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Abstract. High-Frequency (HF) radars measure the oceanl Introduction
surface currents at various spatial and temporal scales. These

include tidal currents, wind-driven circulation, density- pmost ensemble-based assimilation schemes such as the
driven circulation and Stokes drift. Sequential assimilation gnk g (Ensemble Kalman Filter, Evensen 2003 2004,
methods updating the model state have been proven succesSssE (Error Subspace Statistical Estimatidnermusiaux

ful to correct the density-driven currents by assimilation of gng Robinson1999, SEIK filter (Singular Evolutive Inter-
observations such as sea surface height, sea surface teMolated Kalman filter, Pham 2001 are sequential: the en-
perature and in-situ profiles. However, the situation is dif- semple is updated using observations at the time they are
ferent for tides in coastal models since these are not genmeasured. In this sequential approach however the model
erated within the domain, but are rather propagated insidgndergoes a sometimes vigorous adjustment process when
the domain through the boundary conditions. For improvingthe model is restarted (e.lalanotte-Rizzoli et a).1989

the modeled tidal variability it is therefore not sufficient to i some assumptions of the underlying assimilation scheme
update the model state via data assimilation without updatyye not verified (e.g. poorly known error covariances, model
ing the boundary conditions. The optimization of bound- piases or non-Gaussian pdf). A too frequent assimilation of
ary conditions to match observations inside the domain isphservations can even lead to the situation where the assimi-
traditionally achieved through variational assimilation meth- |atjon degrades the model results due to the High-Frequency
ods. In this work we present an ensemble smoother to iMmotions generated by the assimilatidiaagrangd1972.

prove the tidal boundary values so that the model represents Several approaches haven been proposed to reduce this

rr;%renclr?]siehl/l tr;e ?ibfiergedn%ur:entsr.] d-iI:[ci) ﬁreate ar: fe ?]S?im:kﬁell known problem. Instead of applying the analysis correc-
ordynamically reaistic boundary conaiions, a Cost Unclion v, , 54 the assimilation time, in the Incremental Analysis Up-

is formulated which 1S directly re'?‘e‘j to j[he probab|I_|ty of date Bloom et al, 1996 the correction is added incremen-
each boundary condition perturbation. This cost function en-

" ) . tally over several time steps, reducing the generation of spu-
sures that the boundary condition perturbanons. are Spa_t'a”¥ious gravity waves. This scheme has been used with large-
smooth and that the structure of the perturbations satisfi

©2cale ocean models (egeppenne et al.2005 Ourmieres

approximately the harmonic linearized shallow water equa-o o 2008 but it is questionable if it can also be used in

tions. B n th rturbations an ensemble simulati A :
tons. ! ased o tnose pertu batio S an ense ble simula Oﬂaglonal models representing fast ocean processes such as
is carried out using the full three-dimensional General Es-,.

tuarine Ocean Model (GETM). Optimized boundary values . )
are obtained by assimilating all observations using the co- N free-surface ocean models, such transient motions often
variances of the ensemble simulation. propagate as fast shallow-water barotropic waves. To prevent

the generation of spurious gravity waves by assimilatizm,
bricic et al. (2007 proposed an iterative method to damp

Correspondence toA. Barth the divergence in the analysis increment of the flow field.
BY (a.barth@ulg.ac.be) Barotropic gravity waves can also be removed explicitly by
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filtering them from the analysis increme@drth et al, 2007, The modified CODAR system used a transmit pulse length
2008. of 16 us which results in a range resolution (range cell depth)

Those approaches are however not appropriate for tidabf 2.4km. However, the range cells were sampled every
simulation since the main processes here are barotropi8 ps giving interpolated data every 1.2km. Azimuthal res-
waves. It would be difficult to distinguish between spurious olution was provided by means of a four-element array with
gravity waves and tidal waves which are missing or misrep-the antennas arranged in a square atG&gonal spacing
resented in the model solution. (5.02m). The angle of arrival of the backscattered signal

As a first step for the assimilation of High-Frequency (HF) was determined by direction—finding in the frequency do-
radar data, we concentrate for simplicity on the M2 tidal sig- main based on the phase difference between the antennas.
nal. Adding other tidal constituents would not add funda- After internal pre-processing the sampling time of the CO-
mentally any new complexity except that the model integra-DAR was 0.262s. In each data run 4096 samples were ac-
tion period would have to be substantially longer to resolvequired, resulting in an 18 min “coherent integration time”
two constituents with a similar frequency as required by the(CIT).

Rayleigh criterion. In order to distinguish two periodic sig-  Figure 1 shows a typical backscatter spectrum acquired
nals of frequency; andv,, the length of the time series has during a previous experiment. The red vertical lines mark
to be at leastv; — v2| 1 (Emery and Thomsqri999. the Doppler frequency expected from Bragg-resonant waves

The objective of this paper is twofold: it aims to apply Without any additional shift due to the current field (Bragg
the ensemble generation scheme providing dynamically confrequency).
strained perturbations proposedBarth et al.(2009 to a
realistic data assimilation case study and to assess the real-[dB] Measurements at Helgoland, German Bight (2 Dec 1987 21:36 UTC)
ism of the assimilation results using an ensemble assimila- o
tion scheme. The paper aims also to assess the usefulness o
the HF radar data and altimetry-based tidal products to esti-
mate tidal boundary conditions using a smoother scheme for *°
data assimilation.

In Sect.2, the observations used in this assimilation study
are presented. A brief description of the model is given in
Sect3. The assimilation strategy is detailed in SetctThe
assimilation results are discussed and validated in Sect. s
Finally, the conclusions of this study are presented in $ect.

-40

2 Observations

2.1 HF radar data

i ‘

Surface current observation data were provided by the Uni- __Ifi{iil§ ‘ ‘ }lum’uh kil }um
versity of Hamburg by means of HF radar measurements car- 75 15 125 1 075 05 025 0 025 05 075 1 125 15 175 (2

ried out in the context of the PRISMA projed®RISMA, 20.800 MHz Range = 6.6km  Antenna=1 4096 Samples

1994. Two systems were installed at a distance of ap-

prox. 50 km, the first on the island of Helgoland (54.19 Fig. 1. An example of a typical backscatter spectrum acquired dur-
7.88 E) and the second on the mainland coast near the towt'9 @ previous experiment (Helgoland, German Bight, 2 Decem-
of St. Peter—Ording (54.34, 8.59 E). They were based on ber 1987, 21:36 UTC). The .vertlcal red lines mark the frequency
an early CODAR design developed at NOAB&(rick et al, shift due to the phase velocity of the Bragg-resonant ocean waves

. . . . traveling towards and away from the radar. The areas marked in
1977, which had been modified at the University of Ham- blue indicate the part of the spectrum the noise level is calculated

burg. _ . from, the blue horizontal line indicates the noise level found.
The operating frequency was 29.85 MHz which made the

system to couple to 5.02 m long ocean waves. The radar mea-

sures the radial component of the surface current by analyz2.1.1  Error statistics of the current velocity

ing the additional Doppler shift caused by the Bragg-resonant

waves of the underlying current field. Due to the decrease imAfter a fast Fourier transform, the backscatter spectra from
orbital motion of these waves, they couple to ocean currentshe four antennas consist & = 4096 lines each and the
down to about 0.5m below the sea surface. As a result thadditional Doppler shift caused by the current field is ana-
radar provides surface currents averaged over the top 0.5 tyzed. As the radial component of the current velocity varies
of the water column. with angle, the radial component of current field is spread

-58.1
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400

over numerous spectral lines. The direction of arrival is
calculated for each spectral line with a signal-to-noise ratio 350l 5 o
S/N> 6 dB and the respective radial current velocityi) as ' R
well as the associate®8/N(i) is then sorted into “direction— 300 338
boxes” at ® increments.

The noise level of the backscatter spectrum is calculated
as the average power of the areas marked in blue inlig.
the S/Nvalue is the ratio of the power of a signal line in the
spectrum to the noise level. This calculation is done for all 101 .
range cells.

In a next step, a 2¥ 21 Cartesian grid with 3km hori-
zontal resolution is defined. To transform the measurements  so| PR A
from radar coordinates (range, azimuth) to this Cartesian , MO 'i" .'.': o '.3
grid, all data within a circle of 3km radius around a grid 0 Sep 1991 Oct1991 Nov 1991 Dec 1991 Jan 1992 Feb 1992
point is copied from the “direction—boxes” into a “grid-box”. time
After this transformation, there are e kj.samples of a radial
current velocityu, (i) with a signal-to-noise rati®/NG) in a Fig. 2. Temporal coverage of the HF radar zonal and meridional
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“qrid=box” surface velocity observations: the number of observation grid points
grid—box".
From thesek samples, the radial current veloci#y is V\{ith valid data_\ avail_able is shown_for each sample time. The Carte-
calculated as sian observation grid has 567 points, but due to land coverage and
© distance from the antennas, the maximum spatial coverage is 396
T > iz (D)S/N (@) ) grid cells.
r— .
YA S/NG)
This weighting with theS/N implements a “center of grav-  Close to the line connecting the two radar sites, the GDOP
ity” technique which gives preference to strong echoes anthecomes very large because both radial measurements basi-
provides a more stable estimateiof o cally reflect the same radial component of the current field. If
The variance of the radial current velocat§ is calculated  the GDOP is larger than 5, the measurement with the higher
as S/Nis used and the missing information perpendicular to the
- K U ()2S/N (i) > 2 connecting line is interpolated from surrounding grid points.
r — K . — Ur
2 i=1S/N@) 2.1.2 The data set used for assimilation

Note, that the variance contains measurement errors as well . o
as the variability due to temporal changes in the current field! N€ final data set comprises 8414 samples in time from 9 Au-

within the CIT caused by e.g. tides. Finally, the accuracy of9Ust 1991 until 4 February 1992 and has a time resolution of
the radial current velocity Agds calculated as 30 min. Due Fo land coverage and dl_stance from the a_nten-
o nas, the maximum spatial coverage is 396 of 567 available
Acc, = —— 3) grid cells. The coverage shows high variation over time (see
VK Fig. 2) with a mean spatial coverage of 202 grid cells. The
Because the value & is not very large, a correction based mean coverage over time for each individual point on the ob-
on the Student’s t distribution is applied. The radial currentservation grid is shown in Fi@. This variation is caused by
velocity u, as well as it's variance,? and accuracy Agc  a changing sea state and also due to Radio Frequency Inter-
are calculated for all points of the Cartesian grid, as long aference (RFI) at the radar frequency. Medium wave height
K >3. (1-2m) results in the largest range of the radar measure-
In a final step, the radial current velocities measured byments, while extremely calm or rough sea reduces the range.
two or more CODARSs installed at different locations are This observation is discussed in more detaiGuargel et al.
combined to form the surface current vector The algo-  (1999.
rithm is published byGurgel(1994 and is based on a least—  Only observations from 1 September 1991 to 10 Octo-
squares—fit. It makes use of the error statistics of the radiaber 1991 are used in this work for data assimilation. Ob-
current velocities to be combined and thus also provides theervations from 10 October 1991 to 30 October 1991 will
variancess2(u) ando2(v) of the meridional ) and zonal  be used for validation. The expected error variance obtained
(v) components of the surface currant The algorithm is  from the processing of the radar data is used in the assimila-
outlined in appendiXB. These variances include the influ- tion. The error correlation between different velocity compo-
ence of the geometry (the angle between the radial components is ignored here for simplicity. The corresponding error
nents) similar to the GDOP (Geometrical Dilution Of Preci- covariance matriR},c is thus diagonal (but its diagonal ele-
sion) known from the GPS (Global Positioning System). ments depend on space).
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In this study only the M2 component is used (Féj. The
real and imaginary parts of the complex tidal parameters are
represented as separate elements in the observation vector.
For simplicity, the observational error covariarReor is as-
sumed to be diagonal with a constant vaﬂé%T on its diag-

onal:

Reor = SZo7l ®)
The amplitude and phase of the M2 tidal signal is a time in-
variant field.

3 Model

The model used is the General Estuarine Ocean Model
(GETM Burchard and Bolding2002. It solves the 3-D
primitive equations with a free-surface on an Arakawa C-
grid (Arakawa and Lampl977). In the vertical, the present
configuration uses 21 levels. It covers the German Bight
with a resolution of about 0.9 km. Its boundary conditions
are extracted from a 5-km resolution North Sea-Baltic Sea
Fig. 3. Spatial coverage of the HF radar zonal and meridional model Staneva et gl.2009. The bathymetric data for
surface velocity observations: the number of samples available athe different model configurations are prepared using the
each observation grid point is color-coded according to the color-ETOPO-1 topographyAmante and Eakin®2009, together
bar. The entire data set comprises 8414 samples in time. Contouyith observations made available from the German Hydro-
lines show depth in meters as used in _the hydrodynamic mOderijraphic Service (BundesanitrfSeeschiffahrt und Hydrogra-
bathymetry. The crosses show the location of HF radar antennas. phie, BSH, GermanyDick et al, 2001. The larger scale
model and the nested model include tides. The sea surface
The representation error accounts for missing processes ig|eyations of the open boundary of the North Sea-Baltic Sea
the model (but present in the observations), and errors thghodel are generated using tidal constituents obtained from
cannot be corrected modifying only the M2 tidal boundary he TOPEX/Poseidon data via the OSU Tidal Inversion Soft-
conditions. It also includes the fact that the model and obserygre Egbert and Erofeey®002). Atmospheric fluxes are
vation error covariances are approximations. The representgsstimated by the bulk formulation using 6-hourly ECMWF
tion errorS,ﬁF is assumed proportional to the identity matrix re-analysis data. The model is also forced by hourly river

and must be added to this error covariance: run-off data provided by the BSH. More details about the
large-scale model and the model nesting can be found in
2
Riir = Rie+ Sie| ) staneva et a(2009.

Figure4 shows the tidal analysis of the zonal and meridional "€ amplitude and phase of the M2 tidal velocity (Ffy.
component of the velocity observations. Since close to the® Computed for a 60-day model run starting the 1 Septem-
line joining the HF radar sites data have partly been inter-Per 1991 (without data assimilation). The tidal parameters

polated, the tidal parameters are less accurate near this lirfd© Shown for the same region as for FigThe overall struc-

(Fig. 5). ture of theu-component amplitude (amplitude of the merid-
ional component of the currents) is in reasonable agreement
2.2 Empirical Ocean Tides (EOT08a) with the observations. However, a significant phase differ-

ence is observed in thecomponents. For the-component

The EOT08a$avcenko and Bos¢B008 is a global dataset  (zonal component of the currents), the velocity amplitude is

for amplitude and tides of the major ocean tidal constituents Similar to the observations except in the northern part where
four diurnal tides (K1, O1, P1, and Q1), five semi-diurnal it is underestimated in the model. The phase differences are
tides (M2, S2, N2, K2, and 2N2), and one non-linear tidal however the largest in the southeastern part of the region cov-
constituent (M4). It is based on empirical analysis of altime- €red by the HF radar observations.

ter data of multiple satellite missions and is obtained by a

harmonic analysis of the residual of the altimetry data rela-

tive to the ocean tidal model FES2004¢(tellier et al, 2004

Lyard et al, 2006. It has a spatial resolution of 7.5 7.5

and it is available aftp://ftp.dgfi.badw.de/pub/EOT08a/

Ocean Sci., 6, 16178 2010 Www.ocean-sci.net/6/161/2010/


ftp://ftp.dgfi.badw.de/pub/EOT08a/

A. Barth et al.: Ensemble smoother for optimizing tidal boundary conditions 165
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Fig. 4. M2 amplitude (in m/s) and phase (in degrees) of zomphad meridional §) surface currents of the observations.
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Fig. 5. The square root of the averaged expected observational error variance (without the representation error) for the observations from
1 September 1991 to 10 October 1991 (assimilated; left panel) and from 10 October 1991 to 30 October 1991 (not assimilated; right panel).
Units are m/s.
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Fig. 6. M2 amplitude (in m) and phase (in degrees) of EOT08a for the German Bight
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Fig. 7. M2 amplitude (in m/s) and phase (in degrees) of zomphtd meridional{) surface currents of the free model run.

4 Data assimilation is created as iBarth et al(2009. In the following we briefly
present this approach. The probability of a perturbatios
4.1 Ensemble perturbations assumed to be Gaussian distributed:

The tides are governed by the shallow water equations which
provide a strong dynamical link between elevation and depth- 1
averaged currents. An ensemble of tidal boundary conditiond *) = (27 )1/2|B||2/2 exp(—J (x)) (6)

Ocean Sci., 6, 16178 2010 Www.ocean-sci.net/6/161/2010/
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wheren is the dimension ok and the functior/, called a  wheree, is the misfit of the shallow-water continuity equa-
cost function in variational analysis, is a quadratic functiontion ande, ande, are the misfits of the shallow-water mo-

of x given by: mentum equations (with a linear bottom drag):
27 (x) =x"Wgx+(Dx)TWp((Dx)+Mx)TWyMx)  (7) it + d(hu') n (v _ we; (15)
ax dy
=x"B 8 Y
®) iwu’—fv/+ga—§+cuu/ = wsy (16)
X

where Wy, Wp and Wg are, for simplicity, diagonal 3’

weighting matricesD is a diffusion operator anil is an a ia)v/+fu’+g8— +cv = wey a7
priori linear constraint. The subscript\éf ; refers to energy. Y

The three terms in this cost function ensure respectively thatrhe covariance matri® does not need to be formed explic-
the perturbations have a finite energy, are smooth and satisfyly to create ensemble perturbations, only its inverse. Since

a linear constraint. The matri® is the underlying covari-  the constraints use derivatives that are approximated as finite
ance matrix of the ensemble perturbations. Its inverse is als@jfferences, the matri8~! is a sparse matrix. Only non-

called the I-!essiaq rTlgtrix of the cost function zero elements of this matrix are stored, which allows for an
The precise definition of the matric#¢,,, Wp, Wr and  efficient implementationarth et al, 2009.
M and of the vectow is specific to a particular applica-  Unlike the approach presented Barth et al.(2009, the

tion. In the present setup, only the M2 tidal constituent isenergy constraints and the smoothness constraints are ap-
perturbed since it is by far the largest in the German Bightplied only at the boundaries. The spatial structure of the
(Schirmer et al.1994. The perturbation vectar in this  perturbations within the domain is thus given only by the dy-

case is composed by the complex M2 tidal parameters of elnamical constraint which is sufficient to ensure smooth per-
evation¢’, and the depth-averaged currentsandv’ of the  tyrbations.

entire model domain:
4.2 Non-sequential assimilation scheme

(x,y,0) =€ (x,y) 9

u(x,y,t) = giwtu/(x’y) (10) In this sub-section, the general assimilation approach is de-

v(x, y.1) = eiwtv/(x,y) (11) ta_ule_d yvhlle in the r!ext sul_)-sectlon it is shown how this as-
similation scheme is applied to the German Bight setup to

wherew is the M2 tidal frequency. estimate tidal boundary conditions.

The energy constraint is based on the barotropic wave en- A non-sequential assimilation scheme can be derived from

ergy governed by the shallow water equations integrated ove€ classical analysis scheme by embedding the time dimen-
the open boundary of the model domain: sion in the observation vector. All observations within the

model integration period are thus grouped into a single obser-
- o o o o vation vector §°) with their corresponding error covariance
x WEx=§/3SgII§ 1=+ Allu'|1*+h|v|]“dx (12) (matrixR).

The vectorx®, wherek is the ensemble member index,
whereg is the acceleration due to gravity ands the wa-  includes all unknown forcings and parameters of the model.
ter depth. The parameter(a dimensional) determines how An ensemble of forcing fields are created by perturbing them
strong this constraint has to be enforced. In continuous formyithin the range of their uncertainty. If the perturbations de-

the smoothness constraint is written as: pend on time, then its time evolution is also grouped together
) ) ) into a single vector in a similar way as the observations.

(Dx)TWD(Dx)zL—4/ < 0%’ h 0% wnll 220 ae (13) For every perturbation, the model is integrated forward

2 Jys"|| or2 o1z o1z in time. But unlike classical Kalman Filters, the ensemble

. - , members are not influenced at this state by the observations.
[ is the spatial dimension tangent to the open boundary. Th‘?:or each ensemble member, the observed part of the model

weighting be_tween variables is thus the same as for the ®Mstate is extracted. Formally, this extraction can be expressed
ergy constraint. As before, the parametedetermines the as a non-linear “observation operatdr(-) applied to the

importance of the smoothness constraint relative to other, \ o pia perturbation® performing the following oper-
constraints. The exponent is chosen such thatpresents

| h le. Th h int is al | ations: adding the perturbation to the background estimate,
a length-scale. € smoothness constraint is aiso only eni'ntegrate the model and then interpolate the model to the lo-

forced at the oEen ie? b(;)undgrlesaThe (E)ynammal constraiGtion of the observations. The model dynamics are thus part
Is active over the whole domain and can be written as: of the observations operator. Every elementiw®)) can

. 1 ) ) 5 thus be directly compared to its corresponding element in the
(Mx) WM(Mx):E/Sg”E{” +hlleul“+hlley][“dx  (14) observation vectoy®.

WWw.ocean-sci.net/6/161/2010/ Ocean Sci., 6, 168-2010
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In sequential data assimilation, the variables estimated by For a linear model and an infinite large ensemble, E8). (
the assimilation are often the entire model state. Howeverminimizes,
different definitions can be more appropriate depending on B . -
the assimilation problem. Here we choose to include the’®) =& =" P (x—x")+ (" =hx) RO —hx)  (24)
forcing fields, which is a common strategy in variational
data assimilation (e.dgHoteit et al, 2009. Assimilation can :(x—xh>TP”’1(x—x”)+Z(y;;—hn(xn))TRn—%y;;—h,l(x,,)) (25)
also be used to estimate model parameters for e.g. biologi- "
cal models $pitz et al, 1998 or weights given to individual ~ wheren references to the indexed quantities at timeThe
models in super-ensemble techniqueién et al, 2009. first term of this cost function is the constraint used to defined
The definition of the observation operator depends equallythe dynamically plausible perturbations (Eq).
on how the assimilation strategy is implemented. It can be The approach used here is closely related to the Ensemble
a simple operator interpolating the model results at the locaSmoother ¢an Leeuwen2001), 4DEnKF Hunt et al, 2004
tion of the observations or a more complex transformation.2007 and the AEnKF $akov et al.2010 where model tra-
For example, the observation operator can be an operator ejectories (i.e. the model results in space and time), instead
tracting the spectral information from the model to assimilateof model states, are optimized. In the smoother scheme of
tomographic data (e.dRémy et al, 2002, an EOF projec- van Leeuwen(2001), observations are perturbed as in the
tion to assimilate EOF amplitudes (eRprth et al, 2006, or standard Ensemble Kalman Filtdurgers et al.1998. In
a complete radiance sub-model to assimilate radiance obse#DENKF, the observation operator is modified to relate the
vations in a numerical weather model (eGyeenwald eta).  observations at the time where they are measured to the time
2002. where they are assimilated. The AEnKF extends the observa-
From the ensemble simulation, we derive the following tions vector and the matrix containing the ensemble members
matrices whose columns represent the deviation of the enat the location where they are observed by vertically concate-
semble members around the ensemble m8aar{d the ob-  nating those vectors and matrices at different time instances.

servations): This approach is also used here because it is easier to imple-
1 ment than the 4DEnKF. But both approaches can be seen as
Sp=(N-1)"2 (x(k) - <X)> (18)  equivalent. For an increasing number of ensemble members,
_ 1 ® the Ensemble Smoother does also converge to the 4DEnKF
Eyp=WN-1"2 (h (x )‘ (h (x)>> (19) and AEnKF. In the present study, these approaches are not

applied to directly estimate the model trajectory but to the
k{)é—:irturbations of the forcings (or the trajectory of the forcing
perturbation). Therefore, after the optimal correction of the
forcings is computed, the model needs to be rerun to obtain

where the index refers to the ensemble member gndis
the ensemble average. These matrices are scaled such t
the following products represent covariance:

SE” =cov(x?, h(x?)) (20) the final model solution. For a linear model, these schemes
provide the same results. However, for a non-linear model,
EET =cov(h(x?),h(x")) (22) the results might be different. The optimal solution from the

_ , ; - T Ensemble Smoother, 4ADEnKF and AEnKF is not guaranteed
The matricesSE" andEE” would beP’H” andHP”H" if  to satisfy the model equations, while it is per construction
the observation operator could be represented by the lineahe case in the scheme used here. Since the method used
operatorH. Those covariance matrices do not need to behere aims to estimate the optimal perturbations, this approach

formed explicitly as the analysis is performed in the subspacenight be called Ensemble Perturbation Smoother.
defined by the ensemble members (&lgrger et al.2005.

The Kalman filter analysis with non-linear observation op- 4.3 Application to data assimilation in the German
erators as irChen and Snydef2007) provides the optimal Bight

perturbation minimizing its expected uncertainty:
Errors in the boundary conditions, bathymetry and poorly

x* — xb + SET (EET+R>_1 (y"—h(xb)> (22)  known bottom friction contribute to errors in the M2 tidal

signal inside the model domaiMourre et al (2004 showed
— b +S<ET RIE4+ 1)71ET R-1 (y” —h(xb)> (23)  inatwin experiment how the errors in the bathymetry can be

reduced by data assimilation using an Ensemble Kalman Fil-

for a given background estimai®. The analysisc? pro- ter. The present study is a first step anq focuses on reducing

vides the “optimal” correction to the unknown forcings based the error generated du_e to unknown tldal_bouanry condi-

on the observations. The model is then rerun with this per-t'F’_”s- Also the uncertainties due to errors in the initial con-

turbation applied. The observations influence thus the modeflitions, other lateral boundary conditions and atmospheric

solution only by choosing the optimal combination of the forcings are not considered here.

perturbations.
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The vectorx is composed in the present implementation From those 51 model runs, the surface currents at the lo-
by the complex M2 tidal parameter of elevatigh zonal cations measured by the HF radar are extracted and will be
u’ and meridional velocity’ defined over the whole model compared to the HF radar observations. Also for every sur-
domain. Those variables vary spatially but are constant inface model grid point, the complex M2 tidal parameters of
time. This vector has in total 52374 elements. In GETM surface elevation are computed using th&IDE package
version 1.6, tidal boundary conditions are implemented such{Pawlowicz et al. 2002. These complex tidal parameters
that only elevation at the boundary is used for the ensemblare interpolated at the grid of the EOT08a data. Once the
simulation. In future studies, this vector can be augmentedptimized boundary values following ER2) are obtained,
by other unknown parameters such as bathymetry or (spactne model is rerun with the corrected boundary values for
dependent) friction coefficients. 60 days.

The observations vector’ includes thex andv compo-
nents of the HF radar observatiopg" at all time instances
th (1=1,...,N, with N, = 1869) within the 40 day model ° Results
integration at a resolution of 30 min (at 51 time instances no

data is available). It also includes the real and imaginary5'1 Sensitivity to the observational error covariance

parts of the EOTs elevation M2 tidal p_arametg_FsOT (&= |n the present approach, the observational error covariances
lated to the amplitude and phase). This latter field does noj, ot influence the ensemble simulation (unlike Ensemble
depend on time: Kalman Filters). Only at the analysis step, which is carried

v uET e e out only once, the observations are used. Different parame-
y = [y 1 oINSy ] (26)  ters of the observational error covariances can thus be tested
without repeating the ensemble simulation which is by far
the most CPU resource-intensive step.
In a first series of experiments, the expected error standard
viation of the EOT dat8gor is fixed at 0.01 m (the impact
of this value will be discussed later) and 10 different val-
ues forSyr are used ranging from 0.002 m/s to 1 m/s. Each
blue circle in Fig.8 corresponds thus to a different analysis
and a subsequent 60-day run of the model. The RMS error
between the EOT M2 tidal parameter for elevation and the
B~l=uaU" (27) model (according to equation in appendi¥ and the RMS

error between the HF radar and the model surface currents

Only the 50 eigenvectors with the smallest eigenvalues arg o computed. The corresponding errors of the model run

retained. The dgm_smn_ how many _e|genvectors to retam Waith unperturbed boundary values (hereafter called the free
based on the distribution of the eigenvalues. Those eigen-

vectors correspond to the dominant error modes defined medeI run) are also included in Figfor reference (red line).
. P . L o Y If the representative error of the HF radar currents is too
the covariance matriB. From this eigendecomposition, an

ensemble of 51 members is created following the 2nd ordefcéma”’ then a degradation of the model results compared to
exact re-sampling strategy of the SEIK Filt@th@am 2007, OT is observed. The HF radar data set covers indeed only

a limited portion of the model domain. The correction of
x®=UAY2AQ), fork=1,...,N+1 (28)  the boundary values is extrapolated from the information of
the HF radar. FoSyr > 0.12m/s, an improvement for both
data sets is obtained compared to the free model run. As
a compromise between improvement relative to HF radar
observations and EOT analysis, we choose here a value of

In total y° has 2120 396 elements. The observation error co
variance matrixR is here a diagonal matrix whose diagonal
elements are obtained by a concatenation similar to equatioge
(26).

In order to create an ensembi&” of perturbations fol-
lowing the distribution §), the Hessian matrix of the cost
function B~1) is decomposed into eigenvectors and eigen-
values:

where N is the number of eigenvectors retained,is a
(N +1) x N matrix whose column vectors form an orthonor-
mal basis perpendicular to the column vector withAal- 1
elements equal to one an@); is thekth column of av x N Swe = 0.2 m/s for the following experiment.

random orthogonal matri®. This ensemble will have ex- In a second series of experiment is thus fixed to
actly a zero mean and its ensemble covariance is the covarjy 5 /s andSzor is varied between 0.001 m and 0.5m. As

ance matrb8 reduced to its 50 largest eigenvectors. before, the analysis is repeated for those different values and
The tidal perturbations are added to the GETM boundary, mqqel run is performed for 60 days starting from 1 Septem-
conditions and GETM is run for 40 days with each of those o 1991, As long aszor is smaller than 0.017 m, an im-

perturbed boun_dary values. The minimum Iength should beprovement is observed compared to both data sets 9Fig.
at least one string tide/neap tide cycle. Otherwise the errorg,ig justifies a posteriori the value of 0.01m chosen previ-
in the S2 tidal signal could lead to modification of the M2 ously.

boundary conditions. This would result in a high RMS error
when the model currents are compared to the validation of
surface currents.
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Comparision with EOT data
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In a last series of sensitivity experiments, we assess théollowing experiment,Syr and Sgor are set to 0.2 m/s and
benefit of assimilating only EOT data, and leaving the HF 0.01 m respectively.
radar observations as an independent validation data set Figure11 shows the elevation correction from the assimi-
(Fig. 10). In this case, we notice that for all valuesSor,  |ation scheme and the elevation M2 tidal amplitude and phase
the assimilation improves the results compared to the frégjjagnosed from the assimilative run. Note that the scheme
model run for both data sets. However, as expected, the iMyrqyides the correction over the whole domain but only the
provement relative to the HF radar data is smaller. In all ;g rections at the boundary are actually used by the GETM
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Amplitude and phase of correction Amplitude and phase of assimilative model
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Fig. 11. Amplitude and phase of the correction of the M2 tidal elevation (in m, left panel) and of the assimilative model run (right panel).
The increment of the phase contour lines is 10.

model. The assimilation increases the amplitude of the inthe free model run. The free model run underestimates the
coming tidal wave (in the south of the western boundary)v-component amplitude in the northern part of the zone cov-

and decreases its phase. ered by the HF radar. This is improved by the assimilation,
_ but the modeb-component amplitude is still lower than the
5.2 Error analysis v-component amplitude obtained from the observations. The

) ) ) v-component phase is in general also closer to the observa-
The amplitude and phase of the M2 tidal constituent arejons in the model run with assimilation than in the free run.
computed over the first 40 days of simulation (starting from

1 September 1991) by a tidal analysis (Fig). The largest
improvement obtained by the assimilation is the ameliora-
tion of the u-component phase relative to the free model.
The assimilation did not damage tlecomponent ampli-
tude which is close to the observations as it is the case for
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To obtain an overall view of the impact of the assimilation, where the subscriptsandm correspond to the observations
RMS maps of surface currents are computed between the oland the model (free or with assimilation) respectively ahd
is the number of observations. It is important to note that the
structure seen in this figure can be either due to errors in the
model or in the HF radar currents. The higher errors near
the line joining both antennas is probably due to the geomet-

servations and the free and assimilative model runs (Hg.

1 N
RMS?= =3 (uf —u)?+ (@f —v]")? (29)
i=1

Ocean Sci., 6, 16178 2010

ric dilution

of precision. Since the signal strength decreases
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away from the antenna a higher error is also expected nea$.3 Tide gauge station

the edges of the covered region, in particular near the west-

ern and southern edge of the covered zone. In the northeasthe model results are also compared to tide gauge data

ern part we have probably a combination of this effect andfrom Helgoland (54.18N, 7.88 W) and from Cuxhaven

model errors due to the complex topography. Indeed, thesés3.87 N, 8.72 W). The tide gauge station at Helgoland is

zones show a higher expected error standard deviation of theovered by the HF radar observations but this is not the case

observations (left panel of Fi§). for the tide gauge at Cuxhaven. For both sites, hourly sea
In the interior of the covered zone, the free model run hadevel data from 21 January 2006 to 7 December 2006 are

an RMS error of about 0.2 m/s. This value is reduced to abougvailable.

0.15m/s in the model run with assimilation. Since the RMS ~ Since the model time frame differs from the time period
error is computed directly based on the surface currents, it ivhere sea level is available, a direct comparison of the sea
the combination from several errors. The RMS error includeslevel is not possible. However, the tidal amplitude and phase
the errors in M2 tides generated by the boundary conditiongan be compared (after applying nodal corrections). Table
(which the assimilation aims to reduce), but among othersshows the M2 amplitude and phase computed by tidal analy-
also errors in M2 tides generated by errors in the bathymetr)ﬁis from the Observations, the free model run and the model
and bottom roughness for example, errors due to other tidafun with assimilation. At Helgoland, the phase difference is

constituents, errors in wind forcings and lack of resolution in feduced from 1%o —2°and also the relative amplitude er-
general. ror is improved from 28% to 14%. At Cuxhaven, the as-

éimilation reduced the phase error frerd1°to —28°and the
relative amplitude error from 30% to 21 %. Tallalso con-
tains the RMS error as computed by E42] of AppendixA.
Those RMS errors combine the contribution of the amplitude
and phase improvements. The assimilation reduces the RMS
RMS? = RMSZ, + RMS? (30) error by a factor of 2 for Helgoland and by a factor of 1.4 for
Cuxhaven.

In an attempt to decompose the model errors we compute
the RMS error only due M2 tides (Rl\ﬁ,@) and the remain-
ing errors sources (RM3:

The contribution of the M2 tides RMS, is computed by
a tidal analysis of the observed and model velocity. The
RMS error is then computed according to appediX his is

equivalent of computing the RMS of the error projected oNnto|\ctead of optimizing the tidal boundary conditions one

the subspace spanned by the hgrmonic functions at th? MEould directly try to estimate the best model trajectorgmn(

tidal frequency. Such decomposition of the model error in A eeuwen 2001 Hunt et al, 2004 2007 Sakov et al.2010)
.c()jrth.ogonal vAelctor s;op\)a(;e 'sa usefzu(;oapp::qach fﬂ n;}odel ValWhether one approach is preferred over the other depends on
Ihatllg:\]/l(se.c?'ff vera- Ecarate et il' 7)'. |gured S dovlvs Ithe application. In the present case, the amplitude and phase
the ifference between observations and models only,¢ v, o \5 tigal signal is a time invariant field. If tidal ampli-
due to errors in the M2 tides. As expected, the relative erroL e and phase at the boundary are corrected, the model can

reduction is largest in this analysis: in the interior of the ZONep . rerun for any time period. This is not the case if the model

covered by the HF radar, the error is reduced from 0.14 m/s t(Erajectory is corrected. However, in the present approach one

about 0.08 m/s. To reduce the model error in the very shallow__ - easily try both methods without re-computing the ensem-

eastern part, a higher resolution would probably be requiredble members

All RMS errors in Figs.13 and 14 are computed based  The vector#® represents the model trajectory (space
on the 40days of HF radar velocity used in the assimila-and time) and the observation operakan extracts the ob-
tion. Those error analyses where repeated for the follow-served surface currents and elevation tidal parameters from

ing 20days of model simulation. The error reduction for the model trajectory. The rows of the matéare defined in
this analysis is very similar to the one obtained by usinga similar way as previously:

the assimilated observations (Fitfs). This indicates that

the boundary conditions where not adjusted for a particular(g) = (N— l)‘% (i(k) _ (i)> (31)
month and that they can also be used for simulating a differ-\ /«

ent time period. However, the RMS error at the edges of thel_
covered zone is higher when the model is compared to the bserved part of the model trajectoByis the same as be-
da_ltgfrom 10 Octpber 199.1 to 3(.) October 1991. _The fa.Ct t.ha ore. According to the analysis step of the Kalman filter, the
this is observed in both simulations (free and with assimila- " . a i

tion) and also in the averaged expected error standard devf?pt'maI trajectoryc is given by:

ation of the observations indicate that the observations were . 1 .

inherently less accurate in the second time period @ig. ¥ = ¥” +S(ETRflE+1> ETR*l(y" —h(be)) (32)

5.4 Optimizing the model trajectory instead of tidal
boundary conditions

he matrix containing the scaled ensemble anomalies of the
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Table 1. Comparison with tide gauge observations. Amplitude and RMS are in m and phase in degrees.

Helgoland Cuxhaven
amplitude phase RMS amplitude phase RMS
Observations 1.13 304 1.36 334
Free run 0.81 318 0.28 0.95 15 0.63
Assimilative run 0.97 302 0.12 1.08 2 0.46
Free run with assimilation
0.3 0.3
54.8 54.8
0.25 0.25
54.6 54.6
0.2 0.2
54.4 54.4
54.2 0.15 542 0.15
53.8 0.05 53.8 0.05
53.6 /’\(\ 0 53.6 0
7.5 . 75 8 8.5 9

Fig. 14. RMS difference (in m/s) between surface current observations due to the M2 tides and the corresponding model results without (left
panel) and with assimilation (right panel).

The correction to the trajectody’ is thus a linear combina- 6 Conclusions
tion of the rows ofS. The coefficients of this linear combi-
nation are the same as the ones obtained for optimizing th& new ensemble generation scheme to create dynamically

tidal boundary conditions Eg2p) since: constrained perturbations is tested in a realistic assimilative
model setup. Since tidal boundary conditions are determined
hED) = h(x?) (33) by an ensemble assimilation scheme, the ensemble pertur-

bations are required to satisfy approximately the harmonic
Therefore with almost no additional effort, one can computeshallow water equations. An ensemble based on this method
the optimal trajectoryt®. However, unlike the optimization was successfully used to improve M2 boundary conditions
of the boundary conditions, one cannot compute the modeby assimilation of HF radar and tidal data derived from al-
results obtained for a different time period and comparetimetry.
them to the corresponding HF radar observations. We choose The feasibility of a non-sequential assimilation scheme to
thus to compare the model results to the tide gauge data tderive the optimal correction as a combination from ensem-
compare both approaches (as in S&cB). By correcting  ble perturbations is shown. Since the perturbations of uncer-
the model trajectory, one obtains a RMS error 0.46410 mtain forcings fields (here tidal boundary conditions) are ana-
and 0.11976 m for Cuxhaven and Helgoland respectivelylyzed by using all observations within the model integration
These results are very similar to the RMS error obtainedperiod, the assimilation scheme acts similar as an Kalman
by optimizing the tidal boundary condition (0.46431 m for Smoother. For a linear model and infinite ensemble, it would
Cuxhaven and 0.11990 m for Helgoland). One notices thaprovide the same solution as 4D-Var but without requiring
the correction to the model state leads to slightly better rethe formulation of an adjoint. The method aims to derive
sults than correcting the boundary conditions but essentiallythe optimal perturbation and not the optimal state. There-
both approaches provide virtually the same results. Ondore, the final solution is obtained by rerunning the model.
could expect exactly the same results if the model dynamics'he analyzed model solution satisfies thus the model equa-
would be linear. The fact that the RMS errors differ only on tions exactly. No spurious, transient motion such as gravity
the order of tenths of millimeters shows a posteriori that thewaves, are generated during the model run with this proce-
tidal propagation is mostly linear. The advantage howeverdure as it is often the case in sequential assimilation schemes.
for correcting directly the tidal signal is that the new tidal All quantities which are conserved by a free-running model
parameters can be used for simulating different time periods(taking the fluxes through boundaries of the domain into ac-

count) will also be conserved by the analyzed solution.
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Free run With assimilation
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54 5471
538 _ 0.1 53.8L 0.1
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7D 7D

Fig. 15. RMS difference (in m/s) between surface current observation and model results without (left panel) and with assimilation (right
panel) compared to independent data.

The applicability of this approach for different degrees of to the observations provide an indirect safeguard preventing
non-linearity and for uncertain time-dependent forcings re-to fit the Stokes drift by adjusting the tidal boundary condi-
main to be shown. In the latter case, one could apply a timetions. However, an explicit approach to remove the Stokes
localization similar to the space localization used in reduced-drift from the data (or adding it to the model) is preferable.
rank Kalman filters. Only errors due to uncertainties in the M2 tidal boundary

Besides the expected error reduction relative to the assimeonditions are considered in the manuscript. As a next step,
ilated HF radar observations and the EOT08a data set (Emthis procedure could be extended to other tidal constituents.
pirical Ocean Tides), the improved boundary conditions alsoThis would require a longer integration time period to dis-
reduce the error relative to HF radar velocities set aside fotinguish constituents with similar frequency. However, the
validation and the M2 amplitude and phase of tide gauge obtidal signal is also affected by error bathymetry and friction.
servations at Helgoland and Cuxhaven. To further improve the representation of tides, those parame-

Instead of optimizing the M2 tidal boundary conditions, ters can also be perturbed and their uncertainties reduced by
one can with little effort also obtain the solution of the data assimilation (sedourre et al(2004 for an application
smoother problem where the trajectory is directly optimizedWhere errors in the bathymetry are taken into account). The
(van Leeuwen2001, Hunt et al, 2004 2007 Sakov et al. proposed scheme is particularly well suited to optimize tidal
2010. If the system is linear, both approaches shouldboundary conditions since the tidal amplitude and phase are
provide the same result. In the present case, both methodgssentially time independent. Beyond the improvement of
lead indeed to almost the same result indicating a posterioriides, it would be interesting to study if the scheme is also
that the non-linear effects in the M2 tidal propagation areapplicable for time dependent fields such as wind forcings
indeed small. The main advantage however in optimizingand heat flux (by assimilating for example satellite SST).
the tidal parameters is that the correction can be used to The Source code of the Ensemble Perturbation Smoother
simulate a different time period. is freely available ahttp://modb.oce.ulg.ac.be/mediawiki

from the author. The assimilation code runs on Matlab and

Several points can also be improved concerning the wayoNU Octave.
the HF radar data are assimilated. Instead of working with
the estimated andv components of the surface currents, it
would be preferable to directly assimilate the radial veloc- oppendix A
ities. Theu andv components of the surface currents can
only be estimated where at least two radial measurementRoot mean square difference between tidal signals
are available. Not all data can thus be used whem thedv

components are assimilated. For two harmonic time series at the same frequenchar-
Another future area of research is the handling of theacterized by an amplitude and a phase andA’, ¢’ respec-

Stokes drift which is included in the data but not in the model. tive|y, one can compute its time averaged RMS difference by
For the analysis scheme it is thus seen as a “spurious” vari-

ability in the observations. The testing of various observation 5
error variances and the comparison of the analyzed solutiorRMS’ = lim */ (Acoswt —¢) — A'codwr —¢"))"dt (A1)
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where vectob contains all radial velocities scaled by their
error standard deviation and the mat#are given by:

co¥; sindy Ul
or1 orl Orl
A=| b=| : (B4)
coy, sing, Urn
Orn Orn Orn

The solutionu is found by solving the following equation:

ATAyu=ATb (B5)
The variances of the meridionaf(v) and zonab () com-
» ponents of the surface current is given by the diagonal ele-
X ments of the covariance matiix:
c=@ATA)™" (B6)
o?(u) =c1; o2(W) =c2 (B7)
site 1 site 2 This algorithm can also be used to combine two radial com-

ponents only. In contrast to just solving equatiBA); it also
provides the variances of the surface cursent
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