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Abstract. One of the main challenges for meteorological andtion of hydrological and meteorological models mainly nec-
hydrological modelling is accurate rainfall measurement andessary for water resource management and planning.
mapping across time and space. To date, the most effective

methods for large-scale rainfall estimates are radar, satel-

lites, and, more recently, received signal level (RSL) mea-

surements derived from commercial microwave networksl Introduction

(CMNs). While these methods provide improved spatial res-

olution over traditional rain gauges, they have their limita- The need for reliable, high-resolution rainfall measurement
tions as well. For example, wireless CMNs, which are com-and mapping is increasing, as such data are the principle
prised of microwave links (ML), are dependant upon exist- drivers for hydrometeorological models, climate studies, ur-
ing infrastructure and the ML’ arbitrary distribution in space. Pan planning and flood warning systems. Current methods
Radar, on the other hand, is known in its limitation for accu- SUch as rain gauges, radar, microwave links (ML), and even
rately estimating rainfall in urban regions, clutter areas angsatellites can provide measurements, yet the ability to gener-
distant locations. In this paper the pros and cons of the rada@te high-resolution maps from them is limited. Rain gauges,
and ML methods are considered in order to develop a newvhich provide the most reliable estimates, are limited due
algorithm for improving rainfall measurement and mapping, ©© their point location measurements, which cannot provide
which is based on data fusion of the different sources. Thedccurate spatial estimates, especially in areas of complex to-
integration is based on an optimal weighted average of thd0graphy or high spatial variabilitiRayitsfeld et al.2012.

two data sets, taking into account location, number of links, Other methods which have been adopted to overcome this
rainfall intensity and time step. Our results indicate that, bySpPatial challenge, include radar estimates and, more recently,
using the proposed new method, we not only generate morg'easurements from wireless ML networkdesser et a.
accurate 2-D rainfall reconstructions, compared with actua2009. Naturally, due to both environment and technologi-
rain intensities in space, but also the reconstructed maps ai@@! limitations, the estimates from such sources may have
extended to the maximum coverage area. By inspecting threBigh levels of uncertainty and errors (eMackenzie et a.
significant rain events, we show that our method outperformst993. For meteorologists and hydrologists attempting to use
CMN's or the radar alone in rain rate estimation, almost uni-this information to either better understand storm dynamics
formly, both for instantaneous spatial measurements, as wef! to inform infrastructure planning, each of these methods
as in calculating total accumulated rainfall. These new im-has unique information. Given this plethora of data, it has re-
proved 2-D rainfall maps, as well as the accurate rainfallcently been acknowledged that precipitation estimates with
measurements over large areas at sub-hourly timescales, wi SPatial and temporal resolution of 4 km and 30 min, respec-

allow for improved understanding, initialization, and calibra- tively, are realistic target levels useful for many researches
and applications§orooshian et gl2011). This is particu-

larly true for estimation of orographic rainfall distribution
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on the high-meso-gamma-scale resolution, as reviewed b¥pSD as a function of height due to evaporation, coalescence,
Alpert et al.(1994. Unfortunately, the formats of the data, raindrop collection and breakupiat and Barrqgs2009. In
as well as the varying scales and limitation on their availabil-order to deal with these uncertainties, different approaches
ity, make it difficult to use them in a complementary way.  have been proposed including the use of a polarimetric and
In this study we present a new technique for integratingDoppler weather radars (e Bringi and Chandraseka2001;
between radar and commercial microwave networks (CMNs)Doviak et al, 1979. Such systems use the shape of the
data in order to improve the accuracy and reliability of rain- rain drops and allow for improvement in rain rate estimation
fall estimates. The integration of multiple sources allows for (Meischner et a).1991).
weighing the estimates appropriately in line with the ad- Another limiting factor in the radar accuracy is the loca-
vantages and disadvantages of the multiple rain sources irtion of the radar. The received signal can provide reasonable
cluded. This design leaves room for the incorporation ofrainfall estimation for up to around 100 km, though this is
other data sources (e.g. satellites) in the future. also dependent upon topography and the height of the radar
Furthermore, this paper also demonstrates how the integradeam. Thus, for objects too close to the radar ¢é.km),
tive approach provides better instantaneous as well as cumwr too far (i.e.> 100 km), the reconstruction is characterized
lative rainfall estimates, both spatially and temporally, whenby much uncertainty. In cases where the distance is greater
compared with actual rain measurements provided by rairthan 150 km, the radar cannot provide an estimation. In other
gauges over the same area. Specifically, we analysed three imords, the weather radar inaccuracy increases as the distance
tense rain events which occurred over Israel in January 2010p the target area grows (with respectR8). This fact can
January 2013 and December 2009. also be derived from the radar equati@kélnik, 1962
This paper is organized as follows: Sedtsl and1.2 de-
. . PR 200 ¢ 1 Const
scribe the different measurement sources used in this papep, = Pt G“1°0 — ) @)
Sect.1.3covers the study area and the details surrounding the 51272 R? R?
chosen rain events. In Se2twe provide a full description of  where P; is the received powel?; is the transmitted power,
the newly developed integrative approach. This is followed<t is the temporal duration of a puls€, is the gain of the
by results and performance evaluations of such an integratransmitting antenna, indicates the radar wavelength,is
tive tool, detailed in SecB. Finally, conclusions and future the beam width (in radiansy, is the speed of light, and

developments of the application are provided in Séct. (in dB km) is the radar cross section (RCS) of the target area
(Mackenzie et 8).1993. R is the distance from the transmit-
1.1 The weather radar ter to the target area. One can see that the more distant the

o iod . han half area (target) is from the radar, the lower the received signal
DVer a period spanning more than halt a century, S_tart'(denoted ad) is, and hence the increase in inaccuracy.
ing in the late 1940s, radars have been used for estimat-

ing rainfall measurements, as initially proposedMgrshall 1.2  Microwave links — ML
et al.(1947. Among these radars, short-range weather radars
have also been a subject of increasing interest by many reA wireless microwave signal’s strength, also known as RSL

searchers, even to this da@harvat et al.2014). The well- (received signal level), is greatly affected by precipitation
known empirical relation between the radar reflectivity and (mainly rain). The well-known empirical attenuation—rain-
the rainfall intensity is shown in Eql): rate relation is given byQlsen 1979

Z=ar’, (1) A=aRPL, 3)

wherer is the rain rate (in mmtt), Z is the radar reflectivity ~where A (expressed in dB) is the measured RSt ;(ex-
(in mm®m~—3), anda andb are known constants, which are pressed in mmtt) is the path averaged rain rate (along the
mainly a function of the drop size distribution (DSD). These microwave link);L (expressed in km) is the link length; and
parameters may vary according to different rain types bothe and 8 are constants, depending mainly on the link fre-
between and within storms, which can lead to high levelsquency and DSD, as discussedJrs et al.(1999.
of error and uncertainty in the radar, as discusselllanin The RSL is measured by a variety of antennas distributed
et al. (2003. Additional sources of the radar uncertainties in space (e.g. Fidl), with typical frequencies of 18-23 GHz,
(Germann et aJ2006 include attenuation at C and X bands, and lengths that vary by between 1 and 20 km. The measure-
bright band contamination, and clutter regions. ments are given in a preset temporal resolution, with a known
Additionally, the spatial expansion effect of the radar beamquantization level. Because the goal is to reconstruct accu-
results in an increase in the reflective volume by up to a fewrate rain field maps, we inspect only significant rain events;
kilometres, which may lead to partial beam filling; this in thus, we may assume that the RSL has very high signal-to-
turn may result in over (or under) estimation of the rain rates.noise ratio (SNR). A typical such RSL is shown in F&.
Moreover, radar measurements aloft are uncertain estimatds the figure, the RSL is provided with a magnitude resolu-
of near-ground rainfall due to ground clutter and changes irtion of 0.1 dB, at 15 min sampling rate, for a link located in

Atmos. Meas. Tech., 7, 3548563 2014 www.atmos-meas-tech.net/7/3549/2014/



Y. Liberman et al.: Integration between WSN and radar for improved rainfall mapping 3551

VKiryat-Shmong YKiryat-Shmong

33N 33°N

(T e —@— Links In Space
Sea = = = Areas Of Interest Convex

Mediterranean
Sea

° VTel-Aviv °
32N le VAmman | 32 N

VKTry'el!t—Malachi

31°N 31°

. 150km
VMitzpe-Ramon

30°N 4 30°N

|VEi|at |VEiIa(

34°E 35°E 36 E 34°E 35°E 36 E

Figure 1. Left: 96 ML in space divided into 6 areas of interest. Black lines indicate the links, and the blue dashed lines indicate the convex
of each area of interest. Right: the radar coverage area, where thefjls@gt indicates the radar coordinates — Bet Dagan. The radar’s 50,
100 and 150 km radius distances are also indicated.

the centre of Israel (between Ramle and Hasmonaim; prowherer(x) (expressed in mmtt) is the true instantaneous
vided by Cellcom Ltd.). In order to overcome non-linearities rain rate at a poink along the link,L; (expressed in km)
in the measurements, the RSL is presented after a preprocess-the jth link length, ancx; andg; are the knownjth link
ing stage, as detailed in the M.Sc. thesitilerman(2013. constant parameter®(s et al, 1999. Now, by dividing each

Since the use of commercial ML for rainfall monitoring link into »; (small enough) equal segments, we may approx-
was first suggested bylesser et al(2006, multiple method-  imate the integral in Eq.4) and derive the following non-
ologies for rainfall estimation and mapping have been sug{inear relation between each link’s RSL and the actual rain
gested (e.gGoldshtein et a).2009 Overeem et a.2013. rate along it (i.e. along an arbitrary line in space):
Furthermore, the use of ML for precipitation monitoring in
general and rainfall monitoring in particular has been a sub-A; ~ «; Z:lil Vl»}j-jlij, (5)
ject of interest for many researchers all around the world
since 2006, and remains so to this day (€pwala et al.  wherel;; (/;; < L;) is the length of théth segment for each
2012 Overeem et a]2014 and references therein). Jjthlink andr;; is the unknown rain rate in ea¢h) segment.

In this paper, a novel algorithm which has been recently In order to solve Eq.5), the algorithm uses the fact that
developed for recovering instantaneous rainfall maps usinghe rain field is generally represented in a sparse manner, as
RSL measurements is used in the proposed integration algd¥as often been observed in the literature (¥grin et al,
rithm. The basis of this algorithm is described as follows, and2008. This means that, for some extent of the rain field, it is
more details can be found lriberman and MesséR014). reasonable to assume that the solution for eacfdenoted

For any given set of RSL measurements from ML, the goalas the rain rate for eacjth link in eachith segment where
is to construct the most accurate approximation of the rainthe ML are available) is mostly sparse. Therefore, the opti-
rate along the links, and then to reconstruct the rain fieldmizationZ; problem (as discussed ©hen et al. 199§ can
in the link's vicinity. Suppose we have a set of observedbe solved. By doing so, a unique and optimal recovery of the
rainfall-induced RSL attenuations fromd ML in a given  rain rates along the ML can be guaranteed if some regular-
geometry (denoted as;, for j = 1,..., M). By modifying ity conditions, mainly regarding the links distribution and the
Eq. ®), each link’s RSL can be written as derived solution for thé.1 problem, are satisfied.

The next step is to construct a 2-D rain field map from the
estimated solution of Eq5). That can be achieved by using
Aj=aj Rf‘/Lj = /ajrﬂj (x)dx, 4) either parametric or non-parametric interpolation methods.

Lj
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Figure 2. Example of 24 h of measured RSL (dB), during a rain
event which occurred on 7 January 2013, for a single 14 km link
operating at a frequency of 21.8 GHz.
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1.3 Available data and coverage area
Figure 3. Distribution of the 70 available rain gauges; each orange
The coverage area of the radar includes all the coordinates igsterisk indicates a rain gauge location.
space that lie within @ < R; < 150km from the radar loca-
tion, wherer; indicates the radar radius distance from each = ) ) ]
[xi, y:] coordinate. In this study, the data from the weatherd'smb“ted throughout the region (as illustrated in F3y.

radar, which is located in Bet Dagan (32.007, 34.814 E) recording at a time resolution of 10 min, where each rain
is provided by the Israel Meteorological Service (IMS — see92uge provides ground truth (accumulated) rain measure-

Fig. 1). The measurements from the radar are provided afMents in millimetres, i.e. water volume pefm

a resolution of 1krA every 5min. Though the radar em-
ployed in Israel has “automatic clutter removaBkplnik,
1962, dominant clutters can still be observed, mainly in the
north of Israel, where many hilly areas are found (e.g. in Ra-, thjs section, we detail the stages of the integration tech-
mat HaGolan: 32.58N, 35.44 E). nique, whose main goal is to combine the different rainfall
Regarding the ML, we define the covered areas dependenheasurements in a way which optimally weights the pros
upon the location of the specific ML. Here, operational ML anq cons of the various methods. As mentioned above, the
data in central-southern Israel was provided by Cellcom Ltd..5qar data are provided by the IMS, while the RSL data are
(i.e. 96 operating microwave links) and Pelephone Ltd. (30proyided by the cellular companies Cellcom and Pelephone.
operating microwave links), as shown in Fig.The ML op- Data assimilation is widely used in many environmen-
erate at frequencies of 18-23GHz and are horizontally Ok fields, particularly in weather modelling (e.Ghahine
vertically polarized, with lengths that range from 3 to 20 km g¢ al, 2006 and in hydrological modelling (e.¢/icLaughlin
and with magnitude resolutions_of 0.1dB for Cellcom Lto!. 20032. In data assimilation, we are required to form a rela-
and 1dB for Pelephone Ltd., which may cause a degradatiogonship between the state we want to estimate (e.g. the 2-D
in the accuracy of the estimated rainfall using ML. Still, be- gistribution of rainfall intensity) and the different observa-
cause we analysed only heavy rain events in this study (hightion sources (e.g. radar and ML). Thus, we can assume that
SNR data, Sectl.2), the effect of the magnitude resolu- the process relationship between the observations and the de-

tion on the reconstruction accuracy is negligible. In addition, gjred estimate is represented by a forward model (denoted as
15 min time intervals of minimum and maximum RSL val-  ¢) ‘which is defined in Eq.6):

ues were provided by Cellcom and 1 min of temporal resolu-

tion data were provided by Pelephone Ltd. In this study, threer;.,(x;, y;) = f(Rradi,» Rmi:i), (6)

major rain events were chosen for the analysis: event 1, 18—

19 January 2010 (24 h of rain); event 2, 7-10 January 2013vhere Rint(x;, ;) is the required state (rainfall intensity, in

(96 h of rain); and event 3, 30 December 2009 (24 h of rain).eachyx;, y; coordinate in space), amla¢; and Rpy.; are the
Rainfall estimates from the set of events 1, 2 and 3 wererainfall intensities obtained by the radar and the ML observa-

validated against a network of 70 tipping-bucket rain gaugedions, respectively, for each, y; coordinate in space (where

2 The integrative approach
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data are available). Figufeshows the study area where data rewrite Ry in Eq. 6) as follows Our:

from radar and/or ML are available (i.e. in the case of the

ML, we divided the space into areas of interest). Rragi, 0.1km< R; <150kmNN; =0
In order to generate the most reliable reconstruction of Rmi:i» N; > 1N (R; = 150kmU R;

rainfall maps, we define the following rules, based on theRint(xz',yi) — { < 0.1kmU Condition 2U Clutten

characteristics of the different measurement sources:
fuin(Rmi:i, Rradi), N;i > 0N0.1km

1. For all the coordinates which are not covered by ML < R; <150kmnNo Clutter
(i.e. the coordinates where the reconstruction by the ML @)
is not available, e.g. in Fidl), we only regard the re-
construction received by the radar, if available, i.e. any!n EQ. (7), Rra¢; and Rmi;; are the rain rate values, in the

[xi, yi] coordinate which is not covered by the ML but [xi, yi] coordinates, for the radar and ML, respectively.
satisfies QL < R; < 150. indicates the number of links in the area of interest that the

[x;, y;] coordinate belongs ta; is the distance (denoted as
2. Inside an area of interest, with available ML, we check the radar radius, expressed in km) between the radar location
whether both the following regularity conditions are sat- and eaclix;, y;] coordinate in spacel andn indicate the OR
isfied: and AND operators, respectivelfii, is a linear function of
Rmi:; andRrag¢;, Which is defined by
a. The distribution of the links in space satisfy the ~ _
reconstruction ability condition, as discussed and fLin(Rmi:i, Rradi) = dradi Rradi + @mi:i Rml:i (8)
proven inSendik and MessgP012), which states
that by having enough ML in some area of interest,
itis possible to achieve a highly reliable recovery of
the rainfall along the microwave links in that area.

where fiin is calculated in eacly;, y;] “common” coor-
dinate (i.e. where rain intensities are provided both by the
radar and ML) in spaceraq; andam;;; denote the normal-
ized radar and ML weights, respectively. These weights are
b. The estimated rain intensities in space along the mi-a function of the radar radius (denoted&$ and the num-
crowave links (which are distributed in an arbitrary ber of links in the area of interest (denoted €3 in each
manner in space) satisfy the generalized Shannon+x;, y;] common coordinate (i.e. where condition 3 is satis-
Nyquist sampling theorem for non-uniform sam- fied). Sincex;aq; andam.; are subject téyad+ am = 1, we

pling, as detailed ifEldar(2003. may model these weights as follows:
3. If condition 1 and condition 2 are not satisfied inside g,4; = _ Yrad (9a)
an area of interest, we apply a new weighted algorithm drad+ ol
using both of the sources in the study area. The rainfall ol
measurement will then rely both on the links distribu- @mii = Z—=="—. (9b)

tion in space and the radar radius, as shown in Bq. (

N _ S _ _ arad and am are denoted as the radar and ML non-
If condition 2 is satisfied in a given area, an optimal recov- normalized weights, respectively. From Eq. (9), itis clear that
ery of the rainfall, using ML, in that area is possible (see g, + .9 = 1; hence, this offered model is valid.
Sect.1.2). Hence, we do not consider the radar reconstruc- As mentioned before, the accuracy in the reconstruction
tion in that area at all. If condition 3 is satisfied, we use someof rain fields, derived by the radar and the ML, is mainly
sort of integration scheme between the ML and the radar. Fogependent on the number of links and the radar radius (dis-
this integration we propose a weighted linear model, mainlytance from the target area) in each coordinate. Thus, for each

due to the fact that linear models have been adopted and ha\{%i’ yi] coordinate which satisfies condition 3, we can model
proven useful (e.dOaley, 1993 in previous data assimilation o, andayag as follows:

works, especially for hydrological and weather forecasts.
It should be noted that both the radar and the ML data c?

undergo some preprocessing stage before the integration fgad= 2+ R? (10a)
applied. For example, dominant clutter areas (denoted as '
Clutter), which are characterized by much uncertainty in the Nl.2

aml = —5—5 (10b)

radar reconstruction (see Set13), are determined by using
prior information and rain gauge measurements. Regarding

the ML RSL data, a zero-level reduction, noise removal and wherec; and¢| are the radar and ML weight constants, re-
other preprocessing methods are applied before the rainfapectively. From the definition of the weights in Eq. (10), itis
maps are created, as further discussetilerman(2013. clear that, agv; is higher,am.; is higher and, accordingly, as
Hence, by using the proposed conditions above, we mayR; is lower (closer to the radar locatiod@}aq; is higher; thus,

VP
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it is the natural choice of the weights. It should be noted thatthe integrated method). The first two parts define the study

other forms of weights (e.g. exponential weights) were alsoarea and parameter estimation, respectively. In the third part
considered for the integration, but these have been provemwe present the results, including reconstructed maps, scatter
to be less accurate than the ones proposed here. Future woplots, performance evaluations, and graphs showing statisti-

may focus on other forms of weights for the integration. Now, cal and numerical comparisons.

by substituting Eq. 109 into Eq. @a), and Eqg. 10b) into

Eq. @b), we may derive the following relation: 3.1 Study area

_ (N2 +cP)c? , . :

Gradi = ——5 55— 5 =55 = hicl, cr), (11a)  The study area is located in the centre of Israel (approxi-
(N{ +ef)ef + (ef + RON; mately 22000krf), where both radar and ML data are avail-

able. Most of the region (from the north to the centre) is cov-

2 2y A2
Amli = (cr + RN =1—h;(c,cr). (11b) ered by the IMS radar, located in Bet Dagan, as shown in
; 2., 2\,2 2 2\ N2 A . .
(NF+cf)ef + (cf + RYN; Fig. 1, where the areas covered by ML are also delineated.

known scalar variables er, ¢, while for each[x;, y;] coor- ~ Measurements were recorded by 70 rain gauges distributed in
dinate,N; andR; are known. Now, if we substitute Eq. (11) SPace (see Fig). Moreover, the total attenuation of 96 oper-
iNto fiin (Rmi:i. Rrad:) in EQ. (7), we derive the following re- ational te_lecommun_lcatlon ML was also used. The ML oper-
lation betweeriin (Rmi:i, Rra¢i) andh; (i, ) 2 h;, thatis: ~ até atatime resolution of 15 min; the radar operates at a spa-

’ tial resolution of 1 km with 5 min time intervals; and the rain
fuin(Rmi;i, Rradi) = hiRradi + (1 — hi) R, (12)  gauge network, composed of 70 tipping-bucket gauges, pro-
where one can see thatOh; < 1. vides measurements at a time resolution of 10 min.

Now, by definingRy,; as the actual rain intensity at each [N order to make the data from the rain gauges, ML and
[x;, v;] coordinate, as measured by the rain gauges, we cafdar comparable, we inspect only the common times which
minimize the cost function, as defined in Eq3Y, in order ~ occur every 30min (i.e. at 00:00, 00:30...23:301DT (Israel
to derive the optimal solution for the unknown variables (i.e. Daylight Time)). The ML used in this application operate at

for [c1, cr]): 18-23 GHz, with horizontal (or vertical) polarization, with
) lengths that vary by between 3 and 20 km and with a magni-
Cle,e) =Y (hiRradi + (L= hi) Rmisi — Rg:)%. (13)  tude resolution of 0.1 dB. The reconstruction adopted for the
i

ML is the instantaneous rain field reconstruction developed
By minimizing C(c|, ¢r) in Eq. (13), we may derive our esti- by Liberman et al. (2014) as described in S&c2, however,
mate for[c|, ¢r], which is given by as mentioned before, any reconstruction technique can be ap-
. . plied (e.gZinevich et al, 201Q Overeem et a)2013 for the
(a1, ¢l = arC?’??IﬂC (cr,en)}- (14) proposed analysis as well.

We point out that eaclRg; (denoted as the rain gauge in the
[x;, yi] coordinate) provides measurements of the amount o
rain (in mm) for a certain amount of time. Therefore, in or-
der to derive the desired estimates, as shown in &, (e

]3.2 Parameter estimation

For the estimation of the parameters, we used 40 different

analysed three heavy rain events which have occurred ové?omts In space, all of which had available data from all
. o sources. Given the above, we have chosen two of the three
the last 5 years in Israel, specifically on 18 January 2010,

7-10 January 2013 and 30 December 2009. We obtained at%"e”t.s mentioned above for the provided analysis of the new
. : . o echnique by using a leave-one-out procedure for calibration
estimate for the unknown variablgs, ¢;] using the rain in-

tensities available from the radar, ML, and rain gauges for alla??a?/r?le'g:::to; lofztI’;enén3e aosrtljlre;na(igtfs; .oipti(;fcl)i?g, t{;g Z]veeritest
available coordinates where each inspected coordinate satis e »only

. g ; qre used as follows:
fied condition 3 from above and a rain gauge measuremen

was available at that coordinate as well. The non-linear esti-
mation problem in Eq.14) might be solved in various ways
(e.g. Marquardf 1963 Wan and Van Der Merwe2000.

In this research we used a non-linear least-squares iterative 2. Event 2: 18 January 2010, 30 December 2009;

method, as discussedByrd et al.(1987).

1. Event 1: 7-10 January 2013, 30 December 2009;

3. Event 3: 7-10 January 2013, 18 January 2010.

3 Results

Given the large amount of data, we assume that the estima-
This section describes the results of the rainfall measuretions will be similar for all inspected events. The non-linear
ments from different sources (only radar, only ML, and least-squares iterative unique solution yielded the following
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Figure 4. Example of the rain field reconstruction for the 18 January 2010 rain event (event 1) at 17:00 IDT (Israel Daylight Time). Top left:
rain gauges. Top right: radar. Bottom left: ML. Bottom right: the integration.

estimation results for each one of the examined events: tegration when considering the radar and ML for the purpose

of rain field reconstruction for each one of the inspected sets

(61, rleveny = [9.82,98.89), (15a)  of rain events (1, 2 and 3).
[¢1, ¢rleveny = [10.64,10017], (15b)
[&1, érlEveny = [10.45,10102]. (15c)

In (150), [&1, & are denoted as the estimationsfiar¢,] for 33 The reconstruction evaluation

each their respective events. While thevalues are simi-

lar, there is a difference of about 8 % in theestimations

of event 1 with respect to events 2 and 3. However, they arén order to best evaluate the performance of the different
still close enough to provide reliable estimations. Moreover,measuring techniques, we present both the rainfall maps
as the number of measurements from rain events increaseand comparative statistics. For the purpose of comparing the
the parameter estimation will be stronger, hence improvingdifferent measurements to actual rain intensities over sev-
the application of the algorithm for future use. In short, by eral coordinates in space, we calculate the spatial correla-
using these values, we assume an optimal linear weighted intion, RMSE (the spatial root-mean-square error) and RB (the
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Figure 5. Example of the rain field reconstruction for the 9 January 2013 rain event (event 2) at 14:30. Top left: rain gauges. Top right: radar.
Bottom left: ML. Bottom right: the integration.

rain measurements and the true measurements, respectively.
In Eq. (16), the index refers to each time step (total &f
time steps), while index refers to eaclix;, y;] spatial coor-
dinate in space (total a¥ coordinates).
In Figs. 4, 5 and 6, the rain field reconstructions esti-
mated by the different sources — rain gauges, radar, ML, and
1 " " the_ integ_rated method — are illustrated. Maps are.shown for
RMSE= \/N_M Zj:l Zizl(ﬁi,j —xi ;)2 a given time step for each of the analysed events (i.e. 18 Jan-
uary 2010 at 17:00, 9 January 2013 at 14:30 and 30 Decem-
N % Rij = Xij ber 2009 at 16:00 IDT). From these figures, itis clear that the
Z j=1 Z . integrated method expands the spatial coverage substantially.
In addition, the integrative method improved the estima-
wherep is defined as the spatial correlation In Eq (16), tions for many of the areas where radar coverage is poor and
wy = NM > M SN %, and u, = NM > MOSN X ML exist, specifically the area of Mitzpe Ramon. As can be
are defined as the mean spatial rain rates of the estimateabserved, the radar cannot provide an estimate for the rain

relative bias, in %), which are defined as follows:

Zj 12
\/Z, LG — )2 T S R — )?

()21 J — pz)(xi, J — Kx)

, (16a)

(16b)

RB = x 100, (16¢)
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Figure 6. Example of the rain field reconstruction for the 30 December 2009 rain event (event 3) at 16:00 IDT. Top left: rain gauges. Top
right: radar. Bottom left: ML. Bottom right: the integration.

rate if the distance between the radar and a coordinate itively, while inspecting the mean correlation, RMSE and the
space is higher than 150 km, as has also been discussed ialative bias, as defined in EA.6).

Sect.1.1 Furthermore, we had also evaluated the probability of de-
Figures7, 8 and9 depict the performance evaluations for tection (POD), the false alarm ratio (FAR) and the critical
events 1, 2 and 3, respectively. The correlation coefficientsuccess index (CSI) on the proposed integration technique
(spatial correlation) and the RMSE are shown, both evalu-and the radar. These measures are very important criteria for
ated for the common times spanning the rain event. Each lin@ssessing the quality of the method. For this, we use the def-

in the figures is the comparison between one of the sourcegition of the relative error, i.ep £ @ wherex denotes

as compared to actual rain intensities measured by the raig rain gauge (ground truth) measurement anid the rain
gauges. The added value of the integrated technique is evintensity estimation at the same point. Thus, a success is de-
dent in its lower RMSE and RB while showing higher cor- clared if ¢ < ¢ (e.g.€ = 10 %); otherwise it is regarded as
relation values in all events. Moreover, each method’s pera miss. A false alarm is declared if a rain gauge indicated no
formance was also evaluated over the entire event. This igain but the estimation did. Given that definition, by denoting
provided in Figs10, 11and12for events 1, 2 and 3, respec- § as total successesf as total misses, an# as total false
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Figure 7. Evaluation analysis of event 1, where the radar (black line), the proposed integration technique (red line) and ML (blue line) are

RMSE Links/radar/Integration — 18/Jan/2010

compared to the rain gauges at the common times. Left: RMSE. Right: spatial correlation.

RMSE Links/radar/Integration — 09/Jan/2013

Spatial Cor
1.1

relation Links/radar/Integration — 09/Jan/2013

75 . . . . . . . .
— - — Radar 'l l |
’ f .
— - — Integration
6[ - - |\/||_g | ! 1 I /\\; ’T\\ . 1o )
1 i 08 A TN PAS ]
/ i A T S e A I RV IS WY
| i 0813 Ty Nt Ty R R b
= 1 c T A N L Il A A
T 45 . ! M 1 o AN i Vo Pl My i
I ] = 07F ° I ! 1
E \ 1! N B8Ot »,\.\" WLy V' ‘ neAl Y, T\!‘Ii"
w o) il o L VA L N B /) PR N I
[ I\ = | | N 1 1l PO L
€D Il Il \ ﬂ‘ S 0.6 4 | 1 I'iy \/'\ \l”
= 3t | '\'.i LY 1 o | I [ “L‘L ARINY Y
s 1M I A | e NPy o
H“ ’\ ‘/\%'T\‘l ' ’Y“ ,l\.!/” 051 | | h}i (WA Ly 3 1
(ANl \ | Vo
. “m!\\ hy /\ i b UAlA 04l L 1 1 P |
15} /\\/.\ !/ Wl V\\ | i\hcl'\ A ‘,,w /x\ 1 E | I | b
NG T PN L /\ i A4 0.3f ! ' \x' 1
I/./ oy ~ew N gj P\‘f’ Y*\\{f .
0 : : : : : 0.2 : : : : :
00:30 04:30 08:30 12:30 16:30 20:30 23:30 00:30 04:30 08:30 12:30 16:30 20:30 23:30
Time Time

Figure 8. Evaluation analysis of event 2, where the radar (black line), the proposed integration technique (red line) and ML (blue line) are
compared to the rain gauges at the common times. Left: RMSE. Right: spatial correlation.

From these figures it is clear that the disparity of the points
_F_. s is the lowest for the integration algorithm with respect to the
F+S? S+M+F -

able rain gauge measurements, for all the inspected evenfdL and the radar scatter plots (due to the under and over
at all given time frames, the integration a|gorithm achievedestimation of their reCOﬂStrUCtionS). This Implles that the in-
the scores of (witk = 10%) POD~ 89%, FAR~ 9%, and  tegrative approach is the most accurate one.

CSl~ 82%. Under the same conditions, the radar achieved a The highest correlations, lowest RMSE and lowest (abso-
performance of POB: 74 %, FAR~ 19 %, and CSk 68 %. lute) RB for all three rain events were obtained using the
These results once again prove the high quality of the prointegration algorithm. From both the maps and the compar-
posed integration technique. It should be noted that, evertive statistics, the integrated method provides a new way
when lower values of were used, similar results were ob- t0 improve rainfall estimation spatially and over time. The
tained. effectiveness of using this particular integration scheme, as

In addition to the performance evaluations, Fige, 11 in Eq. (7), can be understood by examining the RB of the
and12 also demonstrate the scatter plots, each with its corfadar and ML, which showed an over- and underestimation,

responding regression line (black line) for events 1, 2 and 3respectively, for all the inspected events.
respectively.

alarms, the given criteria can be evaluated by P@%;
FAR £ CSI£ 3. By considering all the avail-
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Figure 9. Evaluation analysis of event 3, where the radar (black line), the proposed integration technique (red line) and ML (blue line) are
compared to the rain gauges at the common times. Left: RMSE. Right: spatial correlation.
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Figure 10. Rain rate scatter plots and performance evaluations ofFigure 11. Rain rate scatter plots and performance evaluations of
the integration (left), ML (middle) and radar (right) with respect to the integration (left), ML (middle) and radar (right) with respect to
all the available rain gauges for event 1. all the available rain gauges for event 2.

Our last analysis of the data was comparing the total accu- The sites Dorot and Ramle were chosen for their respective
mulated rainfall over a specific point located inside the studyrain events given the availability of their nearby ML data, as
area for the duration of the rain event. The accumulated raifvell as their distance from the radar. The data availability

was calculated as defined in the following relation: from the sources, for each site, is detailed as follows:
T ; 1. Ramle site[31.83 N, 34.96 E], 18 January 2010: 24 h
k of rain; 30 operating ML in the area of interest (as
R(Ti) = /”/dt ~ Zrif(Tr)AT (mmy), 17 shown in Fig13), provided by Pelephone, are available.
0 r=0 The links operate at a frequency of 18—-23 GHz (for each
link) and the link lengths vary by between 1 and 15 km.
wherer;; is the rain rate (mmht) in the[x;, y;] coordinate, The RSL data from the ML is given at a time resolution
AT is the time resolution (e.qg. for the rain gauge¢$ ), 7x of 1 min with magnitude resolution of 1 dB. Distance
is the accumulation timef; indicates each time sample for from the Bet Dagan radar is 17.12 km.

eachr;; (i.e. r;;(Ty) is the rain rate at timd;, expressed in

mm h~1), andR(Ty) indicates the accumulated rain for each 2. Dorot site [31.50 N, 34.64 E]; 7-10 January 2010,
Ty (e.g. forT; = 00:30,R(Ty) is the accumulated rain from 96 h of rain, and 30 December 2009, 24h of rain.
00:00 to 00:301DT). Twelve operating ML in the area of interest (as shown
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Figure 12. Rain rate scatter plots and performance evaluations offigure 14.Rain rate scatter plots of the integration (left), ML (mid-
the integration (left), ML (middle) and radar (right) with respect to dl€) and radar (right) with respect to the rain gauge at the Ramle site

all the available rain gauges for event 3. for event 1.
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150 kn? for 12 ML provided by Cellcom Ltd. dle) and radar (right) with respect to the rain gauge at the Dorot site
for event 2.

in Fig. 13), provided by Cellcom Ltd., are available. The
ML operate at a frequency of 17—-21 GHz (for each link) 16. From these figures itis clear that the integration approach
and each link length varies by between 1 and 13. Dis-achieved the lowest disparity of the points (with respect to
tance from the Bet Dagan radar is 53.67 km. The RSLthe regression line) when comparing to the ML and the radar
data from the links are given at a temporal resolution of scatter plots. This not only implies that the integrative ap-
15 min with a magnitude resolution of 0.1 dB. proach is the most accurate one but also proves the effective-
ness in using Eq.7} for the proposed integration scheme,
It should be noted that we calculated the accumulated rainboth spatially and temporally.
fall for each site over the duration for the set of events 1, 2 Finally, Figs.17 and18illustrate the accumulated rain in-
and 3. Given that the time step varies between methods, weensity for the Ramle (event 1) and Dorot (events 2 and 3)
interpolated the accumulated results to a 5 min time resolusites. The results are demonstrated for each source, i.e. the
tion using cubic spline interpolatio®é Boor, 1978 in order  radar (pink solid line), rain gauges (black solid line), the inte-
to make the accumulation results comparable. That is, wheigration (dashed red line) and the ML (dash-dotted blue line)
regarding the rain gauges for example, the time interval isevery 5 min (i.e. the accumulated rain during the rain event,
10 min, i.e. 00:00, 00:10...23:501DT; thus, after interpola- as defined in EqL7).
tion, the results correspond to time samples every 5min, i.e. From Figs.17 and 18, one can see that the integration
at 00:05, 00:10, 00:15...23:55IDT. method improved the estimation of the accumulated rain,
lllustrations of the scatter plots, each with correspondingespecially for the radar, which had an overestimation in all
regression lines (black line), for the Ramle (event 1) andcases. When compared with ML measurements, for events 2
Dorot (events 2 and 3) sites are provided in Fig.15and  and 3 at Dorot, the ML showed an underestimation of the
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" Integra‘tion Scat‘ier Plot . ML‘ Scatter F"Iol " Radz‘-lr Scaner‘ Plot Table 2. Performance ana|y5i5 event (2) — Dorot site.
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8
; 6 ' . ML 0.77 6.09 -21
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, A N '. ’ Table 3. Performance analysis event (3) — Dorot site.
1 ‘
' i // Correlation RMSE (mm) Relative bias (%)
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Radar 0.72 7.79 34
Figure 16.Rain rate scatter plots of the integration (left), ML (mid-  Integration 0.86 2.07 7
dle) and radar (right) with respect to the rain gauge at the Dorot site
for event 3.
Table 1. Performance analysis event (1) — Ramle site. its limitations, yet they can be used to greatly complement
one another.
Correlation RMSE (mm) Relative bias (%) This paper presents a new method for data fusion of dif-
ML 087 303 3 ferent rainfall mapping sources - the weather Radar and ML,
Radar (')_71 '14_31 20 while optimizing the advantages of each. The integration
Integration  0.87 3.89 _3 technique achieves an optimal weighted linear estimation of

the rain field while considering the pros and cons of each
source, mainly the coverage area of the ML and the weather
radar. We have shown that the integrated approach is capa-
accumulation, due to the rather sparse network deployeghe of reconstructing reliable and accurate 2-D rainfall maps
(only 12 available ML) in the area. On the other hand, thecompared to both spatially averaged rain gauges (Fig.
integrated technique provides a clear improvement. As exand9), as well as in specific locations (i.e. Figs. and18).
pected, for the Ramle site there is no evident improvement By ysing data from rain gauges from several coordinates
in the integrated method, neither in total amounts nor withj, space, over multiple rain events, we managed to achieve
regard to the correlation or the RMSE when compared to theyn estimation for the unknown parameters in the integration
ML. However when comparing the performance to that of model. This parameter estimation can be improved in the fu-
the radar, an evident improvement was clear. This is due tqure as data from additional rain events become available.
the high number of ML available at that point. The main limitations of this approach lie in the necessity of
In order to evaluate the RMSE, RB and the spatial correla-haying a specific model for the integration. In this paper we
tion metrics, we used Eq. (16) with = 1; that is, the perfor-  chose the use of a weighted linear model; the effectiveness
mance measures are calculated with respect to one coordinagg using this kind of model can be understood from both the
in space forM different time steps. The evaluation is derived gcatter plots and the relative bias metric (Fit3.11, 12).
at the common times for all the reconstruction methods (i.e. The methodology proposed here is computationally fast
every 30 min — 00:00, 00:30...23:30IDT) during the whole anq provides improved rainfall estimates over the entire Is-
rain event. These calculations are shown for the Ramle sitggg| region. The data used in the analysis here show how
in Table1, and for the Dorot site in Tablésand3, with re-  maps can be drawn from the different sources in a manner
spect to events 2 and 3. These results (and especially the Rfgat allows them to be compared and contrasted, as well as
results) of all the methods prove once again the unwaveringomplementing one another, in an effort to provide a reli-

ability of the proposed integration algorithm. able assessment of the rain field recovery. The limitations
are obviously the availability of data. Specifically, the ML
4 Conclusions data are subject to specific time resolution with arbitrary

distribution in space, as provided by the telecommunication
The ability to accurately monitor rainfall at large spatial and companies. However, once the data are accessible, we may
temporal scales is critical for meteorological and hydrolog- manipulate it into uniform formats and calibrate the neces-
ical research and applications. Each of the techniques cursary parameters in order to provide four interdependent 2-D
rently available (rain gauges, radar, ML and satellites) carrainfall maps which can be used both to better inform me-
provide important information. Each technique, however, hageorological and hydrological models as well as potentially
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Figure 17. Accumulated rain intensity (mm) for the Dorot site, with 12 ML surrounding the site. Left: 30 December 2009 (24 h of rain);
right: 7-10 January 2013 (96 h of rain).
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