
Scavenger: A New Last Level Cache Architecture with Global Block Priority

Arkaprava Basu
���

Nevin Kırman
�

Meyrem Kırman
�

Mainak Chaudhuri
�

José F. Martı́nez
�

�
Department of CSE

Indian Institute of Technology
Kanpur 208016 INDIA�
arka,mainakc � @cse.iitk.ac.in

�
Computer Systems Laboratory

Cornell University
Ithaca, NY 14853 USA

http://m3.csl.cornell.edu/

Abstract

Addresses suffering from cache misses typically exhibit
repetitive patterns due to the temporal locality inherent in the
access stream. However, we observe that the number of in-
tervening misses at the last-level cache between the eviction
of a particular block and its reuse can be very large, pre-
venting traditional victim caching mechanisms from exploiting
this repeating behavior. In this paper, we present Scavenger,
a new architecture for last-level caches. Scavenger divides
the total storage budget into a conventional cache and a novel
victim file architecture, which employs a skewed Bloom filter
in conjunction with a pipelined priority heap to identify and
retain the blocks that most frequently missed in the conven-
tional part of the cache in the recent past. When compared
against a baseline configuration with a 1MB 8-way L2 cache,
a Scavenger configuration with a 512kB 8-way conventional
cache and a 512kB victim file achieves an IPC improvement of
up to 63% and on average (geometric mean) 14.2% for nine
memory-bound SPEC 2000 applications. On a larger set of
sixteen SPEC 2000 applications, Scavenger achieves an aver-
age speedup of 8%.

1. Introduction

Over the last decade, DRAM latency emerged as the
biggest bottleneck to the evolution of high-end computers, and
severely hampered the performance growth in the desktop as
well as the server arena. To mitigate this high off-chip data
access latency, the microprocessor industry incorporated tech-
niques such as sophisticated hardware prefetchers, large on-
chip caches, deep on-chip cache hierarchies, or highly asso-
ciative last-level caches. But even with these techniques, a
significant number of blocks still miss repeatedly in the last
level of a cache hierarchy.

Figure 1 quantifies the performance impact of L2 cache
misses across sixteen SPEC 2000 applications during the exe-
cution of 200 million representative dynamic instructions us-
ing 512kB and 1MB 8-way set-associative L2 caches at the
last level, and an aggressive hardware stride prefetcher in both
cases.1 The plot shows the fraction of total execution time in�

Now with Sybase Inc.
1The setup for this motivating experiment is identical to that in our

S L S L S L S L S L S L S L S L S L S L S L S L S L S L S L S L
0

10

20

30

40

50

60

70

80

90

100

 E
xe

cu
tio

n
tim

e
(%

)

16
4.

gz
ip

16
8.

w
up

w
is

e
17

1.
sw

im
17

3.
ap

pl
u

17
5.

vp
r

17
6.

gc
c

17
7.

m
es

a
17

9.
ar

t
18

1.
m

cf
18

3.
eq

ua
ke

18
6.

cr
af

ty
18

8.
am

m
p

25
3.

pe
rl

25
6.

bz
ip

2
30

0.
tw

ol
f

30
1.

ap
si

S:512kB
L:1MB

1
[2−10)
[10−100)
[100−1000)
≥ 1000

Figure 1. Fraction of the total execution time that retirement
is blocked due to a load missing in the L2 cache and where the
processor cannot dispatch any instruction. Stall time is broken
down based on the number of occurrences of such L2 cache misses
for each block address. Results for two L2 cache configurations
(S:512kB, L:1MB) are given.

which retirement from reorder buffer (ROB) is blocked due to
an L2 cache miss at its head, and the processor cannot dispatch
new instructions due to lack of free resources. In the experi-
ment, L2 caches are initially empty. We categorize the stall
time based on the total number of times the offending block
address appears in the L2 cache miss address stream.

The results confirm that the stall time due to long-latency
loads is very significant, 30% or higher (up to 80%) for nine
out of sixteen applications in the case of the 512kB L2 cache
configuration. For many applications, increasing the L2 cache
from 512kB to 1MB helps little in reducing the misses, imply-
ing that the additional 512kB storage is not utilized effectively.

The results further demonstrate that, for a significant num-
ber of these applications, an important part of their reported
stall time is due to block addresses that appear in the L2 cache
miss address stream repeatedly, suggesting significant poten-
tial for improvement by learning such repeated misses and
storing these critical blocks.

Often times, a small fully associative victim cache is used

evaluation (Section 3), except that the evaluation setup uses larger samples
of one billion dynamic instructions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/193249556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

S L S L S L S L S L S L S L S L S L S L S L S L S L S L S L S L
100

101

102

103

104

105

106

107
 N

um
be

r o
f i

nt
er

m
ed

ia
te

 e
vi

ct
io

ns

16
4.

gz
ip

16
8.

w
up

w
is

e
17

1.
sw

im
17

3.
ap

pl
u

17
5.

vp
r

17
6.

gc
c

17
7.

m
es

a
17

9.
ar

t
18

1.
m

cf
18

3.
eq

ua
ke

18
6.

cr
af

ty
18

8.
am

m
p

25
3.

pe
rl

25
6.

bz
ip

2
30

0.
tw

ol
f

30
1.

ap
si

S:512kB
L:1MB

Figure 2. Number of intermediate evictions from the L2 cache
since the time a particular block is evicted from the L2 cache until
it is requested again. For each missing block address, the median
across all eviction-use intervals is first calculated, and then the me-
dian across all distinct block addresses is taken as the final result.
Note that the y axis is in log scale.

to store evictions from the L2 cache, providing fast restore
for the data it holds. However, a traditional victim cache may
not be effective in capturing these L2 cache misses. In Fig-
ure 2, for each application, we calculate first the median of
the number of intermediate evictions across all eviction-use
intervals for each distinct block address, and then the median
across all block addresses. Many applications exhibit on aver-
age thousands of intervening evictions in between eviction-use
pairs, which far exceeds the capacity of typical victim caches.
These results suggest that different organizations and policies
are needed to exploit the repeating miss behavior in the last-
level cache.

In this paper, we introduce Scavenger, a new cache organi-
zation designed specifically for the last level of a cache hier-
archy. Our solution globally prioritizes the block addresses
missing in the L2 cache based on the number of times the
addresses have been observed in the L2 cache miss address
stream in the past and allocates only the high priority blocks
in a reasonably sized victim file when they are evicted from
the L2 cache. This priority scheme is based on the hypothesis
that a cache block, which has caused a large number of misses
in the L2 cache in the past, has a higher probability of inflict-
ing more misses in the L2 cache in future. The objective of the
proposed architecture is to scavenge the top � most frequently
missing blocks in a victim file where � is the size of the victim
file.

The Scavenger architecture needs to have three primary ca-
pabilities. First, given a block evicted from the L2 cache,
it should be able to offer an estimate of the frequency of
misses seen to this block address. Second, by comparing this
frequency to the minimum frequency among all the blocks
currently held in the victim file, it should be able to decide
whether to accept this evicted block into the victim file. Third,
the victim file organization should be such that it can replace
the block having the minimum frequency with a block evicted
from the L2 cache having a higher or equal frequency, irre-
spective of the addresses of these two blocks. Further, finding
a particular block in the victim file should be fast enough to be
of practical use.

Scavenger makes two major contributions:

EVICTED ADDR.

EVICTED BLOCK

COMPARE

TO MC

MIN

W
BLOOM
FILTER

R

R

R

W
HEAP

FROM/TO L1 HIT

F F >= MIN

TRI−STATE
BUFFERS

DE−ALLOCATE

W W

& DATA
VF TAG

W

W

ALLOCATEALLOCATE

MISS
ADDR.

L2 TAG
& DATA

R

W

Figure 3. High-level L2 cache organization of Scavenger. The
relevant read and write operations on various structures are shown
with R and W, respectively. The traditional L2 cache is shown
shaded.

� A novel application of skewed Bloom filters (Section 2.1)
to accurately estimate the frequency of the blocks appear-
ing in the miss address stream seen so far from the L2
cache.
� A selective low-latency victim caching scheme for a

pointer-linked victim buffer enabled by a pipelined pri-
ority queue to help retain the blocks with high miss fre-
quency (Sections 2.2 and 2.3).

Execution-driven simulation results (Sections 3 and 4) show
that a 512kB+512kB Scavenger configuration achieves an IPC
improvement of up to 63%, and average 14.2%, on nine
memory-bound SPEC 2000 applications (stall time due to L2
misses greater than 30% (15%) for the 512kB (1MB) config-
uration in Figure 1), compared to a baseline that uses a con-
ventional 1MB 8-way set-associative L2 cache, and with an
aggressive multi-stream stride prefetcher enabled in both ar-
chitectures. The average IPC improvement achieved on a big-
ger set of sixteen SPEC 2000 applications is 8%. We also
present a thorough analysis of the dynamic and static energy
overheads of our proposal.

2. Scavenger Architecture

The Scavenger architecture (Figure 3) divides the total stor-
age budget allocated to the L2 cache into a traditional cache
and the proposed victim file (VF) which are kept mutually ex-
clusive. An incoming L1 miss request checks the tag arrays
of both structures. On a hit in the conventional cache, the re-
quested sector is returned. If the request hits in the VF, the
requested sector is returned and the entire block is moved to
the conventional L2 cache. If the request misses in the con-
ventional L2 cache, a Bloom filter, used to keep track of the
approximate frequency of L2 cache misses to block addresses,
is updated to account for one more miss for this block address,
irrespective of whether the VF has the block or not. If the re-
quest misses in both the L2 cache and the VF, it is sent to
the memory controller (MC). When a cache block is evicted
from the conventional L2 cache, the Bloom filter is looked up
with the block address to get an estimate of the number of
times (priority value) the block has missed in the conventional
L2 cache in the past. If the priority value of the evicted cache
block is less than the minimum priority value among all the

blocks currently in the VF, the evicted block is not allocated
in the VF; otherwise the cache block in the VF with the low-
est priority value is victimized to make room for the new L2
cache eviction. A priority queue, organized as a min-heap, is
used to maintain the priority values of the blocks currently re-
siding in the VF. The priority queue is updated after a hit in the
VF (leading to a de-allocation) or after a new allocation in the
VF to reflect the new partial order among the priority values
of the cache blocks in the VF. In the following we discuss the
major components of Scavenger in detail.

	�
��
������������������ �"!$#&%('*)+#-,.�

Scavenger uses a Bloom filter to count the L2 cache misses
to block addresses in a cost-effective way. This count or
frequency is used to assign a priority value to each missing
block. This is a novel application of counting Bloom fil-
ters, previously employed for implementing hierarchical store
queues [1], coarse-grain coherence [11], snoop filters [12, 19],
prefetching and data speculation [13], low-energy synonym
lookup [20], etc. A low power counting Bloom filter was pro-
posed in [17]. Our design is influenced by the Spectral Bloom
filter proposed in [4].

In our proposal, on arrival of a block address which has
missed in the conventional part of the L2 cache, the address is
partitioned into / parts and each segment is used to index and
increment an 8-bit saturating counter in one of the / banks.
In the case of an eviction from the conventional part of the L2
cache, the Bloom filter offers a priority for the evicted block as
follows. The evicted block’s address is partitioned into / seg-
ments and each segment is used to read out one counter from
each of the / banks. The miss count or priority of the cache
block is computed as the minimum of these / count values.
This estimate can be either exact or an over-estimate, but can
never be an under-estimate. Notice that if there is at least one
of the / counters not aliased with any other block address, the
Bloom filter will return the exact miss count. It can be shown
that the probability of getting over-estimates (or equivalently
false positives) grows exponentially with the number of dis-
tinct elements put into the Bloom filter. So, the accuracy of a
Bloom filter degrades quickly as more distinct block addresses
are hashed into it.

We observed that within a working set the lower order bits
of the block address distinguish most of the blocks while the
higher order bits do not change much. Based on this obser-
vation we use an unevenly banked Bloom filter. We devote
major portion of the Bloom filter storage to the lower order
banks while keeping only a few counters in the higher order
banks. We call this architecture a skewed Bloom filter. Fig-
ure 4 shows one such design. In our simulation environment
an L2 cache block address is 26 bits (we have a 32-bit address
space and 64-byte cache blocks). We partition this address
into three segments to index into three main banks. To fur-
ther reduce the false-positive rate (i.e. the over-estimates), we
over-provision the Bloom filter by adding two more small and
skewed “overlap” banks. These extra banks often help disam-
biguate some of the collisions that may have happened in both
of the two adjacent normal banks. This effect was briefly men-
tioned in [12]. The index bits for each bank in our design are
shown in Figure 4. The total storage required by our frequency
estimator is just over 33kB with one byte counters. Each of the
five banks is equipped with one double-ended read/write port.

MIN

MSB LSB

OVERLAP OVERLAP

ESTIMATED FREQUENCY

[25:23] [22:15] [14:0]

[24:19] [18:9]

Figure 4. A skewed Bloom filter with five banks for estimating
the miss frequency of cache block addresses. The block address
bits used to index the banks are also shown.

After operating for a long time, all the counters in the
Bloom filter may get saturated to the highest value (255 in
our case) and never change again leading to a meaningless es-
timate of the miss frequency. To solve this problem, for every
8,192 queries, if more than 6,000 of the estimates are satu-
rated, the Bloom filter counters are gang-cleared by pulling
down all the bit cell nodes using a wide NMOS transistor. At
this time all priority values stored in the priority queue are also
gang-cleared so that the stale priority values can be discarded.
At this point, all blocks (valid and invalid) in the victim file
have zero priority.

	�
0	�
�12�&%(,.�&%3#4�657�������

When a cache block is evicted from the conventional part
of the L2 cache, the Bloom filter provides an estimate of the
number of times this block has suffered from a miss in the
conventional part in the past. This serves as the priority of
the cache block and is used to decide whether it should be
put in the victim file (VF). An allocation takes place only if
the block’s priority is higher than or equal to the minimum
priority among all the blocks in the VF. The priority values
of all the blocks currently residing in the VF are maintained
in a priority queue2 organized as a min-heap.3 The min-heap
is embedded in a � -entry SRAM array, which has two logical
fields in each row, namely, the priority value (same size as the
Bloom filter counters i.e. one byte) and a pointer (8:9<;�=?>3��@BA
bits) to the corresponding VF tag entry.

Figure 5 shows the organization of the priority queue with
an example. The VPTR field corresponds to the pointer. All
the priority values are initialized to zero at the boot time while
the VPTR field of entry C is initialized to C .

The priority queue is updated on two occasions. First, on
a VF hit, the block is de-allocated from the VF. This requires
changing the priority of this VF entry to zero signifying an
empty slot. Second, on a VF allocation, normally the new
higher- or equal-priority block replaces the minimum-priority

2 If the running minimum is maintained in a single register, it cannot
be updated properly at the time of a de-allocation from the VF.

3A min-heap is a balanced binary tree such that the minimum prior-
ity value among all the nodes of a subtree is held in the root node of the
subtree. This property will be referred to as the “heap property.”

0

0

3

3 6 9 2 15 12 7 8

710

5

1

0

2

8

0

5
3
1

10
7
3
6
9

15
12
7

NODE INDEXPRIORITY VALUE

1

2 3

4 5
6 7

8 9 10 11 12 13 14 15

PRIORITY VPTR VF TAG ARRAY

Figure 5. A logical min-heap and its SRAM array implementa-
tion. Notice that leaving the first row empty allows us to obtain the
children node indices from the parent node index D by simple shift
and OR operations: EFDHG�GJILK and E3E<DMG�G7ILKON ILK . To accomodate
blocks with index zero, one possible solution is to make a small
change in the address decoder of the VF tag RAM so that an ad-
dress that would normally map to index zero of VF is now forced
to map to the last entry of the VF. The tag of the last VF entry is ex-
tended by one bit to distinguish between these two indices mapping
to the same entry.

block pointed to by the VPTR of the root node. In a random
mode of operation, which will be explained in Section 2.3.3, a
new block may replace any VF block regardless of its priority.
This requires replacing a priority value at an arbitrary position
in the heap. There are a few more cases that require priority
insertion at non-root position (Section 2.3).

Insertion of a new value at the root of a heap is well-
understood and can be done in P">:9F;-=�>3��@L@ time. However,
replacement of an arbitrary element in the heap is unique to
our design. In the following we discuss how an arbitrary
priority value in the heap can be replaced by any new value
while maintaining the heap property in P">:9F;-=+>3�?@O@ time. More
importantly, we show how this generalized replacement algo-
rithm can be pipelined to mitigate this high latency.

9 13

5

6 10

6 10 13 11

11 15 12 15 18 11

(0, 10)

(0, 5)
20

(6, 20)

(9, 20) 0

Figure 6. Right subtree: A VF de-allocation requiring insertion
of a zero priority value. Left subtree: A VF allocation at a non-root
node. Swapped priority values are shown within parentheses.

Figure 6 shows two different scenarios of heap replacement
at non-root positions. The first case (right subtree of Figure 6)
involves insertion of a zero priority at a non-root node due to
a VF de-allocation. The second case (left subtree of Figure 6)
requires replacement of a non-root node during a VF alloca-
tion. Notice that in both cases, the new value is first written
to the node to be replaced and then depending on its value rel-
ative to its neighbors it either moves up or moves down the
heap. As a generalization, let us assume that the new value isQ and the replaced value is R . If R is equal to Q , the heapify
operation does not need to do anything. If R is less than Q ,
the heapify operation needs to worry about only the subtree

rooted at the replacement node because Q can only flow down
the min-heap during the heapify operation. Similarly, if R is
greater than Q , the value Q can only move up the min-heap
toward the root following the path connecting the root to the
replacement node. Therefore, in all the cases, the number of
element swaps is at most the depth of the entire heap. While
moving down the heap, every step requires reading out the
two children of an element, comparing them with the element,
and swapping the element with the child holding the smaller
value (multiplexing driven by a comparison outcome). Orga-
nizing the two children nodes S$C and S$C4TVU of parent C in a sin-
gle row allows us to read out both of them with just one read
port. Swapping two elements requires two write ports. We
assume the existence of three byte-comparators so that three
pairs of priority values can be compared concurrently (pair-
wise among the parent and the two children). While moving
up the heap, every step requires reading out the parent of an
element, comparing the parent with the element, and perform-
ing a swap, if needed. Therefore, the critical path of each
step in all the cases is WXTZY�TZ[where the read latency is W ,
the write latency is [, and the comparison and multiplexing
latency taken together is Y . Thus, the total latency of the algo-
rithm is at most >0W\T]Y�TV[X@^9F;-=_>(��@ time units plus the latency
of one extra comparison (between R and Q) at the beginning.

Due to high latency of the priority queue operations (pro-
portional to depth), efficient handling of bursty cache miss
requests induced by phase transitions requires pipelining the
heap control. Our design is influenced by the pipelined heap
of [9], where processing at each level of the heap is a separate
pipeline stage, and data flow in the pipeline is from root level
to the leaf level of the heap. Nodes at each level are stored
in a separate RAM bank. Each stage is itself a micro-pipeline
of read, compare, and write operations involving the incom-
ing data from the previous stage and the nodes at that level.
Note that, only one heapify operation is in progress in a stage
at any point in time. However, a node in a stage can be over-
written with a value determined by the comparison outcome of
the heapify operation in the next level. In case of data depen-
dencies, these are resolved with short bypass busses between
consecutive levels. As a result, one read port and two write
ports are sufficient for each RAM bank. The pipeline depth
is roughly `�9<;�=_>3�?@ with stage latency equal to acb$dH>:W$efY$eO[g@ .
The overall cycle time of the pipelined priority queue is deter-
mined by acb$dH>:W$efY$eO[X@ of the last level, since it will have the
largest RAM bank.

In our generalized replacement algorithm, the information
may move up or down depending on the situation. Even worse,
the operations can originate from arbitrary nodes of the heap.
This is remarkably different from the pipelined operations
supported in [9]. A replacement at the root does not require
any special handling compared to what has already been im-
plemented in [9]. Our implementation of the pipeline to han-
dle the cases in Figure 6 are shown in Figures 7(a) and 7(b).
In each case the operation starts at the root with inputs being
the new value and the replacement node index. The new value
is compared against the root and the bigger one moves down
the heap participating in the conventional pipelined read, com-
pare, write operations. At each level the controller computes
the subtree (from the replacement node index) along which
the information should be passed on so that the replacement
node can be reached eventually. Once the replacement node
is reached, the value to be replaced is overwritten by the pri-

9

5

6 10

6 10 13 11

11 15 12 15 18 11

0

5

10

PER−LEVEL SRAM

PIPELINE LOGIC

5

10

10

11

12

13

6

6
13
11

9
15
15
11
18

05

0
10

5
10

5

11

10

R
C
W

R
C

R

W
C

W

R
C
W

13

(a)

9

5

6 10

6 10 13 11

11 15 12 15 18 11

(6, 20)

(9, 20)

20
20

10

13

11
15
12
18

6

5

10
6

11

9

15
11
13

PIPELINE LOGIC

PER−LEVEL SRAM

20

6

6, 10

20

20

11, 9

20

R
C
W

R
C
W

R
C
W

R
C
W

6

9
20

13

5

20;6

20;9

(b)

Figure 7. (a) Pipelined insertion of a zero value at an arbitrary position. (b) Pipelined replacement of a value at an arbitrary position. In both cases
the 12-stage pipe featuring four blocks of local read-compare-write pipe is shown on the right. Also, the per-level RAMs communicating with the
pipeline through read/write port connections are shown. The values read/written are shown on the respective port connections. How the comparison
logic of a level controls the write logic of the previous level is also shown. On a write port connection “a;b” means that the value h is written first
and later overwritten by the value i communicated by the comparison logic of the next level.

ority value that trickled down the pipe up to that point. Note
that in Figure 7(b), the value that trickles down to the replace-
ment node is always the inserted value. Also, in this case the
write logic never gets invoked up to this point. Once the re-
placement node is reached, the operation shown in Figure 7(a)
completes (subsequent pipe stages have nothing to do), while
the one in Figure 7(b) continues exactly as in the heapify op-
eration supported in [9]. The end-result is that we can initiate
a heap replacement every acbjd+>0WeLYeL[X@ time units.

	�
:k�
mln%(��#�%'o�p%q(�srt�&��)_�

The victim file (VF) is responsible for holding the high
priority blocks evicted from the conventional part of the L2
cache. It needs to support three operations. First, it must re-
spond quickly to an L1 cache miss request. Second, in case
of a hit in the VF, the block must be de-allocated and sent to
the conventional L2 cache. Note that this is different from the
conventional victim buffers where usually a swap is performed
between the main cache and the victim buffer. However, in
our case an allocation in the VF must get approval from the
priority queue logic. This leads us to the third operation of
the VF: It must be able to allocate a cache block by replac-
ing the lowest-priority block currently in the VF, irrespective
of the addresses of these two blocks. This operation requires
the VF to be equivalent to a fully associative cache so that an
arbitrary block of choice can be replaced. Clearly, a fully as-
sociative cache of large size that we are targeting would be too
slow and power-hungry to be of any practical use.

We propose to organize the VF as a direct-mapped hash
table, while chaining the tags mapping to the same index in
the form of a variable-length doubly-linked list. An index is
computed just as it would be done in a direct-mapped cache of
the same size. The head of a tag list is always the entry corre-
sponding to that index. A head bit (H) per tag, together with
the valid bit, indicates whether a valid list exists for the corre-
sponding index. A tail bit (T) per tag is used to mark the end
of a tag list. For each VF entry, a pointer to its corresponding
priority queue entry is maintained. This pointer RAM will be
referred to as the HPTR RAM. The HPTR entry C is initial-
ized to C much like the VPTR entries in the priority queue. We

show the high-level organization of the VF in Figure 8. In the
following we detail the operations mentioned above.

u�u�u�u�u�u�uv�v�v�v�v�v�vw�w�w�w�w�w�wx�x�x�x�x�x�xy�y�y�y�y�y�yz�z�z�z�z�z�z{�{�{�{�{�{�{|�|�|�|�|�|�|

TAG

10

01

00

00

HT DATA HPTR PRIORITY VPTR

HEAD

TAIL

Figure 8. Victim file architecture. A tag list is also shown.

2.3.1 VF Hit/Miss Check and De-allocation

On an incoming L1 miss request, if a valid list head exists
at the indexed location, a list walk is initiated by reading one
tag entry at a time and following the downstream pointer until
either a hit is encountered or the tail is reached signifying a
miss; otherwise a VF miss is flagged immediately. On a VF
hit, the tag is de-linked from its list. If the tag is a head tag,
the second tag (if any) in the list is first migrated to the head
location, and then the second tag is de-linked. This tag migra-
tion requires tag and data movement in the VF tag and data
RAMs, a swap of the HPTR pointers of the two entries, and
the corresponding updates in the VPTR entries. The frequency
of this case involving tag/data migration is presented in Sec-
tion 4.1. At the end, a zero insertion is initiated in the priority
queue at the min-heap location obtained from the HPTR entry
of the de-allocated block. During the heapify operation, the
VPTR and HPTR entries are updated concurrently with every
swap/update in the priority queue. We offer more details on
the HPTR update in Section 2.3.4.

The performance-critical metric of the VF is the number
of tag accesses needed before the hit/miss signal can be made
available. In Section 4.1 we show that this number is quite
small even when no limit is imposed on the tag list length.

2.3.2 Insertion into VF

On a VF allocation, typically a higher priority new block re-
places the minimum-priority block in the VF, whose VF index
is determined from the VPTR field of the root in the min-heap.
However, if the location indexed by the new block is already
empty (no tag list exists), the new tag and data are filled in and
there is no need to de-allocate the victim block. In parallel,
the heapify operation is initiated to replace the priority of the
min-heap node identified from the HPTR entry. Note that this
case may require a priority insertion at a non-root heap node.

In the other cases, the victim block is de-allocated to be
used in the allocation of the new block. For this, the tag to be
replaced is de-linked from its list (if any). This may require
block migration as described in VF de-allocation on a hit if
it is a head tag. Next, the new tag must be inserted into its
list. If the list is present, the reclaimed tag is linked into the
second position of the list and filled with the new tag. The
corresponding data RAM entry is filled with the data block.
Concurrently, the insertion of the new priority value is exe-
cuted in the min-heap. The HPTR and VPTR entries are also
updated during this heapify operation. Otherwise, if the list is
not present but there is a valid tag that belongs to another list
at the indexed location (i.e. H bit is reset), this location is first
freed by migrating the block to the reclaimed entry and the
corresponding tag is re-linked with its list. Finally, the new
tag and data are filled into the freed location. Concurrently,
heapify operation is performed in the priority queue.

In our design, we impose a limit on the maximum list
length to offer a latency guarantee for snoop/intervention re-
sponses to the external interface in shared memory multipro-
cessor systems if Scavenger is used as the last-level cache.
We make this limit equal to eight. For each tag, there is a
pointer to the head of the list it belongs to. These pointers
are maintained in a HEADPTR RAM and are updated only at
the time of allocating new tags. Corresponding to each head
tag, there is a count (maintained in a COUNT RAM) which
records the length of the list headed by that tag. If an alloca-
tion into the VF finds that the list length has already reached
eight, instead of replacing the global lowest priority block as
dictated by the heap, it replaces the second element in its tag
list, thereby keeping the list length within eight. Compared
to unlimited list length, we found that this algorithm suffers
from a maximum performance loss of 0.1% across the afore-
mentioned sixteen applications. This is expected, given that
the list length seldom grows beyond eight (Section 4.1).

2.3.3 Random Mode of Operation

The L2 cache miss stream may occasionally stop exhibiting
repeated block addresses. As a result, none of the evicted
blocks may get inserted into the VF because their repetition
frequency (typically one for non-repeated evictions) may fall
below the current minimum. One such scenario is when an
application moves on to a new phase of computation, even
the maximum miss frequency in that phase may fall below the
minimum miss frequency in the earlier phase. To solve this
problem, we continuously monitor the health of the VF. Over
a window of 8,192 misses in the conventional L2 cache, if
both the number of hits in the VF and the number of blocks
accepted by the min-heap for insertion into the VF fall below
a threshold of 64, our algorithm switches to a random mode
of operation. During this mode, every block evicted from the

VF hit

and de−link second tag
Migrate* second block to head

Invalidate/retrieve de−allocated
address from L1 and writeback to
memory if dirty else drop

Migrate* block at index k to reclaimed
slot and re−link tag with its list

Link reclaimed tag after head;
Insert priority F into de−allocated block’s position and heapify

Fill tag and data of block B at index k;
insert priority F into de−allocated block’s
position and heapify

Lookup conv. L2 and VF

VF hit
Head tag?

No
De−link

Insert zero priority into
de−allocated position and

Send to memory (fill in conv. L2)
Update Bloom filter

Miss in both

VF block
De−allocate random De−allocate min. freq.

Yes Yes

Tag at index k of VF valid? No

Fill tag and data of block B at index k;
insert priority F into heap at HPTR[k]

Yes Yes
Random mode?

Min. freq.

Miss freq. (F)
No

F >= Min.?
No Invalidate/retrieve evicted

address from L1 and writeback
to memory if dirty else dropLookup top of heap

Lookup Bloom filter

EVICTION FROM CONVENTIONAL L2 PART (assume: evicted block B maps to VF index k)

L1 MISS REQUEST

Lookup conv. L2 and VF
Conv. L2 hit

Writeback into conv. L2
L1 DIRTY EVICTION

Head tag at index k?

Return to L1
Conv. L2 hit

Return to L1
Move to conv. L2

Yes

fill tag and data of block B;

VF block

and heapify

heapify

Allocate B in reclaimed slot from de−allocation

Yes

No

Update Bloom filter De−allocate
from VF

*Migration involves tag/data migration plus swap of HPTR values, and correspoding update of VPTR values

Writeback into VF

Figure 9. Flow of actions in Scavenger.

conventional L2 cache is put into the VF irrespective of its pri-
ority. The block to be replaced from the VF is decided by a
global random replacement policy (as opposed to the root of
the min-heap). As soon as the number of blocks evicted from
the conventional part of the L2 cache with priority more than
the maximum priority seen during the random mode4 crosses a
threshold of 4,096 (signifying a good amount of repetitions in
the miss address stream), the hardware comes out of the ran-
dom mode. Note that at any point in time, the priority queue
continues to maintain the priorities of the blocks residing in
the VF, as usual. Out of the 16 SPEC 2000 applications that
we consider in this paper, 171.swim spends a significant por-
tion of its execution time in the random mode.

2.3.4 Physical Implementation of VF

Before concluding this section, we briefly mention the physi-
cal implementation of the VF. The upstream and downstream
pointers are maintained in UPTR and DPTR RAMs, each en-
try of which is 8}9F;-=�>3��@BA bits wide where � is the number of
entries in the VF. Each entry of the HPTR and HEADPTR
RAMs also has the same width. The COUNT RAM has 3-
bit entries (records the length of a list without the head). All
the RAMs have � entries. We note that banking any of these
RAMs (including the VF tag and data RAMs) does not pose
any problem. However, all the RAMs should be banked in a
similar way to have uniform indexing. In a banked VF tag
RAM, a tag list may span several banks. Since at any point
in time only one tag is accessed, a single read and a single
write port per bank continue to be sufficient. For swapping
the contents of two entries in HPTR during a heapify opera-
tion, we do not need write ports because the contents to be
swapped are related by parent-child relationship (C and S$C orC and SjCMT~U). As a result, for example, if entry � (contain-
ing C) is to be swapped with entry � (containing S$CHT*U), the
contents of entry � are shifted left and a one is ORed at the
LSB position while the contents of entry � are shifted right.

4 A single register is required to maintain this maximum.

Table 1. Simulated architecture.

Processor
Frequency 4GHz
Fetch/issue/commit width 4/4/6
In-flight branches 24
Branch predictor 32,768-entry GAg+Bimodal

15-bit GHR
RAS entries 32
Inst. window size 48 int.+mem., 32 FP
ROB entries 128
Integer/FP registers 160/160
Integer FUs 4 ALU, 2 Mult., 2 Div.
Floating-point FUs 4 Add., 2 Mult., 2 Div.
Load/Store units 2
Load/Store queue entries 48/32
Hardware prefetcher 16-stream stride pref.,
(between L2 cache maximum stride 256B
and main memory)

Memory subsystem
MHT entries 16 L1, 16 L2
L1 i-cache & d-cache 32kB/4-way/64B/LRU
L2 (unified) cache 1MB/8-way/64B/LRU
Cache ports 1 iL1, 2 dL1, 1 L2
L1 and L2 cache hit latency 0.75ns, 2.25ns
System bus bandwidth 8 GB/s
Memory latency 121ns (load-to-use)

Scavenger-specific
Conventional L2 part 512kB/8-way/64B/LRU
Victim file 8,192 blocks � 64B/blk.
Conventional L2 hit latency 2ns
Victim file tag, data latency 0.5ns, 0.75ns
Priority queue size, latency 8,192 entries, 0.5ns
Misc. RAMs size, latency 8,192 entries, 0.5ns each
Bloom filter size 33.3kB, 5-way banked
Bloom filter latency 0.5ns

Each HPTR row is internally equipped with a one-bit up/down
shifter. The up/down shift control is generated by the priority
queue logic. Note that HPTR still requires the adequate num-
ber of row address decoders to enable the shifters in the appro-
priate rows. We note that the embedded shift-OR logic and the
extra row decoders do add to the area overhead of Scavenger.
Finally, HPTR needs only one read port to read out the start-
ing priority queue entry index at the beginning of a heapify
operation caused by a VF allocation or de-allocation. HPTR
requires one write port for initialization and for the swap op-
eration during a block migration (two writes are assumed to
proceed serially).

We summarize the flow of actions in Scavenger in Fig-
ure 9 for an inclusive cache hierarchy. The actions correspond
to the three major commands that the Scavenger’s L2 cache
controller receives. The actions taken on external snoop com-
mands are omitted from this figure. This case will have a lot in
common with the L1 miss request handling. Also, the actions
regarding COUNT and HEADPTR RAMs are not included for
brevity.

3. Simulation Environment
k�
��
�rt�&�^��%3#-����#������

We use the SESC simulation environment [16] to evalu-
ate our proposal. The baseline processor comprises a four-
issue out-of-order CPU clocked at 4GHz, and with two lev-

els of on-chip caches. We assume a 65nm process, and use
CACTI 4.2 [7] to derive latency and silicon area for L1 and
L2 caches. In all configurations, we assume that tag and data
arrays are accessed in parallel in the L1 cache, but looked up
serially in the L2 cache. We also assume an aggressive multi-
stream stride prefetcher operating between the L2 cache and
main memory. Table 1 summarizes the baseline architecture,
which employs a 1MB 8-way set-associative L2 cache. We
evaluate the following setups:

Scavenger. We evaluate two Scavenger configurations, both
comprising a 512kB 8-way set-associative cache and an 8,192-
entry victim file (VF). These configurations differ in that one
employs a standard balanced Bloom filter (StBF) that divides
a 26-bit L2 cache block address into 8-, 9-, and 9-bit partitions
(in decreasing order of significance), while the other one uses
a skewed Bloom filter (SkBF) as discussed in Section 2.1.

Using CACTI, we derive latencies for the 512kB conven-
tional cache, as well as the VF. When optimized for perfor-
mance, the 512kB cache can be accessed in 2ns. For the VF,
we obtain the latencies of tag and data RAMs by modeling a
512kB direct-mapped cache (recall that, at any point in time,
at most one tag is accessed in the VF) with one exclusive
read port, one exclusive write port, sequential tag and data
accesses, and two internal subbanks. We model one exclusive
read port and one exclusive write port in the HPTR, UPTR,
DPTR, HEADPTR, and COUNT RAMs. Since CACTI does
not model block sizes of less than eight bytes, we assume that
each RAM is designed such that multiple entries are com-
bined into a single row to bring the row size to at least eight
bytes. (Note that the total size of the RAM in bytes remains
unchanged.) The priority queue has one exclusive read port
and two exclusive write ports. We find that all these RAM
structures can be accessed within 0.5ns. The largest bank of
the Bloom filter has 32,768 entries and determines the critical
path. We find that, with one exclusive read port and one exclu-
sive write port and four internal subbanks, this bank can also
be accessed within 0.5ns.

We also calculate Scavenger’s area overhead. Table 2 lists
component areas for baseline and Scavenger configurations,
extracted using CACTI. We assume a 32-bit physical address.
Each cache block is assumed to have three coherence states:
M, E, and S (invalid state corresponds to M=E=S=0). We ig-
nore the bits in the extended L2 tag needed for supporting a
virtually indexed L1 cache [21]. CACTI yields a 7.8% area
overhead compared to the baseline L2 cache (16.75mm � vs.
15.54mm �).
16-Way. We explore an enhanced cache configuration with
twice the associativity of the baseline. Using CACTI, we opti-
mize this design for performance, achieving an access time of
2.75ns. According to CACTI’s figures, this incurs a 70% area
overhead over the 8-way set-associative baseline (26.4mm �
vs. 15.54mm �), which greatly exceeds Scavenger’s area over-
head. Our goal is to determine whether “giving back” Scav-
enger’s area overhead to the baseline configuration in this way
represents a competitive alternative.

512kB-FA-VC. We also explore an alternative configuration
comprising a 512kB 8-way set-associative cache (same as
Scavenger’s), plus a 512kB fully associative victim cache
(same storage as Scavenger’s victim file) with random replace-
ment policy. Although impractical in terms of area and energy
consumption, the 512kB fully associative victim cache can be

Table 2. Storage and area requirement of baseline and Scavenger

Config. Components Details Subtotal Total
Baseline 1MB 8-way Block size: 512 bits; tag: 15 bits; LRU state: 3 bits; 15.54 mm � 15.54 mm �

M, E, S states; number of blocks: 16,384; 128-bit output.
512kB 8-way Block size: 512 bits; tag: 16 bits; LRU state: 3 bits; 10.02 mm �

M, E, S states; number of blocks: 8,192; 128-bit output.
Victim file Block size: 512 bits; tag: 13 bits; M, E, S, H, T states; 3.69 mm �

number of blocks: 8,192; 128-bit output.
Scavenger Auxiliary RAMs Row size in bits: UPTR 13, DPTR 13, HPTR 13, 2.65 mm � 16.75 mm �

HEADPTR 13, COUNT 3, priority queue 8, VPTR 13;
number of rows in each RAM: 8,192.

Bloom filter Number of counters in five banks: 8; 256; 32,768; 1,024; 64; 0.39 mm �
counter size: 8 bits.

useful to understand the importance of Scavenger’s replace-
ment policy in its victim file. As in the case of the 1MB 16-
way configuration, we use CACTI to pick the configuration
that yields highest performance, obtaining an access time of
3.5ns.

k�
0	\
�rt����q%(�?)+#&%3,\��!

We use sixteen applications from the SPEC 2000 bench-
mark suite (the remaining applications do not work with this
simulation infrastructure at this time). All the applications are
compiled for MIPS ISA and run on the ref inputs for a repre-
sentative sample of one billion dynamic instructions extracted
with SimPoint toolset [18]. We do not use cache warm-up
while fast-forwarding, so that the effect of cold misses is also
accounted for.

4. Simulation Results

In this section we present our simulation results. We be-
gin the discussion with an analysis of the victim file perfor-
mance in terms of tag access count per L1 miss request and
block migration frequency. Then, we present performance re-
sults, comparing Scavenger with the other L2 cache organi-
zations described in Section 3.1. We also present a study of
Scavenger’s energy per instruction (EPI) overhead. Finally,
we conduct a comparison of Scavenger against recent related
work of similar objectives.

��
��
mln%(��#�%'o�p%q(������)H�&)H��#��_�^%(!$#�%(�?!

In this section we characterize two performance-critical at-
tributes of the VF. Table 3 shows the average, maximum, and
the most frequent (mode or common case) number of tag ac-
cesses per L1 miss request. The percentage of requests requir-
ing at most three tag accesses is also shown. The statistics
are very encouraging: The average number of tag accesses is
below 1.5 for 14 applications. Moreover, for 15 of the 16 ap-
plications, the mode requires a single tag lookup; note that,
in this case, the VF enjoys the hit latency of an equally-sized
direct-mapped cache. Furthermore, for 15 of the 16 applica-
tions, more than 90% of requests can be fulfilled with at most
three tag accesses. One of the reasons for observing lists of
small length in the VF is that it has three extra bits for index-
ing, compared to an equally-sized 8-way set-associative orga-
nization (13 vs. 10 bits). These extra index bits help spread

Table 3. Mean, maximum, and mode VF tag RAM access count
per L1 cache miss request, percentage of requests requiring at most
three accesses, and percentage of VF allocations/de-allocations re-
quiring a block migration

VF tag accesses per request Block
Application Mean Max. Mode ��� migr. (%)

164.gzip 1.31 6 1 99.8% 22.5
168.wupwise 1.38 10 1 91.4% 32.3
171.swim 1.42 7 1 99.5% 23.4
173.applu 1.21 6 1 99.9% 24.7
175.vpr 1.54 5 1 99.6% 0.6
176.gcc 1.39 9 1 99.5% 11.9
177.mesa 1.16 6 1 99.6% 24.7
179.art 1.39 15 1 99.9% 8.0
181.mcf 1.25 42 1 99.6% 15.3
183.equake 1.34 7 1 99.5% 24.7
186.crafty 1.47 5 1 99.4% 2.7
188.ammp 2.72 10 3 76.1% 2.2
253.perl 1.11 5 1 99.6% 5.9
256.bzip2 1.32 12 1 98.8% 14.3
300.twolf 1.48 16 1 99.8% 0.7
301.apsi 1.31 7 1 99.6% 23.7

out blocks that would otherwise map to the same set in the
set-associative organization.

Table 3 also shows the percentage of VF allocations and
de-allocations requiring a block migration. With the exception
of 168.wupwise, at most 25% of the allocations/de-allocations
require a VF block migration. Thus, we expect the impact of
block migration on the overall performance to be modest.

��
0	�
�1������L,M�^'*)����_����,.'*��)��&%(!j,\�

Among the SPEC2000 applications used in this paper, we
consider an application to be memory-bound if the stall time
reported in Figure 1 is 30% (15%) or higher for a 512kB
(1MB) 8-way set-associative L2 cache configuration. Fig-
ure 10 presents speedups for these applications in the four con-
figurations under study (Section 3), relative to the 1MB 8-way
set-associative baseline. Nine applications fall under this cate-
gory. The speedups for the other seven applications are shown
in Figure 11 (but the geometric mean in this figure includes all
sixteen applications).

The results show that Scavenger-SkBF achieves significant
speedups for the majority of memory-bound applications, with
a peak speedup of 63% (181.mcf) and an average (geometric
mean) of 14.2%. On the other hand, Scavenger-StBF achieves
much lower speedup–3.3% on average. In fact, in two applica-
tions (175.vpr and 300.twolf), Scavenger-StBF is slower than

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

 S
pe

ed
up

 re
la

tiv
e

to
 1

M
B

 8
−w

ay

168.wupwise

171.swim

173.applu
175.vpr

179.art

181.mcf

183.equake

188.ammp

300.tw
olf

gmean

16−Way
512kB−FA−VC
Scavenger−StBF
Scavenger−SkBF

Figure 10. Speedup for memory-bound applications.

0.9

0.95

1

1.05

1.1

1.15

1.2

 S
pe

ed
up

 re
la

tiv
e

to
 1

M
B

 8
−w

ay

164.gzip
176.gcc

177.mesa

186.crafty

253.perl

256.bzip2

301.apsi
gmean

(for 16 apps)

16−Way
512kB−FA−VC
Scavenger−StBF
Scavenger−SkBF

Figure 11. Speedup for non-memory-bound applications.

the baseline. We empirically observe that, due to a high vol-
ume of false-positives in the standard Bloom filter, the miss
frequency estimate has a high amount of error, leading to
wrong selection of cache blocks to be retained in the VF.

When we increase the associativity of the baseline to 16
(16-Way), the results show that performance does not improve
in most cases; only 171.swim enjoys a significant performance
improvement (still under 10%). In fact, performance degrades
in 179.art compared to the baseline. The primary reason for
this is that increasing the associativity beyond a certain point
brings only marginal improvements in miss rate while slowing
down all cache hits.

Interestingly also, 512kB-FA-VC delivers significant gain
only for 181.mcf, while four applications (175.vpr, 179.art,
183.equake, and 300.twolf) experience slowdowns due to the
victim cache’s high hit time. This brings out the importance
of our victim file architecture, which is functionally equivalent
to a fully associative victim cache, but offers a much lower hit
time on average.

For 168.wupwise, 173.applu, and 183.equake, none of the
L2 cache configurations provides any noticeable benefit, while
these application suffer significantly from L2 misses (Fig-
ure 1). 168.wupwise suffers from a high volume of cold
misses which cannot be addressed by any of the cache opti-
mization techniques explored in this paper. The other two ap-
plications share the common characteristic that they have the
largest eviction-reuse distances for L2 cache miss addresses
(Figure 2). As a result, in the experiments they show rela-

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

 L
2

ca
ch

e
m

is
se

s
re

la
tiv

e
to

 1
M

B
 8

−w
ay

168.wupwise

171.swim

173.applu
175.vpr

179.art

181.mcf

183.equake

188.ammp

300.tw
olf

gmean

16−Way
512kB−FA−VC
Scavenger−StBF
Scavenger−SkBF

Figure 12. Normalized L2 cache misses for memory-bound ap-
plications.

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

 L
2

ca
ch

e
m

is
se

s
re

la
tiv

e
to

 1
M

B
 8

−w
ay

164.gzip
176.gcc

177.mesa

186.crafty

253.perl

256.bzip2

301.apsi
gmean

(for 16 apps)

16−Way
512kB−FA−VC
Scavenger−StBF
Scavenger−SkBF

Figure 13. Normalized L2 cache misses for non-memory-bound
applications.

tively poor caching behavior that not even our victim file can
capture sufficiently.

Finally, the results for the non-memory-bound applications
are unremarkable as expected, except for the (important) fact
that performance never degrades significantly with the use of
Scavenger. With these applications factored in, Scavenger-
SkBF’s average speedup across all 16 applications is 8%.

To understand the performance results better, Figures 12
and 13 present the number of L2 cache misses in the four dif-
ferent architectures, normalized to the baseline. On average,
for the memory-bound applications, Scavenger-SkBF saves
about 15.5% of misses with respect to the baseline, whereas
Scavenger-StBF suffers from 1.8% extra misses on average
(31.2% for 175.vpr) compared to the baseline. As already dis-
cussed, this stems from high false-positive rates in the stan-
dard Bloom filter, leading to inaccurate victim caching. Re-
call, however, that Scavenger-StBF delivers an average 3.3%
speedup. The primary reason for this apparent anomaly is that
a large number of hits in Scavenger-StBF are faster than hits
in the baseline. (From this point on, unless otherwise noted,
we will refer to Scavenger-SkBF simply as Scavenger.)

On the other hand, the 1 MB 16-way set-associative config-
uration (16-Way) saves about 2.2% of misses on the memory-
bound applications. This essentially means that, without a bet-
ter replacement policy, increasing the associativity in this way
is not helpful for this set of workloads.

Finally, 512kB-FA-VC saves about 6% of misses when us-
ing a random replacement policy on the memory-bound appli-

Table 4. Hit rate (HR) and miss count (MC) in Scavenger-SkBF
Application VF HR Conv. HR Total HR MC

164.gzip 0.00 0.65 0.65 0.20M
168.wupwise 0.01 0.15 0.16 1.65M
171.swim 0.40 0.30 0.70 19.28M
173.applu 0.00 0.03 0.03 7.98M
175.vpr 0.18 0.58 0.76 0.60M
176.gcc 0.03 0.57 0.60 1.09M
177.mesa 0.00 0.26 0.26 0.49M
179.art 0.28 0.13 0.41 48.82M
181.mcf 0.14 0.06 0.20 67.27M
183.equake 0.01 0.03 0.04 22.40M
186.crafty 0.01 0.96 0.97 0.04M
188.ammp 0.15 0.60 0.75 1.37M
253.perl 0.00 0.84 0.84 0.02M
256.bzip2 0.04 0.55 0.59 1.08M
300.twolf 0.21 0.44 0.65 2.47M
301.apsi 0.03 0.17 0.20 2.35M

cations. This alone justifies our global priority-driven inser-
tion policy in the victim file, which achieves 15.5% savings in
misses. (Recall also that the hit times are slower in 512kB-
FA-VC’s victim cache.)

Table 4 shows the local hit rate (number of hits over num-
ber of L1 misses) in the VF and the conventional L2 part for
all the applications in Scavenger. It also shows the absolute
number of L2 misses. For most memory-bound applications,
the VF satisfies a significant number of L1 miss requests. In
171.swim, 179.art, and 181.mcf, the VF hit rate even exceeds
that of the conventional half.

In summary, these results clearly establish the two ma-
jor contributions of our proposal, namely, a selective victim
caching scheme based on global priority determined by miss
frequency, and a low-latency direct-mapped organization of a
large fully associative victim file.

��
:k�
��j'*��)���#],\���c���_�&��� ���_�t�j��!$#-�^���?#�%(,.�

In this section, we present the energy overhead incurred by
Scavenger over the baseline. Our dynamic energy model for
caches is derived from Wattch [3], but with considerably im-
proved decoder circuitry and tag comparator. Also, we have
modified CACTI [7] to compute the subarrays in the tag and
data RAMs so that the energy-delay-squared is optimized. The
dynamic power model used in this paper has been verified
against the published results of the Alpha 21264 [5]. Our
modeled peak power comes within 3% of the published re-
sults. We have developed a detailed leakage power model for
SRAMs using subthreshold and gate leakage currents obtained
from HSPICE simulations. Our SRAM schematic models the
cell and all the peripheral circuitry including the sense ampli-
fiers, the sense isolation circuitry, the write circuitry, and the
precharge circuitry. We appropriately extrapolate these leak-
age components from smaller SRAMs to derive the leakage
power of bigger SRAMs. In all these models, we assume a�_���

of 1.1V and a
�?�

of 0.18V. The rest of the parameters
are scaled down appropriately to 65nm node from the Wattch
distribution. In the following results, we do not include op-
timizations such as sleep transistors, drowsy cells, or power
gating.

Figure 14 presents the EPI comparison between the base-
line and Scavenger. The EPI of Scavenger includes the con-

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

E
P

I c
on

tri
bu

tio
n

of
 th

e
la

st
 le

ve
l c

ac
he

 (n
J) Leakage

Dynamic

1
M

B
 8

−w
ay

 b
as

el
in

e
8−

w
ay

 S
ca

ve
ng

er

16
4.g

zip

16
8.w

up
wise

17
1.s

wim

17
3.a

pp
lu

17
5.v

pr

17
6.g

cc

17
7.m

es
a

17
9.a

rt

18
1.m

cf

18
3.e

qu
ak

e

18
6.c

ra
fty

18
8.a

mmp

25
3.p

er
l

25
6.b

zip
2

30
0.t

wolf

30
1.a

ps
i

hm
ea

n

Figure 14. Comparison of EPI contributions from the last-level
cache in the baseline and Scavenger.

tributions from the conventional 512kB 8-way L2 cache, the
8,192-entry VF, all the associated SRAMs, and the Bloom fil-
ter. We break down the EPI contribution into dynamic and
leakage components. As expected, across the board, Scav-
enger dissipates more EPI. On average (harmonic mean), this
increase is relatively modest in absolute terms: 0.02nJ of dy-
namic and 0.21nJ of static EPI for the baseline, vs. 0.03nJ
and 0.25nJ for Scavenger, respectively. Only for one applica-
tion (179.art), the average EPI in Scavenger increases by more
than 2nJ; in all other applications, it increases by at most 0.5nJ.
Relatively speaking, in most of the applications, the dynamic
EPI increases more significantly. The most noticeable increase
in dynamic EPI is experienced by the memory-bound applica-
tions. We empirically observe that this is largely because these
applications enjoy a relatively large number of hits in the VF,
and a hit in the VF involves copying a cache block from the VF
to the conventional L2 part and a re-adjustment in the contents
of the priority queue. We also notice that, although 173.applu
and 183.equake do not benefit from too many hits in the VF,
they consume extra dynamic energy due to futile activity by
Scavenger. These two applications have reasonable amount
of address repetition (Figure 1), but fail to take advantage of
that fact. In 181.mcf, the increase in dynamic EPI gets almost
compensated by a decrease in static EPI. Scavenger dissipates
lower leakage energy due to dramatically reduced execution
time in this application. Finally, keep in mind that the energy
savings in the DRAM, memory controller, and front-side bus
due to fewer L2 cache misses in Scavenger may well outweigh
this small increase in L2 cache EPI. Moreover, the reduced ex-
ecution time is likely to decrease the total energy dissipation
in the core pipeline.

��
}��
X��,.'*��)��&%(!j,\���t%0#&� �t���?���.#J1��&,M��,M!j)Mq3!

In this section we compare Scavenger with two recent re-
lated proposals, namely, dynamic insertion policy (DIP) [15]
and V-way cache [14], in terms of L2 miss rates. DIP im-
proves cache performance by deciding where to insert a newly
allocated block. In traditional LRU algorithms, a new block
is always made the MRU within a set. DIP explores the po-
tential of dynamically choosing between the LRU and MRU
positions for a new incoming block. A block inserted in the
LRU position is promoted to the MRU position only after it is

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

 L
2

ca
ch

e
m

is
se

s
re

la
tiv

e
to

 1
M

B
 8

−w
ay

168.wupwise

171.swim

173.applu
175.vpr

179.art

181.mcf

183.equake

188.ammp

300.tw
olf

gmean

DIP
V−way
Scavenger−SkBF

Figure 15. Comparison of dynamic insertion policy, V-way
cache, and Scavenger in terms of the total number of last-level
cache misses relative to 1MB 8-way baseline.

accessed once more. If the working set is much larger than the
cache and exhibits a cyclic access pattern, such a policy suc-
ceeds in retaining some part of the working set in the cache.
We simulate DIP in a 1MB 8-way L2 cache with 32 dedicated
sets used for decision making and an epsilon of 1/32 for bi-
modal insertion (please refer to [15] for explanation).

The V-way cache doubles the tag store compared to a con-
ventional set associative cache while keeping the decoupled
data store size unchanged. As a result, the tag store gains
one extra index bit allowing the conflicting tags to get dis-
tributed over two sets. Each tag maintains a pointer to the
corresponding data block. Since the number of tags is twice
that of the data blocks, within a set with a very high proba-
bility an invalid tag can be found. When replacing an invalid
tag, the V-way cache implements a reuse-based global data
block replacement policy where each data block maintains a
small reuse counter. The block with the minimum reuse count
is found by sequentially examining the counters. The authors
impose an upper bound of five cycles for this search. We im-
plement V-way in a 1MB 8-way cache.

Figure 15 shows a comparison of L2 cache miss rates
among DIP, V-way cache, and Scavenger, relative to the
1MB 8-way baseline on the nine memory-bound applications.
Scavenger significantly outperforms DIP in three applications
(171.swim, 175.vpr, and 188.ammp) while loses to DIP in two
(179.art and 181.mcf). These two applications occasionally
operate on large working sets with significantly high reuse dis-
tance (Figure 2). Scavenger is able to retain only 512kB of the
working set in the victim file, and it takes time to learn the rep-
etition behavior as the top frequently missing blocks emerge
gradually. On the other hand, DIP can retain almost 1MB of
the working set, does not require any learning time, and as a
result, beats Scavenger by a large margin. To understand this
performance difference better, we simulated Scavenger with
a perfect Bloom filter. This brought down the miss rates of
179.art and 181.mcf to 0.54 and 0.79 relative to the baseline,
respectively. This result points to an inaccuracy of the Bloom
filter when handling very large working sets. Next, to factor
out the effect of the victim file’s capacity, we simulated Scav-
enger with a perfect Bloom filter and the entire 1MB storage
devoted to the victim file. This organization further brought
down the relative miss rates of 179.art and 181.mcf to 0.42
and 0.77, respectively. Fundamentally, DIP attacks a capac-
ity problem where the working set size exceeds the last-level

cache size. Scavenger does not distinguish between capacity
and conflict misses, but learns to retain the most frequently
missing blocks. DIP and Scavenger will deliver similar per-
formance if the most frequently missing blocks in a working
set happen to belong to the part of the working set retained by
DIP; otherwise, Scavenger will tend to deliver better perfor-
mance. In the situation where all the blocks in a large working
set miss with the same frequency, Scavenger will assign equal
priority to all of them, and may fail to deliver performance
similar to DIP depending on whether a random mode switch
takes place, how effective this switch to the random mode is,
and whether occasional hits in the VF re-arrange the priority
values in the heap. Nonetheless, even in this situation, Scav-
enger will still be able retain a large portion of the working
set.

The V-way cache is better than Scavenger in only one
application (188.ammp). On average over these nine appli-
cations, relative to a 1MB 8-way baseline, Scavenger saves
15.5% of the L2 cache misses, the V-way cache saves 12.7%
of the misses, and DIP saves 15.4% of the misses.

5. Related Work

Efficient cache architecture design has received decades of
attention from the research community because of its critical
role in determining the end-performance of computer systems.
Broadly speaking, the innovations in this area can be classified
into four categories, namely, smart indexing schemes, victim
caching, novel replacement policies, and new overall organi-
zations. In the following we focus on some of the studies done
on victim caching and an organization called indirect index
cache (IIC) [6] that shares some similarities with our victim
file proposal. To avoid repetition, we do not discuss DIP and
V-way cache here.

Small fully associative victim caches were introduced
in [10] and have been used in several commercial processors.
One relatively recent study exploring selective victim caching
for L1 caches [8] detects blocks suffering from conflict misses
by examining the dead time of the evicted blocks. In this pa-
per we introduce a new organization of a large and fast victim
file that can capture the large-scale temporal behavior present
in the miss address stream of the last-level caches.

The IIC organization involves decoupled tag and data
stores and a generational global replacement policy. The tags
are organized into a primary 4-way associative hash table and
a secondary direct-mapped table. On a primary table miss, the
secondary table is used to walk the hash collision chain. The
generational replacement policy maintains multiple queues of
tags, each queue having a bulk priority for all the tags resid-
ing in that queue. If a tag is not accessed for a long period
of time, it is gradually demoted to the lowest priority queue.
A replacement tag is always selected from the lowest prior-
ity queue. While IIC relies on multi-level queues to capture
temporal accesses to L2 cache blocks, Scavenger directly ex-
amines the L2 cache miss address stream and prioritizes the
blocks that suffer from most misses for insertion into the vic-
tim file.

6. Summary and Possible Extensions

In this paper we propose a new last-level cache organiza-
tion, namely Scavenger, which divides the total cache storage
into a conventional cache and a victim file (VF). The VF re-
tains only high priority cache blocks that have most frequently
missed in the past and therefore are more likely to be used in
the future.

Scavenger employs three new components: A Bloom fil-
ter that tracks the miss counts to cache block addresses, used
as block priorities; a victim file that holds the high priority
blocks evicted from the conventional part, and a fast pipelined
priority queue that maintains the priorities of the VF blocks.
A new block is eligible for allocation only if its priority is
higher than or equal to the current minimum in the VF. The
VF is organized as a direct-mapped hash table, while provid-
ing fully-associative buffering through chaining the tags that
map to the same index. Thus, it offers low latency and fewer
conflicts at the same time. Finding a block in the VF requires
only a few tag accesses (at most three in most cases).

A 512kB+512kB Scavenger organization employed as a
last level L2 cache improves IPC of nine memory-bound
SPEC 2000 applications by up to 63%, and on average 14.2%,
compared to a conventional 1MB 8-way set-associative L2
cache, with an aggressive multi-stream stride prefetcher en-
abled in both configurations. Across a larger set of sixteen
SPEC 2000 applications, the average IPC improvement is 8%.
We also present detailed analysis of dynamic and static energy
overheads of the proposed architecture.

There are several possible extensions of this work.
Given the performance potential of Scavenger, more energy-
conscious implementations of the algorithms are worth explor-
ing. Improving the accuracy of the frequency estimator is an-
other challenging issue that has potential to further increase
the performance. Finally, extending the current algorithms to a
multi-threaded setting, especially in the last-level shared cache
of a chip-multiprocessor, is important.

Acknowledgments

We would like to thank the Research I Foundation of IIT
Kanpur for helping initiate this collaborative effort between
IIT Kanpur and Cornell University. We thank Vijay Degala-
hal for helping us with HSPICE, and Jugash Chandarlapati
for developing the leakage energy model. We thank Andreas
Moshovos and the anonymous reviewers for suggestions to
improve the paper.

The Cornell effort of this work was supported in part
by NSF awards CAREER CCF-0545995, CNS-0509404, and
CNS-0429922; by an IBM Faculty Award; by two Intel grad-
uate fellowships; and by gifts from Intel.

References

[1] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint Processing
and Recovery: Towards Scalable Large Instruction Window Proces-
sors. In Proceedings of the 36th International Symposium on Mi-
croarchitecture, pages 423–434, December 2003.

[2] B. Bloom. Space/Time Trade-offs in Hash Coding with Allowable
Errors. In Communications of the ACM, 13(7):422–426, July 1970.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for
Architectural-level Power Analysis and Optimizations. In Proceed-
ings of the 27th International Symposium on Computer Architecture,
pages 83–94, June 2000.

[4] S. Cohen and Y. Matias. Spectral Bloom Filters. In Proceedings
of the SIGMOD International Conference on Management of Data,
pages 241–252, June 2003.

[5] M. K. Gowan, L. L. Biro, and D. B. Jackson. Power Considerations
in the Design of the Alpha 21264 Microprocessor. In Proceedings of
the 35th Design Automation Conference, pages 726–731, June 1998.

[6] E. G. Hallnor and S. K. Reinhardt. A Fully Associative Software-
managed Cache Design. In Proceedings of the 27th International
Symposium on Computer Architecture, pages 107–116, June 2000.

[7] HP Labs. CACTI 4.2. Available at http://www.hpl.hp.com/per-
sonal/Norman Jouppi/cacti4.html.

[8] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in the Memory
System: Predicting and Optimizing Memory Behavior. In Proceed-
ings of the 29th International Symposium on Computer Architecture,
pages 209–220, May 2002.

[9] A. Ioannou and M. Katevenis. Pipelined Heap (Priority Queue)
Management for Advanced Scheduling in High-Speed Networks. In
IEEE/ACM Transactions on Networking, 15(2):450–461, April 2007.

[10] N. P. Jouppi. Improving Direct Mapped Cache Performance by the
Addition of a Small Fully Associative Cache and Prefetch Buffers.
In Proceedings of the 17th International Symposium on Computer
Architecture, pages 364–373, June 1990.

[11] A. Moshovos. RegionScout: Exploiting Coarse Grain Sharing in
Snoop-Based Coherence. In Proceedings of the 32nd International
Symposium on Computer Architecture, pages 234–245, June 2005.

[12] A. Moshovos et al. JETTY: Filtering Snoops for Reduced Energy
Consumption in SMP Servers. In Proceedings of the 7th Inter-
national Symposium on High Performance Computer Architecture,
pages 85–96, January 2001.

[13] J-K. Peir et al. Bloom Filtering Cache Misses for Accurate Data
Speculation and Prefetching. In Proceedings of the 16th Interna-
tional Conference on Supercomputing, pages 189–198, June 2002.

[14] M. K. Qureshi, D. Thompson, and Y. N. Patt. The V-way Cache:
Demand-based Associativity via Global Replacement. In Proceed-
ings of the 32nd International Symposium on Computer Architecture,
pages 544–555, June 2005.

[15] M. K. Qureshi et al. Adaptive Insertion Policies for High-
Performance Caching. In Proceedings of the 34th International Sym-
posium on Computer Architecture, pages 381–391, June 2007.

[16] J. Renau et al. SESC simulator. http://sesc.sourceforge.net, January
2005.

[17] E. Safi, A. Moshovos, and A. G. Veneris. L-CBF: A Low-power,
Fast Counting Bloom Filter Architecture. In Proceedings of the In-
ternational Symposium on Low Power Electronics and Design, pages
250–255, October 2006.

[18] T. Sherwood et al. Automatically Characterizing Large Scale Pro-
gram Behavior. In Proceedings of the 10th International Conference
on Architectural Support on Programming Languages and Operating
Systems, pages 45–57, October 2002.

[19] K. Strauss, X. Shen, and J. Torrellas. Flexible Snooping: Adaptive
Forwarding and Filtering of Snoops in Embedded-Ring Multiproces-
sors. In Proceedings of the 33rd International Symposium on Com-
puter Architecture, pages 327–338, June 2006.

[20] D. H. Woo et al. Reducing Energy of Virtual Cache Synonym Lookup
using Bloom Filters. In Proceedings of the International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems,
pages 179–189, October 2006.

[21] K. C. Yeager. The MIPS R10000 Superscalar Microprocessor. In
IEEE Micro, 16(2):28–40, April 1996.

