
stretch, twist and fold of field lines by (enthalpy-weighted) sub-Alfvenic turbulence
augments the field energy density and releases matter from field lines that other-
wise would be “frozen-in”. For the marginal case of Alfvenic turbulence, nearly
empty B⊥ flux ropes (i.e. flux residing on surfaces perpendicular to the local
meridian) in a gas pressure dominated disk acquire a drag limited buoyant velocity
vb ∝ (vAlf

⊥θ )
2/cs. Moreover, assuming efficient diffusion of radiation and e± pairs into

the flux tubes, in this picture the buoyancy loss rate, τ−1
B = vb/Hθ, is enhanced by

a factor <
∼ p/pgas ≡ ξ (Vishniac 1995b).

Reconnection of the field at sub-MRI optimal lengthscales (where the field lines
are only weakly stochastic) occurs at the Alfvén speed for Alfvenic turbulence
(Lazarian & Vishniac 1999). The rates may be written as inverse Alfvén transit
times calculated from the component of the field that undergoes reconnection,

τrec ≈ l⊥i
rec/v

Alf
i =

√

2/Γ (l⊥i
rec/HΘ) (cs/v

Alf
i ) Ω−1, where Γ is the adiabatic index of

the fluid.

The perpendicular lengthscales, l⊥i
rec, associated with the mean distance for field

reversal are derived from the fundamental linear lengthscales for coherent field
pumping. These are supplied by half of the toroidal MRI’s (wave)length scale.
Azimuthal, radial field reversal, Yr, directly involves the optimal wavenumber of the
non-axisymmetric MRI. In addition, following Tout & Pringle (1992), an estimate
of the radial, azimuthal field reversal lengthscale, Xϕ follows by noting that the
time evolution of wavenumbers implied by shear during one MRI timescale couples
the azimuthal lengthscale to the radial lengthscale, i.e. l⊥y = (τ

M
/τ

S
) × l⊥x . Thus

Yr = π/k
M

and Xϕ = (τ
S
/τ

M
)× (π/k

M
).

III EQUILIBRIUM SOLUTIONS

Scaling wavenumbers to the inverse pressure scale height k → k̂/HΘ, and re-

defining Â ≡ |A|/Ω > 0; a set of normalized dynamo equations follows by rep-
resenting fields in (Alfvén ) velocity units and normalized to the soundspeed
(B′ = B × √

4π̺ cs), and the time normalized to the inverse of the Keplerian
frequency t′ = Ωt.

In a steady state, these equations must satisfy
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(5)

which we solve numerically.



IV THE ENERGY DEPOSITION RATE

The accretion disk setting is envisioned to follow the standard hyper-accreting
black hole model of Popham, Woosley & Fryer (1999, hereafter PWF) where Mbh =
3 M⊙; αSS = 0.1, and Ṁ = 0.1 M⊙ sec−1. By adopting their published pressure
ratios and assuming Keplerian rotation for r ∈ [2.25, 20]rg, we “piggyback” the
hydromagnetic energy conversion process on this model.
We find that the magnetic output rate from buoyancy, Ė ≃ 1.77+51 erg sec−1,

is comparable to the neutrino luminosity Lν ≃ 3.3+51 erg sec−1 (PWF). The ‘half-
luminosity’ radius is located at rL ≈ 5.75 rg and the IDD becomes operational
(against the radial interchange instability, c.f. Eq [4] and Araya-Gochez 1999) at
rmin ≃ 2.55 rg. Curiously, the derived value of the magnetic viscosity αSS = B′

rB
′
ϕ

hovers on 0.1 at the innermost radii and decreases to about .087 at rL in good
agreement with the adopted value. Lastly, we note that the MRI pumps the field
preferably at the lowest wavenumbers for a near-equipartition field in a strongly
sheared flow. Thus, most of this energy could in principle go into a Poynting jet
with interesting consequences for γ-ray bursts.
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