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Abstract

Multiple-choice exams are frequently used as an efficient and objective method

to assess learning but they are more vulnerable to answer-copying than tests

based on open questions. Several statistical tests (known as indices in the lit-

erature) have been proposed to detect cheating; however, to the best of our

knowledge they all lack mathematical support that guarantees optimality in any

sense. We partially fill this void by deriving the uniform most powerful (UMP)

under the assumption that the response distribution is known. In practice, how-

ever, we must estimate a behavioral model that yields a response distribution

for each question. We calculate the empirical type-I and type-II error rates for

several indices that assume different behavioral models using simulations based

on real data from twelve nationwide multiple-choice exams taken by 5th and

9th graders in Colombia. We find that the index with the highest power among

those studied, subject to the restriction of preserving the type-I error, is one

based on the work of Wollack (1997) and Linden and Sotaridona (2006) and is
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superior to the indices studied and developed by Wesolowsky (2000) and Frary,

Tideman, and Watts (1977). We compare the results of applying this index to

all 12 exams and find that examination rooms with stricter proctoring have a

lower level of copying. Finally, a Bonferroni correction to control for the false

positive rate is proposed to detect massive cheating.

Key Words: ω Index , Answer Copying, False Discovery Rate, Neyman-

Pearson’s Lemma.

JEL Clasification: C19, I20

1 Introduction

Multiple-choice exams are frequently used as an efficient and objective way of

evaluating knowledge. Nevertheless, they are more vulnerable to answer copying

than tests based on open questions. Answer-copy indices provide a statistical

tool for detecting cheating by examining suspiciously similar response patterns

between two students. However, these indices have three problems. First, simi-

lar answer patterns between a pair of students could be justified without answer

copying. For example, two individuals with very similar educational background

are likely to provide similar answers. The second problem is that a statistical

test (an index) is by no means a conclusive basis for accusing someone of copy-

ing, since it is impossible to completely eliminate type-I errors. In other words,

it is possible that two individuals share the same response pattern by chance.

Finally, every index assumes responses are stochastic. If the assumed probability

distribution is incorrect, the index can lead to incorrect conclusions. Further-

more, all the indices in the literature are ad-hoc and there are no theoretical

results that support the use of one index over the other.

Wollack (2003) compares several indices and finds that among those that

preserve size the ω index is the most powerful one. However, the set of in-

dices studied is not comprehensive and in particular does not include the index
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developed by Wesolowsky (2000).

Thus there are two gaps in the literature that this article seeks to fill. First,

it provides theoretical foundations that validate the use of indices that reject

the null hypothesis of no cheating for a large number of identical answers under

the assumption that student responses are stochastic.

Second, it compares the type-I and type-II error rates of the ω and γ indices

for answer copy detection, based on the work of Wollack (1997)1 and Wesolowsky

(2000) respectively2. Using Monte Carlo simulations and data from the SABER

tests taken by 5th and 9th graders in Colombia in May and October of 2009 we

find that the conditional version of the standardized index first developed by

Wollack (1997) is the most powerful among those that respect size.

We compare the results of applying the index to examination rooms with

different strategies to control cheating. We find a negative correlation between

the level of proctoring and the prevalence of copying. We also find a lower preva-

lence of copying in examination rooms where students answer different portions

of the test at the same time compared to examination rooms where all students

answer the same portion of the test at the same time. These results have at

least two possible interpretations: they could be interpreted as evidence that

the index is indeed detecting cheating, or, alternatively, if one believes that the

index can be used as a reliable measure of cheating, these results can be inter-

preted as estimates of how effective current strategies for cheating-prevention

are. However, the results of these two exercises must be taken cautiously as they

are not the result of a randomized experiment and therefore might be biased

due to unobservable factors.

Our article has a fourth contribution. We outline a procedure for detecting

massive cheating. These indices detect individual cheating, but do not consti-

1In this article we use a version closer to the work of Linden and Sotaridona (2006).
2Both indices are refinements of the indices first developed by Frary et al. (1977).
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tute definitive proof of copying given their statistical nature. They are merely

intended to raise flags. In Colombia an index is used to search for examination

rooms with a large number of flags (i.e. a large proportion of students guilty of

copying according to the index). When a large number of flags are raised, every

student in the examination room must retake the test under stricter surveil-

lance conditions. The appropriate way to search for a large number of flags is to

test multiple hypothesis at the same time, but these procedures often results in

low statistical power. We apply a Bonferroni correction outlined by Benjamini

and Hochberg (1995) to detect multiple cheating while controlling for the false

positive rate. The application is straightforward and we think this is a use-

ful tool for flagging possible examination rooms where massive cheating might

have occurred. This information could be used, as in Colombia, to make entire

examination rooms retake an exam under stricter surveillance conditions.

The article is organized as follows. The second section derives an optimal

statistical test (index) to detect answer copying using the Neyman-Pearson’s

Lemma. The third section presents two of the most widely used indices, which

are based on the work of Wollack (1997), Frary et al. (1977), Wesolowsky (2000),

and Sotaridona, van der Linden, and Meijer (2006). The fourth section presents

a brief summary of the data used and is followed by a section that presents the

methodology of the Monte Carlo simulations used to find the empirical type-I

and type-II error rates (to test which behavioral model gives the best results)

and its results. Section six analyses the correlation between different strategies

to control cheating and the prevalence of cheating according to the index and

section seven presents the results of using a Bonferroni correction to calculate

the prevalence of massive cheating. Finally the last section concludes.
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2 Applying Neyman-Pearson’s to answer copy-

ing

It is normal for two answer patterns to have similarities by chance. Answer-

copying indices try to detect similarities that are so unlikely to happen naturally

that answer-copying becomes a more natural explanation than chance. Most

answer-copy indices are calculated by counting the number of identical answers

between the test taker suspected of copying and the test taker suspected of

providing answers3. In all these indices the null hypothesis is the same: there

is no cheating.

All these indices are ad-hoc since they are not derived to be optimal in any

sense. To the extent of the authors’ knowledge, this article presents the first

effort to rationalize the use of these indices to detect answer copying using the

Neyman-Pearson’s Lemma (NPL) (Neyman & Pearson, 1933) resulting in the

uniformly most powerful (UMP) test (index), assuming we know the underlying

probability of responses for each individual in each question. However, we must

turn to empirical data to find the performance of each index since different

behavioral models result in different response distributions.

First, let us state the problem formally. Let us assume that there are N

questions and n alternatives for each question. We are interested in testing

whether the individual who cheated (denoted by c) copied from the individual

who supposedly provided the answers (denoted by s). Let γcs be the number of

3For examples see Linden and Sotaridona (2004, 2006); Sotaridona and Meijer (2003,
2002); Sotaridona et al. (2006); Holland (1996); Frary et al. (1977); Cohen (1960); Bellezza
and Bellezza (1989); Angoff (1974); Wesolowsky (2000); Wollack (1997)
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questions that c copied from s. The objective is to test the following hypotheses:

H0 : γcs = 0

H1 : γcs > 0

Let Icsi be equal to one when individuals c and s have the same answer to

question i and zero otherwise. Then, the number of common answers between

c and s can be expressed as:

Mcs =

N∑
i=1

Icsi. (1)

Under the null hypothesisMcs is the sum ofN independent Bernoulli random

variables, each with a different probability of success πi, equal to the probability

that individual c has the same answer as individual s in question i. The distri-

bution of Mcs is known as a poisson binomial distribution. Let B(π1, ..., πN ) be

such distribution and fN (x;π1, ..., πN ) the probability mass function (pmf) at

x. Notice that if π1 = π2 = ... = πN = π then the poisson binomial distribution

reduces to a standard binomial distribution.

Now, let A denote the set of questions that student c copied from s. Then

if |A| = k, it means that γcs = k, and Mcs has the following probability

mass function (pmf) f̂N (x;π1, ..., πN , A), where we define f̂N (x;π1, ..., πN , A)
.
=

fN (x, π′1, .., π
′
N ) such that

π′i =


1 if i ∈ A

πi if i 6∈ A

For example, say that there are 50 questions and that the students copied
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questions 1, 10 and 50, i.e. A = {1, 10, 50} then

f̂N (x;π1, ..., πN , A) = fN (x; 1, π2, ..., π9, 1, π11, ..., π49, 1).

Before we continue let us state Neyman-Pearson’s Lemma (NPL):

Theorem 1. Neyman-Pearson’s Lemma (Casella & Berger, 2002)

Consider testing H0 : θ = θ0 against H1 : θ = θ1 where the pmf is f(x|θi),

i = 0, 1, using a statistical test (index) with rejection region R that satisfies

x ∈ R if f(x|θ1) > f(x|θ0)k

x ∈ Rc if f(x|θ1) < f(x|θ0)k

(2)

for some k ≥ 0, and

α = PH0
(X ∈ R) (3)

Then

1. (Sufficiency) Any test (index) that satisfies equations 2 and 3 is a UMP

level α test (index).

2. (Necessity) If there exists a test (index) satisfying equations 2 and 3 with

k > 0, then every UMP level α test (index) is a size α test (index) -

satisfies 3 - and every UMP level α test (index) satisfies 2 except perhaps

on a set A such that PH0
(X ∈ A) = PH1

(X ∈ A) = 0.

the test (index) is the uniformly most powerful (UMP) level α test (index).

In this context, let us apply the NPL to the simple hypothesis test H0 : A =

A0 and H1 : A = A1, where A0 = ∅ (i.e. there is no cheating) and A1 is a set of

questions, to get the UMP test. If in the data we observe x questions answered
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equally by individuals c and s then the likelihood ratio test4 would be:

λA(x) =
f̂N (x;π1, ..., πN , A)

fN (x;π1, ..., πN )

Now we must find the critical value of the test. In other words, we need the

greatest value c such that under the null we have:

1− PH0

(
f̂N (x;π1, ..., πN , A)

f(x;π1, ..., πN )
< c

)
= PH0

(
f̂N (x;π1, ..., πN , A)

fN (x;π1, ..., πN )
> c

)
≤ α

For any given pair of simple hypotheses (H0 : A = A0 , H1 : A = A1) we

know how to find the UMP (by using the NPL). The following lemma will allow

us to find the UMP for more complex alternative hypothesis (e.g. H1 : {A :

|A| ≥ 1}).

Lemma 1. λA(x) = f̂N (x;π1,...,πN ,A)
fN (x,π1,...,πN ) is increasing in x ∈ {0, ..., N} for all A.

Before we present the proof we must first recall some useful results proved

by Wang (1993).

Theorem 2 (Theorem 2 in Wang (1993)). The pmf of a poisson binomial

satisfies the following inequality:

fN (x;π1, π2, ..., πN )2 > C(x)fN (x+ 1;π1, π2, ..., πN )fN (x− 1;π1, π2, ..., πN )

where C(x) = max
(
x+1
x , N−x+1

N−x

)
which has as an immediate corollary

Corollary 1. The pmf of a poisson binomial satisfies the following inequality:

fN (x;π1, π2, ..., πN )2 ≥ fN (x+ 1;π1, π2, ..., πN )fN (x− 1;π1, π2, ..., πN )

4Notice that NPL implies that a likelihood ratio test is the uniformly most powerful (UMP)
test for simple hypothesis testing.
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Now we are ready to prove the lemma:

Proof of Lemma 1. We consider the case |A| = 1, given that the proof for the

case when |A| > 1 can be obtained by induction. Without loss of generality,

assume A = {1}. The numerator in the lemma’s quotient is 0 for x = 0, so we

proceed to prove monotonicity λA(x) in x for x ≥ 1. Likewise, the case N = 1

follows trivially, so we assume N > 1.

For simplicity, we call g(x) = fN−1(x;π2, . . . , πN ). First, note that

f̂N (x;π1, . . . , πN ;A) = g(x− 1).

Second, corollary 1 states that g(x − 1)g(x + 1) ≤ g(x)2. Third, we can write

fN (x;π2, . . . , πN ) = π1g(x−1) + (1−π1)g(x). With these observations we have

f̂N (x;π1, . . . , πN ;A)

fN (x;π1, . . . , πN )
=

g(x− 1)

π1g(x− 1) + (1− π1)g(x)
× π1g(x) + (1− π1)g(x+ 1)

π1g(x) + (1− π1)g(x+ 1)

≤ π1g(x)g(x− 1) + (1− π1)g(x)2

[π1g(x− 1) + (1− π1)g(x)][π1g(x) + (1− π1)g(x+ 1)]

=
g(x)

π1g(x) + (1− π1)g(x+ 1)

=
f̂N (x+ 1;π1, . . . , πN ;A)

fN (x+ 1;π1, . . . , πN )
.

Given that f̂N (x;π1,...,πN ;A)
fN (x;π1,...,πN ) is increasing in x for all A then we have that for

every c there exists a k∗ such that PH0

(
f̂N (x;π1,...,πN ,A)
fN (x;π1,...,πN ) < c

)
=
∑k∗

w=0 fN (w, π1, ..., πN ).

In particular for a given level α of the test we can find k∗ such that

1− PH0

(
f̂N (x;π1, ..., πN , A)

f(x;π1, ..., πN )
< c

)
=

k∗∑
w=0

f(w, π1, ..., πN ) ≤ α

Then, if we reject the null hypothesis when Mcs > k∗, we get the UMP for
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a particular set A. However, the rejection region is the same for all A, thus if

we reject the null hypothesis when Mcs > k∗, we get the UMP for all A such

that |A| ≥ 1. This justifies the use of indices that reject the null hypothesis for

large values of Mcs.

However, πi must be estimated somehow (it was taken as known in this

section and thus in empirical applications we do not have the UMP) and different

methods yield different results. We now turn to the data to find out which index

performs better in practice.

Frary et al. (1977) in a seminal article developed the first indices, known as g1

and g2, that reject the null hypothesis for large values of Mcs. Wollack (1997),

Linden and Sotaridona (2006) and Wesolowsky (2000) have proposed further

refinements of Frary et al. (1977) methods. We will evaluate the performance

of these indices in practice.

3 Copy Indices

Let us assume that student j has a probability πjiv of answering option v on

question i. The probability that two students have the same answer on question

i (πi) can be calculated in two ways. First, assuming independent answers, the

probability of obtaining the same answer is πi =
∑n
v=1 π

c
ivπ

s
iv.

Second, we could think of the answers of individual s as being fixed, as if

he were the source of the answers and c the student who copies. In the absence

of cheating, conditional on the answers of s, the probability that individual c

has the same answer as individual s in question i is πi = πcivs , where πcivs is

the probability that individual c answered option vs which was chosen by s in

question i.

A discussion of these two approaches is given in Frary et al. (1977) and

Linden and Sotaridona (2006). The first is known as the unconditional index
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and is symmetric in the sense that the choice of who is s and who is c is irrel-

evant since πi is the same either way. The second is known as the conditional

index and it is not symmetric opening the possibility that the index rejects the

null hypothesis that student a copied from student b but not rejecting the null

hypothesis that b copied from a. The details of each situation determine which

approach is appropriate. If we believe students copied from each other or an-

swered the test jointly then a conditional index is undesirable, but if we believe

that a student is the source (for whatever reason) of answers but did not col-

laborate with the cheater, then a conditional index might be more appropriate.

We study both conditional and unconditional indices.

Indices vary along three dimensions. The first dimension is how they esti-

mate πjiv. The second is whether they are a conditional or an unconditional

index. Finally, they vary how critical values are calculated. They either use the

exact distribution (a poisson binomial distribution) or a normal distribution, by

applying some version of the central limit theorem.

In order to use the central limit theorem in this context recall Mcs is the sum

of N Bernoulli variables and has mean
∑N
i=1 πi and variance

∑N
i=1 πi(1 − πi).

Thus
Mcs−

∑N
i=1 πi√∑N

i=1 πi(1−πi)
converges in distribution to a standard normal distribution

as N goes to infinity. There are two advantages to the normal approximation.

First critical values are easier to calculate and more precise (computationally)

and second it allows for a finer choice of critical values.

As mentioned before, Frary et al. (1977) developed the first indices, known

as g1 and g2, that reject the null hypothesis for large values of Mcs. However,

both Wesolowsky (2000) and Wollack (2003) show that variations of the original

method proposed by Frary et al. (1977) yield superior results, and in this article

we study the indices they developed. The first variation is the ω index developed

by Wollack (1997) that assumes there is an underlying nominal response model.
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The second variation is the γ index developed by Wesolowsky (2000) based on

a variation of Frary et al. (1977) work.

3.1 ω index

The ω index is based on the work of Wollack (1997) and assumes a nominal

response model that allows the probability of answering a given option to vary

across questions and individuals. As before, let N be the number of questions

and n the number of alternatives for answering each question. Suppose that an

individual with skill θj , who does not copy, responds with probability πiv for

option v to question i. In other words:

πiv(θj) =
eξiv+λivθj∑m
h=1 e

ξih+λihθj
, (4)

where ξiv y λiv are model parameters and are known as the intercept and

slope, respectively. The intercept and slope can vary across questions. The

parameters of the questions (ξiv and λiv) are estimated using marginal maxi-

mum likelihood, while ability is estimated using the EAP method (Expected A

Posteriori). The estimation is performed using the rirt package in R (Germain,

Abdous, & Valois, 2014)5. It is necessary to estimate ability as the proportion of

correct answers taking into account that a correct answer to a “difficult” ques-

tion indicates a higher ability than a correct answer to a “simple” question. More

information on marginal maximum likelihood and EAP can be found in Linden

and Hambleton (1997) and Hambleton, Swaminathan, and Rogers (1991).

Let ω1 and ω2 be the unconditional and conditional (exact) versions of this

index (following somewhat the g1 and g2 notation of Frary et al. (1977)) and let

ωs1 and ωs2 be the standardized versions (i.e. they use the normal distribution

to find the critical values of the index).

5The package rirt can be found on: http://libirt.sourceforge.net/.
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3.2 γ index

The indices developed by Wesolowsky (2000), which are an extension and im-

provement of the indices developed by Frary et al. (1977), assume that the

probability that student j has the correct answer in question i is given by:

pi = (1− (1− ri)aj )1/aj ,

where ri is the proportion of students that had the right answer in question

i. The parameter aj is estimated by solving the equations

∑N
i=1 pi
n

= cj ,

where cj is the proportion of questions answered correctly by individual

j. Finally, we need the probability that student j chooses option v among

those that are incorrect which is estimated as the proportion of students with

an incorrect answer that chose each incorrect option. Lets denote γ1 and γ2

the unconditional and conditional version of this index and by γs1 and γs2 their

standardized version respectively.

Before we compare how the different versions of the ω and the γ index fare

in practice, the following section presents the data that will be used.

4 Data

In Colombia, every student enrolled in 5th, 9th or 11th grade, whether attend-

ing a private or a public school, has to take a standardized multiple-choice test

known as the SABER test6. These exams are intended to measure the perfor-

mance of students and schools across several areas. The Instituto Colombiano

6The tests in the 5th and 9th grade have been somewhat irregular and with students being
tested every 2 to 3 years.
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para la Evaluación de la Educación (ICFES) is in charge of developing, dis-

tributing and applying these exams. The score of the 11th grade test is used

by most universities in Colombia as an admission criterion. The ICFES also

evaluates all university students during their senior year. We analyze the 5th

and 9th grade tests for 2009. In total, we have 12 different exams depending on

the subject, the date of the exam and the grade of the student7.The following

abbreviations, used by the ICFES, are used: per grade, 50 for 5th and 90 for

9th. Per area, 041 for mathematics, 042 for language and 043 for science. Per

date, F1 for May and F2 for October. For example, exam PBA9041F2 is taken

by 9th graders for mathematics in October. A brief overview of each test is

presented in Table 1.

For each exam the database contains the answer to each question for each

individual, as well as the examination room where the exam was taken. The

correct answers for each exam are also available.

Table 1: Summary statistics

Test Subject Grade Month Questions Students Examination
Rooms

PBA5041F1 Math 5th May 48 60,099 3,421
PBA5041F2 Math 5th Oct 48 403,624 31,827
PBA5042F1 Language 5th May 36 60,455 3,441
PBA5042F2 Language 5th Oct 36 402,508 31,642
PBA5043F1 Science 5th May 48 60,404 3,432
PBA5043F2 Science 5th Oct 48 405,537 31,833
PBA9041F1 Math 9th May 54 44,577 1,110
PBA9041F2 Math 9th Oct 54 303,233 9,059
PBA9042F1 Language 9th May 54 44,876 1,110
PBA9042F2 Language 9th Oct 54 302,781 9,044
PBA9043F1 Science 9th May 54 44,820 1,107
PBA9043F2 Science 9th Oct 54 30,3723 9,053
Source: ICFES. Calculations: Authors.

7Each grade (5th and 9th) presents three tests: Science, Mathematics and Language.
Schools that finish the academic year in December present the exam in September and schools
that finish their academic year in June present the exam in May. In total there are two dates,
two grades and three subjects, for a total of 12 exams.
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5 Index Comparison

In this section we compare the different versions of the ω and the γ indeces.

In order to do this we evaluate the type-I and type-II error rates by creating

synthetic samples in which we control the level of cheating between individuals.

5.1 Methodology

To find the empirical type-I error rate, individuals who could not have possibly

copied from one another are paired together and tested for cheating using a

particular index. This is done by pairing individuals that answered the exam in

different examination rooms, thus eliminating the possibility of answer copying.

The empirical type-I error rate is calculated as the proportion of pairs for which

the index rejects the null hypothesis. To find the empirical type-II error rate,

we take these answer-copy free pairs and simulate copying by forcing specific

answers to be the same. The proportion of pairs for which the index rejects the

null hypothesis is the power of the index8.

To make things clearer, let c denote the test taker suspected of cheating, s

the test taker believed to have served as the source of answers. The steps taken

to find the type-I error rate and the power of each index are as follows:

1. 100,000 pairs are picked in such a way that for each couple the individuals

performed the exam in different examination rooms.

2. The answer-copy methodology is applied to these pairs, and the proportion

of pairs for which the index rejects the null hypothesis is the empirical

type-I error rate estimator.

3. To calculate the power of the index, the answer pattern for individual c is

8Recall that the power of the test is the complement of the type-II error rate, i.e. Power =
100%− TypeIIError.
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changed by replacing k of his answers to match to those of individual s9.

(a) The level of copy, k, is set, and is defined as the number of answers

transferred from s to c.

(b) k questions are selected randomly.

(c) Individual c’s answers for the k questions are changed to replicate

exactly those of individual s. Answers that were originally identical

count as part of the k questions being changed.

4. We apply the answer-copy methodology to the pairs whose exams have

been altered. The proportion of pairs accused of cheating is the power of

the index for a copying level of k.

5.2 Results

Throughout the analysis a confidence level (α) of 99.9% is used and the power

of the index is calculated at copying levels (k) of: 1, 5, 10, 15, 20, ..., N , where N

is the number of questions in the exam.

5.2.1 Type-I error rate

As can be seen in Tables 2 and 3 the γ2, γs2 , and the ω2 indices have an empirical

type-I error rate that is consistently above the theoretical type-I error rate of

one in a thousand. The γ1 index (developed by Wesolowsky (2000)) empirical

error rate is above the theoretical one in several cases.

Based on these results, we discard the γ2, γs2 and the ω2 indices and restrict

the search for the most powerful index among γ1, γs1 , ω1 and ωs2.

9For example, let us assume the answer pattern for s is ACBCDADCDAB, which means
that there were 11 questions and that he/she answered A for the first questions, C for the
second questions, and so on. Also assume that the original answer pattern of c without copying
is DCABCDAABCB. Let k be 5, this means and let us assume that the randomly selected
questions were 1,4,5,10,11. This means that the modified (with copying) answer patterns for
c will be ACACDDAABAB.
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Table 2: Type-I error rate for the γ indices

Exam Subject Grade Month γ1 γ2 γs1 γs2
PBA5041F1 Mathematics 5th May 0.66 2.20 0.41 0.76
PBA5041F2 Mathematics 5th October 0.87 2.44 0.59 1.11
PBA5042F1 Language 5th May 1.20 2.18 0.77 1.16
PBA5042F2 Language 5th October 1.21 2.36 0.92 1.49
PBA5043F1 Science 5th May 1.05 2.59 0.73 1.38
PBA5043F2 Science 5th October 0.74 1.81 0.61 1.24
PBA9041F1 Mathematics 9th May 1.38 1.97 0.96 1.26
PBA9041F2 Mathematics 9th October 2.15 2.14 1.69 1.53
PBA9042F1 Language 9th May 0.85 2.24 0.56 1.04
PBA9042F2 Language 9th October 0.84 1.92 0.59 1.34
PBA9043F1 Science 9th May 1.32 2.06 0.93 1.42
PBA9043F2 Science 9th October 1.02 1.70 0.74 1.37
Source: ICFES. Calculations: Authors.
Number of copy-free couples accused of copying (for every 1,000 pairs)
at a 99.9% confidence level

Table 3: Type-I error rate for the ω indices

Exam Subject Grade Month ω1 ω2 ωs1 ωs2
PBA5041F1 Mathematics 5th May 0.42 1.28 0.23 0.52
PBA5041F2 Mathematics 5th October 0.61 1.38 0.31 0.78
PBA5042F1 Language 5th May 0.80 1.61 0.46 0.73
PBA5042F2 Language 5th October 0.86 1.51 0.55 0.95
PBA5043F1 Science 5th May 0.79 1.37 0.47 0.87
PBA5043F2 Science 5th October 0.82 1.47 0.57 0.88
PBA9041F1 Mathematics 9th May 0.89 1.53 0.58 0.89
PBA9041F2 Mathematics 9th October 1.22 1.53 0.99 1.07
PBA9042F1 Language 9th May 0.55 1.44 0.31 0.65
PBA9042F2 Language 9th October 0.86 1.47 0.63 0.97
PBA9043F1 Science 9th May 0.78 1.46 0.59 0.98
PBA9043F2 Science 9th October 0.78 1.36 0.63 1.03
Source: ICFES. Calculations: Authors.
Number of copy-free couples accused of copying (for every 1,000 pairs)
at a 99.9% confidence level

5.2.2 Power

The following figures show the power among the γ1, γs1 , ω1 and ωs2 indices in

the Mathematics 5th grade May test. Notice that the ωs2 index has the highest

power for all levels of answer copying. This is true for all exams as shown in
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figures 5-15 in appendix A. Based on the results of the previous section and this

section, we believe this justifies the use of the ωs2 index over all otther version

of the ω index and all versions of the γ index.

In other words, the index with the highest power among those studied, sub-

ject to the restriction of preserving the type-I error, uses a nominal response

model for item answering, conditions the probability of identical answers on the

answer pattern of the individual that provides answers, and calculates critical

values via a normal approximation.

In the next section we apply the ωs2 to our data and compare the prevalence

of cheating across examination rooms in which different strategies to prevent

cheating are used by the ICFES.

Figure 1
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6 Strategies to prevent cheating

The ICFES randomly assigns schools to three different samples that have differ-

ent levels of proctoring. Most of the schools are assigned to the censal sample in

which the ICFES distributes the exams to the schools and the schools perform

the proctoring. The controlada and estadistica samples are smaller but proctor-

ing is done by the government itself. In the controlada sample the proctoring

is done by the central government (i.e. the ICFES) while in estadistica sample

proctoring is carried out by the regional government (Secretarias de Educación).

Table 4 shows some descriptive statistics of the samples. There are two

things that are worth mentioning here. First, in the controlada and estadistica

samples the ICFES had different versions of each test, so that each student was

randomly assigned to one of three possible tests per subject. We only have

information for the students that answered the version of the test that was used

in the censal sample. Thus one would expect the average number of students

per school in the controlada and estadistica samples to be around one third of

those in the censal sample; however, this is not the case. Second, the October

estadistica sample has more students per school than either the controlada or

the censal samples. These two results lead us to believe that the assignment of

schools to samples was not entirely random.

We apply the ωs2 index to the three different samples (see figure 2). In most

cases the prevalence of cheating according to the index is lower for the controlada

or the estadistica sample and highest for the censal sample. In most cases the

controlada sample has a lower prevalence of cheating or a similar level to the

estadistica sample, except for the May 9th grade Mathematics (PBA9041F1)

test10.

These results can be interpreted in at least two different ways. If one remains

10This could be due to sampling variation given that there are only 75 schools in the
controlada sample.

19



skeptical about the index then this would serve as evidence that the index is

indeed detecting cheating. Alternatively, if one believes that the index can

be used as a reliable measure of cheating, these results can be interpreted as

the amount of cheating that is prevented by increasing the level of proctoring.

However, since the assignment of schools to samples does not seem to be random

these results must be taken with caution as unobservable factors could bias the

results. Additionally, it is impossible to distinguish the effect of proctoring and

of having multiple versions of an exam distributed to students.

Table 4: Characteristics of the controlada, estadistica and censal samples

Controlada Estadistica Censal
5th Grade May

No. Students 1,413 7,648 60,099
No. of Schools 141 680 3,421
Students/School 10.02 11.25 17.57

(0.88) (0.47) (0.46)
5th Grade October

No. Students 3,830 26,393 403,624
No. of Schools 958 654 31,827
Students/School 4.00 40.36 12.68

(0.13) (1.36) (0.11)
9th Grade May

No. Students 1,150 6,690 44,577
No. of Schools 75 351 1110
Students/School 15.33 19.06 40.16

(1.62 ) (1.08) (1.44)
9th Grade October

No. Students 3,106 24,387 303,233
No. of Schools 495 487 9,059
Students/School 6.27 50.08 33.47

(0.25) (1.74) (0.35)
Source: ICFES. Calculations: Authors.
Note: Standard error of the mean for the number of
students per school in parenthesis.
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Figure 2: Cheating across samples
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The horizontal black line is the theoretical type-I error rate. Source: ICFES. Calculations:
Authors.

Finally, we restrict ourselves to the censal sample. Figure 3 shows the pro-

portion of couples for which the index rejects the null hypothesis. There is a

clear pattern in which cheating drops dramatically between May and October.

The SABER tests are administrated over three sessions, wherein students an-

swer a different subject in each session. In May, every student took the same
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subject at the same time, while in October only one third of the students took

the same subject in each session, thus reducing the number of students from

whom one could copy in a given session. In other words, in May all students

took the mathematics portion of the test at the same time. In October, while

one third of the students answered the mathematics portion of the test another

third answered the language portion and the final third answered the science

portion.

Note that the Language Test for 9th graders in May (PBA9042F1 test) does

not follow the trend. It is also surprising to find that the levels of cheating

are similar for 5th and 9th graders. These populations are different in terms

of motivation, maturity and sophistication. We could not find a reasonable

explanation for either of these phenomena.

As before, these results can be interpreted in at least two different ways.

They could be interpreted as evidence that the index is indeed detecting cheat-

ing. Alternatively, if one believes that the index can be used as a reliable measure

of cheating, these results can be interpreted as the amount of cheating that is

prevented by having different students answer different parts of the exam at

different times instead of having all of them answer portion of the exam at the

same time. Again this results must be taken with caution as the population of

students in May and October might be different in unobservable factors which

could bias the results.
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Figure 3
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7 Massive cheating

In this section we consider a subject rarely treated in the answer-copying liter-

ature: massive cheating. Many institutions, including the ICFES, do not use

answer copying-indices to formally blame an individual of copying. Rather they

are interested in detecting highly suspicious examination rooms. The ICFES

forces suspicious examination rooms to retake the exam under stricter surveil-
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lance conditions.

To determine whether massive cheating has occurred in an examination

room, multiple hypotheses must be tested. If the significance level for a given

statistical test is αI , the significance level for a multiple test (αMT ) will in-

crease exponentially as the number of hypothesis to be tested increases. In

other words, αMT = 1− (1− αI)n ≤ αI · n, assuming independence across the

hypotheses. Thus we need to set αI = αMT

n in order to assure the multiple

test significance level; if this correction is made, in most cases the power of the

test is severely diminished. To overcome these difficulties a line of research has

developed procedures to control error rates similar to the type-I error (of the

multiple hypotheses test), which can be easily applied in many cases without

compromising the power of the test.

Most of these methodologies are based on Bonferroni correction that control

the false positive rate (that is, the number of null hypotheses rejected incorrectly

as a proportion of the number of null hypotheses rejected). We use the results

from applying the ωs2 index to every examination room. If there are n students

in a room then the index is applied n× (n−1) times and we adjust the p-values

following the correction given by Benjamini and Hochberg (1995).

Suppose there are H1, ...,Hm hypotheses to be tested, ordered such that their

p − values follow P1 ≤ P2 ≤ ... ≤ Pm, where Pi is the p − value of hypothesis

Hi. Let k be the greatest integer i, such that:

Pi ≤
i

m
p∗. (5)

Hi is then rejected for every i ∈ {1, ..., k}. This controls for the false pos-

itive rate to a maximum of p∗ (Benjamini & Hochberg, 1995). The previous

statement is only true if there is independence between true null hypotheses.

This assumption implies that the decision to not copy is an individual one and
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is unrelated to the decision not to copy of other individuals. This assumption

depends on the conditions under which cheating takes place. For example, if an

examination room has poor supervision, it would motivate several students to

copy, thus invalidating the assumption.

Figure 4 presents the proportion of examination rooms where more than

60%11 of the students are suspected of cheating, for p∗ = 0.01%. As can be seen,

there is a high proportion of examination rooms with massive cheating. This

could be explained by the fact that the examination rooms consist of students

in the same grade in a given school. Nevertheless, the fact that the proportion

of massive cheating drops dramatically between May and October is reassuring,

since less cheating is expected in the latter. It is also interesting that the levels

of massive cheating are lower, in general, for the 9th grade12.

11This is the level used by the ICFES to make students in exmaination rooms retake the
test under stricter surveillance conditions.

12The ICFES compared our results with information they have regarding school’s reputation
in terms of “honesty”, and found the two to be consistent. Unfortunately, we do not have
permission to divulge this information; consequently the results of this comparison cannot be
presented here.
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Figure 4: Massive cheating per exam
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8 Conclusions

In this article we justify the use of a variety of statistical tests (known as in-

dices) found in the literature to detect answer copying in standardized tests.

We derived the uniform most powerful (UMP) test (index) using the Neyman-

Pearson’s Lemma under the assumption that the response distribution is known.
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In practice, a behavioral model for item answering must be estimated and in-

dices vary along which model they assume.

Using data from the SABER 5th and 9th tests taken in May and October

of 2009 in Colombia, we compare eight widely used indices that are based on

the work of Frary et al. (1977); Wollack (1997); Wesolowsky (2000); Sotaridona

et al. (2006). We first filter out the indices that do not meet the theoretical

type-I error rate in practice and then select most powerful index among them.

The most powerful index, among those that respect the type-I error rate, is

a conditional index that models student behavior using a nominal response

model, conditions the probability of identical answers on the answer pattern of

the individual that provides answers, and relies on the central limit theorem to

find critical values.

Using this index we analyze 12 exams taken by 5th and 9th graders in May

and October of 2009 in Colombia. We find a negative correlation between

the level of proctoring and the prevalence of cheating. We also find a lower

prevalence of copying in examination rooms where students answer different

portions of the test at the same time compared to examination rooms where all

students answer the same portion of the test at the same time. These results

have at least two possible interpretations: they could be interpreted as evidence

that the index is indeed detecting cheating, or, alternatively, if one believes that

the index can be used as a reliable measure of cheating, these results can be

interpreted as the amount of cheating that is prevented by each one of these

strategies to control cheating.

Finally, we propose a methodology for detecting massive cheating while con-

trolling for the false positive rate using a Bonferroni correction. Institutions

that use answer-copying indices should also use Bonferroni corrections to test

for multiple hypothesis as this extension is straightforward.

27



We believe the results in this paper should have practical implications and

lead to the use of what we call the ωs2 over other indices and the adoption

of Bonferroni corrections. Further research should be done to evaluate the

effectiveness of different strategies to reduce cheating.
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Power in terms of the proportion of answers copied, for all the indices, in the mathematics
5th grade October test. Source: ICFES. Calculations: Authors.
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Figure 6
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Power in terms of the proportion of answers copied, for all the indices, in the language 5th
grade May test. Source: ICFES. Calculations: Authors.
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Figure 8
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May test. Source: ICFES. Calculations: Authors.

Figure 9
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Figure 10
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Power in terms of the proportion of answers copied, for all the indices, in the mathematics
9th grade May test. Source: ICFES. Calculations: Authors.
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9th grade October test. Source: ICFES. Calculations: Authors.
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Figure 12
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grade May test. Source: ICFES. Calculations: Authors.
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Figure 14
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May test. Source: ICFES. Calculations: Authors.
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