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Abstract 
 
Traditional data repositories introduced for the needs of business 

processing, typically focus on the storage and querying of crisp domains 
of data. As a result, current commercial data repositories have no 
facilities for either storing or querying imprecise/ approximate data.  

No significant attempt has been made for a generic and application- 
independent representation of value imprecision mainly as a property of 
axes of analysis and also as part of dynamic environment, where 
potential users may wish to define their “own” axes of analysis for 
querying either precise or imprecise facts. In such cases, measured values 
and facts are characterised by descriptive values drawn from a number of 
dimensions, whereas values of a dimension are organised as hierarchical 
levels. 

In this paper, an extended multidimensional model named IF-Cube is 
put forward, which allows the representation of imprecision in facts and 
dimensions and answering of queries based on imprecise hierarchical 
preferences. 

 
Since the emergence of the OLAP technology, [1] different 

proposals have been made to give support to different types of 
data and application purposes. One of these is to extend the 
relational model (ROLAP) to support the structures and 
operations typical of OLAP. Further approaches [2, 3] were based 
on extended relational systems to represent data-cubes and 
operate over them. Another approach would be to develop new 
models using a multidimensional-cubic view of the data [4].  

Nowadays, information and knowledge-based systems need to 
manage imprecision in the data, and more flexible structures are 
needed to represent the analysis domain. Models have been 
proposed for managing imprecision, as part of an incomplete 
data-cube [5], in the facts and the definition of facts using different 
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levels in the dimensions [6].  
Nevertheless, these models continue to use inflexible hierarchies, thus 

making it difficult to merge reconcilable data from different sources with some 
incompatibilities in their schemata. These incompatibilities arise due to 
different perceptions/views about a particular modelling reality. 

In addressing the problem of representing flexible hierarchies, here is 
proposed a new multidimensional model that is able to deal with imprecision 
over conceptual hierarchies utilising the concept of H-IFS.  

The use of conceptual hierarchies or H-IFS enables one to:  

• define the structures of a dimension in a more perceptive way to the final 
user, thus allowing a more perceptive use of the system.  

• query information from different sources or even utilize domain 
preferences and enhance the description of hierarchies, thereby getting 
more knowledgeable query results. H-IFS is a unique way for 
incorporating “kind-of” relations, or conceptual hierarchies as part of a 
Knowledge based OLAP analysis (KNOLAP). 

In the following sections, OLAP foundations are reviewed and a model 
aimed at resolving imprecision at the “Cube” or data level is proposed. The 
semantics of the Intuitionistic fuzzy cubic representation are introduced in 
contrast to the basic multidimensional-cubic structures. Overall, the introduced 
Intuitionistic Fuzzy cubic representation [7,8] allows users to deal with 
imprecision not only at the level of dimensions with the aid of H-IFS but also at 
the level of facts or data. The basic cubic operators are extended and enhanced 
with the aid of Intuitionistic Fuzzy Logic [9,10]. 

 
1.1 Semantics of the IF-Cube vs. Crisp Cube 
In this section the semantics of Multidimensional modelling and 

Intuitionistic Fuzzy Logic are reviewed, and based on these a unique concept 
named Intuitionistic Fuzzy Cube (IF-Cube) is proposed. The IF-Cube, in 
conjunction with the utilisation of H-IFS, allows users to model the following 
cases: 

• Well defined hierarchies/dimensions and imprecise data 

• H-IFS based hierarchies/dimensions and imprecise data 
 
Overview of the Cube Model 

A logical model that influences both the database design and the query engines 
is the multidimensional-cubic view of data in a warehouse. In a multidimensional 
data model, there is a set of numeric measures that are the objects of analysis. 
Examples of such measures are total sales, available budget, etc. Each of the 
numeric measures depends on a set of dimensions, which provide the context for 
the measure. The attributes of a dimension may be related via a hierarchy of 
relationships. In the above example, the product name is related to its category 
and the industry attribute through a hierarchical relationship, (see “Figure 1”). 
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Figure 1: Cube 'Sales' - Rigid Hierarchies 

   
A cubic structure [4] is defined as a 4-tuple <D, M, A, F> where the four 

components indicate the characteristics of the cube. These characteristics are: 

• a set of n dimensions D = {d1,d2,…,dn} where each di is a dimension name, 
extracted from a domain domdim(i).  

• a set of k measures M = {m1,m2,…,mk} where each mi is a measure name, 
extracted from a domain dommeasure(i).  

• The set of dimension names and measures names are disjoint; i.e. D∩M=0.  

• A set of t attributes A = {a1, a2,…,at} where each ai is an attribute name, 
extracted from a domain domattr(i).  

• A one-to-many mapping F:DàA, i.e. there exists, corresponding to each 
dimension, a set of attributes. 

  

1.1.1 Semantics of the IF-Cube 
In contrast, an IF-Cube is an abstract structure that serves as the foundation 

for the multidimensional data cube model. Cube C is defined as a five-tuple (D, 
l, F, O, H) where: 

• D is a set of dimensions 

• l  is a set of levels l1,…, ln, 

• A dimension di = (l ≤ O, l┴, l┬) dom(di) where l = li i=1...n.     

• li is a set of values and li ∩ lj = {}, 

• ≤ O is a partial order between the elements of l. 

• To identify the level l of a dimension, dl is used as part of a hierarchy. 
   l┴: base level l┬: top level 

    for each pair of levels li and lj  there exist the relation:  

μij : li × lj à [0,1]    νij : li × lj à [0,1]   0 < μij + νij < 1 

• F  is a set of fact instances with schema: F = {<x, μF(x) , νF(x)>| x∈ X }, 
where x=<att1,…,attn> is an ordered tuple belonging to a given universe X,  
μF(x) and νF(x)  are the degree of membership and non-membership of x in 
the fact table F respectively. 

• H is an object type history that corresponds to a cubic structure (l, F, O, H′) 
which allows the tracing back the evolution of a cubic structure after 
performing a set of operators i.e. aggregation.  
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The example below provides a sample imprecise cube (D, l, F, O, H) i.e. sales 
and a conceptual flexible hierarchy product with reference to wine consisting of   
li,…,ln  levels with respective levels of membership and non membership < μij νij, 
> . 
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Figure 2: Imprecise cube 'Sales'   Figure 3: H- IFS Hierarchy 'Wine’ 

 
The defined IF OLAP Cube and the proposed OLAP operators make it 

possible to do the following:  

• accommodate imprecise facts.  

• utilize conceptual hierarchies defined as H-IFS used for aggregation purposes 
in the cases of roll-up and roll-down operations.  

• offer a unique feature such as keeping track of the history when there is 
movement between different levels of a hierarchical order.  

In the next section, first the current cubic operators are reviewed and then 
the IF-Operators are explained. These operators have been extended and 
redefined in order to cope with or multidimensional model.  
 

1.2 IF-cubic operators vs. normal cubic operators 
In the previous section, it was shown how the proposed IF-cube differs from 

the original cube and that it can be made to accommodate imprecision, both on 
the data level and on the conceptual level. However, the ability to store the data 
is only a small part of the problem. The difficulty stands with the ability to 
process such data, as the original cubical operators have not been designed to 
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process imprecise information. In the subsections below, first the original 
operators will be shown and then the new IF-Operators presented, which will 
be able to deal with the new multidimensional structure.   
 

1.2.1 Overview of the cubic operators 
The cubic model proposed in [4], which is considered by many OLAP 

experts to be the fundamental one when it comes to the cubic model, also 
describes the algebraic operators necessary for the functioning of the 
multidimensional cube that have been adopted widely. Below is shown a brief 
description of these operators, the full descriptions of which can be found on 
[4].  

Restriction (σ): This operator restricts the values on one or more 
dimensions. It has an atomic predicate, denoted by p, that is a logical expression 
involving a single dimension or a compound predicate, denoted by P the is an 
expression involving a set of atomic predicates. 

Mathematical notation: σp(Ci)=Co 

Example: σ(year=2009) (Sales) 
Aggregation (α): This operator performs aggregation on one or more 

dimensions. This operator is based on relational aggregate functions (e.g. SUM 
AVG MAX) and allows these functions to be applied to cubes with one or more 
dimensions specified as grouping attributes.  

Mathematical notation: α h,m, S (CI)=CO 
Example: α [SUM(amount),{product_name, year}](Sales) 

Cartesian product (×): This is a binary operator that can be used to relate 
two cubes. 

Mathematical notation: CI1 × CI2 = CO 
Join (|×|): The join operator is a special case of the Cartesian product 

operator that is used to relate two cubes having one or more dimensions in 
common and having identical mapping from the common dimensions to the 
respective attribute sets of these dimensions.  

Mathematical notation:: C1 |×| C2 = σp(C1×C2) where p is the predicate and C1and 
C2 are the two cubes. 

Union (∪ ): This operator finds the union of two input cubes. If, for example, 
two cubes Sales_Engand and Sales_Wales contain the sales figures corresponding 
to the respective regions, and the user would like to consolidate the data for 
both regions into a single cube. This would be achieved by using the union 
operator.  

Mathematical notation: CI1 ∪ CI2 = CO 
Difference (-): This operator finds the difference of two cubes. If, for 

example, two cubes Sales_England and Sales_London contain sales figures 
corresponding to the England and London, and the user would wish to remove 
London figures from the England cube. This would be achieved using the 
difference operator. 
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Mathematical notation: CI1 - CI2 = CO 
 

1.2.2 The IF-cubic operators 
In this section the IF-Cubic operators are defined and explained. Each 

operator is presented in the following format: the operator’s name, symbol, 
textual description, input, output, mathematical description and an example of 
the operator. 
 

Basic operators 
Selection (Σ): The selection operator selects a set of fact-instances from a 

cubic structure that satisfy a predicate (θ). A predicate (θ) involves a set of 

atomic predicates (θ1, …, θn) associated with the aid of logical operators p (i.e. ∧, 

∨, etc.). Only the cells that satisfy the predicate p are captured into the result 

cube. If θ’ is an Intuitionistic fuzzy predicate, then the set of possible facts that 

satisfy the θ should carry a degree of membership μ and non-membership ν 
expressed as follows: 

F = {<x, min(μF(x), μ(θ(x))), max(νF(x), ν(θ(x))))> | x∈ X } 
Thus the resulting cube populated with fact instances that either satisfy the 

predicate (θ) completely or to some degree of certainty. Where π = 1 – (μ + ν) 

and acts as an index of the uncertainty, i.e. the higher the value of π, the more 
uncertain the fact instance is, even though it may entail the same level of 
membership μ. 

Input:    Ci = (D, l, F, O, H) and the predicate θ. 
Output:   Co= (D, l, Fo, O, H), where  

 Fo
⊆  F and Fo={f | (f ∈F) ∧ (f satisfies θ)}. 

Mathematical notation:
( )i oC C

θ
=∑ . 

 
Example: Find the sales amount of 1000 with membership of greater than 0.4 

and non-membership of less than 0.3 for all products in all cities during 2004:4 

Σ(amount=1000 ∧ (μ>0.4 ∧ ν<0.3) ∧ year=2004 )(Sales)=CResult 

 
Cubic Projection (Π): In cubic instances that hold non-deterministic facts, 

there can be no projecting-out of any of individual domains. The reason behind 
this statement is that unlike deterministic cubes, in non-deterministic ones the 
membership and non-membership of a fact instance determines the likelihood 
of all domains involved in that cube/fact instance. Hence, projecting out a 
domain, would result in loss of information. 

Input:    Ci = (D, l, F, O, H). 
Output:   Co= (D, l, F, O, H). 

Mathematical notation: ΠF (Ci) = Co. 
Example: Project the cube from the previous example: 

Π(Sales) ( Σ(amount=1000 ∧ (μ=0.4 ∧ ν=0.3) ∧ year=2004 )(Sales))=CResult 
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Basic Cubic Product (⊗): This is a binary operator Ci1 ⊗ Ci2. It is used to 

relate two cubes Ci1 and Ci2 assuming that D1 ⊆  D2 and O1, O2 are reconcilable 
partial orders. Thus, l1, l2 could lead to 1o being a ragged hierarchy.  

Input:  Ci1 = (D1, l1, F1, O1, H1) and Ci2 = (D2, l2, F2, O2, H2). 
Output: Co= (Do, lo, Fo, Oo, Ho), where  

Do= D1 ∪ D2, lo= l1 ∪ l2, Oo= O1 ∪ O2, Ho= H1 ∪ H2,  

Fo= F1 × F2 ={<<x, y>,min(μf1(x), μf2(y)), max(νf1(x), νf2(y))> |<x, y> ∈ X×Y}. 

Mathematical notation: Ci1 ⊗ Ci2 = Co. 
Example: Consider the two cubes one wants to relate,  

Ci1: CSales and Ci2: CDiscounts.  
CDiscounts has the same dimensions as CSales except the measure amount is not 

sale but is a discount. In that case the cubic product of these two, would be: 

CSales ⊗ CDiscounts = CResult 

ProdID StoreID Amount <μ, ν> 

P1 S1 10 0.7, 0.2 

P2 S2 15 0.5, 0.5 

 ⊗   

ProdID StoreID Discount <μ, ν> 

P2 S1 2 0.5, 0.5 

P3 S3 5 0.3, 0.3 

 ⇓   
 

S.Prod 
ID 

S.Store 
ID 

S.Amou
nt 

D.Prod 
ID 

D.Store 
ID 

Discoun
t 

<μ, ν> 

P1 S1 10 P2 S1 2 0.5, 0.5 

P1 S1 10 P3 S3 5 0.3, 0.3 

P2 S2 15 P2 S1 2 0.5, 0.5 

P2 S2 15 P3 S3 5 0.3, 0.5 
Table 1: Cubic product 

 
Union (∪ ): The union operator is a binary operator that finds the union of 

two cubes. Ci1 and Ci2 have to be union compatible. The operator also coalesces 
the value-equivalent facts using the minimum membership and maximum non-
membership.  

Input:  Ci1 = (D1, 11, F1, O1, H1) and Ci2 = (D2, l2, F2, O2, H2). 
Output: Co= (Do, lo, Fo, Oo, Ho), where 
  Do = D1 = D2, lo= l1 = l2,  

Oo= O1 = O2,  Ho= H1 = H2,   

Fo= F1 ∪ F2 = 

={<x,max(µF1(x),µF2(x)),min(νF1(x),νF2(x))> | x ∈ X}. 

Mathematical notation:  Ci1 ∪ Ci2 = Co. 
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Example: Consider the two cubes one want to relate,  
Ci1: CSales_North and Ci2: CSales_South,  

in that case the union of these two cubes would be:  

CSales_North ∪ CSales_South = CResult 

ProdID StoreI
D 

Amou
nt 

<μ, ν> 

P1 S1 10 0.7, 0.2 

P2 S2 15 0.5, 0.5 

 ∪   

ProdID StoreI
D 

Amou
nt 

<μ, ν> 

P1 S1 10 0.5, 0.5 

P3 S3 5 0.3, 0.3 

 ⇓   

S.ProdI
D 

S.Store 
ID 

S.Amount <μ, ν> 

P1 S1 10 0.7, 0.2 

P2 S2 15 0.5, 0.5 

P1 S1 10 0.5, 0.5 

P3 S3 5 0.3, 0.3 

 ⇓   

S.ProdI
D 

S.StoreI
D 

S.Amount <μ, ν> 

P1 S1 10 0.7, 0.2 

P2 S2 15 0.5, 0.5 

P3 S3 5 0.3, 0.3 
Table 2: Union operator example 

 
Difference (-): The difference operator is a binary operator that the difference 

of two cubes. It is similar to the difference operator in relational algebra. Ci1 and 
Ci2 have to be union compatible. The difference operator removes the portion of 
the cube Ci1 that is common to both cubes. 

Input:  Ci1 = (D1, l1, F1, O1, H1) and Ci2 = (D2, l2, F2, O2, H2). 
Output: Co = (Do, lo, Fo, Oo, Ho), where 
  Do = D1 = D2, lo = l1 = l2, Oo= O1 = O2,  

Ho= H1 = H2,   

Fo= F1 ∩ F2 = {<x, min(µF1(x),µF2(x)), max(νF1(x),νF2(x))> | x ∈ X}. 
Mathematical notation: Ci1 – Ci2 = Co. 

 
Example: Consider the two cubes one wants to relate,  

Ci1: CSales_North and Ci2: CSales_South, 
in that case the difference between North and South sale cubes would be:  
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CSales_North – CSales_South = CResult 

 

ProdID StoreID Amount <μ, ν> 

P1 S1 10 0.7, 0.2 

P2 S2 15 0.5, 0.5 

 _   

 

ProdID StoreID Amount <μ, ν> 

P1 S1 10 0.5, 0.5 

P3 S3 5 0.3, 0.3 

 ⇓   
 

S.ProdID S.StoreID S.Amount <μ, ν> 

P1 S1 10 0.7, 0.2 

P2 S2 15 0.5, 0.5 

P1 S1 10 0.5, 0.5 

⇓ 

S.ProdID S.StoreID S.Amount <μ, ν> 

P1 S1 10 0.5, 0.5 

P2 S2 15 0.5, 0.5 
Table 3: Difference operator example 

   
Extended Operators 
Join (Θ): The join operator relates two cubes having one or more dimensions 

in common, and having identical mappings from common dimensions to the 
respective attribute sets of these dimensions. This operation can be expressed 
using Cubic Product operation.  
Ci1 = (D1, l1, F1, O1, H1) and Ci2 = (D2, l2, F2, O2, H2) are candidates to join if  D1 ∩ 
D2 ≠ 0. 

Input:  Ci1 = (D1, 11, F1, O1, H1) and Ci2 = (D2, l2, F2, O2, H2). 
Output: Co= (Do, lo, Fo, Oo, Ho). 

Mathematical notation: Ci1 Θ Ci2 = σp(Ci1 
⊗  Ci2). 

 
Example: Consider the two cubes one wants to relate, Ci1: CSales and Ci2: 

CDiscounts. CDiscounts has the same dimensions as CSales except the measure amount 
is not sale but is a discount.  

Also there is a predicate p= (S.ProdID = D.ProdID ∧ S.StoreID = D.StoreID). In 
that case the join of these two, would be: 
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CSales Θ CDiscounts = CResult. 

ProdID StoreID Amount <μ, ν> 

P1 S1 10 0.7, 0.2 

P2 S2 15 0.5, 0.5 

 Θ   
ProdID StoreID Discount <μ, ν> 

P1 S1 2 0.5, 0.5 

P3 S3 5 0.3, 0.3 

 ⇓   
 

S.ProdID S.StoreID S.Amount D.Discount <μ, ν> 

P1 S1 10 2 0.5, 0.5 
Table 4: Join operator example 

 
Aggregation (A): The aggregation operator performs aggregation on one or 

more dimensional attributes utilizing Intuitionistic Fuzzy functions such as 
IFSSUM, IFSAVG, IFSMIN, IFSMAX. An aggregation operator A is a function A(G), 

where G = {<x, μF(x), νF(x)>| x∈ X}, where x=<att1, …, attn> is an ordered tuple, 
belonging to a given universe X, {att1, …, attn} is the set of attributes of the 
elements of X, μF(x) and νF(x) are the degree of membership and non-
membership of x. 

The result is a bag of the type {<x′, μF(x′), νF(x′)> | x′∈ X}.To this extent, the 
bag is a group of elements that can be duplicated and each one has a degree of 
μ and ν.  

Input:  Ci = (D, l, F, O, H) and the function A(G). 
Output: Co = (D, lo, Fo, Oo, Ho).  

The definition of aggregation operator points to the need of defining the IFS 
extensions for traditional group operators such as SUM, AVG, MIN and MAX.  

 
Group Operations & Operators 
In this section an investigation is made on how traditional group operations 

can be redefined to cope with the IFS representation of data. Note that the 
introduction of the IF facts influence the evaluation of aggregates at different 
levels: 

• Will the result over which the aggregate is performed be either crisp or 
Intuitionistic Fuzzy? 

• What is the meaning of the result after the IF aggregation is performed? 
Using the standard definitions for the group operators (SUM, AVG, MIN 

and MAX) as foundations, their IF extensions and meaning is provided. 
IFSSUM : The IFSsum aggregate, like its standard counterpart, is only defined 

for numeric domains. Given a fact F defined on the schema X(att1, …, attn), let 
attn-1 defined on the domain U={u1, …, un}. The fact F consists of fact instances fi 
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with 1 ≤ i ≤ m. The fact instances fi are assumed to take Intuitionistic fuzzy 
values for the attribute attn-1 for i = 1 to m   

fi [attn-1] = {<μi(uki), νi(uki)>/ uki | 1 ≤ ki ≤ n}. 
The IFSsum of the attribute attn-1 of the fact table F is defined by: 





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
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

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

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=
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kk
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IFSAVG : The IFSAVG aggregate, like its standard counterpart, is only defined 

for numeric domains. This aggregate makes use of the IFSSUM that was 
discussed previously and the standard COUNT. The IFSAVG  can be defined as: 

IFSAVG((attn-1)(F) = IFSSUM((attn-1)(F)) / COUNT((attn-1)(F)). 
 

IFSMAX : The IFSMAX aggregate, like its standard counterpart, is only defined 
for numeric domains. Given a fact F defined on the schema X(att1, …,attn), let at 

n-1 defined on the domain U={u1, …, un). The fact F consists of fact instances fi 

with 1 ≤ i ≤ m. The fact instances fi are assumed to take intuitionistic fuzzy 
values for the attribute attn-1 for i = 1 to m   

fi[attn-1] = {<μi(uki), νi(uki)>/ uki | 1 ≤ ki  ≤ n}.  
The IFSsum of the attribute attn-1 of the fact table F is defined by: 
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IFSMIN: The IFSMIN aggregate, like its standard counterpart, is only defined 
for numeric domains. Given a fact F defined on the schema X(att1, …,attn), let 
attn-1 defined on the domain U={u1, …, un). The fact F consists of fact instances fi 

with 1 ≤  i ≤  m. The fact instances fi are assumed to take intuitionistic fuzzy 
values for the attribute attn-1 for i = 1 to m therefore fi[attn-1] = {<μi(uki), νi(uki)>/ 

uki | 1 ≤ ki ≤ n}. The IFSsum of the attribute attn-1 of the fact table F is defined by: 
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It can be observed that the IFSMIN is extended in the same manner as IFSMAX 

aggregate except for replacing the symbol max in the IFSMAX definition with 
min. 

The definition of the extended group operations makes it possible to define 

the extended group operators Roll up (∆), and Roll Down (Ω). 
 

Roll up (∆): The result of applying Roll up over dimension di at level dlr using 
the aggregation operator A over a datacube Ci = (Di, li, Fi, O, Hi) is another 
datacube Co = (Do, lo, Fo, O, Ho). 

Input:   Ci = (Di, li, Fi, O, Hi). 
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Output:  Co = (Do, lo, Fo, O, Ho). 
An object of type history is a recursive structure: 

H = {
 

ω  is the initial state of the cube 
(l, D, A, H’) is the state of the cube after  
performing an operation on the cube 

 
The structured history of the datacube allows the storing of all the 

information when applying Roll up and the recall of it back when Roll Down is 
performed. In order to be able to apply the operation of Roll Up the IFSSUM 
aggregation operator needs to be put to use.  

 
Roll Down (Ω): This operator performs the opposite function of the Roll Up 

operator. It is used to roll down from the higher levels of the hierarchy with a 
greater degree of generalization, to the leaves with the greater degree of 
precision. The result of applying Roll Down over a datacube Ci = (D, l, F, O, H) 
having H = (l’, D’, A’, H’) is another datacube Co = (D’, l’, F’, O, H’). 

Input:  Ci = (D, l, F, O, H).  
Output: Co = (D’, l’, F’, O, H’) where F’à set of fact instances defined by 

operator A. 
To this extent, the Roll Down operative makes use of the recursive history 

structure previously created after performing the Roll Up operator. 
   

1.3 Conclusions 
In this paper the context of value imprecision was revised, as part of an 

MOLAP based environment. A new approach for extending the MOLAP model 
was presented, so that it can include treatment of value uncertainty as part of a 
multidimensional model, inhabited by concepts and flexible hierarchical 
structures of organization. A new multidimensional-cubic model named the IF-
Cube was introduced, which is able to operate over data with imprecision 
either in the facts or in the dimensional hierarchies. 

The main contribution of this new multidimensional-cubic model is that is 
able to operate over data with imprecision in the facts and the summarisation 
hierarchies. Classical models imposed a rigid structure that made the models 
present difficulties when merging information from different but still 
reconcilable sources. 

These features are inexistent in current OLAP tools. Furthermore, it has been 
noticed that the IF-Cube can be used for the representation of Intuitionistic 
fuzzy linguistic terms. 
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