
Annales Geophysicae (2004) 22: 2431–2440
SRef-ID: 1432-0576/ag/2004-22-2431
© European Geosciences Union 2004

Annales
Geophysicae

Multifractal structure of turbulence in the magnetospheric cusp

E. Yordanova1, 2, M. Grzesiak1, A. W. Wernik 1, B. Popielawska1, and K. Stasiewicz3

1Space Research Center, Polish Academy of Sciences, Poland
2Space Research Institute, Bulgarian Academy of Science, Bulgaria
3Swedish Institute of Space Physics, Uppsala, Sweden

Received: 30 September 2003 – Revised: 10 May 2004 – Accepted: 18 May 2004 – Published: 14 July 2004

Part of Special Issue “Spatio-temporal analysis and multipoint measurements in space”

Abstract. Magnetospheric cusps are regions which are char-
acterized by highly turbulent plasma. We have used Polar
magnetic field data to study the structure of turbulence in
the cusp region. The wavelet transform modulus maxima
method (WTMM) has been applied to estimate the scaling
exponent of the partition function and singularity spectra.
Their features are similar to those found in the nonlinear mul-
tifractal systems. We have found that the scaling exponent
does not allow one to conclude which intermittency model
fits the experiment better. However, the singularity spectra
reveal that different models can be ascribed to turbulence ob-
served under various IMF conditions. For northward IMF
conditions the turbulence is consistent with the multifractal
p-model of fully developed fluid turbulence. For southward
IMF experimental data agree with the model of non-fully de-
veloped Kolmogorov-like fluid turbulence.

Key words. Magnetospheric physics (magnetopause, cusp,
and boundary layers) – Space plasma physics (turbulence;
nonlinear phenomena)

1 Introduction

A region just outside and/or at the near-cusp magnetopause
that is characterized by strong and persistent magnetic turbu-
lence is known as the turbulent boundary layer (TBL) (Savin
et al., 1998, 1999, 2002a, b; Pickett et al., 2002). Magnetic
field fluctuations are observed over broad range of frequen-
cies from<0.01 Hz, up to the electron cyclotron frequency,
typically hundreds of Hz to few kHz. The energy density of
the ultra-low frequency (<1 Hz) fluctuations is comparable
to the ion kinetic, thermal, and DC magnetic field densities
(Savin et al., 2002a). Such strong turbulence could be very
effective in the mass transport into the cusp, and may cause
acceleration and heating of plasma.
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(eya@cbk.waw.pl)

Savin et al. (2002a, b) have found that fluctuations at
different frequencies form wave trains suggesting multi-
scale, intermittent processes operating in the TBL. They have
shown that the three-wave, nonlinear interaction is responsi-
ble for strongest wave trains. However, magnetic turbulence
in TBL is dominated by, albeit weak, random-like fluctua-
tions with smooth, continuous spectrum, which cannot be
adequately studied with the bi-spectral, or even tri-spectral
analysis. In this case we have to resort to more sophisticated
methods of data analysis, which make use of the higher order
statistics.

Experiments provide ample and unquestionable evidence
that turbulence is not adequately and fully specified by spec-
tral analysis alone (e.g. Frisch, 1995; Paladin and Vulpi-
ani, 1987). The power spectrum, being related to a second
moment of the probability distribution function (PDF), fully
describes fluctuations if they have a Gaussian PDF. In this
case, the turbulence is scale-invariant and self-similar. In the
intermittent turbulent media, the PDF is increasingly non-
Gaussian at smaller scales, turbulence is no longer scale-
invariant, and higher order moments are needed to charac-
terize properties of the fluctuating field.

Intermittency is observed in turbulent fluid flows (e.g.
Frisch, 1995), as well as in the magnetohydrodynamic turbu-
lent media, such as a solar wind (e.g. Marsch and Tu, 1997;
Horbury et al., 1997; Sorriso-Valvo et al., 2001). Several in-
termittency models have been proposed. The multifractalp-
model by Meneveau and Sreenivasan (1987, 1991) seems to
reproduce fluid experiments better than other models. Car-
bone (1993) adopted thep-model to the case of developed
MHD turbulence. Motivated by the MHD turbulence ob-
served in the solar wind, this model has been extended to
the case of still developing, evolving turbulence (e.g. Tu et
al., 1996; Marsch and Tu, 1997). The model successfully de-
scribes the power spectrum evolution in high-speed streams.
Unlike in thep-model, which depends on a single intermit-
tency parameter, the so-called extended structure-function
model introduces a second parameter characterizing the scal-
ing properties of the space-averaged cascade rate.
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In this paper we analyze the scaling properties of turbu-
lence in the polar cusp of the magnetosphere, as revealed
by magnetic field fluctuations measured on board the Polar
satellite. In Sect. 2 the method of analysis is described. We
used the wavelet transform modulus maxima method, which
was reviewed, for instance, by Muzy et al. (1994) and Ar-
neodo et al. (1999). The method allows one to determine the
scaling properties of measured fluctuations for negative mo-
ments. Results of analysis are discussed and compared with
the models of energy cascade for turbulence in Sect. 3. In
Sect. 4 we present the physical interpretation of results and
conclusions.

2 Method of analysis

The multiscaling properties of fully developed turbulence
are conventionally investigated by calculating theq-th order
structure functions of a measured fluctuating parameterg(x)

Sq (l) =
1

L

L∫
0

|g (x + l)− g (x)|qdx ∼ lζ (q), (1)

whereL�l is the length of the signal. It should be noted that
the structure function exhibits exponential scaling only if the
turbulence is “locally” self-similar at a scale nearl.

By Legendre transforming the scaling exponentsζ(q) of
the structure functions one can obtain the singularity spec-
trum D(h), defined as the fractal dimension of the set of
points with the Ḧolder exponenth. According to Parisi and
Frisch (1985)D(h)=minq (qh−ζ(q)+1). To quantify the
fractal properties of a function one should find a set of loca-
tions of the singularities and estimate the values of the Hölder
exponenth.

As has been shown by Muzy et al. (1991)(for a compre-
hensive review, see Muzy et al., 1994), the wavelet trans-
form is a very suitable tool to detect singular behavior of
self-similar functions. In the wavelet transform, one approxi-
mates a functiong as a sum of properly weighted basis func-
tions:

Tψ [g] (b, a) =
1

a

∫
g (x)ψ

(
x − b

a

)
dt, (2)

wherea is the scale (or inverse frequency),b is the dilation
or translation parameter. For our purpose we useL1 norm
wavelet transform and a real valued transforming functionψ

called mother wavelet. The mother wavelet is chosen to be
well localized in both space and frequency. It is also required
thatψ have a certain number of vanishing moments. For in-
stance, theN -th order derivative of the Gaussian function has
N vanishing moments, while the Haar wavelet, which is the
equivalent wavelet for the structure function, has only one
vanishing moment. The wavelet transform can be considered
as a decomposition of the functiong into space-scale contri-
butions.

Mallat and Hwang (1992) have shown that singularities in
g produce a maximum in the modulus of the wavelet trans-
form coefficients and that at small scales this maximum gives

a location of the singularity in the signal. Muzy et al. (1994)
call modulus maximum of the wavelet transform, “any point
(x0, a0) of the space-scale half-plane which corresponds to
the local maximum of the modulus ofTψ [g](x, a0) consid-
ered as a function ofx”, and the curve which connects the
modulus maxima is the maxima line. The coefficients of
these maxima (which are a small fraction of the total number
of coefficients) are enough to encode the information con-
tained in the signal. This allows for the calculation of the
singularity exponents by a power law fit of the wavelet co-
efficients along the maxima line. This approach, introduced
by Mallat and Zhong (1992), is called a wavelet transform
modulus maxima (WTMM) method.

The main disadvantage of using the structure function
method in characterizing the singular structure of a function
is that it often diverges forq<0. In the WTMM method, in
order to avoid this effect, at a given scale, one calculates the
partition function as a sum over local maxima of the modulus
of the wavelet transform (Muzy et al., 1991). The wavelet-
based partition function is defined as:

Z (q, a) =

∑
l∈L(a)

(
sup
a′≤a

∣∣Tψ [g]
(
bl
(
a′
)
, a′
)∣∣)q , (3)

whereL(a) is a set of all the maxima linesl existing at a
scalea, andbl(a) is the position, ata, of the maximum be-
longing to the linel. Each linel={bl(a), a} is pointing (when
a goes to 0) towards a pointbl(0)which corresponds to a sin-
gularity of g. Because one does not sum over places where
the wavelet modulus is zero, the partition function is also de-
fined forq<0. If g(x) is self-similar, then along the maxima
line the partition function behaves like:

Z (q, a) ∼ aτ(q). (4)

The singularity spectrumD(h) is obtained by the Legendre
transform of the functionτ(q):

D (h) = inf
q
(qh− τ (q)) . (5)

Thus the relation between the scaling exponent of the struc-
ture functionζ(q) and the WTMM exponentτ(q) is:

ζ (q) = 1 + τ (q) . (6)

The spectrum of the scaling exponent is an important statisti-
cal characteristic of the turbulent field. When derived exper-
imentally it can be compared to that given by models of the
turbulence. In the case of local, fully developed, isotropic
fluid turbulence (Kolmogorov, 1941) the structure function
scaling exponentζ(p) behaves likep/3. In the MHD analog
of the turbulence (Kraichnan-Iroshnikov theory)(Kraichnan,
1965; Iroshnikov, 1963) the scaling exponent isp/4. But
the experiments on fluid turbulence and observations show
that the spectrum of the scaling exponent is nonlinear. This
nonlinear behavior is interpreted as an intermittency phe-
nomenon and as a direct consequence of the existence of spa-
tial fluctuations in the local regularity of the velocity field.
The intermittency can be simply visualized by plotting the
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Fig. 1. Total magnetic fieldB (upper panel) and differences1B(t)=B(t+1t)−B(t). Right plots show the probability distribution function
of1B normalized to its standard deviation. The dotted curve represents the equivalent Gaussian distribution. Kurtosis and skewness are also
given. The data segments used in the analysis are marked with vertical lines in the upper panel.

probability functions of fluctuations for various scales. If for
small scales the PDF is spiky, with stretched wings, and as
scale increase, it becomes closer to Gaussian, then we say we
are dealing with the intermittency.

3 Results of data analysis and comparison with models

Magnetic field data from NASA Polar satellite (Russell et
al., 1995) are used in this study. The Magnetic Field Ex-
periment provides three components of the magnetic field
sampled with the frequency 8.333 Hz. The total magnetic
field B for 9 October 1996 is plotted as a function of uni-
versal time in the top panel of Fig. 1. The measurements

were taken in the northern cusp region, at MLT from 12:17
to 12:50, magnetic latitudes between 55.46 and 70.58◦, and
distance to the reference magnetopause 3–4RE . The bottom
panels show the differences1B(t)=B(t+1t)−B(t) for the
time delays1t=7, 29, 117, and 612 s and probability distri-
bution function of1B normalized to its standard deviation.
The equivalent Gaussian distribution is plotted for compar-
ison. Time delays are chosen arbitrarily, just to show the
differences in the behavior of the PDF for different delays. It
is seen that the larger the time delay, the closer to the Gaus-
sian the PDFs are. At small delays, distributions are spiky
and have extended wings. The degree to which PDFs de-
part from the Gaussian can be quantified with kurtosis and
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Fig. 2. Segment of data shown in Fig. 1 (top panel), its spectrogram
(middle panel), and the map showing locations of the modulus max-
ima (lower panel).

skewness. One can see that for small delays the kurtosis is
considerably different from zero, meaning that higher order
statistics is needed for a full characterization of the PDFs of
fluctuations and that the cusp turbulence structure appears in-
termittent, singular. Note, however, that the skewness differs
from zero only slightly.

To find the singularity spectrum we used the WTMM
method described in the previous section. The data set has
been divided into seven segments, each 8192 samples long.
By using the short data segments we tried to avoid the ef-
fect of non-stationarity. At this point we wish to note that we
made use of the ergodic and Taylor hypotheses. The first one
is necessary to replace the ensemble averages by spatial av-
erages. Taylor’s “frozen turbulence” hypothesis allows one
to replace the spatial statistics with temporal statistics. Ac-
cording to this hypothesis, the entire spatial pattern of turbu-
lence is transported past the probes with a constant speed.
To verify experimentally the validity of Taylor hypothesis
one should have access to the spatiotemporal data, for which
spaced-probe measurements are necessary. For the case un-
der consideration, the mean drift speedV0, calculated from
the electric and magnetic field Polar data, is of the order of
100 km/s. We assume that turbulent eddies of all sizes con-
sidered here have an intrinsic speed much smaller thanV0,
and are convected with this high speed past the probe mov-
ing with the velocity∼2 km/s. We should note that coherent
structures present in the turbulent flow and associated with
the velocity bursts might invalidate both ergodicity and Tay-
lor hypotheses. In spite of that, most experimental results

Fig. 3. FFT (continuous line) and wavelet (dashed line) power spec-
tra of magnetic field fluctuations shown in Fig. 2.

assume ergodicity and frozen flow, and we follow this prac-
tice being aware, however, of the problem.

The top panel of Fig. 2 shows a segment no. 5 of magnetic
field fluctuations. In the middle panel of Fig. 2 the spec-
trogram (modulus of the wavelet transform) is given. The
mother wavelet used here is the 4th order derivative of the
Gaussian function. This wavelet makes possible the accurate
determination of the location of singularities (Muzy et al.,
1994). Long “fingers” extending from low to high frequen-
cies are signatures of singularities. The bottom panel shows
the lines of modulus maxima of the wavelet transform.

Figure 3 compares the Fourier (solid line) and wavelet
(dashed line) power spectra. Both spectra agree quite well.
Note that the spectrum is feature-less and continuous. We
should mention, however, that segments nos. 1 and 4 exhibit
a small but distinct maximum around 0.3 Hz. The spectrum
seems to follow a power law dependencef−α on the fre-
quency withα=2.36±0.04 over the frequency range 0.06–
0.78 Hz. The spectral indicesα for other segments fall into
the range from 1.87 to 2.62, with the mean 2.27. Smallest
α index is observed for a segment no. 3, and largest one for
a segment no. 1. Recently, Savin et al. (2002a, b) reported
α≈2.3 at 0.1–0.5 Hz andα≈1.1 at 0.004–0.05 Hz for Polar
in the core TBL.

Figure 4 shows the behavior ofτ(q) exponents (dots) de-
rived from WTMM for powerq in the range−4 to +4. Given
a relatively small number of samples in our data segments,
we did not attempt to perform calculations for largerq. We
note that the partition function (3) was calculated only for
those lines of modulus maxima that extended in frequency
over more than 2.5 octaves. To avoid the effect of noise,
we considered only frequencies lower than one-fifth of the
Nyquist frequency, i.e.≈0.8 Hz. The rms error ofτ is small,
of the order of 10−2, and error bars are not discernible on
theτ(q) plot. However, the test computer runs show that the
error increases if shorter lines are included in the partition
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Fig. 4. Comparison between the experimentalτ(q) (dots) and best-
fit model scaling exponent. The bottom plot shows the results of
fitting for τ(q) limited to q>0 and, for comparison, the scaling ex-
ponent of the structure function (squares). The error bars give the
standard deviations of the least-squares fits. In spite of different pa-
rameters, curves for Kraichnan-like and Kolmogorov-like models
are practically indistinguishable on this plot.

function calculations and the range ofq is increased. The
points in Fig. 4 appear to form a curved line rather than a
straight line, which means that the turbulence is indeed inter-
mittent.

We attempted to compare experimental results with sev-
eral intermittency models. The simplest multifractal cascade
model is thep-model (Meneveau and Sreenivasan, 1987,
1991), in which the energy cascade flux transfers from the
larger eddy to two smaller eddies with the same scale size,
but with different flux portions defined by randomly dis-
tributed probabilitiesP1 andP2=1−P1. The intermittency
parameterP1 describes the spatial inhomogeneity of the cas-
cade rate. For the case without intermittencyP1=0.5, while
for fully intermittent turbulenceP1=1. For thep-model the
partition function scaling exponent is given by:

τ (q)= − log2

[
P
q/3
1 + (1 − P1)

q/3
]
. (7)

Fig. 5. The structure function of the magnetic field shown in Fig. 2.
Curves are labeled with the powerq.

Sinceα=τ (2)+2, the maximum spectral indexα=2 allowed
by the model is achieved forP1=1. However, as pointed out
by Tu et al. (1996), the spectral index directly calculated from
the power spectrum does not need to be the same as that de-
rived from the structure function. We wish to add that the
same is true forτ(2). This is due to the fact that two meth-
ods give different weighting across time scales. For instance,
in our exampleτ(2)=−0.02±0.02, thereforeα=1.98±0.02,
which differs from the power spectrum index 2.36±0.04.
The dashed line in Fig. 4 represents the best-fitτ(q) for the
p-model. We can see that thep-model departs from obser-
vation for the positive powerq. As a quantitative measure
for the goodness-of-fit we used the chi-square test (Press et
al., 1986). Table 1 shows the values ofP1 with their rms er-
ror, and the probabilityQ that the computed fit would have a
valueχ2 (the sum of squared differences between the fit and
data) or greater. IfQ is small, then the differences between
observations and model are unlikely to be random fluctua-
tions and the model can be rejected. Except for the data set
3, the theoreticalp-model cannot be fitted satisfactorily to
the observational results.

Tu et al. (1996)(see also Marsch and Tu, 1997) introduced
an intermittency model that applies to the turbulence not fully
developed. They derived the following scaling functions for
the Kolmogorov-like cascade:

τ (q) =

(
−

5
2 +

3
2α

′

)
q
3 − log2

[
P
q/3
1 + (1 − P1)

q/3
]

α = α′
+

1
3 − log2

[
P

2/3
1 + (1 − P1)

2/3
] (8)

and for the Kraichnan-like cascade:

τ (q) =
(
−3 + 2α′

) q
4 − log2

[
P
q/4
1 + (1 − P1)

q/4
]

α = α′
+

1
2 − log2

[
P

1/2
1 + (1 − P1)

1/2
]
.

(9)

These extended intermittency models depend on two pa-
rameters, the intrinsic spectral indexα′ and intermittency
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Fig. 6. Singularity spectra of thep-model calculated directly from
the wavelet transform modulus maxima (upper) and by the Legen-
dre transform (lower). Errors were calculated and are shown only
for the Legendre transform method. Dashed curves represent the
theoretical singularity spectrum.

parameterP1. For the case without intermittencyP1=0.5,
α=α′ and τ (q)= − 1+(α−1)q/2, for both kinds of cas-
cade. ForP1=1, we haveα=α′+1/3 andα=α′+1/2, for the
Kolmogorov- and Kraichnan-like cascade, respectively. The
scaling exponent isτ(q)=(−1+α/2)q in both cases.

The least-squares fitting of experimentalτ(q) to (8) and
(9) givesP1=0.80,α′=2.18, andP1=0.87,α′=2.23, respec-
tively. The rms errors of parameters are of the order of 10−3.
To calculateα′ we used the experimentally derivedτ(2), in-
stead of the power spectral index. Both models fit data very
well, except at positiveq. In spite of different parameters,
curves for Kraichnan-like and Kolmogorov-like models are
practically indistinguishable on this plot. Best-fit results for
all analyzed Polar data segments are given in Table 1. In
general, we may say that a good agreement between data
and intermittency models is achieved, which indicates that
the basic concept of the multifractal energy cascade applies
to the turbulence in the cusp region. However, using just
the scaling function we cannot distinguish which of the two

models, Kraichnan- or Kolmogorov-like, better describes the
measurements. Tu et al. (1996) reached the same conclu-
sion when investigating the structure function of the solar
wind velocity fluctuations. We also see that the intermittency
parametersP1 obtained from the Kraichnan-like model are
systematically higher than that from the Kolmogorov-like
model, again confirming the Tu et al. result.

The bottom plot of Fig. 4 shows theτ(q) dependence re-
stricted toq>0. Except for thep-model, for which the chi-
square probabilityQ=0, the fit to the theoretical curves is
very good (Q=1). In Table 1, for the segment no. 5, entries
in italics are the model parameters derived from the trun-
catedτ(q). One can see that for the extended models they
are very close, albeit systematically smaller, to those calcu-
lated when both positive and negative powers are taken into
account. However, when attempting to calculate the singu-
larity spectra one should include in the partition function (3)
the negative values ofq. If one uses only positiveqs then
the analysis is restricted to the strongest singularities char-
acterized by the Ḧolder exponenth smaller than the most
“frequent” one.

In Fig. 4 we also show, for comparison, the results de-
rived from the structure function (squares). Theτ(q) has
been computed by linear least-squares fit to the double-
logarithmic plot logSq -log 1t shown in Fig. 5. The lower
limit of the time delay1t≈1 s is chosen to correspond
roughly to the highest frequency used in the WTMM. The
upper limit of1t≈31 s assured a reasonable fit. At this point
we note that since the fractal functions may have, at any
scale, increments close to zero, the structure function will di-
verge forq<0. Thus, the structure function method does not
provide a reliable generalization of the multifractal formal-
ism to fractal functions (Muzy et al., 1994). In addition, the
structure function is very sensitive to any outliers present in
the data. Jaffard (1994) proved mathematically that a slightly
modified WTMM method is superior to the structure function
method in giving the correct singularity spectrum for allq.

From τ(q), through the Legendre transformation (5), we
have derived the singularity spectrumD(h), which is a mea-
sure of the local scale-invariance. Local scale invariance
means that for eachh there is a fractal set with the dimen-
sionD(h) near which scaling with the exponenth holds.

The relation (5) can be rewritten as:

h = dτ/dq

D (h) = qh− τ (q) .
(10)

The Hölder exponenth has been calculated by numerical dif-
ferentiation of the functionτ(q) and used to derive the sin-
gularity spectrumD(h) from the second Eq. (10). An alter-
native method in whichh andD(h) are calculated directly
from the wavelet transform modulus maxima (Arneodo et
al., 1992), without explicitly Legendre transforming, has also
been used. Both approaches have been tested on artificially
generated data sets representingp-model. In Fig. 6 the de-
rived singularity spectra are compared with the theoretical
spectrum for the intermittency parameterP1=0.8.
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Fig. 7. Comparison ofD(h) singularity spectra obtained by Leg-
endre transforming experimentalτ(q) shown in Fig. 4 (dots with
error bars) and intermittency models: Kraichnan-like (continuous
line), Kolmogorov-like (dotted line), andp-model (dashed line).

Errors were calculated and are shown only for the Leg-
endre transform method. To quantify the disparity be-
tween the theoretical and numerical singularity spectra we
have used the mean squared deviation12

h of the theoreti-
cal and numerical scaling exponenth. We have found that
for the singularity spectrum computed directly the disparity
measure1h≈0.037, while for the Legendre transform (10)
1h≈0.023. We see that both methods give quite consistent
results with slightly better agreement for the Legendre trans-
form. Therefore, in our estimation of the experimental sin-
gularity spectra we used (10), which is more straightforward
and less computationally involved.

In Fig. 7 we depicted the functionD(h) for our sample
segment. The experimental singularity spectrum has a char-
acteristic parabolic shape, typical of other nonlinear systems,
and its support extends from 0.40 to 0.89 over the range
of qs from −4 to 4 with a maximum athmax≈0.62 and
D(hmax)≈1.00.

In Fig. 7, we also plotted theD(h) singularity spectra for
three models considered here with parameters derived from
theτ(q) dependence (see Table 1). It is clear that, in spite of
a goodτ(q) fit, the experimental singularity spectrum con-
siderably departs from the models. One may observe, how-
ever, that the disagreement depends on the model. This fact
was used to discriminate between extended models, which
was not achievable from the best fit toτ(q). In the case of
our sample data segment no. 5 the disparity measure1h is
smallest for the Kolmogorov-like model (cf. Table 2). In-
deed, Fig. 7 shows that the Kolmogorov-like spectrum has
hmax and support closest to those found in the experiment.

Singularity spectra parameters for all data sets are given
in Table 2. Thehmax varies between 0.47 and 0.62. It is in-
teresting to note that its mean value≈0.55 is not very much
different from that found for the solar wind (Marsch et al.,

Fig. 8. The Geotail solar wind magnetic field. Time intervals cor-
responding to the analyzed Polar data segments are marked with
vertical lines.

1996). When varyingq from −4 to 4, the widest range of
h is observed for the segments nos. 2 and 3. If one uses as
a criterion of the agreement between experiment and model
the values, then several types of intermittency can be distin-
guished within the analyzed data set.

Data segments nos. 2, 3, and 4 seem to conform to
the p-model, and segments nos. 5, 6, and 7 resemble the
Kolmogorov-like model. For the data segment no. 1 it is not
possible to judge which of the two extended models of inter-
mittency fit the experimental singularity spectrum better.

4 Discussion and conclusions

We have investigated the scaling properties of magnetic field
fluctuations as measured in the turbulent boundary layer. The
wavelet transform modulus maxima (WTMM) method has
been used to estimate the scaling behavior of the partition
function and the multifractal spectrum of turbulence. We
have found that their features are similar to those found in
the nonlinear multifractal systems. The experimental scal-
ing exponentτ(q) and singularity spectraD(h) have been
compared with models of the intermittent turbulence: a)p-
model, which was introduced to describe the intermittency in
the fully developed neutral fluid turbulence (Meneveau and
Sreenivasan, 1987), b) extended model, which takes into ac-
count the average energy cascade rate changes with scale and
simulates non-fully developed turbulence. Two versions of
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the extended model have been considered: Kolmogorov-like
cascade in the neutral fluid turbulence, and Kraichnan-like
cascade in the MHD turbulence (Tu et al., 1996). We have
found that the scaling exponent does not allow one to con-
clude which of the two extended models fits the experiment
better. However, comparison of the experimental and model
singularity spectra reveals that different data segments can be
described by different models. The fact that the singularity
spectra better differentiate between models is apparently due
to the fact that the singularity spectra, effectively dependent
on the derivative (gradient) of the scaling function, are more
sensitive to the model and its parameters.

The physical situation, which corresponds to different
types of turbulence, is difficult to describe in detail. Fig-
ure 8, in which the solar wind Geotail magnetic field vector
is plotted, will help further the discussion. One can see that
the time interval corresponding to the first four data segments
is characterized by variabley andz components of interplan-
etary magnetic field (IMF). Yet for set no. 3Bz is definitely
positive (northward). For this set we have found that the sin-
gularity spectrum extends over a wide range from 0.05 to
0.68 and agrees with thep-model spectrum describing a fully
developed turbulence. The corresponding intermittency pa-
rameterP1=0.81 is relatively high. Taylor and Cargill (2002)
discussed recently plasma flows when the magnetosheath
interacts with the magnetopause indentation at cusp under
northward IMF conditions. They have shown that when the
plasma velocity is in excess of the fast mode magnetosonic
wave speed, a highly turbulent, albeit thin, boundary layer
forms which enters the cusp indentation.

At times coinciding with the last three segments, the IMF
is stable with large positiveBy and negativeBz, which sug-
gests that Polar spacecraft senses plasma on open field lines
flowing toward the magnetotail. For such configuration of
IMF the reconnection in the vicinity of the sub-solar point
affects the cusp structure. In this case the scaling behavior
of the partition function and the singularity spectra reveal
that the magnetic field has a multifractal structure compatible
with the non-fully developed Kolmogorov-like (fluid) turbu-
lent cascade. This leads to the conclusion that the turbulence
is dominated by flow eddies.

The conclusions drawn here on the basis of limited data
need to be confronted with results of a more complete study.
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