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ABSTRACT
Background. Desiccation-tolerant (DT) plants can recover full metabolic competence
upon rehydration after losing most of their cellular water (>95%) for extended periods
of time. Functional genomic approaches such as transcriptome sequencing can help
us understand how DT plants survive and respond to dehydration, which has great
significance for plant biology and improving the drought tolerance of crops. Boea
clarkeana Hemsl. (Gesneriaceae) is a DT dicotyledonous herb. Its genomic sequences
characteristics remain unknown. Based on transcriptomic analyses, polymorphic EST-
SSR (simple sequence repeats in expressed sequence tags) molecular primers can be
designed, which will greatly facilitate further investigations of the population genetics
and demographic histories of DT plants.
Methods. In the present study, we used the platform Illumina HiSeqTM2000 and de
novo assembly technology to obtain leaf transcriptomes of B. clarkeana and conducted
a BLASTX alignment of the sequencing data and protein databases for sequence
classification and annotation. Then, based on the sequence information, the EST-
SSR markers were developed, and the functional annotation of ESTs containing
polymorphic SSRs were obtained through BLASTX.
Results. A total of 91,449 unigenes were generated from the leaf cDNA library of B.
clarkeana. Based on a sequence similarity search with a known protein database, 72,087
unigenes were annotated. Among the annotated unigenes, a total of 71,170 unigenes
showed significant similarity to the known proteins of 463 popular model species in
the Nr database, and 59,962 unigenes and 32,336 unigenes were assigned to Gene
Ontology (GO) classifications and Cluster of Orthologous Groups (COG), respectively.
In addition, 44,924 unigenes weremapped in 128 KEGGpathways. Furthermore, a total
of 7,610 unigenes with 8,563 microsatellites were found. Seventy-four primer pairs
were selected from 436 primer pairs designed for polymorphism validation. SSRs with
higher polymorphism rates were concentrated on dinucleotides, pentanucleotides and
hexanucleotides. Finally, 17 pairs with stable, highly polymorphic loci were selected
for polymorphism screening. There was a total of 65 alleles, with 2–6 alleles at each
locus. Primarily due to the unique biological characteristics of plants, the HE (0–
0.196), HO (0.082–0.14) and PIC (0–0.155) per locus were very low. The functional
annotation distribution centered on ESTs containing di- and tri-nucleotide SSRs,
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and the ESTs containing primers BC2, BC4 and BC12 were annotated to vegetative
dehydration/desiccation pathways.
Discussion. This work is the first genetic study of B. clarkeana as a new plant resource
of DT genes. A substantial number of transcriptome sequences were generated in this
study. These sequences are valuable resources for gene annotation and discovery as well
as molecular marker development. These sequences could also provide a valuable basis
for future molecular studies of B. clarkeana.

Subjects Genomics, Plant Science
Keywords Gene function annotation, Boea clarkeana, Transcriptome, EST-SSRs, Desiccation
tolerance

INTRODUCTION
Resurrection plants are desiccation-tolerant (DT), which enables them to recover full
metabolic competence upon rehydration after losing most of their cellular water (>95%)
for extended periods of time (Farrant, Brandt & Lindsey, 2007). Though non-vascular
plants and spores of tracheophytes are commonly DT (Rodriguez et al., 2010), this feature
is rare in angiosperms (Gaff, 1971; Porembski & Barthlott, 2000; Proctor & Pence, 2002).
The mechanisms of DT are different between the extant lower orders and angiosperms
(Farrant, Brandt & Lindsey, 2007). Understanding how DT plants survive and respond
to dehydration has great significance for plant biology and crop drought tolerance
improvement, which could contribute to future water resource management decisions.
Moreover, research on DT angiosperms could inform crop cultivation (Farrant, Brandt &
Lindsey, 2007; Oliver et al., 2011a; Gechev et al., 2012; Xiao et al., 2015). In recent decades,
research has focused on revealing the physiological and molecular mechanisms of DT in
angiospermplants and their recovery processes (Bianchi et al., 1993;Bernacchia, Salamini &
Bartels, 1996; Sherwin & Farrant, 1998; Cooper & Farrant, 2002; Collett et al., 2003; Collett
et al., 2004; Schneider et al., 2003; Alcazar et al., 2011; Oliver et al., 2011a; Oliver et al.,
2011b; Christ et al., 2014; Zhu et al., 2015). While a functional genomic approach, such as
transcriptome sequencing, could be fruitful for exploring the mechanisms of DT (Xiao et
al., 2015), transcriptomics could identify the metabolic processes involved in DT. Gene
Ontology (GO, http://www.blast2go.com/b2ghome) and Cluster of Orthologous Groups
(COG, http://www.ncbi.nlm.nih.gov/COG/) analyses can also help us understand the
distribution of functional genes in plants at the macro level (Conesa et al., 2005; Ye et
al., 2006). Moreover, the gene products of metabolic processes and the functions of
genes related to cellular processes can be detected by BLASTX using the KEGG database
(Kyoto Encyclopedia of Genes and Genomes, http://www.kegg.jp/) (Kanehisa et al., 2008).
These approaches can help us study gene behaviors in biologically complex processes,
such as vegetative dehydration/desiccation pathways, in DT plants (Xiao et al., 2015).
However, to the best of our knowledge, only a few gene expression and EST sequencing
studies have been performed in angiosperms with DT, including the dicot species
Craterostigma plantagineum (Bockel, Salamini & Bartels, 1998; Rodriguez et al., 2010),
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Boea hygrometrica (Xiao et al., 2015; Zhu et al., 2015), and Haberlea rhodopensis (Gechev
et al., 2013) and the monocot species Sporobolus stapfianus (Neale et al., 2000; Le et al.,
2007), Xerophyta viscosa (Mundree et al., 2000; Mowla et al., 2002; Lehner et al., 2008), and
X. humilis (Collett et al., 2004; Illing et al., 2005;Mulako et al., 2008).

Boea (Gesneriaceae) is a rare group of resurrection plants within angiosperms (Liu,
Hu & Zhao, 2007; Xiao et al., 2015). B. clarkeana Hemsl. is a desiccation-tolerant herb
endemic to China. The whole plant, detached leaf and leaf segment all retain the DT
phenotype, and the excellent drought tolerance of this plant has been of concern in
the last few years (Chao et al., 2013; Zhang et al., 2016). B. clarkeana is a small perennial
dicotyledonous plant that is mainly distributed in eight provinces and one municipality
along the middle-lower reaches of the Yangtze River in China (Li, 1996; Li & Wang, 2005).
It is found only on rock outcrops (such as inselbergs) among some lithophytes, where
dehydration occurs frequently (Jenks & Wood, 2007). It is commonly used as a medicinal
plant to treat traumatic hemorrhage and traumatic injury (Li & Wang, 2005). However,
genomic sequences of B. clarkeana are scarce, and only a few nucleotide sequences are
found in public databases (http://www.ncbi.nlm.nih.gov/). To fill this critical gap and
obtain the first genomic resources, we used the Illumina HiSeqTM2000 platform and de
novo assembly to obtain leaf transcriptomes of B. clarkeana and conducted a BLASTX
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) alignment of the sequencing data and protein
databases for sequence classification and annotation.

We also assessed the SSRs, or microsatellites, that are distributed universally in gene
coding and non-coding regions. As the major tool of genetic research, the neutral SSR
markers are widely used in botanic sciences and functional SSR markers might affect
gene function by influencing recombination and chromatin organization, regulating gene
expression and activity, etc. (Cavagnaro et al., 2010; Li et al., 2012a; Zalapa et al., 2012).
In DT plants, identifying functional genes that contain functional SSRs could help us to
understand the evolution and expression of these genes, making SSRs a valuable resource
for genetic studies (Li et al., 2002; Gupta et al., 2003). Therefore, based on the B. clarkeana
transcriptome, 17 pairs of polymorphic EST-SSR molecular primers were developed and
characterized. The results of this study will greatly facilitate further investigations of the
genetics and demographic histories of populations of this DT plant.

MATERIALS AND METHODS
Plant materials and genomic DNA extraction
The materials of 11 natural populations were sampled from six provinces and one
municipality in China that covered the vast majority of the natural habitats of B. clarkeana
(Li & Wang, 2005). Young leaves were collected, rapidly dried and preserved in silica gel.
DNA extraction was carried out using the QIAGEN R© DNeasy R© Plant Mini Kit (QIAGEN,
Germany).

RNA isolation and cDNA library construction
The young leaves of three individual B. clarkeana plants from the population of Mt.
Fenghuang in Anhui Province (30◦88′N, 118◦02′E) were collected, mixed and frozen in
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liquid nitrogen; then, the sampled tissues were stored at −80 ◦C until RNA extraction.
Total RNA was isolated using a TRIzolKit (Life Technologies, USA) and DNase I (TaKaRa,
Japan) following the manufacturer’s protocols. After total RNA was obtained, mRNA +
poly (A) were isolated using beads with Oligo (dT), and fragmentation buffer was added
to cut the mRNA into short fragments. Then, first-strand cDNA was obtained from the
RNA sequence fragments using reverse transcriptase and random primers (Invitrogen,
Carlsbad, CA), and second-strand cDNA was synthesized using buffer, dNTPs, RNaseH
and DNA polymerase I. Following the ligation of adapters, a single ‘A’ base was added to
the 3’ end of these cDNA fragments to facilitate end repair. Based on the amplification of
these products, the cDNAs were separated on an agarose gel, and the cDNA library was
generated.

Sequencing and de novo assembly
The raw reads were produced from the cDNA library using an Illumina HiSeqTM2000
genomic sequencer at the Beijing Genomics Institute (BGI, Shenzhen, China, http:
//www.genomics.cn/index). The subsequent analysis was based on the clean reads generated
by filtering the raw reads. We used the filter_fq program (BGI, Shenzhen, China) to
remove reads with more than 5% unknown nucleotides (N) and low-quality sequences
with more than 20% low-quality bases (quality value ≤10) and adaptors to obtain clean
reads. Then, we used the short read assembly program Trinity (Release-2013-02-25,
http://trinityrnaseq.sourceforge.net/) for de novo transcriptome assembly by combining
the clean reads into contigs with a sequence fragment length of 200 bp (±25 bp) (Grabherr
et al., 2011). Two contigs were then connected into a single scaffold, and we called the
resulting sequences unigenes. These unigenes were removed to prevent redundancy with
TGICL (version 2.1) and further spliced to generate non-redundant unigenes that were
as long as possible (Pertea et al., 2003). The raw sequencing data with accession number
SRX1600046 were deposited in the Sequence Read Archive (SRA) of National Center for
Biotechnology Information (NCBI), which will be released upon publication.

Functional annotation and classification of unigenes
BLASTX alignment (E-value < 10−5) between the unigenes and protein databases, such as
NCBI non-redundant protein (Nr), GO, COG, and KEGG, was performed to annotate and
classify the transcriptome. Based on the Nr database annotation, we used Blast2GO v2.5.0
to obtain GO terms with an E-value threshold of 10−5 (Conesa et al., 2005). With the Web
Gene Ontology Annotation Plot (WEGO) (Ye et al., 2006), the distributions of GO terms
were plotted to describe the categories, and the unigenes were aligned to the COG database
for possible functional prediction and classification. The unigenes containing SSRs were
also aligned to euKaryotic Orthologous Groups (KOGs) via BLASTX. Finally, we mapped
the unigenes to each level 3 pathway graph using the KEGG database to obtain pathway
annotations for the unigenes.

EST-SSR mining, primer design and polymorphism identification
SSRs fromunigenes were detected and located usingMIcroSAtellite (MISA, http://pgrc.ipk-
gatersleben.de/misa/misa.html) (Zalapa et al., 2012). Compound SSRs (two or more SSRs
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in which the interval was no more than 100 bp) were excluded, and only SSRs with flanking
sequences longer than 150 bp and containing two to six repeat motifs were considered.
The mono-, di-, tri-, tetra-, penta- and hexa-nucleotide motif SSRs with a minimum of
twelve, six, five, five, four and four repeats, respectively, were detected. We designed primer
pairs using the online program Primer3.0 (http://www.onlinedown.net/soft/51549.htm)
with the following criteria: (1) a product sequence length of 100–300 bp and no secondary
structure; (2) a primer length of 18–28 bp with an optimum length of 23 bp; (3) a Tm of
55–65 ◦C with an optimum Tm of 60 ◦C and a difference between the Tm values of the
forward and reverse primers of no greater than 4 ◦C; and (4) a guanine-cytosine (GC)
content of 40–60%, with 50% as the optimum. For other parameters, the default settings
were used.

Seventy-four primer pairs divided into two groups were selected for DNA amplification.
The first group of 50 primer pairs was randomly selected for amplification, and the
motifs that had more polymorphic alleles in the first group were used to increase the
selected ratio in the second 24 primer pairs. The mixed DNA from three individuals from
different populations of B. clarkeana was used to verify the amplification products, and the
primers that amplified successfully were chosen for primary polymorphism identification.
Using these primers, amplification was conducted using 12 individuals from 11 natural
populations. Then, the DNA of 128 individuals from 11 populations were amplified using
primer pairs that had more polymorphic loci for further identification of polymorphisms.
The ESTs containing SSRs were aligned to GO, COG, and KEGG databases through
BLASTX to help us understand the functional annotations of the sequences.

We used fluorescently-labeled (6-FAM, HEX, TAMRA or ROX) M13-tailed (5’-
TGTAAAACGACGGCCAGT-3’) primers to accurately screen the variation among
individuals. PCR was performed in a 15-µL reaction containing 2.5 mM MgCl2 and
dNTP (TaKaRa, Dalian, China), 0.5 U of Taq polymerase (TaKaRa, Dalian, China), 1 ×
PCR buffer, and 50 ng of genomic DNA. The primers included 0.04 µM forward primers,
0.01 µMM13-tailed reverse primers, and 0.04 µMM13 primers with fluorescent tails. The
annealing temperature was different for each locus. We used 54 ◦C as the unified annealing
temperature for PCR, and the amplification conditions were as follows: initial denaturation
at 94 ◦C for 5 min; 35 cycles of 30 s at 94 ◦C, 40 s annealing at 54 ◦C, and 45 s elongation at
72 ◦C; and a final extension at 72 ◦C for 10 min. After screening on a 1.0% agarose gel, the
sequence typing of successfully amplified products was performed using an ABI 3730 DNA
Analyzer (Applied Biosystems, Foster City, California, USA). Then, we manually scored
alleles using GeneMarker software (version 2.2.0).

Deviations from Hardy-Weinberg equilibrium (HWE) were calculated using the online
tool GENEPOP (http://www.genepop.curtin.edu.au/) with Bonferroni’s correction. The
number of alleles (NA) was calculated using MicroChecker (version 2.2.3). The expected
(HE) and observed heterozygosity (HO) of each locus were detected by GenALEx 6 (Peakall
& Smouse, 2006), and the polymorphism information content (PIC) was calculated using
the PowerMarker program (version 3.25) (Liu & Muse, 2005). Then, neutral markers were
detected using LOSITAN (Beaumont & Nichols, 1996; Antao et al., 2008).
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Table 1 Summary of sequence assembly using Illumina sequencing.

Sequence Items Value

Reads Total raw reads 110,834,050
Total clean reads 104,021,494
Total clean nucleotides (nt) 9,361,934,460
Q20 percentage (%) 97.55
N percentage (%) 0
GC percentage (%) 45.43

Contig Total number 94,546
Total length (nt) 46,012,409
Mean length (nt) 487
Contig N50 (nt) 1,075

Unigene Total number 91,449
Total length (nt) 148,176,175
Mean length (nt) 1,620
Unigene N50 (nt) 2,389
Distinct clusters 55,888
Distinct singletons 35,561

RESULTS
Illumina sequencing and de novo assembly
Sequencing successwas determined by the length of the reads, as longer readswould increase
the probability of SSRs being discovered (Zalapa et al., 2012). A total of 9,361,934,460
nt bases were generated in this study. After cleaning and quality checks, we obtained
104,021,494 clean reads with Q20 bases (sequences with sequencing error rates <1%) at
97.55%, and the N (ambiguous bases) and GC contents were 0 and 45.43%, respectively.
De novo assembly was performed using the Trinity program; a total of 94,546 contigs were
generated with an average length of 487 nt and an N50 value of 1,075 nt. Finally, a total
of 91,449 unigenes with a total length of 148,176,175 nt were detected, and the average
length and N50 were 1,620 nt and 2,389 nt, respectively. The final assembled transcripts
of B. clarkeana were longer than those of its sibling species, i.e., the Primulina species
and B. hygrometrica, which were assembled using Illumina (Ai et al., 2015) and the 454
pyrosequencing platform (Zhu et al., 2015), respectively. As 454 pyrosequencing produces
longer reads than Illumina, the sequencing results were ideal in this study (Zalapa et al.,
2012). A summary of the sequence assembly after Illumina sequencing is shown in Table 1.
The sequence-length distribution of the unigenes is shown in Fig. 1.

Functional annotation and classification of unigenes
For function annotation analysis, we obtained 71,170, 59,962, 32,336 and 44,929 unigenes
annotated to the Nr, GO, COG and KEGG databases, respectively. In total, 72,078 unigenes
(78.82% of all assembled unigenes) were successfully annotated in the present study. This
number of successful annotations was more than those reported for other DT plants,
including B. hygrometrica (66.6% (Zhu et al., 2015) and 47.09% (Xiao et al., 2015)) and
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Figure 1 The length distribution of unigenes.

Syntrichia caninervis (58.7%) (Gao et al., 2014), which indicates that the functions of genes
in B. clarkeana are better conserved in this study.

Nr annotation
In total, 71,170 unigenes were annotated from 463 popular model species in the Nr
databases. The species distribution of Nr annotations (Fig. 2) were mainly comprised
of Lycopersicon esculentum (35.11%), Vitis vinifera (27.81%), Amygdalus persica (6.66%),
castor bean (Ricinus communis; 6.12%), black cottonwood (Populus balsamifera subsp.
trichocarpa; 5.2%), Fragaria vesca subsp. vesca (3.18%) andGlycine max (2.82%). The most
common species found in terms of this similarity were those of Solanaceae, with which six
species had similar genes (26,585, 37.35%). Only a small fraction of all transcripts showed
similarities to genes in other species. The structural features of the protein-coding genes
were similar to those of their homologs in other previously studied DT plants, including C.
plantagineum (Rodriguez et al., 2010), B. hygrometrica (Zhu et al., 2015) and H. rhodopensis
(Gechev et al., 2013). The species distribution of Nr annotations primarily consisted of V.
vinifera, R. communis and P. trichocarpa, which showed significant homology; however, B.
clarkeana showed some differences in our study, which indicated that B. clarkeana shares a
common origin with L. esculentum and V. vinifera.

GO and KEGG classification
Based on the Nr annotations, 59,962 unigenes (65.57% of all unigenes) were assigned to
three ontologies and subdivided into 55 functional GO terms. The annotation scale in B.
clarkeana was much greater than that in the related species B. hygrometrica (28.71% (Xiao
et al., 2015); and 43.7% (Zhu et al., 2015)). Similarly to previous studies, the ‘Biological
process’ (49.45%) was themain ontology, followed by ‘Cellular component’ and ‘Molecular
function’ ontologies (37.11% and 13.43%). A high percentage of genes were classified
under the GO terms ‘Cellular process’, ‘Metabolic process’, ‘Cell’, ‘Cell part’, ‘Organelle’,
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‘Catalytic activity’ and ‘Binding’ (Gupta et al., 2003; Durand et al., 2010; Blanca et al.,
2011; Li et al., 2012a; Xiao et al., 2015; Zhu et al., 2015). The assignment of GO terms in
B. clarkeana in this study focused on ‘Single-organism process’, ‘Physiological response
to stimulus’, ‘Biological regulation’, ‘Localization’, ‘Macromolecular complex’, ‘Symplast’
and ‘Transporter activity’, which reflected the functional gene expression characteristics
of B. clarkeana during normal growth. Compared with the related species B. hygrometrica
under different DT treatments, there were more functional GO terms, more dispersed
gene distributions, and different sets of GO terms, especially in the ‘Molecular function’
ontology (Fig. 3) (Xiao et al., 2015; Zhu et al., 2015). This result was mainly due to selective
gene expression caused by the adaptation of cells to various physiological states and
environmental changes.

Based on sequence homology searches against the KEGG database, 44,924 unigenes
(49.12% of all unigenes) were mapped in 128 pathways. The enrichment of the KEGG
annotation in this study was much greater than that of B. hygrometrica (24.43% (Xiao et
al., 2015); 15.1% (Zhu et al., 2015)). Among these pathways, ‘Metabolic pathway’ (9,232,
20.55% of KEGG unigenes) and ‘Metabolic biosynthesis of secondary metabolites’ (3,764,
8.38%) were the largest categories of ‘Metabolism’. The greatest highlight of the KEGG
analysis in our studywas the enrichment of the following vegetative dehydration/desiccation
pathways: ‘Plant-pathogen interaction’ (1,769 unigenes, 3.94% of KEGG unigenes) in the
pathogen defense system; ‘Glycerophospholipid metabolism’ (803, 1.79%) in vesicular
trafficking for protein receptor interactions; ‘Plant hormone signal transduction’ (1,783,
3.97%) for abiotic stress responses; the mRNA surveillance (1,027, 2.29%) pathway for
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damaged transcript removal; ‘Photosynthesis’ (154, 0.34%) and ‘Nitrogen metabolism’
(154, 0.34%) for the depletion of transcripts during dehydration. In addition, some other
environment-related pathways, including ‘Phosphatidylinositol signaling system’ (535,
1.19%), ‘ABC transporters’ (499, 1.11%) and ‘Circadian rhythm-plant’ (377, 0.84%) were
also enriched. These results indicate that in normal metabolic processes, B. clarkeana
maintains its abundant vegetative dehydration/desiccation pathways. The results of our
study are consistent with those of other studies, which identified the plant genes and gene
products with central roles in DT (Gechev et al., 2012; Xiao et al., 2015).

COG and KOG classification of unigenes with SSRs
In total, 56,493 functionally annotated unigenes from 32,336 (35.36% of all unigenes)
COG unigenes were assigned to 25 possible functional categories in COG annotations
(Fig. 4). Among the categories, the largest group was the cluster for ‘General function
prediction only’ (10,438, 32.28%), followed by ‘Replication, recombination and repair’
(5,561, 17.20%) and ‘Transcription’ (5,322, 13.46%). The smallest groups were ‘Cell
motility’ (228, 0.71%), ‘Extracellular structures’ (17, 0.05%) and ‘Nuclear structure’ (14,
0.04%). This pattern is similar for some angiosperms, including Camelina sativa (Liang
et al., 2013), Apium graveolens (Fu, Wang & Shen, 2013) and Chrysanthemum nankingense
(Wang et al., 2013). The ‘Replication, recombination and repair’ (17.20%) category has
abundant genes in B. clarkeana, and this plant showed more repaired genes.

After SSR detection using the MIcroSAtellite (MISA) software with unigenes as
references, 7,610 unigenes carrying 8,563 SSRs were found. Then, 3,267 unigenes with
SSRs had hits in 24 categories of the KOG database without ‘Nuclear structure’. Among
24 categories, the largest group was ‘General function prediction’ (1,166, 35.69% of
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unigenes with SSRs in KOG), followed by ‘Transcription’ (797, 24.40%), ‘Replication,
recombination and repair’ (737, 22.56%) and ‘Signal transduction mechanisms’ (684,
20.94%). Compared with other studies of EST-SSRs (Li et al., 2012a; Liang et al., 2013; Liu
et al., 2013), ‘Replication, recombination and repair’ and ‘Signal transductionmechanisms’
(684, 20.94%) were highlighted in B. clarkeana. These 3,267 ESTs will provide a valuable
repository of abundant information for future functional SSR studies.

Frequency and distribution of SSRs
All 91,449 assembled unigenes were used to mine potential SSRs in this study, and a total
of 7,610 unigenes containing 8,563 SSRs were identified. Other reports have identified
approximately 2,000 EST-SSRs using NGS (Next-Generation Sequencing) (Liu et al.,
2013; Wang et al., 2013; Xiang et al., 2015); the quantity of EST-SSRs in our study was
significantly larger, which was probably due to the use of longer reads and the expression
characteristics of the species (Zalapa et al., 2012).

Among those unigenes containing SSRs, 338 SSRs presented a compound formation, and
812 unigenes containedmore than one SSR. On average, one SSR was found every 17.30 kb.
Among the identified SSRs, dinucleotide motifs were the most abundant (3,991, 46.61%
of all SSRs), followed by mono- (2,163, 25.26%), tri- (1,957, 22.85%), hexa- (267, 3.12%),
tetra- (198, 2.3%), and penta- (36, 0.42%) nucleotide motifs. This result was similar to the
findings reported for A. graveolens (Fu, Wang & Shen, 2013) and Hevea brasiliensis (Li et
al., 2012a). The distributions and frequencies of different motifs are shown in Fig. 5.
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Among all SSR loci, 109 different motifs were identified. The largest subset of
mononucleotides were A/T (2,093, 24.44% of all SSRs), and there were only 70 C/G
nucleotides in total. Of the dinucleotides, AT/AT (1,564, 18.26%) and AG/CT (1,391,
16.24%) were roughly equivalent, followed by AC/GT (1,035, 12.09%). Of the
trinucleotides, AAG/CTT (441, 5.15%) was the most common, followed by AAT/ATT
(389, 4.54%) and AGC/GCT (341, 3.98%). The ACAT/ATGT (18, 0.21%) motif
comprised the most common tetranucleotide, and the most common pentanucleotides and
hexanucleotides were AAAAG/CTTTT (42, 0.49%) and AAGAGC/GCTCTT (68, 0.79%),
respectively. The repeat numbers of most SSRs ranged from four to twelve, and the most
frequent repeat number was six (2,066, 24.13%), followed by five (1,233, 14.40%) and seven
(1,113, 13.00%). Furthermore, the length of SSRs ranged from 12 to 25 bp (Fig. 6). Among
the di- and trinucleotides, the most common lengths were 12 bp and 15 bp, respectively.
The longest di-, tri- or tetranucleotide was 24 bp, whereas the longest pentanucleotide was
25 bp in length; all hexanucleotides were 24 bp.

Development and validation of polymorphic SSR markers
As a result, a total of 436 (only 5.73% of SSR-containing ESTs) eligible primer pairs
(mononucleotide, 1; di-, 191; tri-, 205; tetra-, 5; penta-, 12; hexa-, 22) were designed.
Primers could not be successfully designed for the other sequences, primarily due to their
overly long sequence lengths and insufficient flank lengths, as well as the abundance of
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sequences containing mononucleotides. Then, 74 primer pairs (dinucleotide, 20; tri-, 38;
penta-, 3; hexa-, 13) were selected to validate the amplification across a composite sample
of three individuals. A total of 60 primer pairs (81.08% of 74 primer pairs) showed stable
and clear amplification. Meanwhile, the 14 remaining pairs with failed PCR produced
multiple bands or showed unstable amplification. After polymorphism screening across
12 individuals, 23 primer pairs were found to be monomorphic and 37 were found to
be polymorphic. Among 37 polymorphic primer pairs, 17 pairs of highly polymorphic
and stable loci were selected for further polymorphism screening across 128 individuals
from 11 populations, which covered the majority of habitats of these plants. For the 17
polymorphic loci, there were 2–6 alleles at each locus, with a total of 65 alleles. The HE ,
HO and PIC per locus ranged from 0 to 0.196, 0 to 0.14 and 0.155 to 0.664, respectively.
For the PIC values of the 17 polymorphic loci, eight pairs had highly informative scores
(PIC > 0.50) and five pairs had weakly informative scores (0<PIC< 0.25) (Table 2).

Functional annotation of SSR-containing ESTs
The functional annotation distribution of SSR-containing ESTs centered on ESTs
containing di- and tri-nucleotide SSRs (BC1–BC10). With the exception of one EST
(BC12), the ESTs containing penta- and hexa- nucleotide SSRs (BC11 to BC17) had
almost no functional annotations. However, the ESTs containing BC2, BC4 and BC12 were
annotated by the KEGG analysis to vegetative dehydration/desiccation pathways (Table 3
and Table S1). Thus, these ESTsmay contain the SSRs involved in regulating the function of
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Table 2 Characteristics of 17 polymorphic EST-SSRmarkers.

Locus Primer sequence 5’–3’ Repeat
motif

N A Size
range
(bp)

H E HO HWEa PIC GenBank
accession
no.

BC1 F:GCAGTTCTGTGCAGTACCATACAT (TA)6 4 172–182 0.065 0.038 0.036* 0.193 Pr032805680
R:GGCTTCTGATCAGGTTTCTGAAT

BC2 F:GAGATCCCAGATCCAGATCTTCT (TC)6 3 160–164 0.038 0.023 0.192 n.s 0.423 Pr032805689
R:AACATTAATGGAAACACGTCGTC

BC3 F:ATTCGCTCTCTTGGTATGACTGT (TA)6 5 170–184 0.054 0.045 0.380n.s 0.664 Pr032805690
R:CCCAATTTGAAGTGTTGCTTTAC

BC4 F:TATCAGCGTGTGTGAATAGTTGC (TA)7 4 157–163 0.097 0.045 0.004** 0.491 Pr032805691
R:TAACCTAAATTCGAATCCATCCA

BC5 F:CAAACTTGGCTTAATACCATTCG (TG)9 3 119–125 0.079 0.083 0.713 n.s 0.469 Pr032805692
R:CCATGATCATCTCTATTTCAGGC

BC6 F:CCTTAAGGAGATGCATTGTGAAT (TC)9 3 159–169 0.000 0.000 - n.c. 0.299 Pr032805693
R:GTATGAAGGGCATCAACAATAGG

BC7 F:GCTGAAAGTTGGTGATTGCTAGT (AT)9 4 166–178 0.120 0.125 0.087 n.s 0.526 Pr032805694
R:AGTTATGTCTTCGCTTGCTTCAG

BC8 F:AACGTGAGAGTGCTAGTTCGGTA (TGA)5 3 167–173 0.014 0.000 0.041* 0.17 Pr032805695
R:TCTTCCTCACTTTATCATCCACG

BC9 F:AGAAGAGGTACGACAGTTTGCTG (GCG)5 2 156–159 0.059 0.064 1.000 n.s 0.195 Pr032805696
R:TTCACGTCCGAATTCTTAGTCTC

BC10 F:CACTGCACATAGAAGGAGGAGTT (GCG)6 5 108–129 0.081 0.076 0.146 n.s 0.581 Pr032805681
R:GTAATCGCCTACATGATTCATCC

BC11 F:CAGCAGTATGTCGGGATTATTTC (TTTCT)4 2 123–133 0.000 0.000 -n.c. 0.155 Pr032805682
R:CCTCTGGTCATATTGCTGTTACC

BC12 F:AACAAGAGGGTCAGCTACAACAG (CAGCAA)4 4 160–178 0.104 0.095 0.184 n.s 0.549 Pr032805683
R:CAGCAATGGTATTAGCAGAGGAC

BC13 F:ACCTTGACGATCCTTCATCTTCT (GGTGCG)4 6 132–174 0.124 0.095 0.161 n.s 0.701 Pr032805684
R:TTATGTTCTCCATATCCGTCAGC

BC14 F:GGCAGCAATATAGCTCAAATACG (GACAAG)4 4 170–188 0.196 0.083 0.000*** 0.516 Pr032805685
R:ACCTGATCGTTCACAACTTCATC

BC15 F:TCTTATTCAACACAACAGCCTGA (ATGATA)4 5 151–175 0.157 0.140 0.228 n.s 0.528 Pr032805686
R:GCTGCAGTTGATAATGAGAAGGA

BC16 F:ACCAATGGTCTATATTTCAACGG (ATTACT)4 6 149–179 0.132 0.125 0.174 n.s 0.643 Pr032805687
R:GTGCCCCACATAGCTTCTATCTA

BC17 F:TGACGAGGCTTCTACAGAATGAG (CATCCT)4 2 137–143 0.034 0.045 1.000 n.s 0.186 Pr032805688
R:ACAAACAACAAGATGGGAATCAT

Notes.
NA, number of alleles per locus across all populations; HE , expected heterozygosity (mean value); HO, observed heterozygosity (mean value); PIC, polymorphic information
content; HWE, Hardy-Weinberg equilibrium.

aAfter Bonferroni correction, significant departures from Hardy–Weinberg equilibrium are indicated by ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001. n.s., not significant; n.c.,
not calculated (Clarke & Gorley, 2001).
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FST

HE

Figure 7 The neutral test results for 17 primer pairs using FST andHE from 11 populations using
LOSITAN.

DT-related genes. Although the SSR variation of the functional markers did not agree with
the neutral theory, the neutrality test conducted using LOSITAN showed that all 17 primer
pairs agreed with the neutral theory (Fig. 7). These 17 primer pairs may have contained
exactly neutral markers, or perhaps the sample size and randomness of sampling in this
study was deficient. Therefore, increasing the sample size in future studies will provide
us with more accurate results. It should be noted that compared with previous reports
that identified EST-SSRs using NGS, the hexa- nucleotide SSR-containing ESTs, which
comprised a relatively larger number of sequences with more polymorphic markers and
fewer annotations, were unique to B. clarkeana (Liu et al., 2013; Wang et al., 2013; Xiang
et al., 2015).

DISCUSSION
Gene expression characteristics and comparison of B. clarkeana with
B. hygrometrica
This work is the first genetic study of B. clarkeana as a new plant resource of DT genes.
Notably, a large amount of EST data were available, enabling a better understanding
of gene expression in this species. B. clarkeana was compared with the related
species B. hygrometrica, and both plants showed KEGG enrichment of vegetative
dehydration/desiccation pathways; these results showed the common characteristics of
metabolic pathways in DT plants. However, there were some differences between the
transcriptome data of these two species. First, the GC content (45.43%) of B. clarkeana
was higher than that of B. hygrometrica, which was close to the distribution centered value
of coding sequences (Matassi et al., 1989). Likely due to the lack of dehydration stress, the
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Table 3 GO, COG and KEGG annotation of 17 SSR-containing ESTs.

Unigenea Annotation

GOb COG KEGG

b. p. c. c. m. f.

BC1 – 6 – Function unknown –
BC2 1 – – – Plant hormone signal transduction
BC3 – – – – –
BC4 7 – 3 General function prediction only Plant hormone signal transduction

Signal transduction mechanisms Plant-pathogen interaction
Transcription
Replication, recombination, and repair

BC5 – – – – –
BC6 – – – General function prediction only –
BC7 2 2 – General function prediction only Biosynthesis of secondary metabolites

Amino sugar and nucleotide sugar metabolism
BC8 12 4 4 General function prediction only –

Signal transduction mechanisms
Transcription
Replication, recombination and repair

BC9 – – 2 Secondary metabolites biosynthesis,
transport and catabolism

Biosynthesis of secondary metabolites
Flavonoid biosynthesis
Flavone and flavonol biosynthesis
Sesquiterpenoid and triterpenoid biosynthesis
Isoflavonoid biosynthesis

BC10 2 4 1 Cell cycle control, cell division,
chromosome partitioning

Metabolic pathways
Endocytosis
Ether lipid metabolism

BC11 – – – – –
BC12 10 3 2 General function prediction only Plant hormone signal transduction

Posttranslational modification, protein turnover,
chaperones

BC13 – – – Transcription –
BC14 – – – – –
BC15 9 5 2 – –
BC16 – – – – –
BC17 – – – – –

Notes.
b. p., biological_process; c. c., cellular_component; m. f., molecular_function.

aThe name of each unigene is replaced with the name of the EST-SSR maker it contains.
bThis table shows only the number of the GO terms in the ontology for unigenes. The details of the GO classification in three ontologies are shown in Table S1.

annotated unigene percentage (78.82% of all assembled unigenes) and the enrichment of
GO (65.57% of all unigenes) and KEGG (49.12%) annotations in this study were much
greater than those of B. hygrometrica (Nr, 47.09%; GO, 28.71%; KEGG, 24.43% (Xiao et
al., 2015) and Nr, 66.6%; GO, 43.7%; KEGG, 15.1% (Zhu et al., 2015)). Second, due to
different sequencing depths or selective gene expression at various physiological stages,
the structural features of gene expression in B. hygrometrica was quite different under
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various environmental pressures. Zhu et al. (2015) found that B. hygrometrica matched in
the Nr database with V. vinifera, R. communis and P. trichocarpa, whereas Xiao et al. (2015)
found shared genes in the genomes of B. hygrometrica, Solanum tuberosum and Solanum
lycopersicum (Solanales). Thus, Solanales and V. vinifera could both contain the main
components of the protein-coding genes of B. hygrometrica, which would be similar to the
structural features of gene expression in B. clarkeana in the present study.

EST-SSR characteristics of B. clarkeana
A significant number of SSRs were identified in the present study. A higher number of SSRs
indicated stronger environmental adaptation capabilities (Zalapa et al., 2012); therefore,
B. clarkeana should be highly adaptable to different environments due to the large number
of SSRs contained in its ESTs. Moreover, the ‘Transcription’, ‘Replication, recombination
and repair’ and ‘Signal transduction mechanisms’ reflect the strong ability of B. clarkeana
to undergo environmental adaptation.

Intrinsic features (such as repeat number, motif size, and length) could influence the rate
and probability of slippage. These features were the strongest predictors of microsatellite
mutability (Kelkar et al., 2008). The increased probability of slippage and mutation rates
may be due to, for example, a greater number of repeats (Ellegren, 2004; Kelkar et al., 2008),
a greater length irrespective of the repeat numbers (Webster, Smith & Ellegren, 2002), and
lengths that were inversely proportional to their motif sizes (Chakraborty et al., 1997).
Additionally, the mutation rates might vary among SSRs with different motif compositions
due to the dissimilarities of secondaryDNA structures (Baldi & Baisnee, 2000). In this study,
37 pairs (dinucleotide, 13; tri-, 13; penta-, 2; hexa-, 9) of the 74 primer pairs (dinucleotide,
20; tri-, 38; penta-, 3; hexa-, 13) that were selected to validate the amplification results
were polymorphic. The percentage of polymorphism was 65% in dinucleotides (13 of the
20 selected were polymorphic), 34.21% (13 of 38) in trinucleotides, 66.67% (2 of 3) in
pentanucleotides and 69.23% (9 of 13) in hexanucleotides. As a result, in our study, SSRs
with higher polymorphism rates were concentrated on shorter motifs with a higher number
of repeats (dinucleotides, 65%) and longer motifs with fewer repeats (hexanucleotides,
69.23%; pentanucleotides, 66.67%). Our analysis confirmed that mutability might increase
with both increased repeat number and greater length, as reported by Baldi & Baisnee
(2000).

Compared with other SSR and EST-SSR reports (Choudhary et al., 2009; Li et al.,
2012a; Li et al., 2012b; Yuan et al., 2012; Fu, Wang & Shen, 2013), the observed number
of polymorphic primers was actually higher, but the polymorphism level of the markers
and theHO,HE , HWE and PIC values of the B. clarkeana population were still much lower
in our study and were similar to those of B. hygrometrica (Xiao et al., 2015).These results
could be attributed to two main reasons: first, the number of SSRs and polymorphisms
of the DNA protein-coding sequence was expected to be lower than that in non-coding
sequences, and the mutation rate within these regions was lower than that in other DNA
sequences (Blanca et al., 2011; Zalapa et al., 2012). Second, B. clarkeana is a plant with a
short stature that requires scattered light. As this plant grows on the north side of rock
outcrops (mostly limestone) and in the shadow of trees and shrubs (Chao et al., 2013),
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the long-distance dispersal potential of windborne seeds might be significantly reduced.
Furthermore, the occurrence of biparental inbreeding could be universal in plants with
high self-compatibility (Li & Wang, 2005), which would cause lower genetic variability
within populations of B. clarkeana.

CONCLUSIONS
In this study, 91,449 unigenes were detected by NGS transcriptomics. A total of 8,563
SSRs were identified from 7,610 unigenes, 72,087 unigenes were successfully annotated to
protein databases, and polymorphic primer pairs of EST-SSRs were also developed. These
results indicated that transcriptome sequencing is a highly efficient method of EST-SSR
identification in non-model species that lack a reference genome and associations with
functional genes. Therefore, by characterizing phenotypic features, these species can be
identified (Li et al., 2002). These data will accelerate our identification of functional genes
and genetic variation in DT plants, including B. clarkeana. In addition, polymorphic
primer pairs can continue to be developed from the remaining primers of EST-SSRs. The
large-scale transcriptome dataset is a powerful resource for functional gene marker-assisted
selection and DT exploration in Boea plants.
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