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Abstract 

Scientific discovery learning is a highly self-directed and 

constructivistic form of learning. A computer simulation is a 

type of computer-based environment that is very suited for 

discovery learning, the main task of the learner being to 

infer, through experimentation, characteristics of the model 

underlying the simulation. In this article we give a review of 

the observed effectiveness and efficiency of discovery learning 

in simulation environments together with problems that learners 

may encounter in discovery learning, and we discuss how 

simulations may be combined with instructional support in order 

to overcome these problems. 
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Scientific Discovery Learning with Computer 

Simulations of Conceptual Domains 

In the field of learning and instruction we now see an 

impressive influence of the so-called “constructivistic” 

approach. In this approach a strong emphasis is placed on the 

learner as an active agent in the knowledge acquisition 

process. As in the objectivistic tradition, where developments 

were followed and encouraged by the computer based learning 

environments, such as programmed instruction, tutorials, and 

drill and practice programs (Alessi & Trollip, 1985), also 

within the constructivistic approach we find computer learning 

environments that help to advance developments. Examples are 

hypertext environments (see e.g., Gall & Hannafin, 1994), 

concept mapping environments (see e.g., Novak & Wandersee, 

1990), simulations (De Jong, 1991; Reigeluth & Schwartz, 1989), 

and modeling environments (e.g., diSessa & Abelson, 1986; 

Riley, 1990; Smith, 1986).  

In this article we concentrate on the use of computer 

simulations for learning because learning with simulations is 

closely related to a specific form of constructivistic 

learning, namely scientific discovery learning. First of all, 

we give a short introduction to the two key terms in this 

article (computer simulation and scientific discovery learning) 

followed by a short overview of studies that compared 

unsupported simulation based discovery learning to some form of 

expository teaching. These studies show that advantages of 
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simulation based learning are not always met, and suggest that 

one of the reasons for this is that learners have problems with 

discovery learning. This conclusion brings us to the main 

questions in this article: “what are problems that learners 

have in discovery learning?”, and “how can we design simulation 

environments that support learners in overcoming these 

problems?” 

Computer simulations are programs that contain a model of a 

system (natural or artificial, e.g., equipment), or a process. 

Computer simulations can broadly be divided into two types: 

simulations containing a conceptual model, and those based on 

an operational model. Conceptual models hold principles, 

concepts, and facts related to the (class of) system(s) being 

simulated. Operational models include sequences of cognitive 

and non-cognitive operations (procedures) that can be applied 

to the (class of) simulated system(s). Examples of conceptual 

models can be found in economics (Shute & Glaser, 1990), and in 

physics (e.g., electrical circuits, White & Frederiksen, 1989; 

1990). Operational models can, for example, be found in radar 

control tasks (Munro, Fehling, & Towne, 1985). Operational 

models are generally used for experiential learning, in a 

discovery learning context we mainly find conceptual 

simulations. Conceptual models still cover a wide range of 

model types such as qualitative vs. quantitative models, 

continuous vs. discrete, and static vs. dynamic models (see Van 

Joolingen & De Jong, 1991a). Models may also differ 
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considerably in complexity, and range from very simple 

straightforward models, e.g., simple Mendelian genetics (Brant, 

Hooper, & Sugrue, 1991) to very complex models, e.g., the 

medical simulation HUMAN (Coleman & Randall, 1986) in which 200 

variables and parameters can be changed. Also, specific 

characteristics like the place of variables in the model, or 

the distance between theoretical and operational variables 

characterize the conceptual model (Glaser, Schauble, Raghavan, 

& Zeitz, 1992). In scientific discovery learning the main task 

of the learner is to infer the characteristics of the model 

underlying the simulation. The learners’ basic actions are 

changing values of input variables and observing the resulting 

changes in values of output variables (De Jong, 1991; Reigeluth 

& Schwartz, 1989). Originally, the means of giving input and 

receiving output of simulation environments were rather 

limited, but now increasingly sophisticated interfaces using 

direct manipulation for input, and graphics and animations as 

outputs, are emerging (e.g., Härtel, 1994; Teodoro, 1992; 

Kozma, Russel, Jones, Marx, & Davis, 1996) with as the latest 

development virtual reality environments (see e.g., Thurman & 

Mattoon, 1994).  

Discovery learning finds its roots in the Gestalt 

psychology and the work by Bruner (1961). The field of study 

into discovery learning has, over the last few decades, moved 

away from concept discovery (as in Bruner’s studies) towards 

what has been called “scientific discovery learning” (Klahr & 



Scientific Discovery Learning with Computer Simulations 

6  

Dunbar, 1988; Reimann, 1991). Theories on scientific discovery 

learning are usually based on theories of scientific discovery. 

Rivers and Vockell (1987), for example, describe a plan (design 

experiment), execute (carry out experiment and collect data), 

and evaluate (analyze data and develop hypothesis) cycle. 

Friedler, Nachmias, and Linn (1990) say that scientific 

reasoning comprises the abilities to “(a) define a scientific 

problem; (b) state a hypothesis; (c) design an experiment; (d) 

observe, collect, analyze, and interpret data; (e) apply the 

results; and (f) make predictions on the basis of the results.” 

(p. 173). De Jong and Njoo (1992) added the distinction between 

transformative processes (processes that directly yield 

knowledge such as the ones mentioned by Friedler et al., and 

Rivers & Vockell) and regulative processes (processes that are 

necessary to manage the discovery process such as such as 

planning and monitoring). A second group of theories on 

scientific discovery learning finds its inspiration in the work 

by Simon (cf. Kulkarni & Simon, 1988; Qin & Simon, 1990; Simon 

& Lea, 1974). A major contribution in this field is Klahr and 

Dunbar’s (1988) SDDS theory (Scientific Discovery as Dual 

Search) that takes two spaces as central concepts: hypothesis 

space and experiment space. In SDDS theory, hypothesis space is 

a search space consisting of all rules possibly describing the 

phenomena that can be observed within a domain. Experiment 

space consists of experiments that can be performed with the 

domain and the outcomes of these experiments. Albeit the first 
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emphasis in SDDS theory is on the structure of the search 

spaces, Klahr and Dunbar have paid considerable attention to 

discovery processes. 

In an early overview on computer-based education, Bangert-

Drowns, Kulik, and Kulik (1985) report that simulation based 

learning does not raise examination scores. Later studies that 

contrasted (sometimes as part of a larger set of comparisons) 

learning from “pure” simulation (containing conceptual models) 

with learning from some form of expository instruction 

(computer tutorial, classroom) cover a variety of domains, such 

as biology (Rivers & Vockell, 1987), economics (Grimes & 

Willey, 1990), Newtonian mechanics (Rieber, Boyce, & Assad, 

1990; Rieber & Parmley, 1995), and electrical circuits (Carlsen 

& Andre, 1992; Chambers et al., 1994). Sometimes the single 

simulation is compared to expository instruction (Rieber & 

Parmley, 1995), but quite often a comparison is made between a 

simulation embedded in a curriculum or expository instruction 

and the curriculum or expository instruction as such (Carlsen & 

Andre, 1987; Chambers et al., 1994; Grimes & Willey, 1990; 

Rieber et al., 1990; Rivers & Vockell, 1987). Also, in some 

cases, the expository instruction to which the simulation is 

compared is “enhanced”, e.g., by “conceptual change features” 

(Chambers et al., 1994) or by questions (in one condition of 

Rieber et al., 1990). As an overall picture, favorable results 

for simulation based learning are reported in the study by 

Grimes and Willey (1990), and no difference between simulation 
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based learning and expository teaching is reported by Carlsen 

and Andre (1992), and Chambers et al. (1994). A mixture of 

favorable and no difference results was found between several 

sub-studies by Rivers and Vockell (1987). In Rieber et al. 

(1990) the group of students receiving a simulation in addition 

to a tutorial scored higher on a test measuring “application of 

rules” than the tutorial only group, but scored at the same 

level as a tutorial group that received additional questions 

while learning. In Rieber and Parmley (1995) subjects who 

received only an unstructured (pure) simulation fell short of 

the performance of subjects receiving a tutorial. 

The general conclusion that emerges from these studies is 

that there is no clear and univocal outcome in favor of 

simulations. An explanation why simulation based learning does 

not improve learning results can be found in the intrinsic 

problems that learners may have with discovery learning. In the 

above mentioned studies, Chambers et al. (1984), for example, 

analyzed the videotapes of students working with the simulation 

and noticed that students were not able to deal with unexpected 

results and that students did not utilize all the experimenting 

possibilities that were available. Also studies that compared 

learning behavior of successful and unsuccessful learners in 

simulation learning environments (e.g., Schauble, Glaser, 

Raghavan, & Reiner, 1991) have pointed to specific shortcomings 

of learners. For this reason, in a number of studies, 

additional instructional measures are suggested to help 
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learners overcome the problems that they may have with 

scientific discovery learning.  

In the discussion that follows, we provide an overview of 

potential problems with scientific discovery learning with 

simulations and search for guidance in dealing with these 

problems. In addition, we examine studies that have looked at 

the effect of combining simulations with various instructional 

support measures for learners. The literature that serves as 

the framework for this discussion comes from several sources. 

First, we began with documents from two relevant research 

programs – Laboratory for Research and Development in Cognition 

and Carnegie Mellon (e.g., Klahr and Dunbar, 1988; Reimann, 

1991; Schauble et al., 19991; Shute & Glaser, 1990). Not only 

were these documents useful in organizing this review, but they 

were also valuable resources in locating additional studies of 

scientific discovery learning with computer simulations. Next, 

we searched on-line retrieval systems (e.g., Educational 

Resources Information Center) using the main descriptor of 

“computer simulation(s)”. This rendered (in the June 1997 

version of ERIC) 2073 writings. Since the combination with 

“discovery (learning or processes)” gave a set of papers that 

did not contain some relevant papers we knew of, we examined 

the ERIC descriptions of all 2073 papers. We also solicited 

papers that had been presented at national and international 

conferences that address the topic of computer simulations 

(e.g., American Educational Research Association, European 
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Association for Research on Learning and Instruction, World 

Conference on Artificial Intelligence in Education, and the 

International Conference on Intelligent Tutoring Systems), and 

examined the contents of edited volumes published over the last 

five years. Furthermore, we engaged in a physical search of 

selected research journals likely to publish studies dealing 

with computer simulations. These journals included the Journal 

of Research in Science Teaching, Computers & Education, Journal 

of Computer-Based Instruction, Instructional Science, and the 

Journal of the Learning Sciences. For our topic of discovery 

learning with computer simulations we found four types of 

papers. First, we found papers that we would like to call 

engineering studies, in which a learning environment is merely 

described. The second type of papers concerns conceptual papers 

that deal with theoretical issues on discovery learning and 

simulations. Thirdly, we found papers in which empirical data 

were gathered (through e.g., log files or thinking aloud 

procedures) on discovery learning processes. In the fourth type 

of papers experimental studies are described in which 

simulation environments are evaluated against expository 

teaching, or in which different versions of basically the same 

simulation environment are compared. Our selection process was 

guided by the following criteria. First, we excluded 

experimental papers if they did not use carefully controlled 

experimental designs, and/or did not have well-defined 

performance measures. Secondly, we targeted original studies 
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for this review and excluded subsequent writings that merely 

recast a previous study or repeated the same argumentation. 

Problems that Learners Encounter in Discovery Learning 

In the following subsections we identify a number of 

characteristic problems that learners may encounter in discovery 

learning, and classify them according to the main discovery 

learning processes: hypothesis generation, design of 

experiments, interpretation of data, and regulation of learning. 

Hypothesis Generation 

Finding new hypotheses is generally recognized as a 

difficult process (Chinn & Brewer, 1993), that clearly 

distinguishes successful and unsuccessful learners (Schauble, 

Glaser, et al., 1991). An important problem here is that 

learners (even university students) simply may not know what a 

hypothesis should look like. Njoo and De Jong (1993a) assessed 

the “validity” of learning processes of 91 students of 

mechanical engineering working on a simulation on control 

theory. They observed the syntactical correctness of the 

learning processes that students wrote down on “fill-in forms”. 

For example, for the process of generating a hypothesis they 

examined whether it consisted of variables and a relation 

between them, not if the hypothesis was correct in the domain. 

Njoo and De Jong found an average score of 42% correctness of 

processes, and even lower scores for the process of generating 

hypotheses. 

A second problem is that learners may not be able to state 
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or adapt hypotheses on the basis of data gathered. Klahr and 

Dunbar (1988) found that in 56% of observed cases students 

failed to draw the right conclusions from disconfirming 

experiments: i.e., hypotheses were retained incorrectly on the 

basis of a negative experimental result. Other studies also 

emphasize the resistance of learners to theoretical change. 

Chinn and Brewer (1993) present seven typical learners’ 

reactions to anomalous data, of which only one is the adaptation 

of the theory on the basis of the data. They give a large number 

of studies in which it was found that learners ignored anomalous 

data (see also Chambers et al., 1994), in which they reject 

them, hold them in abeyance, reinterpret them and retain the 

theory, or reinterpret them and make marginal changes to the 

theory (Chinn & Brewer, 1993, p. 4). Also Dunbar (1993) found 

evidence in his studies that subjects have an overall difficulty 

with dropping an original goal, which leads to a persistence of 

keeping an hypothesis and not stating a new one. As an 

explanation, Dunbar (1993) mentions what he calls the “unable-

to-think-of-an-alternative-hypothesis” phenomenon, meaning that 

subjects stick to their current hypothesis (despite conflicting 

evidence) simply because they have no alternative. These 

findings may lead to the general assumption that people have a 

strong tendency to keep their original ideas. However, Klahr 

and Dunbar (1988) also found a reverse effect, learners 

rejecting hypotheses without a disconfirming outcome of an 

experiment. This general problem of translating data into theory 
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is illustrated in a study by Kuhn, Schauble, and Garcia-Mila 

(1992) who found that subjects (ten year olds) changed their 

ideas on the causality of a domain variable many times (10 to 11 

times) during an experimentation session. The frequent change of 

ideas can partly be explained by the fact that subjects in Kuhn 

et al.’s study employed a large repertoire of what Kuhn et al. 

call “invalid inferences”. So, subjects for example made 

inferences about causality on a single instance or made 

inferences about a variable that had not been changed in two 

experiments. One aspect that may well influence the ability to 

adapt hypotheses on the basis of data is the distance between 

the theoretical variables and the variables that are 

manipulated in the simulation (Van Joolingen & De Jong, 1997). 

Glaser et al. (1992) assert that in the environments Voltaville 

(on d.c. circuits) and Refract (on refraction of light) it is 

easier for subjects to see the relation between their 

manipulations of lenses, distances, resistances etc. and the 

characteristics of the theoretical model than in an environment 

such as Smithtown (on economics) where a larger distance exists 

between theoretical variables and the variables that can be 

manipulated in the simulation. 

A third problem in stating hypotheses is that learners can 

be led by considerations that not necessarily help them to find 

the correct (or best) theoretical principles. Van Joolingen & 

De Jong (1993) describe a phenomenon that they called fear of 

rejection. In an analysis of the use of a so-called “hypothesis 
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scratchpad” by 31 students they found that subjects tend to 

avoid hypothesis that have a high chance of being rejected, for 

example hypotheses in which the relation has a high level of 

precision. A similar phenomenon was described by Klayman and Ha 

(1987), and by Klahr, Fay, and Dunbar (1993).  

Design of Experiments 

A crucial aspect of scientific discovery is the design of 

experiments that provide information for deciding upon the 

validity of an hypothesis. In case that a learner does not yet 

have a hypothesis, well designed experiments can be used to 

generate ideas about the model in the simulation. Klahr, 

Dunbar, and Fay (1991) identified a number of successful 

heuristics for experimentation in the BigTrak environment 

(which concerns the operation of a programmable robot). For 

experiment design they mention: design simple experiments to 

enable easy monitoring, design experiments that give 

characteristic results, focus on one dimension of a hypothesis, 

exploit surprising results, and use the a priori strength of a 

hypothesis to choose an experimental strategy (Klahr et al., 

1991, pp. 388-391). In literature we find a number of phenomena 

that point to learners who use poorly designed experiments. 

The first phenomenon, confirmation bias, is the tendency to 

seek for information that confirms the hypothesis they have, 

instead of trying to disconfirm the hypothesis. In classical 

experiment Wason’s (1960) found confirmation bias for a rule 

discovery (2-4-6) task in which seeking confirming evidence is 
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not the best strategy to use (Klayman & Ha, 1987). Dunbar 

(1993) showed, in a simulation environment, that some students 

have a strong inclination to search for evidence that support 

their current hypothesis, and that this inclination may prevent 

them to state an alternative hypothesis, even when they are 

confronted with inconsistent evidence. In an experiment with a 

simulation on the spread of an influenza epidemic Quinn and 

Alessi (1994) found that only in a small number of cases (one 

out of six in a sample of 179 subjects) students conducted 

experiments with the intention of “eliminating” hypotheses. In 

their study students were asked before running an experiment to 

choose the purpose of the experiment from a series of 

alternatives presented. 

The second phenomenon describes learners who design 

inconclusive experiments. One of the best known examples is 

described in Wason’s card turning experiment (Wason, 1966). 

This phenomenon, that is analogous to the phenomenon of 

confirmation bias, shows that subjects do not always behave as 

“logical thinkers”, and do not perform the most effective 

actions to test an hypothesis. In the context of discovery 

learning with simulations, Glaser et al. (1992) point to a 

frequently observed phenomenon that learners tend to vary too 

many variables in one experiment, resulting in that they cannot 

draw any conclusions from these experiments. Reimann (1991) 

observed in the domain of optics that subjects perform poorly 

designed experiments, that do not allow them to draw univocal 
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conclusions. In two studies, Van Joolingen and De Jong (1991b; 

1993) found that learners often designed experiments in which 

variables were manipulated which had nothing to do with the 

hypothesis they were testing. The percentage of effective 

experiments could be as low as 22%. Shute and Glaser (1990) and 

also Schauble, Glaser, et al. (1991) report that unsuccessful 

learners do not gather sufficient data before drawing 

conclusions. 

A third phenomenon is that subjects show inefficient 

experimentation behavior. For example, Kuhn et al.(1992) found 

that subjects did not use the whole range of potential 

informative experiments that were available, but only a limited 

set, and moreover designed the same experiment several times.  

A fourth phenomenon describes learners that construct 

experiments that are not intended to test a hypothesis. 

Schauble, Klopfer, and Raghavan (1991) identified what they 

have called the “engineering approach”, which denotes the 

attitude to create some desirable outcome instead of trying to 

understand the model. An engineering approach, as compared to 

the scientific approach, leads to a much less broad search and 

to a concentration on those variables where success is 

expected, and as a consequence this approach may prevent 

learners from designing experiments that provide sufficient and 

well organized data for discovering all relevant domain 

relations. This engineering approach was also found by 

Schauble, Glaser, Duschl, Schulze, and John (1995), and Njoo 
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and De Jong (1993a). A comparable phenomenon was found by White 

(1993) who reported that students created experiments that were 

“fun” (students had worked with games in White’s simulation 

environment) instead of experiments that provided insight into 

the model.  

Interpretation of Data 

Once having performed correct experiments, data that come 

from these experiments needs to be interpreted before the 

results from the experiments can be translated into hypotheses 

on the domain. According to Schauble, Glaser, et al. (1991) 

successful learners are more proficient in finding regularities 

in the data than unsuccessful learners. Klahr et al. (1993) 

found that subjects made misencodings of experimental data 

ranging from a mean of 35% of at least one misencoding, to a 

high 63% depending on the type of actual rule involved. And 

indeed, as Klahr et al. state: “Compared to the binary feedback 

provided to subjects in the typical psychology experiment, real-

world evidence evaluation is not so straightforward” (p. 114). 

They report that, in the case of misinterpreting data, this most 

likely resulted in a confirmation of the current hypothesis, 

thus suggesting that the hypothesis that a subject holds may 

direct the interpretation of data (see also Chinn & Brewer, 

1993, and Kuhn et al., 1992). 

Also the interpretation of graphs, a frequently needed 

skill when interacting with simulations, is clearly a difficult 

process. Linn, Layman, and Nachmias (1987) compared a group of 
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students who worked with “microcomputer-based laboratories” 

(MBL) with students from traditional classes. In the MBL 

students carried out experiments in the physics field of heat 

and temperature. Output of these experiments was given in the 

form of dynamically generated graphs. Linn et al. (1987) found 

that students graphing abilities increased because of working 

with the MBL, but that on the more complicated graphing skills 

(for example comparing different graphs) difficulties still 

existed after the MBL course. Mokros and Tinker (1987) placed 

students in computer labs, where they could generate graphs on 

the basis of experiments, and were encouraged to make graphical 

predictions. They found that the problems that children 

initially had with interpreting graphs, quickly disappeared.  

Regulation of Discovery Learning 

For regulative processes it is frequently reported that 

successful learners use systematic planning and monitoring, 

whereas unsuccessful learners work in an unsystematic way 

(e.g., Lavoie & Good, 1988; Simmons & Lunetta, 1993). Shute and 

Glaser (1990) claim that successful learners plan their 

experiments and manipulations to a greater extent, and pay more 

attention to data management issues. Glaser et al. (1992) 

report that successful discoverers followed a plan over 

experiments, whereas unsuccessful ones used a more random 

strategy, concentrating at local decisions, which also gave 

them problems to monitor what they had been doing (see also 

Schauble, Glaser, et al., 1991). Though Glaser et al. (1992) 
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mention persistence to follow a goal as a characteristic of 

good learners, these successful subjects also were ready to 

leave a route when it apparently would not lead to success. 

Goal setting is also reported as a problem (for subjects with 

low prior knowledge) by Charney, Reder, and Kusbit (1990). In a 

more general way Veenman and Elshout (1995) found that, over a 

number of studies, individuals with a high intellectual ability 

showed a better working method than individuals with a low 

intellectual ability, but also that working method had its own 

contribution to learning outcome on top of intellectual 

ability. For the process of monitoring differences between 

successful and unsuccessful learners are reported by Lavoie and 

Good (1988) who found that good learners make more notes during 

learning, and by Schauble, Glaser, et al. (1991) who found a 

more systematic data recording for successful learners. 

Combining Simulations and Instructional Support 

The previous section presented a number of characteristic 

problems in scientific discovery learning. A number of 

researchers and designers have recognized these problems and 

provided, in line with the developments in concept discovery 

learning (see e.g., Mayer, 1987), learners with support for 

learning with a simulation. In the current section we summarize 

a number of methods to support learners in the discovery 

process. The first means of support we describe is to provide 

the learner with direct access to domain information. 

Subsequently, we present support measures that aim to support 
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the learner in specific discovery processes.  

Direct Access to Domain Knowledge 

A frequently uttered claim about learning with simulations 

is that learners should already know something before discovery 

learning is to become fruitful. Insufficient prior knowledge 

might be the cause that learners do not know which hypothesis to 

state, can not make a good interpretation of data, and move to 

unsystematic experimentation behavior (Glaser et al., 1992; 

Schauble, Glaser, et al., 1991). Several authors have 

introduced access to extra information as a support measure in 

a simulation environment, quite often in the form of a (more or 

less sophisticated) hypertext/hypermedia system (Glaser, 

Ragahvan, & Schauble, 1988; Lajoie, 1993; Shute, 1993; Thomas & 

Neilson, 1995). Shute (1993) described an ITS on basic 

principles of electricity in which learners could ask for 

definitions of concepts (e.g. ammeter, ampere, charge, circuit, 

current ...) by selecting a term from a menu and follow 

hypertext links. Shute (1993) reports positive effects of use 

of this on-line hypertext dictionary on a composite post-test 

measuring declarative and conceptual knowledge, problem 

solving, and transfer of knowledge and skills. A number of 

authors point to the critical aspect of timing of the 

availability of information. Berry and Broadbent (1987) found 

that providing information at the moment it is immediately 

needed by the learner is much more effective than providing all 

information needed before interaction with a simulation. In 
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Leutner’s (1993) study, a simulation was used of a fairly 

complex agricultural system in which the students’ assignment 

was to optimize the agricultural production. Leutner provided 

students with information (consisting of domain concepts, facts, 

rules, and principles) before interacting with a simulation, or 

information (background information on system variables) while 

interacting with the simulation. Leutner found that permanently 

available information helped learners to acquire domain 

knowledge (knowledge of concepts, rules, and principles), but 

that information provided before the simulation was not 

effective. For acquiring functional knowledge (ability to 

optimize the outcome of the simulation) the same pattern was 

found, but here results are less direct since providing the 

information before or during the interaction with the simulation 

was combined with more or less elaborate experimentation advice. 

Also, Elshout and Veenman (1992) report that subjects who 

received domain information before working in a simulation 

environment (on heat theory) did not profit from this 

information. 

Information cannot only be provided by the learning 

environment, but must also be invoked from learners’ memory. 

Support measures can stimulate learners to confront their prior 

knowledge with the experimental outcomes. In order to achieve 

this, Lewis, Stern, and Linn (1993) provided learners with an 

electronic notation form to note down “everyday life examples” 

of phenomena they observed in a simulation environment (on 
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thermodynamics). 

Support for Hypothesis Generation 

Hypothesis generation is a central process in discovery 

learning. Several studies have created support to overcome the 

problems that learners have with this process. Smithtown (Shute 

& Glaser, 1990) offers the learner support for hypothesis gen-

eration by means of a hypothesis menu. This menu consists of 

four windows which present parts of a hypothesis e.g., vari-

ables, verbs to indicate change, and connectors. A similar 

means of support is a hypothesis scratchpad (Van Joolingen & De 

Jong, 1991b; 1993). Here, learners are offered different win-

dows for selecting variables, relations, and conditions. These 

two approaches offer learners elements of hypotheses that they 

have to assemble themselves. A more directive support for 

creating hypotheses can be found in CIRCSIM-TUTOR (Kim, Evans, 

Michael, & Rovick, 1989), an ITS in the domain of medicine 

which treats problems associated with blood pressure where 

students are asked to state qualitatively what will happen to 

seven components of the cardio-vascular system. To be able to 

write this down learners are offered a predefined spreadsheet. 

One step further is to offer learners complete hypotheses. In 

“Pathophysiology Tutor” (PPT) (Michael, Haque, Rovick, & Evens, 

1989) learners can select from a list of predefined hypothesis, 

ordered in nested menus providing lists of hypotheses in the 

field of physiopathology. Njoo and De Jong (1993a; 1993b) have 

used similar techniques. They conclude that offering predefined 
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hypothesis to learners positively influences the learning 

process and the performance of learners. Quinn and Alessi 

(1994) forced students to write down, before experimenting, in 

a simulation a single most plausible hypothesis, or a list of 

more than one plausible hypotheses. The idea is that having 

more hypotheses available will lead to a strategy of 

elimination, which could be better than focusing on one 

hypothesis at a time. Their data showed that the multiple 

hypothesis strategy indeed lead to more effective performance 

(reaching a required state of the simulation), but only if the 

complexity of the simulation was low. At higher levels of 

complexity in the simulation no advantage of the multiple 

hypotheses strategy over the single hypothesis strategy could 

be found. The higher effectiveness of the multiple hypotheses 

strategy could have been enhanced by the fact that one of the 

variables included had a counterintuitive result. 

Support for the Design of Experiments 

To support a learner in designing experiments the learning 

environment can provide experimentation hints. In Rivers and 

Vockell (1987) some examples of such hints are given, like “it 

is wise to vary only one variable at a time”. They provided 

learners with such general experimentation hints before 

students worked with computer simulations. This did not effect 

the learning outcome, but it had an affect on the students’ 

experimentation abilities. Hints can also be generated 

dynamically on the basis of the actual experimentation behavior 
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of learners. Hints are then presented if a learner displays 

non-optimal learning behavior. An example of a system 

containing this type of hints is Smithtown (Shute & Glaser, 

1990). Leutner (1993) studied the effect of providing learners 

with adaptive advice of this kind. He found that if the advice 

has a limited character it helps to increase the learner’s 

domain knowledge, but hinders the acquisition of functional 

knowledge. After giving more detail to the advice it also 

helped to increase the functional knowledge, though the effect 

is less clear since it was combined with giving extra domain 

information. 

Support for Making Predictions 

While a hypothesis is a statement on the relations between 

variables in a theoretical model, a prediction is a statement on 

the value(s) of a dependent variable under the influence of 

values of the independent variable(s) as they can actually be 

observed in the simulation. One specific way to help learners 

express predictions is to give them a graphing tool in which 

they can draw a curve that depicts the prediction. Lewis et al. 

(1993) provided learners with such a tool. Feedback is given to 

learners by drawing the correct curve in the same diagram in 

which the learner’s prediction was drawn. Tait (1994) describes 

a similar mechanism, but in his case feedback also includes 

explanations of the differences between the system’s and the 

learner’s curve. Reimann (1991) who describes an environment on 

the refraction of light provided learners with the opportunity 
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to give predictions at three levels of precision: as numerical 

data, as a drawn graph, and as an area in which the graph would 

be located. 

Support for Regulative Learning Processes 

Regulative processes are the processes that manage the 

learning process. Regulative aspects such as “planfulness and 

systematicity” are regarded to be central characteristics of 

successful discovery learning (Glaser et al., 1992; Schauble et 

al., 1995). The two most central regulative processes are 

planning and monitoring (De Jong & Njoo, 1992). Planning and 

monitoring are both supported by introducing model progression 

in the simulation environment. Next to model progression, we 

found specific measures for supporting planning or monitoring. 

Finally, regulative processes can be supported by structuring 

the discovery process. 

Model progression. The basic idea behind model 

progression is that presenting the learner with the full 

complexity of the simulation at once may be too overwhelming. 

In model progression the model is introduced gradually, step by 

step. White and Frederiksen’s (1989; 1990) work on QUEST is one 

of the best known examples where the idea of model progression 

has been applied. QUEST treats electrical systems and models of 

electrical circuits in QUEST differ in their order (qualitative 

or quantitative models), degree of elaboration (number of 

variables and relations between variables), and perspective. 

While learning with QUEST, learners are confronted with models 
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that advance from a qualitative to a quantitative nature, that 

are more elaborated, and that transform from a functional to a 

physical perspective. In this respect the instructional 

sequence follows the (assumed) transition from a novice 

knowledge state to an expert one. As far as we know, no 

controlled evaluation of QUEST has been undertaken. Model 

progression in which the model increases in complexity for the 

learner was studied in Swaak, Van Joolingen, and De Jong 

(1996). SETCOM is a simulation on harmonic oscillation where 

the model develops from free oscillation, through damped 

oscillation to oscillation with an external force. Swaak et al. 

(1996) found that model progression was successful in enlarging 

the students’ intuitive knowledge (but not their conceptual 

knowledge) as compared to an environment without model 

progression. In a study in a different domain, but within the 

same type of environment, De Jong et al. (1995) could not find 

effects of providing learners with model progression on top of 

giving them assignments. Quinn and Alessi (1994) performed a 

study in which students had access to a simulation (on the 

spread of a disease within a population) with four input 

variables. One group started off with access to all four input 

variables, one group exercised with three variables before 

proceeding to the full simulation, and the last group started 

with having access to two variables, proceeding to three and 

ending with all four. In all cases students had to minimize the 

value of one of the output variables. Their data revealed that 
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model progression had no overall positive effect on performance. 

Model progression, however, proved to be less efficient than 

providing the students directly with full complexity. It should 

be noted, that the domain that was used by Quinn and Alessi, was 

quite simple: the variables in the model did not interact. In 

another study on a more complex simulation of a multimeter, 

Alessi (1995) found that gradually increasing the level of 

complexity of the interface was beneficial for initial learning 

and for transfer. Also, Rieber and Parmley (1995) found, in the 

area of Newtonian motion, that subjects learning with a 

simulation that presented an increasing control over variables, 

scored significantly higher at a test measuring application of 

rules, than subjects who could exercise control in its full 

complexity from the start. 

Planning support. Planning support may, as Charney et al. 

(1990) have postulated, be especially helpful for subjects who 

have low prior knowledge. Planning support takes away decisions 

from learners and in this way helps them in managing the 

learning process. Support for planning can be given in different 

ways. Already quite early in the use of simulations for 

scientific discovery learning, Showalter (1970) recommended to 

use questions as a way to guide the learner through the 

discovery process. His questions (e.g. “Do rats ever reach a 

point at which they don’t learn more?”, p. 49) focused the 

learners attention to specific aspects of the simulation. 

Zietsman and Hewson (1986) used similar types of questions in 
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conjunction with a simulation on “velocity”, and Tabak, Smith, 

Sandoval, and Reiser (1996) have added such questions with the 

aim of setting goals in a biological simulation. White (1984) 

helped learners to set goals in a simulation of Newtonian 

mechanics by introducing games. Games, as White uses them, ask 

learners to reach a specific state of the simulation (e.g. to 

get a spaceship in the simulation around a corner without 

crashing into any walls (p. 78). In an experiment White found 

that learners who learned with a simulation that contained 

games, outperformed learners who worked with the pure simulation 

on a test of qualitative problems (asking questions of the form 

“What would happen if ..?” or “How could one achieve ...?” (p. 

81)). Also, in the ThinkerTools environment (White, 1993) games 

are used in a similar context as in White (1984). De Jong et al. 

(1994) describe different types of assignments that can be used 

in combination with simulations, among others investigation 

assignments that prompt students to find the relation between 

two or more variables, specification assignments that ask 

students to predict a value of a certain variable, and 

explicitation assignments that ask the student to explain a 

certain phenomenon in the simulation environment. In De Jong et 

al. (1995) using a simulation on collisions, Swaak et al. (1996) 

using a simulation on harmonic oscillation, and De Jong, Härtel, 

Swaak, and Van Joolingen (1996) using a simulation on the 

physics topic of transmission lines it was found that students 

(who were free to choose) used assignments very frequently, and 
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that using assignments had a positive effect on gaining what 

they call “intuitive” knowledge.  

Monitoring support. Support for monitoring one’s own 

discovery process can be given by overviews of what has been 

done in the simulation environment. Reimann (1991) provided 

learners in Refract with a notebook facility for storing 

numerical and nominal data from experiments. Data in the 

notebook could be manipulated so that experiments could be 

sorted on values for a specific variable, experiments could be 

selected in which a specific variable has a specified value, 

and an equation could be calculated over experiments. Also the 

student could replay experiments from the notebook. Similar 

notebook facilities are present in Smithtown (Shute & Glaser, 

1990) and Voltaville (Glaser et al., 1988). In SHERLOCK 

learners can receive upon request an overview of all the 

actions they have taken so far (Lesgold, Lajoie, Bunzo, & 

Eggan, 1992). Schauble, Raghavan, and Glaser (1993) presented 

monitoring support that not only provided an overview of 

students’ actions, but also offered the opportunity to group 

actions under goals, and to ask for an “expert view” that gives 

the relevance of the student’s actions in the context of a 

specific goal (e.g. to find the relation between two 

variables). This support in fact combines monitoring and 

planning support. In all the examples presented here, learners 

have to select previous experiments for comparison from the 

complete set of experiments themselves. Reimann and Beller 



Scientific Discovery Learning with Computer Simulations 

30  

(1993) propose a system (CABAT) that selects previous 

experiments on the basis of similarity and proposes this 

experiment to the learner for comparison. 

 Structuring the discovery process. Regulative processes 

can also be supported by leading the learner through different 

stages of the process. Several studies have compared the 

effects of structured environments (where structuring is quite 

often combined with several other measures) with “unstructured 

environments”. Linn and Songer (1991) found providing students 

with a sequence of experimentation steps (“before doing the 

experiment”, “now do the experiment”, “after doing the 

experiment”) and with more detailed directions in each of these 

steps was effective. They report that up to two and four times 

as many students were able to distinguish between central 

concepts from the domain (heat and temperature) compared to a 

version that was not structured. Njoo and De Jong (1993b) had 

learners (students of mechanical engineering) work with a 

simulation (on control theory) together with forms that had 

separate cells for writing down: variables and parameters, 

hypotheses, experiment, prediction, data interpretation, and 

conclusion. On a test that measured “qualitative insight” the 

structured group outperformed a group who worked with the 

single simulation environment. Gruber, Graf, Mandl, Renkl, and 

Stark (1995) gave half of their subjects (60 students of a 

vocational economics school) instruction for making predictions, 

comparing predictions to outcomes, and for drawing inferences. 
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The other half received no guidance. The simulation used was in 

the field of economics, a jeans factory for which profit should 

be maximized. On a knowledge test in which students had to make 

predictions in new situations, the guidance group outperformed 

the non-guidance group. White (1993) in her ThinkerTools 

environment forced subjects to follow a four phases sequence of 

activities of “asking questions, doing experiments, formulating 

laws, and investigating generalizations” (White, 1993, p. 53), 

and provided more detailed indications in each phase. White 

found a clear advantage for a simulation based curriculum 

compared to a traditional curriculum on a test that measured 

qualitative predictions in real-world situations. In a number 

of experiments Veenman and Elshout compared the learning 

behavior and learning result of learners working with a 

“structured” and an “unstructured” simulation environment. In 

the “unstructured” simulation subjects did not receive any 

instructional guidance. In the structured (or “meta-cognitive 

mediation”) condition, subjects received “task assignments” and 

were prompted to “paraphrase the question, to generate a 

hypothesis, to think out a detailed action plan, and to make 

notes of it”, Also, after they had performed a series of 

actions, they were “requested to evaluate their experimental 

outcomes”, to “draw a conclusion elaborating on the subject 

matter, and to make notes” (e.g., Veenman, Elshout, & Busato, 

1994, p. 97). The domains involved were simple electrical 

circuits, heat theory, and statistics. In an overall analysis 
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of the data of four of their studies Veenman and Elshout (1995) 

found no overall effect of structuring the environment. At a 

more detailed level they found evidence that low intelligence 

subject with a poor working method profit from structuring the 

environment, whereas this is not true for low intelligent 

subjects with a good working method, and not so for high 

intelligent subjects regardless of their working method. In 

this overall analysis several performance measures (including 

test for factual knowledge and problem solving tasks) were 

combined into a single performance score. 

We found two studies in which a comparison was made between 

a structured simulation environment and traditional, expository, 

instruction. Lewis et al. (1993) required learners to make 

predictions before doing an experiment, and to write down 

“graph comparisons” and “conclusions” after the experiment. 

Additionally, learners were encouraged to write down “every day 

examples”, “important points”, “confusion about” and “example 

of concept” notes (Lewis et al., 1993, p. 48). This was done in 

an electronic form using a “post-it” metaphor. Lewis et al. 

found that a higher percentage of students was able to give 

correct answers to items requiring a fundamental understanding 

of the difference between heat and temperature as compared to 

students following the traditional curriculum in the preceding 

year. In Smithtown (Shute & Glaser, 1990) learners are taken by 

the hand and led through a fixed sequence of actions, that is a 

little less strict than, for example the sequence from Lewis et 
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al. (1993). In Smithtown, learners are only asked if they want 

to make a prediction before experimentation and they are not 

forced to do this. Smithtown not only includes structuring, but 

also a wealth of other supportive measures. An evaluation of 

Smithtown, using a test that required recall of concepts, 

failed to show an advantage of learning with Smithtown over a 

traditional lesson (though learning with Smithtown was far more 

efficient). 

Conclusion and Discussion 

In this study we gave an overview of studies in scientific 

discovery learning with computer simulations of conceptual 

domains. From studies that empirically examined the discovery 

learning process we can conclude that a number of specific 

skills are needed for a successful discovery. Generally, one 

can say that successful discovery learning is related to 

reasoning from hypotheses, to applying a systematic and planned 

discovery process (like systematic variation of variable 

values), and to the use of high quality heuristics for 

experimentation. These skills may have a general character, but 

can also be more closely related to a domain (Glaser et al., 

1992). Several characteristic problems in the discovery process 

were identified. For the process of hypothesis generation 

weaknesses are choosing hypotheses that seem “safe”, and the 

weak transformation of data into a hypothesis, both when the 

data are confirming and when they are disconfirming. For 

designing experiments we found reports on learners who design 
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inconclusive experiments, who show inefficient experimentation 

behavior, who follow a confirmation bias, and who apply an 

engineering instead of a scientific approach. Furthermore, 

learners quite often have trouble with the interpretation of 

data as such. A final problem that is reported is that students 

are not very capable in regulating the learning process which 

is expressed in unstructured behavior drifted by local 

decisions without overall plan, and in insufficient monitoring 

of the learning process. 

We also examined instructional measures that are used 

together with simulations. Quite a few of the studies in which 

instructional measures were introduced were still in the 

engineering phase and did not evaluate the effect of the 

instructional measure in a controlled manner. Other studies in 

which the effect of adding instructional measures were 

evaluated, used combinations of instructional measures so that 

the effect of a specific measure could not be traced. On the 

basis of the remaining studies three individual instructional 

measures can be seen as measures that have the promise of 

having a positive influence on learning outcomes. First, 

providing direct access to domain information seems effective 

as long as the information is presented concurrently with the 

simulation so that the information is available at the 

appropriate moment. Secondly, providing learners with 

assignments (or questions, exercises, or games) seems to have a 

clear effect on the learning outcome. Thirdly, learners who use 



Scientific Discovery Learning with Computer Simulations 

35  

an environment that includes model progression perform better 

than learners using the same environment without model 

progression, though it seems that the model needs to be 

sufficiently complex to reach this effect. For other individual 

measures the evidence is not substantial enough to warrant 

general conclusions (e.g., hypothesis support, experimentation 

hints, monitoring tools, prediction support). Finally, a number 

of studies on structuring the environment show that this may 

lead to more effective learning than using an unstructured 

environment, though it should be noted that structuring the 

environment in all these studies not only involved dividing up 

the learning process in distinguished steps, but also included 

other instructional measures. 

A crucial aspect of scientific discovery learning is the 

instructional goal for which it is used. Following the original 

ideas on discovery learning, it is frequently claimed that 

scientific discovery learning leads to knowledge that is more 

intuitive and deeply rooted in a learner’s knowledge base 

(Berry & Broadbent, 1984; Laurillard, 1992; Lindström, Marton, 

Ottosson, & Laurillard, 1993; Swaak & De Jong, 1996) that has a 

more qualitative character (White, 1993), and that results of 

simulation based learning are only properly measured by “tests 

of application and transfer” (Thomas & Hooper, 1991, p. 500). 

Support for this claim is found in studies by Berry and 

Broadbent (1984) who showed that while simulations can be 

effective in training the ability to acquire a certain state in 
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the simulation, this does not necessarily mean that the 

associated conceptual knowledge is learned as well. This lack 

of a relation between “explicable” knowledge and “functional 

knowledge” was also found for a simulation on business by 

Anderson and Lawton (1992), Newtonian motion (with children) by 

Flick (1990), on kinematics by McDermott (1990), on collisions 

(De Jong et al., 1995; Whitelock et al., 1993), on a complex 

agricultural simulation (Leutner, 1993), in an economics sub-

domain (Mandl, Gruber, & Renkl, 1994), for acceleration and 

velocity (Rieber et al., 1996; Rieber, 1996), and on harmonic 

oscillations (Swaak et al., 1996). In the studies that we cited 

in this overview we find support for the importance of 

“intuitive” or “deep” knowledge for discovery learning. In 

studies that compared simulation with expository teaching, 

Grimes and Willey (1990), for example, used a test with items 

that asked for “recognition and understanding”, “explicit 

application”, or “implicit application”. In their study, the 

simulation group, having an overall advantage over the control 

group, was specifically successful in items measuring implicit 

application. In Carlsen and Andre (1992), simulation groups had 

no higher score on the posttest than a no simulation group, but 

when the items were analyzed (by looking at the alternatives 

chosen) on the mental model that students had acquired, 

students from the simulation groups showed more advanced 

models. Rieber et al. (1990) used a test to measure the ability 

to apply rules from the domain. The simulation group used 
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significantly less time in answering the post-test questions 

than a group receiving a tutorial enhanced with questions. 

According to Rieber et al. (1990) this points to more deeply 

processed knowledge. Again, in studies where different versions 

of simulation environments were compared we see an effect of the 

type of knowledge test used. In De Jong et al. (1995) and Swaak 

et al. (1996) results were tested by a test asking for 

definitional knowledge and also by a test measuring ‘intuitive” 

knowledge. In this test subjects had to predict what would 

happen after a change was introduced in a situation, and they 

had to make this prediction as quickly as possible (see also 

Swaak & De Jong, 1996). Though learners improved in definitional 

knowledge when learning with the simulation environments (that 

also contained expository information), the gain in intuitive 

knowledge was larger, and also differential effects of 

simulation environments only came out on the intuitive knowledge 

test. Finally, the type of knowledge test used also seems to 

play a role in the studies that compared structured simulation 

environments with unstructured ones or with the normal 

curriculum. In Linn and Songer (1991), and Lewis et al. (1993) a 

test was used that measured qualitative distinctions between 

central concepts, Njoo and De Jong used items that measured 

qualitative insight, and Gruber et al. (1995) and White (1993) 

used tests in which predictions had to be given (like in De Jong 

et al., 1995, and Swaak et al., 1996). All these studies showed 

an advantage for the structured simulation environments. In 
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Veenman and Elshout (1995) where a combination of qualitative 

and definitional knowledge was used for a test, no overall 

effect of structuring the environment was found, with an 

exception for specific group of learners. Finally, in the 

evaluation of Smithtown (Shute & Glaser, 1990) no difference 

between the effectivity of a structured simulation environment 

and a traditional lesson could be found, but here a test 

measuring recall of concepts was applied. Advantages of 

simulations seem clear when the instructional goal is the 

mastery of discovery skills. In Rivers and Vockell (1987) not 

only domain knowledge was assessed but also discovery abilities 

were measured by a number of general test (e.g. the Watson-

Glaser Critical Thinking Appraisal) and by analyzing the trend 

in scores on a domain pretest. They conclude that students from 

the simulation curricula outperformed the control subjects, 

especially if the simulations contained guidance in the form of 

hints that pointed to good discovery behavior (see also 

Faryniarz & Lockwood, 1992, and Woodward, Carnine, & Gersten 

(1988). 

At present we see a further development of environments 

that invite learners to engage in self directed (discovery) 

learning and that provide support tools for the learning 

process (see, for example, Suthers, Weiner, Connelly, & 

Paolucci, 1995). A further and deeper analysis of problems that 

learners encounter in discovery learning and a further 

evaluation of specific ways to support learners is, therefore, 
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in our view, the principal item on the research agenda in this 

area. Studies should aim to find out when and how to provide 

learners with means to overcome their deficiencies in discovery 

learning, in other words how to provide “scaffolding” for the 

discovery learning process. For these evaluation studies there 

are three additional points of interest. The first one is that 

introducing additional support tools is not only meant to 

enable the learner to perform certain actions, but can also be 

used to prevent cognitive overload (Glaser et al., 1988, p. 

63). However, some instructional measures may also raise 

cognitive load, by introducing more complexity into the 

environment. Gruber et al. (1995), for example, suggest a raise 

in cognitive load when introducing multiple perspectives in a 

simulation environment. Further research on support measures 

should take into consideration the effects of additional 

support measures on cognitive load (see e.g., De Jong et al., 

1995; Swaak et al., 1996). A second aspect of support tools is 

that in learning environments these tools can also be used for 

unobtrusive measures, as was already recognized by Glaser et 

al. (1988) in the design of Voltaville. For example, in 

SHERLOCK (Lesgold et al., 1992) the student goes through the 

diagnostic problem solving process by choosing from menu’s of 

actions. On the one hand this helps the student in the planning 

process, on the other hand this helps the researcher (the 

system) to assess the student’s intentions. In the SHERLOCK 

environments information from this “planning tool” for the 
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learner is utilized for generating adequate hints. Van 

Joolingen (1995) describes some principles of how information 

gathered through a hypothesis scratchpad can be used for 

assessing the learner’s actual state of knowledge. The third 

point of interest is that the place of simulations in the 

curriculum should be investigated. Lavoie and Good (1988) 

suggest that a “Piagetian” approach should be used, which 

implies that simulations are introduced in a first phase of 

learning where exploration is allowed, that concepts are 

formally introduced later, finally followed by concept 

application (see also Brant et al., 1991; White, 1993). This 

suggests a potential use of computer simulation that differs 

from the classical hypothesis driven approach. 

Only after sufficient research results along the lines 

sketched in this section will be available, an appropriate 

design theory for instructional simulations may arise. Current 

attempts, though interesting, are necessarily fragmentary and 

incomplete (see e.g., Thurman, 1993). Based on such a theory, 

discovery learning with simulations can take its place in 

learning and instruction as a new line of learning environments 

based on technology where more emphasis is being given to the 

learner’s own responsibility. 
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