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Abstract

The supply/demand of a security in the market is an intertemporal, not a static, object and
its dynamics is crucial in determining market participants’ trading behavior. In this paper,
we show that the dynamics of the supply/demand, rather than its static properties, is of
critical importance to the optimal trading strategy of a given order. Using a limit-order-
book market, we develop a simple framework to model the dynamics of supply/demand and
its impact on execution cost. We show that the optimal execution strategy involves both
discrete and continuous trades, not only continuous trades as previous work suggested. The
cost savings from the optimal strategy over the simple continuous strategy can be substantial.
We also show that the predictions about the optimal trading behavior can have interesting
implications on the observed behavior of intraday volume, volatility and prices.
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1 Introduction

It has being well documented that the supply/demand of a security in the market is not

1" The limited elasticity of supply/demand or liquidity can significantly

perfectly elastic.
affect how market participants trade, which in turn will influence security prices through
the changes in their supply/demand.? Thus, to study how market participants trade is
important to our understanding of how securities markets function, how liquidity is provided
and consumed, and how it affects the behavior of security prices.® In the paper, we approach
this problem by focusing on the optimal strategy to execute a given order, leaving aside its
underlying motive. This is also referred to as the optimal execution problem. We show that
it is the dynamic properties of supply /demand such as its time evolution after trades, rather
than its static properties such as the instantaneous price impact function, that are central
to the cost of trading and the optimal strategy.

We consider a limit-order-book market, in which the supply/demand of a security is
represented by the limit orders posted to the “book,” i.e., a trading system and trade occurs
when buy and sell orders match. We propose a simple framework to describe the limit-order-
book and how it evolves over time. By incorporating several salient features of the book
documented empirically, we attempt to capture the dynamics of supply/demand a trader
faces. We show that the optimal trading strategy crucially depends on how the limit-order
book responds to a sequence of trades and it involves complex trading patterns including
both discrete and continuous trades.

In particular, the optimal strategy consists of an initial discrete trade, followed by a
sequence of continuous trades. The initial discrete trade is aimed at pushing the limit
order book away from its steady state in order to attract new orders onto the book. The
size of the initial trade is chosen to draw sufficient new orders at desirable prices. The
subsequent continuous trades will then pick off the new orders and keep the inflow coming.
A discrete trade finishes off any remaining order at the end of trading horizon when future

demand /supply is no longer of concern. The combination of discrete and continuous trades

1See, for example, Holthausen, Leftwitch and Mayers (1987, 1990), Shleifer (1986), Scholes (1972). For the
more recent work, see also Greenwood (2004), Kaul, Mehrotra and Morck (2000), Wugler and Zhuravskaya
(2002). There is also extensive theoretical work in justifying an imperfect demand/supply in securities market
based on market frictions and asymmetric information. See, for example, Grossman and Miller (1998), Kyle
(1985) and Vayanos (1999, 2001).

2Many empirical studies have shown that this is a problem confronted by institutional investors who need
to execute large orders and often break up trades in order to manage the trading cost. See, for example,
Chan and Lakonishok (1993, 1995, 1997), Keim and Madhavan (1995, 1997).

3For example, Kyle (1985) and Wang (1993) examine the behavior of traders with superior information
and how it affects liquidity and asset prices and Vayanos (1999, 2001) considers the trading behavior of large
traders with risk-sharing needs and its impact on market behavior.



for the optimal execution strategy is in sharp contrast to simple strategies of splitting a order
into small trades as suggested in the literature. Moreover, we find that the optimal strategy
and the cost saving depends primarily on the dynamic properties of supply/demand and is
not very sensitive to the instantaneous price-impact function, which has been the main focus
in previous work. Especially, the speed at which the limit order book rebuilds itself after
being hit by a trade, which is also referred to as the resilience of the book, plays a critical
role in determining the optimal execution strategy and the cost it saves.

Our predictions about optimal trading strategies lead to interesting implications about
the behavior of trading volume, liquidity and security prices. For example, it suggests
that the trading behavior of large institutional traders may contribute to the observed U-
shaped patterns in intraday volume, volatility and bid-ask spread. It also suggests that
these patterns can be closely related to institutional ownership and the resilience of the
supply/demand of each security.

The problem of optimal execution takes the order to be executed as given. Ideally, we
should consider both the optimal size of an order and its execution, taking into account
the underlying motives to trade (e.g., return and risk, preferences and constraints) and the
costs to execute trades.* The diversity in trading motives makes it difficult to tackle such a
problem as a general level. Given that in practice the execution of trades is often separated
from the decisions on the trades, in this paper we focus on the execution problem as an
important and integral part of the general problem of optimal trading behavior.

Several authors have studied the problem of optimal execution. For example, Bertsimas
and Lo (1998) propose a linear price impact function and solve for the optimal execution
strategy to minimize the expected cost of executing a given order. Almgren and Chriss
(1999, 2000) include risk considerations in a similar setting using a mean-variance objective

° The framework adopted in these papers share two main features. First, it uses

function.
a discrete-time setting so that the times to trade are fixed at given intervals. Second, it
relies on price impact functions to describe how a sequence of trades affects prices at which
trades are executed. A discrete-time setting is clearly undesirable for the execution problem
because the timing of trades is an important choice variable and should be determined
optimally. A natural way to address this issue would be to take a continuous-time limit of
the discrete-time formulation. But such a limit leads to degenerate solutions with the simple
price impact functions considered previously. In particular, Lo and Bertsimas (1998) consider

the permanent price impact by assuming a static, linear impact function. As a result, the

4For example, many authors have considered the problem of optimal portfolio choices in the presence of
transactions costs, e.g., Constantinides (1986), Davis and Norman (1990), and Leland (2000).

®See also, Almgren (2003), Dubil (2002), Huberman ans Stanzl (2005), Subramanian and Jarrow (2001),
among others.



price impact of a sequence of trades depends only on their total size and is independent of
their distribution over time. In this case, the execution cost becomes strategy independent
in the continuous-time limit. Almgren and Chris (1999, 2000) and Huberman and Stanzl
(2005) also allow temporary price impact, which depends on the pace of trades. Introducing
temporary price impact adds a dynamic element to the price impact function by penalizing
speedy trades. But it restricts the execution strategy to continuous trades in the continuous-
time limit, which is in general sub-optimal.

The simple price impact functions used in previous work do not fully capture the in-
tertemporal nature of supply/demand in the market. In particular, it limits the extent to
which the allocation of trades over time, given their sizes, influences current and future sup-
ply/demand and the resulting execution cost. Yet, it is clear that how to allocate trades
over time is at the heart of the problem. Thus, modelling the intertemporal properties of
supply/demand is essential in analyzing the optimal execution strategy. Taking these consid-
erations into account, our framework attempts to capture these intertemporal aspects of the
supply/demand by directly modelling the liquidity dynamics in a limit-order-book market.
We show that when the timing of trades is chosen optimally, the optimal execution strategy
differs significantly from those suggested in earlier work and yields substantial cost reduc-
tion. It involves a mixture of discrete and continuous trades. Moreover, the characteristics
of the optimal execution strategy are mostly determined by the dynamic properties of the
supply/demand rather than its static properties as described by the price impact function.

In modelling the supply /demand dynamics, we choose the limit-order-book market mainly
for concreteness. Our description of the limit-order-book dynamics relies on an extensive
empirical literature.> We choose the shape of the limit-order-book to yield a linear price-
impact function, which is widely adopted in previous work. More importantly, we explicitly
model the resilience of the book, which several empirical studies document as an important
property of the book (see, e.g., Biais, Hillion and Spatt (1995) and Harris (1990)).

Our analysis is partial equilibrium in nature. We take the dynamics of the limit-order-
book as given and do not attempt to provide an equilibrium justification for the specific
limit-order-book dynamics used in the paper. Nonetheless, it is worth pointing out that
in addition to the empirical motivation mentioned above, the supply/demand dynamics we
consider is also consistent with several equilibrium models (e.g., Kyle (1985) and Vayanos
(1999, 20001)). In particular, Vayanos (2001) analyzes the optimal trading behavior of a

large trader who trades with a set of competitive market makers for risk sharing. He shows

6See, for example, Ahn, Bae and Chan (2000) for a study on the Hong Kong Stock Exchange, Biais, Hillion
and Spatt (1995) on the Paris Bourse, Chung, Van Ness and Van Ness (1999) on the NYSE, Hasbrouck and
Saar (2002) on the Island ECN, Hollfield, Miller and Sandas (2003) on the Stockholm Stock Exchange and
Griffiths, Smith, Turnbull and White (2000) on the Toronto Stock Exchange.



that the price impact of the large trader is linear in his trades and the supply/demand
by the market makers exhibits certain form of resilience. Although his analysis relies on
specific assumptions on traders’ trading motives and preferences, it does provide additional
theoretical basis for the qualitative properties of supply/demand dynamics we consider.

Several authors have also considered equilibrium models for the limit-order-book market,
including Foucault, Kadan and Kandel (2004), Goettler, Parlour and Rajan (2005) and Rosu
(2005). For tractability, the set of order-placement strategies allowed in studies are severely
limited to obtain an equilibrium. For example, Foucault, Kadan and Kandel (2004) and
Rosu (2005) only allow orders of a fixed size. Goettler, Parlour and Rajan (2005) focus
on one-shot strategies. These simplifications are helpful when we are interested in certain
properties of the book, but quite restrictive when analyzing the optimal trading strategy.
A more general and realistic equilibrium model must allow general strategies. From this
perspective, our analysis, namely to solve the optimal execution strategy under general
supply/demand dynamics, is an unavoidable step in this direction.

The rest of the paper is organized as follows. Section 2 states the optimal execution
problem. Section 3 introduces the limit-order-book market and a model for the limit order
book dynamics. In Section 4, we show that the conventional setting in previous work can be
viewed as a special case of our limit-order-book framework. We also explain why the stringent
assumptions in the conventional setting lead to its undesirable properties. In Section 5, we
solve the discrete-time version of the problem within our framework. We also consider
its continuous-time limit and show that it is economically sensible and properly behaved.
Section 6 provides the solution of the optimal execution problem in the continuous-time
setting. In Section 7, we analyze the properties of the optimal execution strategy and their
dependence on the dynamics of the limit order book. We also compare it with the strategy
predicted by the conventional setting. In addition, we examine the empirical implications of
the optimal execution strategy. Section 8 discusses possible extensions of the model. Section

9 concludes. All proofs are given in the appendix.

2 Statement of the Problem

The problem we are interested in is how a trader optimally executes a given order. To fix
ideas, let us assume that the trader has to buy X, units of a security over a fixed time
period [0, T']. Suppose that the trader ought to complete the order in NV + 1 trades at times
to,t1,...,tn, where tp = 0 and ty =T. Let x;, denote the trade size for the trade at ¢,,. We



then have

N
D a, = X (1)
n=0

A strategy to execute the order is given by the number of trades, N+1, the set of times to
trade, {0 < tg,t1,...,tn_1,tny < T} and trade sizes {xy,, T4y, ..., Ty Ty, > 0V nand (1)}
Let ©p denote the set of these strategies:

N
GD: {{xtoaxtp"'?xt]\r}: O§t07t17"'7tN §T7 T, 2 O\V/n, Z‘rtn:XO}' <2>

n=0
Here, we have assumed that the strategy set consists of execution strategies with finite
number of trades at discrete times. This is done merely for easy comparison with previous
work. Later we will expand the strategy set to allow uncountable number of trades over
time.

Let P, denote the average execution price for trade x,,. We assume that the trader

chooses his execution strategy to minimize the expected total cost of his purchase:

N
min E, Z Pz, (3)
r€Op n—=0

For simplicity, we have assumed that the trading horizon 7T is fixed and the trader is risk-
neutral who cares only about the expected value not the uncertainty of the total cost. We
will incorporate risk considerations later (in Section 8), which also allows us to endogenize
the trading horizon.

The solution to the trader’s optimal execution strategy crucially depends on how his
trades impact the prices. It is important to recognize that the price impact of a trade has
two key dimensions. First, it changes the security’s current supply/demand. For example,
after a purchase of z units of the security at the current price of P, the remaining supply of
the security at P in general decreases. Second, a change in current supply/demand can lead
to evolutions in future supply/demand, which will affect the costs for future trades. In other
words, the price impact is determined by the full dynamics of supply/demand in response
to a trade. Thus, in order to fully specify the optimal execution problem, we need to model

the supply/demand dynamics.

3 Limit Order Book and Supply/Demand Dynamics

The actual supply/demand of a security in the market place and its dynamics depend on

the actual trading process. From market to market, the trading process varies significantly,



ranging from a specialist market or a dealer market to a centralized electronic market with a
limit order book. In this paper, we consider the limit-order-book market, which is arguably

the closest, at least in form, to the text-book definition of a centralized market.

3.1 Limit Order Book (LOB)

A limit order is a order to trade a certain amount of a security at a given price. In a
market operated through a limit-order-book, thereafter LOB for short, traders post their
supply/demand in the form of limit orders to a electronic trading system.” A trade occurs
when an order, say a buy order, enters the system at the price of an opposite order on the
book, in this case a sell order, at the same price. The collection of all limit orders posted
can be viewed as the total demand and supply in the market.

Let ga(P) be the density of limit orders to sell at price P and gp(P) the density of limit
orders to buy at price P. The amount of sell orders in a small price interval [P, P+dP) is
qa(P)(P+dP). Typically, we have

+, P=A

QA(P):{O pP<A and QB(P):{

0, P>B
+, P<B

where A > B are the best ask and bid prices, respectively. We define
V=(A+B)/2, s=A-B (4)

where V' is the mid-quote price and s is the bid-ask spread. Then, A = V + /2 and
B =V —s/2. Because we are considering the execution of a large buy order, we will focus
on the upper half of the LOB and simply drop the subscript A.

In order to model the execution cost for a large order, we need to specify the initial LOB
and how it evolves after been hit by a series of buy trades. Let the LOB (the upper half of
it) at time t be q(P; Fy; Zy;t), where F, denotes the fundamental value of the security and
Z; represents the set of state variables that may affect the LOB such as past trades. We
will consider a simple model for the LOB, to capture its dynamic nature and to illustrate
their importance in analyzing the optimal execution problem, and return to its extensions to
better fit the empirical LOB dynamics later. In particular, we assume that the fundamental
value the security F; follows a Brownian motion, reflecting the fact that in absence of any

trades, the mid-quote price may change due to news about the fundamental value of the

"The number of exchanges adopting an electronic trading system with posted orders has been increasing.
Examples include NYSE’s OpenBook program, Nasdaq’s SuperMontage, Toronto Stock Exchange, Vancou-
ver Stock Exchange, Euronext (Paris, Amsterdam, Brussels), London Stock Exchange,Copenhagen Stock
Exchange, Deutsche Borse, and Electronic Communication Networks such as Island. For the fixed income
market, there are, for example, eSpeed, Furo MTS, BondLink and BondNet. Examples for the derivatives
market include Eurex, Globex, and Matif.



security. Thus, V; = F; in absence of any trades and the LOB maintains the same shape
except that the mid-point, V;, is changing with F;. In addition, we assume that the only
set of relevant state variables is the history of past trades, which we denote by z(o ¢, i.e.,
= Zo, -

At time 0, we assume that the mid-quote is V5 = Fjy and LOB has a simple block shape
@o(P) = q(P; Fo;0;0) = q L{p>a,)
where and Ay = Fy+s/2 is the initial ask price and 1{2>4} is an indicator function:
1, z>a
Hezay = { 0, z<a

In other words, ¢y is a step function of P with a jump from zero to ¢ at the ask price
Ay = Vo+5/2 = Fy+s/2. The first panel in Figure 1 shows the shape of the book at time 0.

Pa Pa PA Pa PaA
qy(P) A | qt(p) a(P) qi(p) a(p)
t

Vi +8/2 me---- Vi+S/2 me--- - Vp+s/2 pemeee ' AgFvs/2

At="t+5/2

q q q q q

t=t g t=t o+ t=t 4 t=t o t=t 3

Figure 1: The limit order book and its dynamics. This figure illustrates how the sell side
of limit order book evolves over time in response to a sale trade. Before the trade at time
to = 0, the limit order book is full at the ask price A9 = Vy+s/2, which is shown in the
first panel from the left. The trade of size g at t = 0 “eats off” the orders on the book
with lowest prices and pushes the ask price up to Agr = (Fp+5/2) + x0/q, as shown in
the second panel. During the following periods, new orders will arrive at the ask price A,
which fill up the book and lower the ask price until it converges to its new steady state
Ay = Fy 4 Az + s/2, as shown in the last panel on the right. For clarity, we assume that
there are no fundamental shocks.

Now we consider a trade of size x¢ at t = 0. The trade will “eat off” all the sell orders

with prices from Fy+s/2 up to Ao, , where Ay, is given by

Ao,
/ qdP = xg
F0+S/2

or Ay, = Fy+5/2+x0/q. The average execution price is P = Fy+5/2 + x¢/(2q), which is
linear in the size of the trade. Thus, the shape of the LOB we propose is consistent with

the linear price impact function assumed in previous work. This is also the main reason we



adopted it here.
Right after the trade, the limit order book becomes:

Qo (P) = q(P; Fo; Zo,304) = q1(p>a,, }-

Ay, = Fy+s/2+x0/q is the new ask price. Orders at prices below Ay, = (Fo+5/2) + z0/q
have all been executed. The book is left with limit sell orders at prices above (including)

Ap, . The second panel of Figure 1 plots the limit order book right after the trade.

3.2 Limit Order Book Dynamics

What we have to specify next is how the LOB evolves over time after being hit by a trade.
Effectively, this amounts to describing how the new sell orders arrive to fill in the gap in
the LOB eaten away by the trade. First, we need to specify the impact of the trade on the
mid-quote price, which will determine the prices of the new orders. In general, the mid-quote
price will be shifted up by the trade. We assume that the shift in the mid-quote price will

be linear in the size of the total trade. That is,
‘/0-&- = Fo + )\QZO

where 0 < A < 1/q and Az gives the permanent price impact the trade xy has. If there are
no more trades after the initial trade xq at ¢ = 0 and there are no shocks to the fundamental,

the limit order book will eventually converge to its new steady state

@(P) = qlip>a,

where ¢ is sufficiently large, A, = V; 4+ s/2 and V; = Fy + Azg. Next we need to specify
how the limit order book converges to its steady-state. Note that right after the trade, the
ask price is Ag; = Fy+5/24x0/q, while in the steady-state it is A = Fy+5/2+Axg. The
difference between the two is Agy — Ao = 2o(1/qg— A). We assume that the limit order book

converges to its steady state exponentially:

a(P) = qlp>a, (5)
where

Ay =Vi+5/2 4+ zoke ™, k=1/qg—)\ (6)

and p > 0 gives the convergence speed and V; = V;,, in absence of new trades and changes

in F,, which measures the “resilience” of the LOB.®

8 A number of empirical studies documented the existence of the resiliency of LOB. See, for example, Biais,
Hillion and Spatt (1995), Hamao and Hasbrouck (1995), Coppejans, Domowitz and Madhavan (2001), and
Ranaldo (2004). Moreover, the idea of liquidity being exhausted by a trade and then replenished as traders



Equations (5) and (6) imply that after a trade xq, the new sell orders will start coming

in at the new ask price A; at the rate of pg(A;—V;—s/2). For convenience, we define
Dt:At—‘/t—S/2 (7)

which stands for the deviation of current ask price A; from its steady state level V;+s/2.
We can easily extend the LOB dynamics described above for a single trade to allow
multiple trades and shocks to the fundamental value. Let n(t) denote the number of trades
during interval [0, t), t1,...,t,q the times for these trades, and z;, their sizes, respectively.
Let X; be the remaining order to be executed at time ¢, before trading at t. We have
Xp=Xo— Y 1w, (8)
tn<t

with AXVT#L = 0. Let
n(t)
%:Ft—i_)\(XO_Xt):Ft—i_/\thl (9)
=0

where Xy— X, is the total amount of purchase during [0, ¢). The ask price at any time ¢ is

n(t)
Ay=Vi+s/2+ Z ke Pt (10)

i=0
and the limit order book at any time ¢ is given by (5). Panels 2 to 5 in Figure 1 illustrates
the time evolution of the LOB after a trade. We can easily extend the above description to
include sell orders which may occur in the mean time and can shift the mid-quote V;. If not
predictable, they are not important to our analysis. Thus, we omit them here.

Before we go ahead with the LOB dynamics and examines its implications on execution
strategy, several comments are in order. We note that the simple LOB dynamics described
above is assumed to be given, without further economic justification. Presumably, it is driven
by the optimizing behavior of those who submit the orders and thus provide liquidity to the
market.? In addition, the LOB dynamics may be further affected by the strategic interactions
among market participants (see, for example, Vayanos (1999, 2001)). To describe the actual

take advantage of profit opportunities is behind most of the dynamic equilibrium frameworks of LOB. See,
for example, Foucault, Kadan and Kandel (2004), Goettler, Parlour and Rajan (2005), Parlour (1998), Rosu
(2005).

9Several recent work show that traders do use the rich information revealed by the books when deciding
on their order submission strategies. See, for example, Cao, Hansch, and Wang (2003), Harris and Pan-
chapagesan (2005), Bloomfield, O’Hara, and Saar (2003), Ranaldo (2004), among others. Many authors
have developed models for optimal order placement in markets with limit orders. See Foucault (1999), Fou-
cault, Kadan, and Kandel (2001), Glosten (1994), Goettler, Parlou and Rajan (2005), Harris(1998), Parlour
(1998), Parlour and Seppi(2003), Rock (1996), Rosu (2005), Sandas (2001), and Seppi (1997). However, as
mentioned earlier, most of these models impose strong restrictions on the strategies allowed.



LOB dynamics will require an equilibrium framework. However, for any equilibrium analysis,
we first need to study the optimal trading strategy under general LOB dynamics. Thus,
our analysis can be viewed as a necessary step along this direction. Clearly, our setting
is general enough for this purpose. It should be emphasized that the goal of this paper
is to demonstrate the importance of supply/demand dynamics in determining the optimal
trading strategy. The specific model we use mainly helps us to make the point in a simple
and revealing way. Its partial equilibrium nature as well as its quantitative features are not

crucial to our main conclusions.

3.3 Execution Cost

Given the above description of the LOB dynamics, we can now describe the total cost of
an execution strategy for a given order Xy. Let x;, denote the trade at time ¢, and A,
the ask price at ¢, prior to the trade. The evolution of ask price A; as given in (10) is not
continuous. For clarity, A; always denotes the left limit of A;, A; = lim,_;- A, i.e., the ask

price before the trade at t. The same convention is followed for V;. The cost for z;, is then

cay,) = /Oxtn P, (z)dx (11)

where P;(z) is defined by equation

Pt(.f)
x :/ q:(P)dP. (12)
Ag
For block-shaped LOB given in (5), we have
Fi(z) = A+ z/q
and

c(xy,) = [As, + x4, /(29)] 4, - (13)

The total cost is Zg:o c(x,). Thus, the the optimal execution problem (3) now reduces to

N
min Eo | [Ay, + 21,/(29)] 7, (14)
z€Op n—0

under our dynamics of the limit order book given in (9) and (10).

4 Conventional Models As A Special Case

Previous work on optimal execution strategy uses a discrete-time setting with fixed time

intervals and relies on a specific price-impact function to describe supply/demand (e.g.,

10



Bertsimas and Lo (1998) and Almgren and Chriss (1999, 2000)). Such a setting, however,
avoids the question of optimal trading times. In this section, we briefly describe the setting
used in previous work and its limitations. We then show that the conventional setting can
be viewed as a special case of our framework with specific restrictions on the LOB dynamics.
We further point out why these restrictions are unrealistic when the timing of trades is

determined optimally.

4.1 Conventional Setup

We first consider the setup proposed by Bertsimas and Lo (1998). We adopt a simple version
of their framework which captures the basic features of the models used in earlier work.

In a discrete-time setting, the trader trades at fixed time intervals, n7, where 7 = T/N
andn=20,1,..., N are given. Each trade will have an impact on the price, which will affect
the total cost of the trade and future trades. Most models assume a linear price-impact

function of the following form:

Py= P+ Az, +uy = (Fy+5/2) + XY (15)
i=0

where the subscript n denotes the n-th trade at ¢, = nr, P, is the average price at which

trade x, is executed with Py, = Fy+s/2, A is the price impact coefficient and w,, is i.i.d.

random variable, with a mean of zero and a variance of o7.1% In the second equation, we

have set F,, = Fy + > ,u;. Clearly, A captures the permanent price impact a trade has.

The trader who has to execute an order of size X solves the following problem:

N N
min - B [Y Pz | = (Fots/2)Xo+ A Xo(Xpp1—X,). (16)
{zo,21,....xN} =0 =0

where P, is defined in (15) and X,, is a number of shares left to be acquired at time t,
(before trade z;,) with Xxn41 = 0.

As Bertsimas and Lo (1998) show, given that the objective function is quadratic in x,,, it
is optimal for the trader to split his order into small trades of equal sizes and execute them
at regular intervals over the fixed period of time:

Xo
T N+1

where n = 0,1,...,N.!!

Tn

(17)

0Huberman and Stanzl (2004) have argued that in the absence of quasi-arbitrage, permanent price-impact
functions must be linear.

11Tf the trader is risk averse, he will trade more aggressively at the beginning, trying to avoid the uncertainty
in execution cost in later periods.
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4.2 The Continuous-Time Limit

Although the discrete-time setting with a linear price impact function gives a simple and
intuitive solution, it leaves a key question unanswered, namely, what determines the time-
interval between trades. An intuitive way to address this question is to take the continuous-
time limit of the discrete-time solution, i.e., to let N goes to infinity. However, as Huberman
and Stanzl (2005) point out, the solution to the discrete-time model (16) does not have a
well-defined continuous-time limit. In fact, as N — oo, the cost of the trades as given in

(16) approaches the following limit:
(Fo+s/2)Xo + (A/2)X3

which is strategy-independent. Thus, for a risk-neutral trader, the execution cost with contin-
uous trading is a fixed number and any continuous strategy is as good as another. Therefore,
the discrete-time model as described above does not have a well-behaved continuous-time
limit.'? For example, without increasing the cost the trader can choose to trade intensely at
the very beginning and complete the whole order in an arbitrarily small period. If the trader
becomes slightly risk-aversion, he will choose to finish all the trades right at the beginning,
irrespective of their price impact.'® Such a situation is clearly undesirable and economically
unreasonable.

This problem has led several authors to propose different modifications to the conven-
tional setting. He and Mamaysky (2001), for example, directly formulate the problem in
continuous-time and impose fixed transaction costs to rule out any continuous trading strate-
gies. Similar to the more general price impact function considered by Almgren and Chriss
(1999, 2000), Huberman and Stanzl (2005) proposes a temporary price impact of a particular
form to penalize high-intensity continuous trading. Both of these modifications limit us to
a subset of feasible strategies, which is in general sub-optimal. Given its closeness to our

paper, we now briefly discuss the modification with temporary price impact.

12In taking the continuous-time limit, we have held A constant. This is, of course, unrealistic. For different
7, A can well be different. But the problem remains as long as A has a finite limit when 7 — 0.
I3As N — o0, the objective function to be minimized for a risk-averse trader with a mean-variance
preference approaches the following limit
T
/ PdX;
0

T
/ PdX,
0

where a > 0 is the risk-aversion coeflicient and o is the price volatility of the security. The trader cares
not only about the expected execution cost but also its variance, which is given by the last term. Only the
variance of the execution cost depends on the strategy. It is easy to see that the optimal strategy is to choose
an L-shaped profile for the trades, i.e., to trade with infinite speed at the beginning, which leads to a value
of zero for the variance term in the cost function.

T
C(zp, 1) =E + LaVar = (Fo+5/2)Xo + (A\/2) X2 + %aaZ/ X2dt
0
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4.3 Temporary Price Impact

Almgren and Chriss (1999, 2000) include a temporary component in the price impact func-
tion, which can in general depend on the trading interval 7. The temporary price impact
gives additional flexibility in dealing with the continuous-time limit of the problem. In

particular, they specify the following dynamics for the execution prices of trades:
P, =P, + G(z,/7) (18)

where P, is the same as given in (15), 7 = T'/N is the time between trades, and G(-) describes
a temporary price impact, which reflects temporary price deviations from “equilibrium”
caused by trading. With G(0) = 0 and G'(-) > 0, the temporary price impact penalizes high
trading volume per unit of time, z, /7. Using a linear form for G(-), G(z) = 0z, it is easy to

show that as N goes to infinity the expected execution cost approaches to

T rdx\?
(Fo+s/2)Xo + (V/2) X5 + 0/0 (d_tt) dt

(see, e.g., Grinold and Kahn (2000) and Huberman and Stanzl (2005)). Clearly, with the
temporary price impact, the optimal execution strategy has a continuous-time limit. In fact,
it is very similar to its discrete-time counterpart: It is deterministic and the trade intensity,
defined by the limit of z,,/7, is constant over time.'4

The temporary price impact reflects an important aspect of the market, the difference
between short-term and long-term supply /demand. If a trader speeds up his buy trades, as
he can do in the continuous-time limit, he will deplete the short-term supply and increase the
immediate cost for additional trades. As more time is allowed between trades, supply will
gradually recover. However, as a heuristic modification, the temporary price impact does not
provide an accurate and complete description of the supply/demand dynamics, which leads
to several drawbacks. First, the temporary price impact function in the form considered
in Almgren and Chriss (2000) and Huberman and Stanzl (2005) rules out the possibility
of discrete trades. This is not only artificial but also undesirable. As we show later, in
general the optimal execution strategy does involve both discrete and continuous trades.
Moreover, introducing the temporary price impact does not capture the full dynamics of
supply/demand.'s Also, simply specifying a particular form for the temporary price impact

function says little about the underlying economic factors that determine it.

141f the trader is risk-averse with a mean-variance preference, the optimal execution strategy has a de-
creasing trading intensity over time. See Almgren and Chriss (2000) and Huberman and Stanzl (2005).

5For example, two sets of trades close to each other in time versus far apart will generate different
supply /demand dynamics, while in Huberman and Stanzl (2005) they lead to the same dynamics.
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4.4 A Special Case of Our Framework

In the conventional setting, the supply/demand of a security is described by a price impact
function at fixed times. This is inadequate when we need to determine the optimal timing
of the execution strategy. We show in Section 3, using a simple limit order book framework,
that the supply/demand is an intertemporal object which exhibits rich dynamics. The simple
price impact function, even with the modification proposed by Almgren and Chriss (1999,
2000) and Humberman and Stanzl (2005), misses important intertemporal aspects of the
supply/demand that are crucial to the determination of optimal execution strategy.

We can see the limitations of the conventional model by considering it as a special case
of our general framework. Indeed, we can specify the parameters in the LOB framework so
that it will be equivalent to the conventional setting. First, we set the trading times at fixed
intervals: ¢, = n7t, n =0,1,..., N. Next, we make the following assumptions on the LOB

dynamics as described in (5) and (9):
¢=1/(2\), A=A p=o0 (19)

where the second equation simply states that the price impact coefficient in the LOB frame-
work is set to be equal to its counterpart in the conventional setting. These restrictions
imply the following dynamics for the LOB. As it follows from (10), after the trade x,, at ¢,
(t, = n7) the ask price A;, jumps from V; +s/2 to V; +s/2+2Az,. Over the next period,
it comes all the way down to the new steady state level of V;, +s/2+ Az, (assuming no
fundamental shocks from ¢, to t,y1). Thus, the dynamics of ask price A;, is equivalent to
dynamics of P, in (15).

For the parameters specified in (19), the cost for trade zy,, c¢(z,) = [As, + 21, /(2q)] x4,

becomes
C(L’Etn) = [Ftn+3/2 + )\(Xo—th) + /\Itn] l’tn

which is the same as the trading cost in the conventional model (16). Thus, the conventional
model is a special case of LOB framework for parameters in (19).

The main restrictive assumption we have to make to obtain the conventional setup is that
p = oo and the limit order book always converges to its steady state before the next trading
time. This is not crucial if the time between trades is held fixed. But if the time between
trades is allowed to shrink, this assumption becomes unrealistic. It takes time for the new
limit orders to come in to fill up the book again. The shape of the limit order book after a
trade depends on the flow of new orders as well as the time elapsed. As the time between
trades shrinks to zero, the assumption of infinite recovery speed becomes less reasonable and

it gives rise to the problems in the continuous-time limit of the conventional model.
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5 Discrete-Time Solution

We now return to our general framework and solve the model for the optimal execution
strategy when trading times are fixed, as in the conventional model. We then show that
in contrast to the conventional setting, our framework is robust for studying convergence
behavior as time between trades goes to zero. Taking the continuous-time limit we exam-
ine the resulting optimal execution strategy which turns out to include both discrete and
continuous trading.

Suppose that trade times are fixed at ¢, = n7, where 7 =T/N and n =0,1,..., N. We
consider the corresponding strategies xy, 71 = {%o,1,...,,} within the strategy set ©p

defined in Section 2. The optimal execution problem, defined in (3), now reduces to

N
Jo = min Eo Z [Ar, + 2,/ (29)] (20)
{@o,...an} n=0
n—1
s.t. Ay, = F + M Xo—Xy,) +5/2+ Z zike T
i=0

where F} follows a random walk. This problem can be solved using dynamic programming.

We have the following result:

Proposition 1 The solution to the optimal execution problem (20) is

Tn = _%(5n+1 [Dtn (1_5%16*,074_25%“6*2/)7) - Xy, ()\+204n+1 _6n+1"167p7-):| (21>

with xny = Xy, where Dy = A;—V,—5s/2. The expected cost for future trades under the

optimal strateqy is
Ji = (Fy, +5/2)Xe, + AXo Xy, + 0u X} + 3, Dy, Xe, + 0Dy, (22)

where the coefficients i1, Bnit, Ynr1 and 0,41 are determined recursively as follows

o, = anH—iénﬂ()\—i—QOan—ﬁnﬂﬁze””)Q (23a)
ﬁn = ﬁn-&-le_p‘r“'%&H—l(l_6n+1€_p7+2/€7n+1€_2p7)()‘+2an+1 _ﬂn-i-l'%e_lﬁ) (23b)
Tn = %+1€_2pT—i5n+1(1—ﬁn+1€_p7+2%+1l€6_2m)2 (23c)

with 6,11 = [1/(2q)+an+1—ﬂnﬂfée””+%+1l-€2e’2p7]71 and terminal condition
ay = 1/(2q) - )\7 ﬁN = 17 YN = 0. (24>

Proposition 1 gives the optimal execution strategy when we fix the trade times at a
certain interval 7. But it is only optimal among strategies with the same fixed trading

interval. In principle, we want to choose the trading interval to minimize the execution cost.
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One way to allow different trading intervals is to take the limit 7 — 0, i.e., N — oo, in

the problem (20). Figure 2 plots the optimal execution strategy {z,, n = 0,1,..., N} for

N = 10,25,100, respectively. Clearly, it is very different from the strategy given in (17)

and obtained previously when the dynamics of demand/supply is ignored. Moreover, as N

becomes large, the strategy splits into two parts, large trades at both ends of the horizon

(the beginning and the end) and small trades in between.

Trade Profiles for Different N

1
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Figure 2: Optimal execution strategy with fixed discrete trading intervals. This figure plots
the optimal trades for IV fixed intervals, where N is 10, 25 and 100 for respectively the top,
middle and bottom panels. The initial order to trade is set at Xy = 100, 000 units, the time
horizon is set at T = 1 day, the market depth is set at ¢ = 5,000 units, the price-impact

coefficient is set at A = 1/(2¢) = 10~% and the resiliency coefficient is set at p = 2.231.

The next proposition describes the continuous-time limit of the optimal execution strat-

egy and the expected cost:

Proposition 2 In the limit of N — oo, the optimal execution strategy becomes

I Xo
im 2y = Ty—g =
N To t=0 oT+2

. v pXo
Jim 2, /(T/N) = X; = o '€ (0, T)
I Xo
1M TNy = =T =
N—oo N =T pT—|—2

and the expected cost is

Ji = (Fo+s/2)X; + AXo X, + X2 + 3, X, D, + 7, D?
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where coefficients oy, By, V¢ are given by

K A 2 p(T—t)
e fi= Y= — ~
p(T—t)+2 2 p 2k[p(T—t)+2]

oy =

m, (26)

The optimal execution strategy given in Proposition 2 is different from those obtained
in the conventional setting. In fact, it involves both discrete and continuous trades. This
clearly indicates that the timing of trades is a critical part of the optimal strategy. It also
shows that ruling out discrete or continuous trades ex ante is in general suboptimal. More
importantly, it demonstrates that both the static and dynamic properties of supply/demand,
which are captured by the LOB dynamics in our framework, are important in analyzing the
optimal execution strategy. We return in Section 7 to examine in more detail the properties

of the optimal execution strategy and their dependence on the LOB dynamics.

6 Continuous-Time Solution

The nature of the continuous-time limit of the discrete-time solution suggests that limiting
ourselves to discrete strategies can be suboptimal. We should in general formulate the
problem in continuous-time setting and allow both continuous and discrete trading strategies.
In this section, we present the continuous-time version of the LOB framework and derive the
optimal strategy.

The uncertainty in model is fully captured by fundamental value F;. Let F, = Fy + 0Z;
where Z; is a standard Brownian motion defined on [0, T']. F; denotes the filtration generated
by Z;. A general execution strategy can consist of two components, a set of discrete trades
at certain times and a flow of continuous trades. A set of discrete trades is also called an

“impulse” trading policy.

Definition 1 Let N, = {1,2,...}. An impulse trading policy (1, ) : k € Ny is a sequence
of trading times 1, and trade amounts xy such that: (1) 0 < 1, < Tpyq for k € Ny, (2) 7y is

a stopping time with respect to Fy, and (3) xy is measurable with respect to Fy, .

The continuous trades can be defined by a continuous trading policy described by the in-
tensity of trades pyo 4, where p, is measurable with respect to F; and p,dt gives the trades
during time interval [t, ¢ + dt). Let us denote T" the set of impulse trading times. Then, the

set of admissible execution strategies for a buy order is

T
@w—%ﬂ%@pMMZQ/uM+Z%~& (27)
0

teT
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where p; is the rate of continuous buy trades at time ¢ and x; is the discrete buy trade for
t € T. The dynamics of X;, the number of shares to acquire at time ¢, is then given by the

following equation:

t
Xt:XO—/Msds— > .
0

SET, s<t
Now let us specify the dynamics of ask price A;. Similar to the discrete-time setting, we
have Ay = Fy+s/2 and

t
Ay = Ag + / [dV, — pDyds — kdX, | (28)
0

where V; = F, + A(Xo—X) as in (9) and Dy = A;—V,—s/2 as in (7). The dynamics of A,
captures the evolution of the limit order book, in particular the changes in V;, the inflow of
new orders and the continuous execution of trades.

Next, we compute the execution cost, which consists of two parts: the costs from contin-

uous trades and discrete trades, respectively. The execution cost from ¢ to T is

= /t Apds+ Y [Aat2./(2)] . (29)

SET, t<s<T
Given the dynamics of the state variables in (9), (28), and cost function in (29), the

optimal execution problem now becomes

Jt = J(Xt, At, ‘/t’ t) = min Et [Ct] (30)

{M[O, T]» {Itgj“}}eec
where J; is the value function at ¢, the expected cost for future trades under the optimal
execution strategy. At time T, the trader is forced to buy all of the remaining order X,

which leads to the following boundary condition:
Jr = [Ar +1/(2¢) X7] Xr.

The next proposition gives the solution to the problem:

Proposition 3 The value function for the optimization problem (30) is
Jy = (F,+5/2) X, + AXo X, + X7 + 8Dy + 7,.D?

where Dy = Ay—V;—s/2. The optimal execution strategy is

_ X% __rXo
T2 M7 2

where the coefficients oy, B, and v are the same as given in Proposition 2.

To = X7 Vite(0,T) (31)

Obviously, the solution we obtained with the continuous-time setting is identical to the
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continuous-time limit of the solution in the discrete-time setting. The optimal strategy

consists of both continuous and discrete trades.

7 Optimal Execution Strategy and Cost

In contrast with previous work, the optimal execution strategy includes discrete and con-
tinuous trading. We now analyze the properties of the optimal execution strategy in more
detail. Interestingly, while it does not depend on parameters A and ¢, which determine static
supply/demand, it crucially depends on parameter p, which describes the LOB dynamics,
and the horizon for execution T'. Further in this section we quantify the cost reduction which

the optimal execution strategy brings and discuss its empirical implications.

7.1 Properties of Optimal Execution Strategy

The first thing to notice is that the execution strategy does not depend on A and ¢g. Coefficient
A captures the permanent price impact of a trade. Given the linear form, the permanent
price impact gives an execution cost of (Fy+s/2) Xy + (A\/2) X3, which is independent of the
execution strategies. This is a rather striking result given that most of the previous work
focus on A as the key parameter determining the execution strategy and cost. As we show
earlier, A affects the execution strategy when the times to trade are exogenously set at fixed
intervals. When the times to trade are determined optimally, the impact of A on execution
strategy disappears. Given the linear form of the price impact function, A fully describes the
instantaneous supply/demand, or the static supply/demand. Our analysis clearly shows that
the static aspects of the supply/demand does not fully capture the factors that determining
the optimal execution strategy.

Coefficient ¢ captures the depth of the market. In the simple model for the limit order
book we have assumed, market depth is constant at all price levels above the ask price. In
this case, the actual value of the market depth does not affect the optimal execution strategy.
For more general (and possibly more realistic) shapes of the limit order book, the optimal
execution strategy may well depend on the characteristics of the book.

The optimal execution strategy depends on two parameters, the resilience of the limit
order book p and the horizon for execution T. We consider these dependencies separately.

Panel (a) of Figure 3 plots the optimal execution strategy, or more precisely the time
path of the remaining order to be executed. Clearly, the nature of the optimal strategy is
different from those proposed in the literature, which involve a smooth flow of small trades.
When the timing of trades is determined optimally, the optimal execution strategy consists

of both large discrete trades and continuous trades. In particular, under the LOB dynamics
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Figure 3: Profiles of the optimal execution strategy and ask price. Panel (a) plots the
profile of optimal execution policy as described by X;. Panel (b) plots the profile of realized
ask price A;. After the initial discrete trade, continuous trades are executed as a constant
fraction of newly incoming sell orders to keep the deviation of the ask price A; from its
steady state V;+s/2, shown with grey line in panel (b), at a constant. A discrete trade
occurs at the last moment T' to complete the order.

we consider here, the optimal execution involves a discrete trade at the beginning, followed
by a flow of small trades and then a discrete terminal trade. Such a strategy seems intuitive
given the dynamics of the limit order book. The large initial trade pushes the limit order
book away from its stationary state so that new orders are lured in. The flow of small
trades will “eat up” these new orders and thus keep them coming. At the end, a discrete
trade finishes the remaining part of the order. The final discrete trade is determined by two
factors. First, the order has to be completed within the given horizon. Second, the evolution
of supply/demand afterwards no longer matters. In practice, both of these two factors can
take different forms. For example, the trading horizon T' can be endogenously determined
rather than exogenously given. We consider this extension in Section 8.

The size of the initial trade determines the prices and the intensity of the new orders. If
too large, the initial trade will raise the average prices of the new orders. If too small, an
initial trade will not lure in enough orders before the terminal time. The trade off between
these two factors largely determines the size of the initial trade.

The continuous trades after the initial trade are intended to maintain the flow of new
orders at desirable prices. To see how this works, let us consider the path of the ask price
A; under the optimal execution strategy. It is plotted in panel (b) of Figure 3. The initial
discrete trade pushes up the ask price from Ay = Vo+5/2 to Agy = Vo+s/24+Xo/(pT+2)/q.
Afterwards, the optimal execution strategy keeps D; = A;—V;—s/2, the deviation of the
current ask price A, from its steady state V;+s/2, at a constant level of kXo/(pT +2).
Consequently, the rate of new sell order flow, which is given by pDy, is also maintained at a

4

constant level. The ask price A; goes up together with V;+s/2, the steady-state “value” of
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the security, which is shown with the grey line in Figure 3(b). As a result, from (28) with
dA; = dV, for 0 < t < T, we have pD; = ku or py = (1/k)pD;. In other words, under the
optimal execution strategy a constant fraction of 1/k of the new sell orders is executed to
maintain a constant order flow.

Our discussion above shows that the dynamics of the limit order book, which is captured
by the resilience parameter p, is the key factor in determining optimal execution strategy.
In order to better understand this link, let us consider two extreme cases, when p = 0
and co. When p = 0, we have no recovery of the limit order book after a trade. In this
case, the cost of execution will be strategy independent and it does not matter when and
at what speed the trader eats up the limit order book. This result is also true in a discrete
setting with any N and in its continuous-time limit. When p = oo, the limit order book
rebuilds itself immediately after a trade. As we discussed in Section 4, this corresponds to
the conventional setting. Again, the execution cost becomes strategy independent. It should
be pointed out that even though in the limit of p — 0 or oo, the optimal execution strategy
given in Proposition 3 converges to a pure discrete strategy or a pure continuous strategy,
other strategies are equally good given the degeneracy in these two cases.

When 0 < p < oo, the resiliency of the limit order book is finite, the optimal strategy
is a mixture of discrete and continuous trades. The fraction of the total order executed
through continuous trades is fOT pedt/ Xo = pT'/(pT +2), which increases with p. In other
words, it is more efficient to use small trades when the limit order book is more resilient.
This is intuitive because discrete trades do less in taking full advantage of new order flows
than continuous trades.

Another important parameter in determining the optimal execution strategy is the time-
horizon to complete the order T'. From Proposition 3, we see that as 1" increases, the size of
the two discrete trades decreases. This result is intuitive. The more time we have to execute
the order, the more we can continuous trades to benefit from the inflow of new orders and

to lower the total cost.

7.2 Minimum Execution Cost

So far, we have focused on the optimal execution strategy. We now examine how important
the optimal execution is, as measured by the execution cost it saves. For this purpose, we
use the strategy obtained in the conventional setting and its cost as the benchmark. The
total expected execution cost of a buy order of size X is equal to its fundamental value
(Fo+s/2) X, which is independent of the execution strategy, plus the extra cost from the

price impact of trading, which does depend on the execution strategy. Thus, we will only
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consider the execution cost, net of the fundamental value, or the net execution cost.

As shown in Section 4, the strategy from the conventional setting is a constant flow
of trades with intensity p., = Xo/T, t € [0, T]. Under this simple strategy, we have
Vi = F, + \t/T) X0, Dy = [kXo/(pT)](1 — e ?") and A; = V;+ D;+s/2. The expected net
execution cost for the strategy with constant rate of execution p, is given by
oT = (1—7)

(pT)?

where the superscript stands for the “Conventional Model”. From Proposition 3, the ex-

JM = E, UT(At—Ft—s/m(XO/T)dt = (\/2) X3+ & X2

pected net cost under the optimal execution strategy is

o = Jo — (Fots/2) Xy = (\/2) X2 Mox?
Jo = Jo — (Fo+5/2)X, (/)O+pT+20

(note that at ¢t = 0, Dy = 0). Thus, the improvement in expected execution cost by the

optimal strategy is J§™ — Jy, which is given by

20T —(pT+2)(1—e*T)
(pT+2)(pT)?

and is always non-negative. The relative gain can be defined as A = (JM — J;)/JM,

jéjM—jO:/ﬁl Xg

In order to calibrate the magnitude of the cost reduction by the optimal execution strat-
egy, we consider some numerical examples. Let the size of the order to be executed be
Xo = 100,000 shares and the initial security price be Ay = Fo+s/2 = $100. We choose the
width of the limit order book, which gives the depth of the market, to be ¢ = 5,000. This
implies that if the order is executed at once, the ask price will move up by 20%. Without
losing generality, we consider the execution horizon to be one day, T' = 1.!6 The other
parameters, especially p, may well depend on the security under consideration. In absence
of an empirical calibration, we with consider a range of values for them.

Table 1 reports the numerical values of the optimal execution strategy for different values
of p. As discussed above, for small values of p, most of the order is executed through two
discrete trades, while for large values of p, most of the order is executed through a flow of
continuous trades as in the conventional models. For intermediate ranges of p, a mixture of
discrete and continuous trades is used.

Table 2 reports the relative improvement in the expected net execution cost by the
optimal execution strategy over the simple strategy of the conventional setting. Let us first

consider the extreme case in which the resilience of the LOB is very small, e.g., p = 0.001

16Chan and Lackonishok (1995) documented that for institutional trades T is usually between 1 to 4 days.
Keim and Madhavan (1995) found that the duration of trading is surprisingly short, with almost 57% of buy
and sell orders completed in the first day. Keim and Madhavan (1997) reported that average execution time
is 1.8 days for a buy order and 1.65 days for a sell order.
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p Half-life (log2/p) Trade zp Trade over (0,7) Trade xn
0.001 693.15 day 49,975 50 49,975
0.01 69.31 day 49,751 498 49,751
0.5 1.39 day 40,000 20,000 40,000

1 270.33 min 33,333 33,334 33,333

2 135.16 min 25,000 50,000 25,000

4 67.58 min 16,667 66,666 16,667

) 54.07 min 14,286 71,428 14,286

10 27.03 min 8,333 83,334 8,333
20 13.52 min 4,545 90,910 4,545
50 5.40 min 1,921 96,153 1,921
300 0.90 min 331 99,338 331
1000 0.20 min 100 99,800 100
10000 0.03 min 10 99,980 10

Table 1: Profiles of the optimal execution strategy for different levels of LOB resiliency
p. The table reports values of optimal discrete trades xo and z7 at the beginning and the
end of the trading horizon and the intensity of continuous trades in between for an order
of Xog = 100,000 for different values of the LOB resilience parameter p or the half-life of
an LOB disturbance 7y /5, which is defined as exp{—p 7/} = 1/2. The initial ask price is
$100, the market depth is set at ¢ = 5,000 units, the (permanent) price-impact coefficient
is set at A = 1/(2¢) = 107, and the trading horizon is set at 7' = 1 day, which is 6.5 hours

(390 minutes).

A
p Half-life | 5o 1 500 Toog 0
0.001 693.15 day | 0.00 0.01 0.02 0.02 0.02
0.0l  69.31day | 0.08 0.15 0.16 0.16 0.17
0.5 1.39 day | 2.82 542 599 6.06 6.13
1 270.33min | 3.98 816 9.14 926 9.39
2 135.16 min | 4.32 9.97 11.51 11.71 11.92
4 6758 min | 3.19 9.00 11.05 11.35 11.65
5 54.07 min | 2.64 8.07 10.21 10.53 10.86
10  27.03min | 1.13 458 6.65 7.01 7.41
20 13.52min | 0.37 198 3.54 3.890 4.31
50 540 min | 0.07 049 1.24 150 1.88
300  0.90 min | 0.00 0.02 0.08 0.13 0.33
1000 0.20min | 0.00 0.00 0.01 0.02 0.10
10000 0.03 min | 0.00 0.00 0.00 0.00 0.09

Table 2: Cost savings by the optimal execution strategy from the simple trading strategy.
Relative improvement in expected net execution cost A = (j CM _ jo) / JM ig reported for
different values of LOB resiliency coefficient p and the permanent price-impact coefficient.
The order size is set at 100,000, the market depth is set at ¢ = 5,000 and the horizon for
execution is set at 7' =1 day (equivalent of 390 minutes).
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and the half-life for the LOB to rebuild itself after being hit by a trade is 693.15 days. In
this case, even though the optimal execution strategy looks very different from the simple
execution strategy, as shown in Figure 4, the improvement in execution cost is minuscule.
This is not surprising as we know the execution cost becomes strategy independent when
p = 0. For a modest value of p, e.g. p = 2 with a half life of 135 minutes (2 hours and 15
minutes), the improvement in execution cost ranges from 4.32% for A = 1/(2¢) to 11.92%
for A = 0. When p becomes large and the LOB becomes very resilient, e.g., p = 300 and
the half-life of LOB deviation is 0.90 minute, the improvement in execution cost becomes
small again, with a maximum of 0.33% when A = 0. This is again expected as we know that
the simple strategy is close to the optimal strategy when p — oo (as in this limit, the cost
becomes strategy independent).

In order to see the difference between the optimal strategy and the simple strategy
obtained in conventional settings, we compare them in Figure 4. The solid line shows the
optimal execution strategy of the LOB framework and the dashed line shows the execution
strategy of the conventional setting. Obviously, the difference between the two strategies are

more significant for smaller values of p.

(b) (©)

Figure 4: Optimal execution strategy versus simple execution strategy from the conven-
tional models. The figure plots the time paths of remaining order to be executed for the
optimal strategy (solid line) and the simple strategy obtained from the conventional models
(dashed line), respectively. The order size is set at Xy = 100,000, the initial ask price
is set at $100, the market depth is set at ¢ = 5,000 units, the (permanent) price-impact
coefficient is set at A = 1/(2¢) = 107%, and the trading horizon is set at T = 1 day, which
is assumed to be 6.5 hours (390 minutes). Panels (a), (b) and (c) plot the strategies for
p =0.001,2 and 1,000, respectively.

Table 2 also reveals an interesting result. The relative savings in execution cost by the

optimal execution strategy is the highest when A = 0, i.e., when the permanent price impact

is zero.!7

170f course, the magnitude of net execution cost becomes very small as A goes to zero.
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7.3 Empirical Implications

Optimality of discrete trades at the beginning and the end of the trading period leads to
interesting empirical implications. It is well documented that there is a U-shaped pattern in
the intraday trading volume, price volatility and average bid-ask spread.'® Several authors
have proposed theoretical models that can help to explain the intraday price and volume
patterns.!® Most of these models generate the intraday patterns from the time variation in
information asymmetry and/or trading opportunities associated with market closures.

Our model suggests an alternative source for such patterns. Namely, they can be gener-
ated by the optimal execution of block trades. It is well known that large-block transactions
have become a substantial fraction of the total trading volume for common stocks. Ac-
cording to Keim and Madhaven(1996), block trades represented almost 54% of New York
Stock Exchange share volume in 1993 while in 1965 the corresponding figure was merely 3%.
Thus, the execution strategies of institutional traders can influence the intraday variation
in volume and prices. It is often the case that institutional investors have daily horizons
to complete their orders, for example to accommodate the inflows and outflows in mutual
funds. For reasonable values of the LOB recovery speed p, our optimal execution strategy
implies large trades at the beginning and at the end of trading period. If execution horizon
of institutional traders coincides with a trading day, their trading can cause the increase in
trading volume and bid-ask spread at the beginning and the end of a trading day.

Our model predicts higher variation in the optimal trading profile for stocks with lower
p. This implies that stocks with low resilience in its LOB (low p) and high institutional
holdings should exhibit more intraday volume variation. We leave the empirical tests of

these predictions for future research.

8 Extensions

So far, we have used a parsimonious LOB model to analyze the impact of supply/dynamics
on optimal execution strategy. Obviously, the simple characteristics of the model does not
reflect the richness in the LOB dynamics observed in the market. However, the framework

we developed is quite flexible to allow for extensions in various directions. In this section, we

BIntraday patterns in volume and prices in the U.S. markets have been documented by Jain and Joh(1988),
Gerety and Mulherin (1992), Chan, Christie, Schultz (1995), among others. They are also present in other
markets. See McInish and Wood(1991) for the Toronto Stock Exchange, Hamao and Hasbrouck (1995) for
the Tokyo Stock Exchange, Niemayer and Sandas (1993) for the Stockholm Stock Exchange, and Kleidon
and Werner (1996) for the London Stock Exchange.

19See, for example, Admati and Pfleiderer (1988), Back and Baruch (2004), Brock and Kleidon (1992),
Foster and Viswanathan(1990, 1995), and Hong and Wang (2000).
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briefly discuss some of these extensions. First, we consider the case where the resilience of
the LOB is time-varying. Next, we discuss the possibility of allowing more general shapes of
the static limit order book. Finally, we include risk considerations in optimization problem.

This also allows us to endogenize the trading horizon 7', which is taken as given above.

8.1 Time Varying LOB Resiliency

Our model can easily incorporate time-variation in LOB resiliency. It has been documented
that trading volume, order flows and transaction costs all exhibit a U-shaped intraday pat-
tern, high at the opening of the trading day, then falling to lower constant levels during the
day and finally rising again towards the close of trading day. This suggests that the liquidity
in the market may well vary over a trading day. Monch (2004) has attempted to incorporate
such a time-variation in implementing the conventional models.

We can easily allow time-variation in LOB and its dynamics in our model. In particular,
we can allow the resilience coefficient to be time dependent, p = p, for ¢ € [0, T']. The results
in Proposition 1, 2, 3 still hold if we replace p by p;, pT by fOT pedt and p(T —t) by j;T pedt.

8.2 Different Shapes for LOB

We have considered a simple shape for the LOB, which is a step function. As we showed
in Section 3, this form of the LOB is consistent with the static linear price impact func-
tion widely used in the literature. Huberman and Stanzl (2005) have provided theoretical
arguments in support of the linear price impact functions. However, empirical literature
has suggested that the shape of the LOB can be more complex (see, e.g., Hopman (2003)).
Addressing this issue, we can allow more general shapes of the LOB in our framework. For
example, we may extend our analysis to LOB with a density of placed limit orders defined by
power function. This will also make the LOB dynamics more complex. As a trade eats away
the tip of the LOB, we have to specify how the LOB converges to its steady state. With a
complicated shape for the LOB, this convergence process can take many forms which involves
assumptions about the flow or new orders at a range of prices. For certain specifications of
this convergence process, our model is still tractable. For brevity, we do not present these
cases here. But beyond certain point, closed form solutions become hard to find. Although
the actual strategy can be quite complex and depends on the specifics of the LOB shape
and its dynamics, we expect its qualitative features to be the same as that under the simple

LOB dynamics we considered.
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8.3 Risk Aversion

Let us consider the optimal execution problem for a risk-averse trader. For tractability, we
assume that he has a mean-variance objective function with a risk-aversion coefficient of a.

The optimization problem (30) now becomes
Jt = J(Xt, At, ‘/t, t) = min Et [Ct] + %(ZV&I} [Ct] (32)

{M[O, T]» {ztef}}eec
with (9), (28), (29) and the same terminal condition Jr = [Ar 4+ 1/(2¢) X 7| Xr. Since the
only source of uncertainty is F; and only the trades executed in interval [¢, ¢ 4 dt) will be

subject to this uncertainty, we can rewrite (32) in a more convenient form:

T

J, = min E [C]+ 3a / o?X2ds. (33)
{rp, 75 {z e} EOC t

At time T, the trader is forced to buy all of the remaining order Xp. This leads to the

following boundary condition:

The next proposition gives the solution to the problem for a risk averse trader:

Proposition 4 The solution to the optimization problem (33) is
kf'(0) + ac?
wpf(0) + ao?

£ — /t ot kg () e
pol) =90 - site e o, 1)
1+ kg(t)

T
UCT:XO—JEO—/ fsds
0

I'():XO

Mt = KZo

and the value function is
Ji = (Fi+5/2) X, + AXo X, + X7 + 8Dy + 7D

where Dy = A;—V;—s/2 and the coefficients are given by

Y —
Qr = —F&f(t; , Be=[fQ1), m= —f(tz)ﬁ !
and
2pv ¢ -1
F(t) = (v = a0®)/(sp) + | =55 + ezt T (;_5 _ %)]

) = pf(®)
kf'(t) + ao?

with v = \/a%0* + 2a02kp.

g(t) =
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It can be shown that as risk aversion coefficient goes to 0 the coefficients oy, (3;, and v,
converge to the ones given in Proposition 2, which presents the results for the risk neutral
trader.

Xt
100000 +
80000
Y

60000

40000

20000

Figure 5: Profiles of the optimal execution strategies for different coefficients of risk aver-
sion. This figure shows the profiles of optimal execution policies X; for the traders with
different coefficients of risk aversion a = 0 (solid line), a = 0.05 (dashed line), a = 0.5
(dashed-dotted line) and a = 1 (dotted line), respectively. Variable X; indicates how much
shares still has to be executed before trading at time t. The order size is set at Xy = 100, 000,
the market depth is set at ¢ = 5,000 units, the permanent price-impact coefficient is set at
A =0, and the trading horizon is set at T' = 1, the resiliency coefficient is set at p = 1.

The nature of the optimal strategy remains qualitatively the same under risk aversion:
discrete trades at the two ends of the trading horizon with continuous trades in the middle.
The effect of trader’s risk aversion on his optimal trading profile is shown in Figure 5.
The more risk averse is the trader, the larger the initial trade more trades he shifts to the
beginning.

So far, we have assumed the execution horizon, [0, T, to be exogenously given, and
ignored any time preference for execution a trade. Risk aversion, however, introduces a
natural preference for such a preference: Trading sooner reduces uncertainty in execution
prices. Such a preference is clearly reflected in the optimal policy as shown in Figure 5. Such
a time preference provides a mechanism to endogenize the execution horizon. For example,
T is sufficiently large, when the trader is risk-averse enough, he may optimally finish the

whole order soon before T'.

9 Conclusion

In this paper, we analyze the optimal trading strategy to execute a large order. We show
that the static price impact function widely used in previous work fails to capture the in-

tertemporal nature of a security’s supply/demand in the market. We construct a simple

28



dynamic model for a limit order book market to capture the intertemporal nature of sup-
ply/demand and solve for the optimal execution strategy. We show that when trading times
are chosen optimally, the dynamics of the supply/demand is the key factor in determining
the optimal execution strategy. Contrary to previous work, the optimal execution strategy
involves discrete trades as well as continuous trades, instead of merely continuous trades.
This trading behavior is consistent with the empirical intraday volume and price patterns.
Our results on the optimal execution strategy also suggest testable implications for these
intraday patterns and provide new insight into the demand of liquidity in the market.

The specific model we used for the LOB dynamics is very simple since our goal is mainly
to illustrate its importance. The actual LOB dynamics can be much more complex. However,
the framework we developed is fairly general to accommodate rich forms of LOB dynamics.
Moreover, with the current increase in the number of open electronic limit order books, our

LOB model can be easily calibrated and used to address real world problems.
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Appendix

Proof of Proposition 1

From (7), we have

n—1

Dy, = A, —V,, —s/2 = Z xy e~ PTY) (A.1)
=0
From (A.1), the dynamics of D; between trades will be

Dtn+1 = (Dtn + .Ttn/{) e_pT (A2)

with Dy = 0. We can then re-express the optimal execution problem (20) in terms of variables
Xt and DtZ

N
min Bo Y [(Fi,+5/2) + A(Xo—X,)+ Dy, + 21,/ (2)] 2, (A.3)
€OD n=0

under dynamics of D, given by (A.2).
First, by induction we prove that value function for (A.3) is quadratic in X; and D, and

has a form implied by (22):
J(X1,s Dyy Fuotn) = (Fu,+8/2) Xy, + AX0 Xy, + 0n X2 + 82 X0, Diy + 7D (A4)
At time t =ty = T, the trader has to finish the order and the cost is
J(Xr, Dy, Fr,T) = (Fr+s/2) X1 + [N Xo—X7)+Dr+X7/(29)| Xr.
Hence, ay = 1/(2q) — A, By = 1, v = 0. Recursively, the Bellman equation yields
oo = min {[(F,+5/2) + MXo=Xo, )+ Dr, 201/ (20)] s
+ B J [ X — @1, (D, HE2a1)e T Fy Lt )

Since F}, follows Brownian motion and value function is linear in F} , it immediately follows
that the optimal x,_; is a linear function of X; , and D;, , and the value function is a
quadratic in X, _, and D, _, satisfying (A.4), which leads to the recursive equation (23) for
the coefficients. Q.E.D.

Proof of Proposition 2

First, we prove the convergence of the value function. As 7 = T//N — 0, the first order
approximation of the system (23) in 7 leads to the following restrictions on the coefficients:
A + 20[15 — ﬁt/i =0

(A.5)
1 =06 +2ky =0
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and

Qy = %ﬁpﬂ?

Bt = pB — %pﬁt(ﬁt — 4Ky) (A.6)

Yo = 2o + ﬁp(ﬁt — dky)?.
It is easy to verify that oy, §; and ; given in (26) are the solution of (A.6), satisfying (A.5)
and the terminal condition (24). Thus, as 7 — 0 the coefficients of the value function (23)
converge to (26).

Next, we prove the convergence result for the optimal execution policy {z;}. Substituting
ay, By, v into (21), we can show that as 7 — 0, the execution policy converges to
1 1+ p(T—t

o= {ti(T—t) +2 t/i[,o(Tp—(t) +)2]

where o(7) denotes terms to the higher order of 7. At t = 0, Dy = 0 and we have lim, g x¢ =

Xo
pT+2"

possibly at T') and equal to

} [1—1p*(T—t)7] + L(p/k)Dim +o(7) (A7)

Moreover, after the initial discrete trade z all trades will be the continuous (except

t=1pDi +o(r), t=nr, n=1... N-L (A-8)

We prove this by induction. First, using (A.7), where X, = Xy — x¢ and D, = kxo(1 — p7),
it is easy to check that (A.8) holds for x,. Second, let us assume that (A.8) holds for some
x¢, where t = n7, then we can show that x;, . will satisfy it as well. In fact, the dynamics of
X; and Dy is defined by

Xt+‘l‘ :Xt—xt, Dt+7- = (Dt—i-]{][l't)(l—pT), t:nT, nZO,,N—l (A9>
Substituting these into (A.7) and using the induction assumption, we get that
Tipr = (p/K)DiyrT + 0(T).

Thus, after the discrete trade xy at time ¢ = 0 all consequent trades will be the continuous.

Moreover, (A.8) implies the following form of X; and D; dynamics:
Xiir = Xy — LpDy7 + o(7), Dy = D+ o(7). (A.10)

Taking into account the initial condition right after the trade at time 0, we find that

kX

D pr— T = .
t oT + 2 +o(7)
Thus, from (A.8) as 7 — 0 for any ¢ € (0,7) trade z; converges to ppT)foT. Since all shares
Xp should be acquired by time 7', it is obvious that lim, gz = p7¥32' Q.E.D.

31



Proof of Propositions 3 and 4

We give the proof of Proposition 4 along with Proposition 3 as a special case. Let us first
formulate problem (33) in terms of variables X; and D; = A;—V, —s/2 whose dynamics
similar to (A.2) is

with Dy = 0. If we write the cost of continuous and discrete trading as following:

then (33) is equivalent to

min E, / t dCy + > ACH| + (a/2) / ' o X2ds (A.14)
{kj0, 115 {zcp 1 }€OC 0 s t
with (A.11), (A.12) and (A.13).

This is the optimal control problem with a single control variable X;. We can now apply
standard methods to find its solution. In particular, the solution will be characterized by
three regions where it will be optimal to trade discretely, continuously and do not trade at
all. We can specify the necessary conditions for each region which any value function should
satisfy. In fact, under some regularity conditions on the value function we can use Ito’s
lemma together with dynamic programming principle to derive Bellman equation associated
with (A.14). For this problem, Bellman equation is a variational inequality involving first-
order partial differential equation with gradient constraints. Moreover, the value function
should also satisfy boundary conditions. Below we will heuristically derive the variational
inequalities and show the candidate function which satisfies them. To prove that this function
is a solution we have to check the sufficient conditions for optimality using verification
principle.?°

We proceed with the proof of Proposition 4 in three steps. First, we heuristically define
the variational inequalities (VI) and the boundary conditions for the optimization problem
(A.14). Second, we show that the solution to the VI exists and implies a candidate value
function and a candidate optimal strategy. Third, we verify that candidate value function
and optimal strategy are indeed solution to optimization problem. Finally, we will discuss

the properties of optimal strategies.

20For detailed treatment of similar problems see Hindy, Huang and Zhu(1997), Shreve and Soner (1994),
Eastham and Hastings(1988).
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A. Variational Inequalities

Let J(Xy, Dy, Fy,t) be a value function for our problem. Then, under some regularity condi-
tions it has to satisfy the necessary conditions for optimality or Bellman equation associated
with (A.14). For this problem, Bellman equation is a variational inequality involving first-

order partial differential equation with gradient constraints, i.e.,
min {J; — pDyJp + 10*Jrp + ao® X}, (F+s/2) + A(Xo—X;) + Dy — Jx + kJp} = 0.

Thus, the space can be divided into three regions. In the discrete trade (DT) region, the

value function J has to satisfy

Ji—pDyJp+30°Jpp+ac®X] >0, (Fyts/2)+MNXo—X:)+Di— Jx +£Jp = 0. (A.15)
In the no trade (NT) region, the value function J satisfies:

Ji—pDyJp+3i0*Jrr+ac® Xy =0, (Fi+s/2)+ANXo—X:)+ Dy — Jx +£Jp > 0. (A.16)
In the continuous trade (CT) region, the value function J has to satisfy:

Ji—pDyJp+30*Jpp+ac®X] =0, (Fi+s/2)+MNXo—X:)+Di— Jx +rJp = 0. (A.17)
In addition, we have the boundary condition at terminal point 7"

J(X7, Dr, Fr,T) = (Fr+s/2) X7 + N(Xo— X7) X1 + DrXr + X7/(29). (A.18)

Inequalities (A.15)-(A.18) are the so called variational inequalities (VI's), which are the
necessary conditions for any solutions to the problem (A.14).

B. Candidate Value Function

Basing on our analysis of discrete-time case we can heuristically derive the candidate value
function which will satisfy variational inequalities (A.15)-(A.18). Thus, we will be searching
for the solution in a class of quadratic in X; and D, functions. Note that it is always optimal
to trade at time 0. Moreover, the nature of the problem implies that there should be no NT
region. In fact, if we assume that there exists a strategy with no trading at period (t,ts),
then it will be always suboptimal with respect to the similar strategy except that the trade
at t1 is reduced by sufficiently small amount ¢ and € trades are continuously executed over
period (t1,t2). Thus, the candidate value function has to satisfy (A.17) in CT region and
(A.15) in any other region.

Since there is no NT region, (Fi4s/2)+ A (Xo—X;)+ D;— Jx +kJp = 0 holds for any point
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(X, Dy, Fy, t). This implies a particular form for the quadratic candidate value function:
J(Xt, Dy, Fiot) = (Fi+5/2) X + A XXy
+ [kf() = NIXF/2+ F(6) XDy + [f(t) — 11D}/ (2r) (A.19)
where f(t) is a function which depends only on t. Substituting (A.19) into J; — pD;Jp +

202 Jpp + ao? X} > 0 we have:
(6 + a0\ X2/2 4 (F —pf) XDy + (F+20—20) D2/ (26) = 0 (A.20)

which holds with an equality for any point of the CT region.
Minimizing with respect to X;, we show that the CT region is specified by:
f=rf 5
CRf 4 a02
For (Xt, D;) in the CT region (A.20) holds with the equality. Thus, function f(¢) can be

found from the Riccati equation:

X, = (A.21)

(1) (2pk + ac?) — kp? f2(t) — 2a0’pf(t) + 2a0%p = 0. (A.22)

This guarantees that J, — pD;Jp + 502 Jpp + ac® X} is equal to zero for any points in CT
region and greater then zero for any other points. Taking in account terminal condition
f(T) =1, we can solve for f(t). As a result, if the trader is risk neutral and @ = 0, then

f(t) = —

p(T—t)+2
Substituting the expression for f(¢) into (A.19) we get the candidate value function of Propo-

sition 3. If the trader is risk averse and a # 0, then

-1
2pv
ft) = %p(v —ao?) — {@ + (L lﬁp) o Zptas? (Tt)}

20 v—ao?—Kk

where v is the constant defined in Proposition 4. From (A.19) this results in the candidate

value function specified in Proposition 4.

C. Verification Principle

Now we verify that the candidate value function J(Xg, Dy, Fp,0) obtained above is greater
or equal to the value achieved by any other trading policy. Let X|o 77 be an arbitrary feasible
policy from ©¢ and V (X3, Dy, Fy, t) be the corresponding value function. We have

X(t)=X(0)— /utdt Z Ts

sET s<t

where g > 0 and 2, > 0 for t € T. For any 7 and X, we consider a hybrid policy which

follows policy X; on the interval [0, 7] and the candidate optimal policy on the interval |7, T'].
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The value function for this policy is

V:r(XQ, Do, F(), 0) = EQ |:/ [(Ft+8/2)+)\(X0—Xt) + Dt] ,Utdt
0

+ Z [(Fti+s/2)xti +)‘<X0_Xti)xti + Dtixti + x?Z/(Q(ﬁ] + J<XT7 DT» FT> T) :
ti<r, t;€T

(A.23)
For any function, e.g., J(X;, Dy, Fy,t) and any (X, Dy, Fy, t), we have

t t t
J(X,, Dy, Fy, ) :J(XO,DO,FO,O)+/ Jsds+/ JXdX+/ JpdD
0 0 0

t t t
+ / JpdF + / LIrr(dF)? + ao® / Xids+ > AJ (A.24)
0 0 0 .
ti<t, t;€T

Use dD; = —pD.dt — kdX; and substitute (A.24) for J(X,, D,, F;, 7) into (A.23), we have
V(Xo, Do, Fy,0) = J(Xo, Do, Fy, 0)

n EO/ [Ft + g FANXo— X)) + Dy — Jx + I{JD} Jdt
0

LB / (Ji — pDudp + Lo™Jop + a0®X?) dt
0

ti<t, t;€T

= J(Xo, Do, Fo,0) + 11 + I + I3 (A.25)

Now we are ready to show that for any arbitrary strategy X; and for any moment 7 it is
true that

V,(Xo, Do, Fy,0) > J(Xo, Do, Fy, 0). (A.26)

It is clear that VI (A.15)-(A.17) implies non-negativity of /; and I» in (A.25). Moreover,
it implies that I3 > 0. It is easy to be shown if you rewrite AJ(Xy,, Dy, Fy,, t;) as J(X¢, —
Ty, Dy, + kv, By, + 02y, t) — J(Xy,, Dy, By, ti). This complete the proof of (A.26).

Use it for 7 = 0 to see that J(Xo, Dy, Fy,0) < V(Xy, Dy, Fp,0). Moreover there is an

equality if our candidate optimal strategy is used. This complete the proof of Proposition 3.

D. Properties of the Optimal Execution Policy

We now analyze the properties of optimal execution strategies. First, let us consider the risk
neutral trader with a = 0. Substituting the established expression for f(t) into (A.21), we
find that the CT region is given by

T—t)+1
x, = P+,
K
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Xo
pT+2

state Xy and Dy = 0 into CT region, the trader trades continuously at the rate u; = p’;ﬁf&

This implies that after the initial trade z¢y = which pushes the system from its initial

staying in CT region and executes the rest zp =

pT+2
this is the same solution as we had for continuous time limit of solution of problem (20).
If the trader is risk averse then the CT region is given by
f'@t) = pf(t)
t g( ) ts where g( ) f/(t)l‘il—FQO'Z

£/ (0)+ao?
prf(0)+ao?

system from its initial state into CT region, the trader will trade continuously at the rate

This implies that after discrete trade zy = Xy= at the beginning which pushes the

p9(t) = g'(t) - fynas
1+ rg(t)

This can be shown taking in account the dynamics of D; given in (A.2) and specification of
CT region. At the end the trader finishes the order. Q.E.D.

Mt = KXo
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