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Abstract

We examine an in�nite horizon model of quality growth in a durable goods monopoly market. The
monopolist generates new quality improvements over time and can sell any available qualities, in
any desired bundles, at each point in time. Consumers are identical and for a quality improvement
to have value the buyer must possess previous qualities: goods are upgrades. We �nd that the
upgrade structure, quality growth, and the fact that consumers are always in the market can lead
to an almost complete loss in market power for the seller even though all consumers are identical.
This is true for all discount factors. We show that subgame perfect equilibrium payo¤s for the
seller range from capturing that full social surplus all the way down to capturing only the current
�ow value of each good and that each of these payo¤s is realized in a Markov perfect equilibrium
that follows the socially e¢ cient allocation path. We also �nd that equilibria may be ine¢ cient.



1 Introduction

In this paper we examine a dynamic market in which a monopolist o¤ers a sequence of durable
goods whose quality improves over time, focusing on the questions of market power and e¢ ciency
in equilibrium outcomes. In a classic paper, Coase (1972) conjectured that a monopolist selling a
single durable good would have little or no market power and be forced to price at or near marginal
cost. This can arise when buyers behave strategically and anticipate price cuts as the seller moves
down the market demand curve over time. In our setting, where quality improves, buyers face a
sequence of purchasing decisions. Instead of timing a single purchase and then exiting the market,
buyers have an ongoing incentive to return to the market to acquire higher quality goods. Each
buyer may then be concerned about their position relative to other buyers since the seller�s o¤er
may depend on the state of the market, including the distribution of quality holdings across buyers.

Quality that improves over time is common in durable goods markets, see Waldman (2003). A
prominent example is technology markets, such as those for software, where cycles of upgrades to
existing products have become the norm. Less obviously, B-52 bombers produced in the 1950s are
still in use today and are expected to be in use in 2040, but the plane has been upgraded repeatedly
in terms of electronics, weaponry, and other features; non-defense goods that are regularly upgraded
include airports (terminals and runways), oil re�neries, and cellular networks, among others.1

The issue of market power in upgrade markets has been a recurrent theme of recent antitrust
policy, including the Microsoft cases in the U.S. (bundling of operating system and internet browser)
and in Europe (bundling with the media player). At the heart of these antitrust concerns is whether
the dominant seller can repeatedly capture most or all of the incremental surplus arising from the
introduction of improved versions or features.

The dynamic structure of a market in which new durable goods with increasing quality arrive
over time contrasts in many ways with the case of a single durable good monopoly. First, social
surplus changes over time as quality improves. In the event of delay (no current sales), social
surplus will grow rather than remain constant (as with a single good). Second, buyer preferences
and the willingness to pay for each good is not independent of past and future quality purchases.
We focus on the problem of quality upgrade goods, de�ned as goods with an element of �downward
complementarity� in that surplus from future quality improvements is tied to the acquisition of
earlier ones (but not vice versa). Upgrade goods can be viewed as lying between the polar cases
of strictly independent goods, where the value of a new good to a buyer does not depend on the
ownership of any other good, and replacement products, where a new higher quality good renders
previous versions redundant to buyers. Third, seller o¤er strategies must account for bundling
options. We examine a market in which the seller can o¤er individual quality units along with
bundles of quality units. In other words, the seller is not forced to bundle all previous quality
features with new products. Rather, the decision of what units to o¤er and how to bundle them is
endogenous and, as is necessary for a proper assessment of market power, the set of feasible bundles
to o¤er at each point in time is completely unconstrained.

Consider, then, the issue of market power for a durable good upgrade monopolist. In order to
distinguish upgrade incentives from the familiar Coasian price cutting dynamics, we assume that
buyers are identical. One would then expect a monopolist to be able to capture all of the surplus.

1Other defense systems such as tanks and ships are also constantly upgraded. Other non-defense goods
include nuclear plants, cable systems and transportation systems (roads).
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This is what happens when the seller can o¤er only a single quality good, because market power
derives from the lack of a credible threat on the buyer side of the market. Given that delay has a
cost and that buyers expect to purchase in the future, the seller is in a strong position to make an
o¤er �today�that inevitably tempts buyers to purchase now relative to their expectations for how
surplus will be shared in the future. This �speed-up�argument, for which an elegant version was
developed by Fudenberg, Levine and Tirole (1985) for a sequential o¤er game, is quite powerful and
it undermines the credibility of a buyer�s threat to reject o¤ers with high prices. We demonstrate
that an upgrade market leads to a very di¤erent assessment of monopoly market power even when
all buyers are identical: we �nd that in equilibrium the monopolist can be induced to sell at very
low prices. The key to this argument lies with how quality upgrades can support credible buyer
threats to reject high prices. This credibility results from the interaction of three features of our
model.

First, quality growth implies that the available social surplus rises in the event of delay. Thus, if
buyers reject an o¤er from the seller, it must be based on an expectation of how this larger surplus
will be divided. In contrast, the surplus does not change when the seller only has a single version
of the good to o¤er and expectations are always anchored to the division of a �xed economic �pie.�
Second, the horizon is in�nite and it is feasible for the seller to o¤er a new upgrade quality unit every
period. The third feature is that there are many buyers. Quality growth plus an in�nite horizon
taken together guarantee that a buyer will always have an incentive to return to the market for
possible future purchases. In other words, a buyer will always have a stake in the market. Quality
growth together with multiple buyers creates the possibility that in equilibrium buyers have an
incentive to coordinate their purchases (we note that the model has no network e¤ects or switching
costs). Furthermore, an individual buyer expects that other buyers will also return to the market.
This last point is critical for understanding how much or, perhaps, how little a buyer is willing
to pay for any given quality upgrade. Purchasing an upgrade today implies a current �ow bene�t
and, while the price re�ects how current surplus is shared with the seller, we must consider how the
purchase relates to buyer expectations regarding the division of surplus from future quality growth.
We demonstrate that removing any of these three features (quality growth, in�nite horizon, and
multiple buyers) will result in the seller capturing the full social surplus. Thus, it is the interaction
of these three features in an upgrade market that can cause the seller to lose market power.

The primary intuition for the loss of market power via a credible buyer threat is as follows.
Suppose that buyers expect to receive a positive share of the surplus on future quality improvements.
Further, imagine that the seller o¤ers a high price for today�s upgrade. Is it credible for buyers
to refuse the o¤er? Consider the willingness to pay of an individual buyer when other buyers are
expected to refuse the o¤er. When others refuse, we have delay and the next period will have the
larger surplus from quality growth as the market position involves buyers who lack the previous
upgrade. When the typical buyer�s share of this surplus is signi�cant, a solitary individual buyer
who purchased the high priced upgrade in the last period will wish to purchase again; despite the
fact that this may require the buyer to purchase a bundle that includes quality already held, the
assumed positive buyer share of future surplus makes it attractive to acquire the new upgrade and
keep up with the market. But, then the initial upgrade purchase of a buyer who gets ahead of the
market reduces to a one-period �ow of value since such a buyer expects to acquire this upgrade
next period. As a result, willingness to pay is limited to the one-period �ow value of the upgrade.
This is a credible threat for buyers to reject prices above this level. Moreover, a willingness to pay
that has been pushed to the one period �ow value is also independent of discounting.

We show that the seller�s equilibrium payo¤ranges from extracting the entire surplus to receiving
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only the single period �ow value of each quality increment. Further, we construct a Markov perfect
equilibrium that achieves each payo¤ in this range. For each of these equilibria, the outcome is the
e¢ cient path where buyers acquire a new quality unit each period, as it �rst becomes available. O¤-
the-equilibrium path, the supporting outcome also follows the e¢ cient path, conditional on current
buyer holdings, in which each buyer acquires not only the new quality unit but also any previously
missing quality units. Thus, the just discussed credible threat of rejecting a seller o¤er based
on an expectation of sharing in future surplus growth emerges as an equilibrium form of implicit
coordination across buyers and does not require a threat of delay to support the equilibrium. Buyer
expectations in the event of delay are determined by a supporting path along which the buyers�
share of surplus is structured to capitalize the growth in surplus over an appropriate horizon. This
supporting path deters the seller from successfully raising prices and without growth such a support
would not be feasible.

We also �nd Markov perfect equilibria that have cycles in which one or more periods without
a sale are followed by a period in which the newest unit and unheld previous units are bundled
together and sold to buyers. Thus, the market periodically returns to an e¢ cient position after
periods of ine¢ cient delay. While the seller has the strategic option to avoid delay by o¤ering
goods for sale, the support is structured so that buyers are only willing to pay relatively low prices.
Again, because future growth is capitalized along the supporting path, it is optimal for the seller
to delay until the cycle is complete and make a bundled sale.

These results on market power both for e¢ cient and ine¢ cient equilibrium outcomes are surpris-
ing relative to what one might expect with identical buyers based on the durable goods literature.
Fudenberg, Levine, and Tirole (1985) show that, in an in�nite horizon model, a durable goods
monopolist who has a good of a single quality will never charge a price below the lowest buyer
valuation. Thus, the lowest value buyer earns no surplus and is completely extracted. When all
consumers are identical, one would then expect their surplus to be fully extracted, with no delay of
sales and buyers paying a price equal to their valuation of the good. As we argued above, however,
buyers do have a credible threat in an ongoing upgrade market where they return to the market to
acquire new goods rather than exit after a single purchase. For example, for ine¢ cient equilibria
with delay, we �nd that buyer payo¤s are bounded below strictly away from zero re�ecting a limi-
tation on the ability of the seller to tempt buyers to purchase early and hence an implied limit on
seller market power.

The cost of delay in our model takes the standard form of a loss in surplus �ow due to dis-
counting. In our model, however, the discount factor re�ects not only the interest rate but also the
rate of upgrade innovation, since a new upgrade arrives in each period. Our result on the loss of
seller market power holds for any positive discount factor. In particular, it is not necessary that the
parties be su¢ ciently patient to achieve the full range of payo¤s, in contrast to folk theorem results
for repeated games. In our case, it is the next upgrade that supports equilibrium coordination and
creates a credible threat for buyers.

There is a relatively small literature on upgrade models, with most of the work involving a
�nite horizon. Fudenberg and Tirole (1998) examine a two-period model where consumers are
heterogeneous and the period two (new) good renders the period one (old) good obsolete for a
buyer. They focus on how the information structure of the monopolist impacts the pricing strategy
for the upgrade product, whether the lower quality is sold in period two, and whether the �rm
may actually buy back the good it sold in period one. Ellison and Fudenberg (2000) analyze a
series of static and two period models. These models feature network externalities and a cost to
consumers of upgrading the good, and retain the upgrade structure in which the new good makes
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the old good obsolete for a buyer. They address the issue of whether there is excessive upgrading
by the monopolist in a dynamic model and how heterogenous preferences and network externalities
interact. In our model, consumers are identical, there are no direct network externalities, and no
direct cost of implementing an upgrade. Also, a new quality unit only provides an incremental
utility above that from previous units (downward complementarity); we discuss the implications
of this di¤erence in the upgrade structures across models in the conclusion. In the �nite horizon
version of our model, the monopolist captures all the surplus. Thus, a key feature of our model is
that the time horizon is in�nite and every decision is made with respect to the prospect of future
upgrades.

Most work on durable goods monopoly builds on Coase (1972). Precisely because we have
identical consumers, the standard Coasian incentive to cut price over time and move down the
demand curve is not present. Papers that examine whether the Coase conjecture holds for a given
quality of a good and a �xed set of buyers include Stokey (1981), Bulow (1982), Gul, Sonnenschein,
andWilson (1986), Ausubel and Deneckere (1989) and Fehr and Kuhn (1995). Sobel (1991) analyzes
a model where consumers only want a single unit of the good, but there is entry of new consumers
over time. Methodologically, our paper is closest to Sobel, since both feature a market that never
closes due to new demand (entry of new consumers and, in our case, quality growth). As discussed
above, our model of a dynamic upgrade monopoly market di¤ers from this literature by including
quality and surplus growth, buyers who never exit the market, and seller bundling options.

In section 2, we present the model. Benchmarks are generated in section 3 to help di¤erentiate
our work from the literature and to understand the implications of the model assumptions. We
provide basic results in section 4, where we show that, in equilibrium, whenever a period has a
sale, consumers always move to the current state of the art and purchase all feasible qualities that
they do not possess. In section 5, we examine e¢ cient equilibria in which the monopolist sells the
upgrade in the �rst period that it is available. We show that, for any positive discount factor,
the monopolist�s payo¤ can range from getting all the surplus to receiving only the single period
�ow value of each upgrade. In section 6, we show that equilibria can be ine¢ cient in that the sale
of upgrades is delayed (and bundled). For ine¢ cient equilibria, there are also necessary incentive
conditions for delay. We show that there is a critical threshold for the discount factor such that a
longer delay requires a higher discount factor. We o¤er conclusions in the �nal section, where we
focus our discussion on the upgrade structure and directions for future research. All proofs are in
the Appendix.

2 The Model

We begin with a description of the basic elements of the game. We then turn to strategies and
payo¤s, where the formal speci�cation is involved. Because we want to assess the seller�s market
power, we allow for complete freedom with respect to bundling units and the formal framework
is essential for the construction of supporting continuation equilibria following any possible seller
(deviation) o¤er. Finally, we de�ne and discuss Markov perfect equilibrium. Here, the focus is on
equilibrium path behavior rather than the supporting structure.
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2.1 Basic Elements

We examine an in�nite horizon, discrete time model. Let � = 1; 2; ::: index periods. There is a
continuum of identical buyers with a measure of 1 represented by the unit interval and a single
seller. A new perfectly durable good, unit � , becomes available in each period � . All seller costs are
0:Within each period � , feasible o¤ers for the seller consist of any collection of subsets of f1; 2; :::; �g
and associated prices. For example, the seller can o¤er the bundle of all feasible qualities f1; 2; :::; �g
for a price p, so that the new unit is made available only as part of a larger bundle. Alternatively,
the seller can o¤er a collection of individual unit bundles, f1g at price p1, quality f2g at a price p2,
and so on; a buyer would then have the option to purchase every feasible quality or any subset of
the available unit bundles. Of course, the seller can also withhold some qualities or even make no
o¤er.

Consider the feasible o¤er set for the seller in period � . Let P� � P(f1; 2; :::; �g) denote the
power set for the �rst � integers. Any set z 2 P� is called a bundle. An o¤er is a collection of
bundles and associated (non-negative) prices, (z; pz)z2Z for some Z � P(P� ). De�ne the o¤er
set 
� by


� �
�
! 2 P(P� �R+) j (i) (?; 0) 2 !; (ii) if (z; p) 2 ! and (z; p0) 2 !, then p = p0

	
:

By (i), we are including the null bundle in every o¤er by the seller. This is for two reasons: �rst,
the seller can make no o¤er by choosing only the null bundle and, second, it streamlines the buyer
choice formalism, as a buyer chooses to make no purchase by selecting the null bundle. By (ii),
every o¤ered bundle has a unique price. Clearly, if two prices were o¤ered for the same bundle, no
buyer would select the higher price.2

Given a seller o¤er, the buyers respond simultaneously with each buyer choosing which bundle(s)
to accept in period � . Thus, an acceptance choice by a buyer is an element of the set P(P� ).

Any bundle that consists only of a set of contiguous qualities is de�ned as an upgrade. For
example, an upgrade to the �state of the art� from a status quo of 0 is the bundle f1; :::; �g;
a partial upgrade is a bundle f�; :::; � + kg, where 1 � � � � + k � � : We will show that, in
equilibrium, a seller need only make upgrade o¤ers.

A buyer receives a �ow utility of vq in period � when contiguous units 1; :::; q but not unit q+1
are held by the buyer. We thus are imposing the condition that a buyer must have all lower quality
units for quality q to have value. This �downward complementarity� assumption is the upgrade
payo¤ structure in our model. For example, if a buyer holds quality units 1 and 3 but not 2 in a
given period, then the �ow utility is v.

Players are all risk neutral and have a common discount factor � < 1. Because a new unit
of quality becomes available in each period, the discount factor re�ects the rate of innovation as
well as the rate of time preference for the players. Thus, a large � can be interpreted in terms of
a rapid rate of innovation while a small � means that innovations are infrequent. Also, for later
interpretation, we can employ the familiar relationship of � = e�r�, where � is the length of a time
period and r is the interest rate, together with an appropriate measure of �ow utility, to assess
limiting behavior as �! 0.

2We do not impose any arbitrage structure across bundles. For example, if the seller o¤ers a bundle with
only good 1, and a bundle with only good 2, then there is no restriction on the price of a bundle that includes
both goods 1 and 2. Rather, buyer choices determine which of these bundles will be purchased. Also, since
buyers are identical, there are no possible gains for buyers from the possibility of resale.
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Consider the surplus for a buyer over the in�nite horizon. In each period, a buyer holds some
subset of the feasible qualities. For any z 2 P� , de�ne M : P� ! f0; 1; :::; �g by �nding the unique
m 2 f1; :::; �g such that m0 2 z 8m0 � m and m+ 1 =2 z, and set M(z) = m: Clearly, M(z) is the
maximal contiguous quality held by a buyer and M(z) exists for any bundle z.

Consider an arbitrary sequence of holdings z� and payments p� for each � � 1, and let q� =
M(z� ). From any period �0, the net surplus of a buyer is the present discounted value from quality
�ows net of payments, as given by

1X
�=�0

����0(vq� � p� ):

Similarly, the seller�s surplus from any period �0 on is the present discounted value of revenues, r�
for each � , from sales to buyers, as given by

1X
�=�0

����0r� :

Consider e¢ cient allocations, where joint surplus is maximized. First, note that the payments
and revenues are transfers that do not a¤ect total surplus. Thus, for any path of quality holdings
and payments, the sum of surplus for any given buyer and the seller is

1X
�=�0

����0vq� :

Thus, the realized joint surplus is fully determined by the quality path. Since q� � � for any feasible
path and q0 � 0, the joint surplus is maximized when each buyer holds the maximal quality, q� = � .
The maximal surplus from date � is then given by

S� = v� + �v(� + 1) + �2v(� + 2) + :::

=
v(� � 1)
1� � + v

1X
k=1

k�k�1 =
v(� � 1)
1� � +

v

(1� �)2
:

We always have S� > �S�+1, as a delay always involves lost surplus and hence ine¢ ciency. However,
because each unit generates surplus, we also have S� < S�+1. Note that S1 = v

(1��)2 is the maximal

joint surplus at the start of the game; it is the surplus when buyers acquire one new unit in each
period, where each new unit has a present discounted value of v

1�� :

2.2 Strategies, Payo¤s, and Equilibrium

A strategy for the seller is a sequence of o¤ers, O = (O� ). Each o¤er is a map from the history of
play up through period � � 1 into the o¤er set 
� . A history is the sequence of previous o¤ers by
the seller and acceptances by the buyers. Letting H� denote the space of all histories up through
period � � 1, we have

O� : H� ! 
� :

That is, if h� 2 H� is the observed history of play, then the seller�s strategy speci�es the o¤er
!� = O� (h� ) :
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A buyer strategy is a sequence of acceptance decisions, A = (A� ). Given a history h� and a
seller o¤er !� , each buyer x 2 [0; 1] needs to choose which bundles in !� to accept. Thus, we have
acceptance strategies for all buyers

A� : H� � 
� � [0; 1]! P(P� ):

Thus, for observed history h� 2 H� and in response to a seller o¤er of !� 2 
� , buyer x chooses
to accept the set of bundles A� (h� ; !� ; x) � P(P� ). Of course, any bundle accepted by a buyer,
z 2 A� (h� ; !� ; x), must have been o¤ered by the seller, (z; p) 2 O� (h� ) for some p. This is a
feasibility restriction. Note that a buyer is free to accept one or more of the bundles (i.e., any
subset) included in an o¤er !� . For example, by �accepting�only the null bundle, a buyer makes
no purchase in period � .

We need to specify the history space H� . First, de�ne 
� � 
1 � 
2 � ::: � 
� ; this product
space contains each feasible sequence of previous o¤ers. Second, we need to calculate acceptance
sets from buyer bundle purchases and this entails a measurability assumption on buyer strategies.

Let F� denote the set of Borel measurable functions for [0; 1] ! P(P� ). By de�nition, f� :
[0; 1] ! P(P� ) is Borel measurable (that is, f� 2 F� ) if for any z 2 P� we have Q� (z) 2 B (the
Borel sets of [0; 1]), where Q� (z) = fx 2 [0; 1] j z 2 f� (x)g. Thus, the set of buyers who chose
bundle z is a Borel set and we can calculate market share and revenues by using standard Lebesgue
measure. De�ne the product space F�� F1 �F2 � :::�F� .

Then the history space is speci�ed by H 1 = ? and for � > 1,

H� = 
��1 �F��1:

Note that the bundles and prices o¤ered by the seller are recorded in 
��1 while the bundles
accepted by each buyer are recorded in F��1. Thus, we know the price a buyer paid for a bundle
from the history.3 We assume that for each h� 2 H� , and !� 2 
� , we have A� 2 F� , i.e.
A� (h� ; !� ; x) is a Borel measurable function on x 2 [0; 1].

Turning to the calculation of player payo¤s, we begin with the buyers. First, for each h�+1,
calculate the units acquired by buyer x in each period k = 1; :::; � . These units are given by
Zk(x) = fi 2 f1; :::; kg j i 2 z for some z 2 A(hk; !k; x)g, the bundles accepted by buyer x. Thus,
the set of units that buyer x has accumulated through the end of period � is given by

Z� (x) �
�[
k=1

Zk(x) � P� :

Recalling that M(z) is the maximal contiguous quality for any subset z of f1; :::; �g, we see that
the maximal contiguous quality unit held by buyer x is given by m� (x) �M(Z� (x)).

Next, the total expenditure of buyer x in period � is given by p� (x) �
P

z2A� (h� ;!� ;x)
pz, which

is the sum of the payments for each bundle that the buyer accepted. Thus, the payo¤ to buyer x
from strategy Ax when other buyers follow A�x and the seller follows O is the present discounted

3An equivalent, but less convienent, formulation would be to assign an index number to each bundle in
the �nite set P(P� ) and then de�ne measurability in the standard way for a real valued function.
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value of surplus from the maximal unit held less expenditures in each period 4:

U(O;Ax;A�x) =
1X
�=1

���1 [vm� (x)� p� (x)] :

We now compute the seller payo¤. Given a history and an o¤er by the seller, Q� (z) as de�ned
above is the set of buyers for whom z 2 A� (h� ; !� ; x). The Lebesgue measure of such buyers is
�� (z) �

R
Q� (z)

dx. Thus, the revenue of the seller in period � is5

r� =
P
z2P�

�� (z)pz:

The seller payo¤ under strategies (O;A) is then

�(O;A) =
1P
�=1

���1r�

The de�nitions for Nash and subgame perfect equilibrium are standard. The strategies (O;A)
form a Nash equilibrium if

�(O;A) � �( bO;A) for all bO;
U(O;Ax;A�x) � U(O; bAx;A�x) for all bAx:

A subgame perfect equilibrium requires that (O;A) form a Nash equilibrium at any given h� ;
where the seller makes an o¤er, and at any given h� and !� , where the buyers respond to the o¤er.

Our goal is to assess the extent of monopoly market power for a seller who has the ability to o¤er
quality upgrades over time to a set of ex-ante identical buyers. We employ a continuum, the unit
interval, for the set of buyers in order to capture the idea that individual buyers are insigni�cant
with respect to market outcomes. Thus, we follow Gul, Sonnenschein, and Wilson (1986), Ausubel
and Deneckere (1989), and Sobel (1991), among others, and restrict attention to equilibria that
satisfy a zero-measure property: for any two histories that di¤er only with respect to the actions of
a set of buyers of measure zero, the strategies of the seller and all other buyers are the same across
the two histories. Thus, no individual buyer expects that their own acceptance/rejection decision
will have any impact on subsequent play, such as a¤ecting the set of bundles that will be available
for purchase in the future. Hence, buyers act as price takers.

2.3 Markov Perfect Equilibrium

In this paper, we examine Markov perfect equilibria (MPE) as de�ned by Maskin and Tirole (2001),
with the natural modi�cation for a continuum of agents. By de�nition, Markov strategies depend

4The in�nite sum is always well de�ned, since (i) the sequence of maximal holdings m� is non-decreasing

in � , (ii) m� � � , and (iii)
1X
�=1

���1� = 1= (1� �)2.

5Note that �� (z) must be equal to zero if the seller did not o¤er the bundle z or if no buyer purchased z.
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only on the payo¤ relevant aspects of a history of the game. In our model, the seller�s �ow payo¤
depends only on revenues and each buyer�s �ow payo¤ depends only on the maximal contiguous
unit held and the payments in a period. Thus, past prices and the timing of buyer acquisitions do
not in�uence current period payo¤s. Hence, the allocation of buyers across quality units, as given
by (Q� (z))z2P(P� ); identi�es all payo¤ relevant information as of the beginning of period � + 1.

6

A simpler form of Markovian behavior is to focus on the distribution of maximal contiguous
units across buyers and the gap relative to the current period � , which indexes the seller�s feasible
units. This notion not only has more economic appeal, but also, as we will see, allows us to generate
all subgame perfect equilibrium seller payo¤s. We need to de�ne a state of the game. Consider
any history that leads to period � in which all buyers enter the period with the same maximal
quality level Q (units 1 through Q). We de�ne this to be state (� ;Q).7 We then de�ne Markovian
behavior by the condition that players�strategies depend only on the size of the gap � �Q. This
means, for instance, that if the seller o¤ers an upgrade of � units at a price p in state (� ; 0), then
an upgrade from Q to Q+ � at the same price p must be o¤ered in state (� 0; Q), provided that the
gaps coincide, � 0 � Q = � . Furthermore, except for a translation of the index number on quality
units, buyers�accept/reject decisions are the same in states (� ; 0) and (� 0; Q).8 This implies that
the seller�s pro�ts and buyers�utilities satisfy

�� � �(� ; 0) = �(� 0; Q)

and

u(� 0; Q) =
vQ

1� � + u(� ; 0) and u� � u(� ; 0)

for � 0 �Q = � .

The main economic rationale for considering Markovian behavior in the quality gap is that
feasible payo¤s in our upgrade model have a simple stationary structure. Consider state (� +1; Q),
where all buyers hold Q units at the end of period � , and compare it to state (� +1�Q; 0), where
all buyers hold 0 units at the end of period � �Q. Then any subgame perfect equilibrium for the
game that begins in state (� + 1 � Q; 0) is also a subgame perfect equilibrium of the game that
begins in state (� + 1; Q); we only need relabel the indexes of the quality units in o¤er and accept
strategies. The seller earns the same payo¤ in both situations and each buyer�s payo¤ is translated
by v(� �Q)=(1� �):

With buyers acting as price takers, in any subgame all buyers with the same quality holdings
must receive the same payo¤. Thus, all buyers earn same equilibrium payo¤ from the start of the
game. This allows us to focus on equilibria in which buyers follow symmetric strategies, because,
as we will show, every possible buyer payo¤ can be generated by such strategies. Furthermore, we
show that every equilibrium payo¤ can be implemented by an upgrade o¤er structure, where at each

6This form of Markovian behavior would allow non-contiguous holdings to a¤ect strategies. While a non-
contiguous unit does not a¤ect current buyer �ow payo¤s, it would impact a future �ow payo¤ if missing
intermediate units were acquired.

7When the buyers are distributed across maximal holdings then the state is given by (� ,(Qm� )m=0;:::;��1),
where Qm� is the set of buyers with maximal contiguous quality m:

8More generally, when buyers are distributed as (Qm� )m=0;1:::;� , then the translated state is given by
(� + 1�m� ,(Qm� )m=m� ;:::;�

) where m� is the smallest index of Q
m
� with a non-zero measure.
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state (� ;Q); the seller either delays by making no o¤er or o¤ers one upgrade level Q0 2 fQ+ 1; :::; �g
and an associated price. Thus, on the equilibrium path, all buyers have the same quality holdings.9

We will provide an explicit construction of the buyers and seller�s strategies and show that
the equilibrium behavior of buyers and sellers necessarily follows a simple cyclical structure when
strategies only depend on the quality gap. Furthermore, the de�nition of Markov perfect equilibrium
is �exible enough to allow for both e¢ cient and ine¢ cient equilibria. Henceforth, we use equilibrium
to refer to a buyer symmetric Markov perfect equilibrium in the quality gap.

3 Benchmarks for the Quality Growth Model

We begin our analysis by identifying the equilibrium outcomes for several simpli�ed versions of our
model. These benchmarks help to illuminate the roles of quality growth, the in�nite horizon, and
multiple buyers.

3.1 Finite Horizon T > 1

One of the fundamental ways our model di¤ers from the earlier work on durable goods is that
buyers do not leave the market once they have made a purchase. That is, an in�nite horizon with
quality growth implies that buyers will always seek to acquire higher quality units. We consider,
then, a �nite horizon model where the prospect of acquiring higher quality units is truncated, in
order to highlight how the seller�s market power depends on the continued presence of buyers in
the market. We need to specify how buyers value their quality holdings after the �nal period. Let

w 2
h
0; v
1��

i
denote the �scrap value� for each (contiguous) quality unit that a buyer holds after

the �nal period T , where a good can have no value after period T up to a �ow value of v forever.

Consider the �nal period. Suppose the state is (T; qT�1), where qT�1 � T � 1 is the quality
held by buyers at the start of period T .10 Then there exists a unique outcome (subgame perfect)
in which the seller o¤ers (T � qT�1); i.e. an upgrade from qT�1 to T units, and prices the upgrade
at an extraction level (subgame perfection is being employed to rule out non-credible threats in
which buyers do not accept positive surplus o¤ers). All buyers will accept the o¤er. Thus, uT =
(v + w�)qT�1 and the buyers are held to their status quo utility as of the start of period T .

Now consider period T � 1 and suppose the state is (T � 1; qT�2), where qT�2 � T � 2. Since
buyers know that they will not receive any incremental surplus in period T , they will necessarily
accept any o¤er that provides a positive utility increment in period T � 1. The seller clearly
prefers to sell a unit in period T � 1 rather than period T . Thus, there exists a unique outcome

9States where buyers have asymmetric holdings are o¤-the-equilibrium path as are histories where the
seller makes multiple upgrade o¤ers. Note that mixing by buyers in response to a seller o¤er would lead
to asymmetric holdings. This is often required for continuation equilibria in the durable goods literature.
In our case, because buyers never exit the market, we are able to construct pure strategy continuatiuon
equilibria in all states.

10If buyers are distributed across holdings from 0 to T � 1, then the seller o¤ers an upgrade to T units to
each buyer segment that fully extracts the surplus of each segment. A buyer selects the intended o¤er, since
the o¤er to a lower segment is more expensive and the o¤er to a higher segment lacks necessary contiguous
units relative to the buyer�s current postion.
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(subgame perfect) in which the seller o¤ers an upgrade of (T � 1 � qT�2) units at the extraction
price. Working backwards to period 1, the seller always o¤ers an upgrade to the current state of
the art at the extraction price. This outcome does not depend on whether we have a single buyer
or a continuum. It also prevails if the quality units are independent goods (no upgrade payo¤
structure). To summarize, the absence of future transactions implies that the seller captures all of
the social surplus.

3.2 In�nite Horizon, Single Buyer

Now, suppose we have a single buyer instead of a continuum. Under the Markovian hypothesis,
individual buyers in a continuum have no e¤ect on the state. By contrast, with a single buyer,
the state necessarily depends on the buyer�s purchasing decision. We �nd that any Markov perfect
equilibrium (MPE) necessarily has the properties that the seller will follow the e¢ cient path, selling
the new unit in each period, and price each unit at extraction, v

1�� , so that all surplus accrues as
pro�ts to the seller. Let us start with a simple example to see why sales must occur without delay.
Suppose that there is delay and two units are sold in period 2 at price p. MPE then implies

�1 = �p+ �2�1

and

u1 = � (2v � p) + �2
�
2v

1� � + u1
�
:

We can now apply a modi�ed version of the familiar argument of Fudenberg, Levine, and
Tirole (1985) to obtain a pro�table speed up deviation by the seller. Suppose the seller o¤ered
one unit at a price p̂ in period 1. If the buyer accepts (note that by doing so the single buyer
changes the continuation state), then the seller earns �̂ = p̂+��1. The buyer accepts provided that
û = v� p̂+ �v

1�� + �u1 > u1. Thus, the deviation is pro�table for the seller, �̂ > �1, and acceptable
to the buyer, û > u1, provided

v

1� � � (1� �)u1 > p̂ > (1� �)�1;

as follows from the above expressions for u1 and �1. Such a p̂ exists if and only if

S1 =
v

(1� �)2 > u1 + �1.

This always holds since S1 is the maximal surplus and u1 + �1 is necessarily smaller due to the
assumed delay of a sale.

Thus, the seller can pro�tably speed up the candidate equilibrium. Intuitively, the buyer and
seller can share the larger surplus of S1 by selling a unit in period 1 and it is simple to �nd a
mutually bene�cial price for that transaction. More generally, we always have S� > �S�+1, and
the extra surplus allows us to apply a similar speed up argument to any state (� +1; q) with a sale
that is preceded by a delay. Hence, with a single buyer, the equilibrium path from the start of the
game follows the e¢ cient path with a sale every period and the continuation path from any state
must involve an immediate upgrade to the state of the art.

We now argue that this implies extraction of the buyer. For each state (� ; 0) we know that the
continuation is an upgrade o¤er to the state of the art at price p� for payo¤s of �� = p� + ��1 and
u� =

v�
1�� � p� + �u1. Then,

�� + u� =
v�

1� � + �(�1 + u1)
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is the joint payo¤. We must have u� = �u�+1: if u� < �u�+1, the buyer would reject p� , since the
� + 1 o¤er is more attractive; if u� > �u�+1, then the seller could raise the price and the buyer
would still accept. This implies that u1 = ���1u� . Substituting for u� in the equation for the joint
payo¤ and simplifying, we �nd

�� =
v�

1� � + �(�1 + u1)�
u1

���1
=

v�

1� � + �
v

(1� �)2 �
�u1
��
.

Suppose u1 is positive. Then, despite the growth in quality, as � goes to in�nity the required expo-
nential growth in the buyer�s utility will eventually push the seller�s pro�t below zero. Obviously,
this cannot happen in equilibrium. Thus, the buyer is necessarily extracted.

The above argument does not extend to a continuum of buyers: an individual buyer cannot
change the state, either by delaying or accepting the seller�s o¤er. For example, in state (� �1; q) if
a single buyer accepts an o¤er to move to the state of the art, but no other buyer accepts, then in
the next period the state is (� ; q). The seller can only earn a pro�t by making an o¤er that targets
the full mass of buyers with quality q. As we will show, this e¤ect can greatly reduce the market
power of the seller.

3.3 In�nite Horizon, No Growth, Continuum of Buyers.

With no growth, the model reduces to the case of a single good: the seller has one unit to o¤er
to buyers. Thus, when all buyers are identical we essentially have a special case of the problem
studied by Fudenberg, Levine, and Tirole (1985), who allow for buyer valuation heterogeneity.
Using simpler versions of the arguments employed above, we then �nd that there is never delay
and buyers are always extracted in any MPE when there is no quality growth.

These benchmarks demonstrate the robustness of the seller�s market power with respect to the
time horizon, the number of buyers, and quality growth. Thus, taken individually, none of these
three factors can reduce the seller�s market power. We defer to the concluding section a discussion
of a fourth factor, the upgrade structure, including the independent goods benchmark, as this is
best done after our results are in place. We now turn to our model where there is an in�nite horizon,
growth in quality, and a set of buyers who never leave the market, to show how the necessity of
extraction breaks down and, moreover, may lead to almost a complete loss of market power for the
monopoly seller.

4 Preliminary results

We begin with basic results on the necessary structure of equilibria. These serve as building blocks
for the main analysis. First, we show that by pricing at a very low level the seller can always induce
buyers to make a purchase.

Lemma 1 (Flow Dominance) Consider any history such that, at the start of period � , all buyers
hold the �rst Q quality units and no buyer holds unit Q+1, where � > Q. Suppose the seller makes
an upgrade o¤er for units fQ+ 1; :::; �g at price p, where p < v(� �Q). Then, in any continuation
equilibrium, every buyer accepts the upgrade o¤er.

The intuition for ��ow dominance� is simple. The upgrade from Q to � is priced su¢ ciently
low that that it pays for itself in the current period, since v� � p > vQ. Moreover, even if all
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other buyers were to reject the o¤er, an individual buyer who accepts is always weakly better o¤
in the future. This follows from (1) the upgrade payo¤ structure, since an accepting buyer has a
�ow surplus of at least v� in future periods, and (2) all buyers have the same opportunities for
purchasing from the seller, so an accepting buyer always has the option of making the same choices
in the future as other buyers. Essentially, a buyer who holds all of the �rst � units in period � + 1
is never at a disadvantage relative to any other buyer.

It then follows directly that the seller must have a positive payo¤ both at the start of the game
and at any point in the future. This is due to quality growth and �ow dominance. At any point in
time, the seller always has the option of o¤ering a bundle that includes the new quality unit at a
(�ow dominant) upgrade price.

Lemma 2 In any equilibrium, the payo¤ of the seller is at least v=(1 � �). For any history in
which all buyers hold quality units f1; :::; Qg and no buyer holds unit Q + 1 at the start of period
� , the continuation payo¤ of the seller is at least v(� �Q) + � v

1�� :

It is important to note that the above results are very basic and, as the proofs demonstrate, they
do not depend on Markovian behavior or symmetric buyer strategies. Rather, these two lemmas
rely only on buyers acting as price takers. The lower bound on the seller payo¤ provides a reference
point and we will show that in a buyer symmetric MPE, every payo¤ ranging from the full surplus,
S1 =

v
(1��)2 , all the way down to the �ow dominance lower bound, v=(1� �), can be supported.

A simple consequence of a positive seller payo¤ in any continuation is that the quality gap never
grows without bound. That is, all new quality units are eventually sold within some �xed number
of periods.

Lemma 3 In any equilibrium, for any state (� ;Q), the continuation path has a bounded quality
gap.

Now, we show that equilibria must have a simple cyclical structure. To see this, we introduce
the notion of a t� cycle equilibrium. In a t� cycle equilibrium a sale occurs every t periods, and t
units are sold in each sale period. Thus, states (1; 0) through (t�1; 0) are delay states with no sales,
and state (t; 0) has a sale of units 1 through t. Hence, once a sale occurs in state (t; 0), the quality
gap falls back to 1 at the start of the next period and the state returns to (1; 0). Thus, the equilib-
rium path will cycle and the buyers will increase their quality holdings every t periods, each time
buying an upgrade to go from t to 2t and so on. Note that, as a special case, this includes the possi-
bility that t = 1, where the current quality unit is sold to buyers in every period (the e¢ cient path).

Proposition 1 Every equilibrium follows a t� cycle equilibrium path: the buyers purchase quality
units f1; :::; tg from the seller in state (t; 0), all payments to the seller occur in state (t; 0), and the
maximal buyer quality is zero until period t.

What makes this argument work is �ow dominance and the fact that the seller can pro�tably
deviate by speeding up a cycle that does not have buyers moving to the state of the art in (t; 0).
Thus, if the sale to buyers only involves � < t units, the seller can feasibly o¤er these units in state
(t� 1; 0). By pricing these units at p̂ = v� + �p� "; where p is the price for � units in state (t; 0),
a seller improves his payo¤ if all the buyers accept since
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p̂+ ��(t; �) > � [p+ ��(t+ 1; �)],
(v� + �p� ") + �2�(t+ 1; �) > �p+ �2�(t+ 1; �),

v� > "

where we have substituted for p̂ and the fact that (t; �) is a delay state.

The candidate equilibrium cannot have buyers rejecting this o¤er. If other buyers reject, an
individual will always �nd it optimal to purchase the deviation o¤er (for small " > 0). By accepting,
an individual buyer receives �u(t; 0)+ ": To see this, note that the deviating buyer does not change
the state, so � units will be o¤ered next period. Since the buyer already has these units, the
purchase in period t can be skipped and the buyer will have the same holdings as all other buyers
as of t + 1. Thus, her payo¤ is improved relative to waiting whenever " > 0. Hence, all buyers
rejecting the o¤er is not an equilibrium continuation. But, as we showed above, when all buyers
accept the o¤er the seller can pro�t by making the deviation o¤er. Thus, an equilibrium with sales
of � less than t cannot be supported.

By contrast, the speed up argument does not apply to a t� cycle equilibrium, where the seller
o¤ers an upgrade for all units f1; ::: tg, for two reasons. The �rst is feasibility. The seller does not
have t units to sell in period t � 1. Second, an individual buyer who accepts the deviation o¤er
in t � 1 is not in an analogous position. By acquiring � units when no other buyers accept, an
individual buyer can no longer safely skip all purchases in state (t; 0), since other buyers will be
acquiring units 1 through t: For example, if the seller only o¤ers the bundle of units 1 through t,
then the deviating buyer will either have to buy the same bundle as the other buyers and pay for
the � units that were previously purchased or continue on with on with holding only the �rst �
units at the end of period t.

To summarize, a seller must either sell units as soon as they are feasible, thus following the
e¢ cient path, or delay to a maximal set of units periodically, inducing an ine¢ cient path.

Finally, to streamline the equilibrium analysis, we specify strategies such that an individual
buyer who deviates by not following other buyers in a purchase that increases the maximal buyer
quality will obtain no future additional surplus. Thus, if an individual buyer has the �rst k units of
the good, when all other buyers also have additional contiguous units, then this buyer�s continuation
payo¤ is vk

1�� . One can interpret this in two ways. First, the seller (optimally) ignores individual
buyers (measure zero) who di¤er from the market path. Thus, the missing units necessary for the
buyer to bene�t from further purchases will never be o¤ered. Alternatively, the seller can always
make the necessary units available, thus allowing the individual buyer to achieve parity with other
buyers, but set the price for the needed units at an appropriate upgrade price, so as to extract all
the continuation surplus.

The critical feature is that the seller�s o¤er does not depend on a deviation by a set of measure
zero buyers. This means that the seller�s o¤er strategy speci�es that he either completely refrains
from making �catch-up�o¤ers, or always makes such o¤ers. As will be clear from the equilibrium
construction, we could also allow for higher buyer catch-up continuation values as long as they do
not exceed the equilibrium payo¤. It will also be clear, from the range of payo¤s that are supported
in equilibrium, that the exact details are inessential for the equilibrium construction. For the
analysis, however, it is helpful to adopt the speci�c upgrade construction mentioned earlier. Thus,
in a t� cycle equilibrium the seller either makes no o¤er or o¤ers one upgrade (multiple upgrades
if buyers are asymmetrically distributed) consisting of units from the status quo buyer holding(s)
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to the state of the art.

5 E¢ cient Equilibria

In an e¢ cient equilibrium, a good is sold in each period when it �rst becomes available. By
equilibrium hypothesis, this occurs at price p1 in each period. Thus, the �rm�s pro�ts and buyers�

utilities are �1 =
p1
1�� and u1 =

1
1��

h
v
1�� � p1

i
, respectively. In an e¢ cient equilibrium, the �rm

and the consumers divide the maximal social surplus: S1 = v
(1��)2 = �1 + u1.

We will show that any buyer utility level u1 2 [0; �S1] can be supported as an equilibrium payo¤
for any �: That is, the seller may be limited to only the �ow payo¤ of v per period, which has a
present discounted value of v

1�� . Thus, the seller may only receive the minimum possible payo¤
(�ow dominance and Lemma 1). To show this result, we �rst �nd support constraints for all o¤-the-
equilibrium path states (� ; 0) where the quality gap is above 1. These constraints, which must be
satis�ed in equilibrium, reduce to �cash-in�constraints in which the seller o¤ers an upgrade to move
the buyers up to the state of the art for every quality gap. Next, we generate a set of supporting
utilities, the continuation payo¤s for buyers in the event that there is no current transaction, that
will be used to implement the set of equilibrium payo¤s. Essentially, these payo¤s constitute a
credible threat that induces the seller to make the equilibrium o¤er.

A period in our model corresponds to the length of time before the next unit of quality can
feasibly be o¤ered by the seller. As noted above, frequent innovation corresponds to a large discount
factor while relatively infrequent upgrades correspond to a small discount factor. The main analysis
focuses on � > 1=2. We conclude the section with the simpler case of infrequent innovation, � � 1=2.

5.1 Buyer and Seller Support Constraints

To derive the equilibrium payo¤s, we must make sure that players cannot do better by deviating.11

To know that a deviation is not pro�table, we must specify the continuation payo¤s from state (2; 0)
and other o¤-equilibrium states. By the Markovian structure of equilibrium, we can determine the
continuation payo¤ for any state once we specify the continuation payo¤s for all states of the
form (� ; 0). We construct continuation payo¤s so that in state (� ; 0), the seller o¤ers � units
at a price p� and this is accepted by all buyers. Thus, the next state is (� + 1; �), where the
quality gap has returned to 1, and the players are back on the (incremental) equilibrium path
from (1; 0). The payo¤s with a cash-in support at (� ; 0) are �� = p� + ��1 for the seller and
u� = v� � p� + �u(� + 1; �) = v�

1�� � p� + �u1 for the buyers. Note that since this is the e¢ cient
path from (� ; 0), we have S� = v�

1�� + �S1 = �� + u� .

For a continuation equilibrium to follow this �cash-in�support, we must specify the accompa-
nying buyer and seller strategies. The seller has three ways of deviating. The �rst option is to
make no o¤er, a �delay,�which necessarily leads to state (� + 1; 0) and buyers make no decision.
The second option is to o¤er an upgrade of less than � units, a �partial cash-in.�The �nal option
is to o¤er an upgrade of � units at a price di¤erent from p� . It must be optimal for the seller to

11We apply the one-stage-deviation principle to verify the proposed strategies constitute an equilibrium;
our model conforms to the necessary requirement of �continuity at in�nity,�since the limit of ��� is 0 as �
goes to in�nity (see Fudengberg and Tirole (1991) pp. 108-110).

15



follow the strategy of o¤ering � units at the price p� in state (� ; 0). For buyer strategies in state
(� ; 0) we specify a simple cut-o¤ rule: a buyer accepts the seller o¤er of price p for � units in state
(� ; 0) if and only if p � p(�; �). Thus, we must �nd both the cash-in price p� for all � � 1 and
cut-o¤ rules p(�; �) for all � � � ; where � � 1.

First, we derive the buyer cut-o¤ strategies. It must be optimal for an individual buyer to accept
any o¤er p � p(�; �), given that all other buyers are accepting the o¤er (symmetric strategies).
When all other buyers accept, an individual buyer earns v� � p+ �u(� + 1; �) by accepting, while
rejecting (when others all accept) yields 0 by construction. Thus, it is an equilibrium for all buyers to
accept p for � units in state (� ; 0) if v��p+�u(�+1; �) � 0 or, equivalently, v�

1��+�u(�+1��; 0) � p.
Further, it must be that an o¤er of p > p(�; �) is rejected by all buyers. Rejecting when all other
buyers reject yields a payo¤ of �u(� + 1; 0). Accepting an o¤er when all other buyers reject yields
a �ow of v� � p today plus the option of purchasing the continuation o¤er for � + 1 units in
the next period. Thus, an individual buyer optimally rejects when others reject if �u(� + 1; 0) >

v� � p+ �max
n
v�
1�� ; u(� + 1; 0)

o
.

To understand this rejection condition, we de�ne g(�; u) � v� + �max
n
v�
1�� ; u

o
� �u as the

�net surplus�value of the option for a deviating buyer who makes a purchase when other buyers
do not. When the other buyers purchase in period � +1, this buyer has two options. If u > v�

1�� , it
is optimal to purchase when the other buyers do and, thus, the deviating buyer is willing to pay at
most the �ow value of the units, v�, in period � . Otherwise, the buyer will not make the purchase
in � +1 and is willing to pay up to v�

1�� � �u. Thus, recalling u� � u(� ; 0), the cut-o¤ strategy must
satisfy

g(�; u�+1) � p(�; �) � v�

1� � + �u�+1�� (1)

for all 0 < � � � and all � � 1. The cut-o¤ strategies apply to full (� = �) and partial (� < �)
cash-in o¤ers. Since g(�; u) is less than or equal to v�

1�� , cut-o¤ strategies for the buyers exist for
any non-negative utility sequence. The upper bound in (1) says that prices must be su¢ ciently
low that rejection is not optimal for an individual buyer, while the lower bound says that it is
always optimal to accept o¤ers below this level. Note that g(�; u�+1) is at least as large as v�; �ow
dominance implies that a buyer is always willing to pay at least v�.

We call the di¤erence, v�
1�� + �u�+1�� � g(�; u�+1), the buyers�price wedge. It demonstrates

that a buyer�s willingness to pay depends on what other buyers are expected to do. It is important
to note that there are no network externalities in our model, which is a standard reason for why
buyers make their purchasing decisions based on expectations of other buyers�choices. Instead, the
linkage of decisions in our model arises from quality growth and the resulting incentive for a buyer
to return to the market for another upgrade together with the fact that what the seller will o¤er
in the future depends on �the state of the market�and, thus, an individual buyer will be a¤ected
by his position relative to the market when making future purchasing decisions.

Given these buyer responses, the seller must �nd it optimal to o¤er � units at price p� in state
(� ; 0). Beginning with partial cash-ins, note that p(�; �) is the optimal price choice for any such
o¤er and it generates a payo¤ of p(�; �) + ��(� + 1; �). This implies that for an equilibrium

�� � ���+1�� � p(�; �) (2)

for � = 1; :::; � � 1.

The other two deviations are delay and o¤ering � units at a price di¤erent than p� . Delay,
� = 0, is not optimal if �� � ���+1. De�ning p(0; �) � 0, (2) applies. Finally, consider a cash-in
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o¤er of � units. Buyers will accept any price below p(� ; �), so we must have p� = p(� ; �) or else the
seller could successfully o¤er a price above p� . In other words, buyers must reject any price above
p� for � units. Note that (2) holds with equality by construction of the equilibrium continuation.

We can now combine the buyer and seller support conditions, (1) and (2), to identify when there
exist supporting prices p(�; �) such that the cash-in outcome constitutes a continuation equilibrium.
Note that the conditions also apply at � = 1 for � = 0 (delay) and � = 1 (the equilibrium path).
Combining the seller pro�t expression (2) with the buyer lower bound on prices, the following
condition must be satis�ed:

�� � ���+1�� � p(�; �) � g(�; u�+1).

Recalling that S� = �� + u� , we see that the pro�t di¤erence exceeds the net surplus value,
g(�; u�+1), if and only if

S� � �S�+1�� � u� � �u�+1�� + g(�; u�+1). (3)

Note that the surplus di¤erence on the left hand side is an exogenous sequence that is increasing
in � . So, as � grows and more units are �on the table,� a larger set of payo¤ utilities can be
supported. Given a sequence of utilities that satis�es (3), we can clearly construct the supporting
prices p(�; �) for conditions (1) and (2). At � = � , the utility u� determines the cash-in price p� via
u� =

v�
1�� � p� + �u1 and conditions (1) and (2) can be veri�ed directly. At � < � , the supporting

price p(�; �) = g(�; u�+1) always satis�es conditions (1) and (2); typically this is the smallest price
in an interval of such prices.

When (3) holds, the optimal upgrade o¤er for the seller is to o¤er � units for the price p� . Each
buyer then �nds it optimal to accept the upgrade o¤er, given that all other buyers also accept. We
then have

Lemma 4 Suppose the sequence of buyer utilities u� satis�es (3) for all (�; �) where 0 � � � �
and � � 1: Then there exists an e¢ cient equilibrium with supporting prices p(�; �):

The proof that a sequence of utilities satisfying (3) is su¢ cient for the existence of an equilibrium
outcome with payo¤ u1 is by construction. Taking a given u1, the rest of the utility sequence is
speci�ed in the next section. For this sequence, we must show that it is not pro�table for the seller
to deviate by o¤ering multiple upgrade options (as well as options with non-contiguous units); note
that (3) only rules out seller deviations involving a single upgrade o¤er. This requires that we
specify buyer strategies in response to any such o¤er from the seller. In addition, we must specify
strategies for continuation equilibria in the event that buyer holdings are distributed asymmetrically
across units in f0; :::; � � 1g in any period � , even though such states do not arise on the equilibrium
path. We do this in Appendix B.

We now turn to the task of �nding buyer utilities that support equilibria.

5.2 Support Utilities for Frequent Innovation

For each payo¤ u1 2 [0; �S1], we will construct an associated supporting path of u2; u3; ::: such that
the seller �nds it optimal to make an acceptable o¤er to achieve a cash-in outcome in every state.
First, we take up the case of frequent innovation, � > 1=2.
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To gain intuition for how to support the set of u1 payo¤s, we begin with two special cases of
support utilities. First, we assume that the buyers�support utilities are constant, u1 = u2 = ::: = u.
This means that, in the event of delay, all of the gains from the growing surplus will accrue to the
seller. What we will show is that this gives the seller an incentive to delay whenever the buyers�
utility exceeds v

1�� , which is less than �S1 for � > 1=2. To see this, consider a delay in period 1:
by the support condition (3) at � = 1 and � = 0, we have

S1 � �S2 � (1� �)u , v

1� � � u:

The second inequality is violated if v
1�� < u. Since the seller is the residual claimant of surplus,

the loss from delay is just v. On the other hand, the gain from delay is the saving in utility given
to buyers of (1 � �)u. If u > v

1�� , then the seller will prefer to delay and earn � (S2 � u) rather
than S1 � u from selling today. Intuitively, the discounted share of a larger residual will always
dominate once u becomes large enough. This is a direct consequence of the growth in surplus that
is generated when quality improves over time.

What this example shows is that buyer utility in the event of delay must be increasing to support
a higher u1 equilibrium payo¤. Now suppose that the buyers�utilities are always increasing, such
that the seller is always indi¤erent between delay and a cash-in, i.e., the support condition holds
with equality at � = 0 for all � . The e¢ ciency gains from the early cash-in are v� ; this is the one
period �ow value of � units and is precisely S� � �S�+1. Thus, by (3),

u�+1 =
u� � v�

�
: (4)

Since the di¤erence between u� and �u�+1 is exactly v� , the di¤erence between �� and ���+1 must
be 0. The payo¤ to the seller rises over time, but this is exactly o¤set by the discount factor �.
The support condition (3) for a cash-in, � = � , is

S� � �S1 � u� � �u1 + g(� ; u�+1):

For � su¢ ciently large, we have 1 > � + �� , and it is straightforward to show that g(� ; u�+1) =
v�
1�� ��u�+1. That is,

v�
1�� > �u�+1 for � su¢ ciently large. Then the support condition for a cash-in

requires that
�u1 � v�

which is violated for � su¢ ciently large.

What is happening here is the following. The utility growth for the buyers is u� � �u�+1 = v� .
On the other hand, the available surplus in � + 1 versus � , is S�+1 � S� =

v
1�� . For � su¢ ciently

large, the utility growth cannot be maintained. Eventually, a �ow-dominance o¤er at price v� ,
which is always available to the seller, allows the seller to charge a higher price.

Thus, we seek a support that is increasing, but not increasing either too fast or long, in order
to generate the set of payo¤s u1 2 [0; �S1] for any � > 1=2: To do so, we combine aspects of the
two special cases we just examined. From state (1; 0) to (T; 0), the support will make the seller
indi¤erent between a cash-in and delaying until the next period; for states with a larger quality
gap the support will keep buyer�s utility constant at uT . Thus, for T � 2 we de�ne a T � stage
support utility sequence by

u� = v� + �u�+1 for � = 1; :::; T � 1; (5)
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and
u� = uT for � � T:

Clearly, u�+1 is increasing in u� in the initial stage, and all u� are increasing in u1. Also, for any
given u1 the sequence (u2; :::; uT ) is determined. For the special case of T = 1, we specify a constant
sequence u� = u1 for all � . For another perspective, starting from uT and working backwards to
u1, it is clear that u1 includes all of the interim surplus generated by quality growth over the next
T periods: u1 = v+ �2v+ :::+ �T�1uT . As we will see, the higher u1 or the larger �, the longer will
be the period of time that the support utilities must be strictly increasing in order to implement
the higher payo¤.

A direct consequence of a T-stage support is that we only to need to satisfy the support
constraints, equations (3), over the range � = 1; :::; T ; see Lemma A1 in Appendix B. This is
because, when (3) holds at � = T , then it necessarily holds at all larger � whenever the buyer
utility remains constant. Thus, an advantage of a T � stage support is that we only have to check
a �nite set of conditions. This is for two reasons. The �rst is that if the support works in period
� for all sales � that are large enough to put the state back in the range where the value of buyer
utility is rising, then the support works the next period � + 1 for any sales �0 that also induce a
state where the value of buyer utility is rising. Second, if sales to buyers are small enough that the
continuation state has a constant buyer utility, then the support holds if it holds at � = 0 (delay).
Thus, the support condition is relatively straightforward when the buyer�s utilities are constant.

We now turn to �nding the appropriate length for the T � stage support.

5.3 Frequent Innovations: Existence

We use the following algorithm to determine the T � stage support utilities that are needed to
support a given utility level u1 2 [0; �S1]:

� Pick a utility level u1 between 0 and �S1.

� If u1 � (1� �)S1, then set u� = u1 for all � > 1.

� If u1 2 [(1� �)S1; �S1], set u2 =
�
u1�v
�

�
.

� If u1 <
�
1� �2

�
S1, set u� = u2 for all � > 2. If not, set u3 =

�
u2�2v
�

�
.

� Keep following this logic until T such that u1 �
�
1� �T

�
S1.

We know that there exists a T for the �nal step of the algorithm, u1 �
�
1� �T

�
S1, since for T

su¢ ciently large we have �S1 � (1� �T )S1. The discount factor � determines how large T must be
in order to cover the entire range of buyer payo¤s [0; �S1]. To see this, we need to de�ne a set of
critical � cuto¤s: let �� be the root of �� + � = 1 for � 2 (0; 1). The cut-o¤ sequence �� is strictly
increasing in � , from �1 = 1=2 to lim�!1 �� = 1, and satis�es ���1 < 1� � < �� for � 2 (���1; �� ):
Figure 1 then illustrates the relationship between u1; �, and T . For example, when 1=2 < � < �2, we
use a 1-stage support for the area A in Figure 1, where u1 < (1� �)S1, and then a 2-stage support
for larger u1 in the area B. Because the �S1 curve is below the

�
1� �2

�
S1 surplus curve, we have

covered all possible buyer payo¤s for this range of �. In the next range, � 2 (�2; �3), after areas C
and D, we must also use a 3-stage support to cover the highest buyer payo¤s (in the area E). As �
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Figure 1: Boundary for T-Stage Support (v = 1)

continues to rise, we use the critical � cuto¤s to identify the appropriate (maximal) length for the
T � stage support. Referring back to Figure 1, for each � range we rise vertically with a 1� stage,
then a 2� stage, and so on up to the appropriate T � stage to support each payo¤ interval on the
u1 axis. It is also helpful to note that for each u1 in a given payo¤ interval, the region between the
surplus curves in Figure 1 shows that a given length T � stage support will support the u1 payo¤
across all discount factors. Thus, a 1� stage support covers the areas A, C and F which includes
all payo¤s below the (1� �)S1 surplus curve. Since (1� �)S1 = v

1�� , this is exactly what we found
with our �rst example for support utilities (constant utility). Similarly, with T = 2 we cover all
payo¤s in the areas B, D and G, the region between the surplus curves

�
1� �2

�
S1 and (1� �)S1.

Let us consider the incentive structure for the seller and the buyers that arises with a T � stage
support constructed according to the algorithm. The algorithm identi�es a set of intervals that
covers the entire range of buyer payo¤s, 0 to �S1. Thus, for each feasible buyer payo¤, u1, there is
a unique T such that u1 lies in the interval from (1� �T�1)S1 to (1� �T )S1. The right end point
is determined by incentives on the seller side of the market, while the left end point is determined
by incentives on the buyer side.

For the seller, the initial phase of indi¤erence between cash-in and delay is followed by a strict
preference to cash-in once the quality gap reaches T . For this second phase, � � T , we have
�� > ���+1 as long as u1 < (1 � �T )S1. Any u1 above this upper bound (given T ) would provide
the seller with a strict incentive to delay selling in period T and the support would unravel. To
understand better the economic link between buyer and seller payo¤s in periods 1 and T; consider
the division of surplus. In period 1, a buyer utility of u1 = (1 � �T )S1 together with the e¢ cient
outcome imply that the seller receives �1 = �TS1 and therefore �T = �S1, by seller indi¤erence. In
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period T; the cash-in supporting outcome has the parties divide the surplus of ST which consists
of the value of T units plus the discounted e¢ cient surplus of S1. Thus, the buyer payo¤ must
be uT = vT

1�� , since the seller�s share is �S1. This re�ects the fact that the T � stage support is
constructed so that u1 capitalizes the surplus growth over T periods (see Lemma A2 in Appendix
B for the algebra with the partial sums).

The economic link between the seller�s delay incentive and the buyer payo¤ uT operates as
follows. Since the T � stage support holds the buyer payo¤ constant for any period � � T , the
seller can give the buyers uT now or wait and give them uT next period. Hence, the cost of selling
today is (1 � �)uT . The bene�t of selling today is the e¢ ciency gain v� = S� � �S�+1, since the
seller is now the residual claimant for surplus growth. So, selling today is more pro�table than
waiting to cash-in tomorrow when

v� � (1� �)uT : (6)

Otherwise, waiting is better. By choosing T so that uT is less than vT
1�� whenever u1 is below

(1� �T )S1, the seller has the necessary incentive to avoid delay along the support path. Of course,
longer initial support phases will also be su¢ cient for the seller incentive. Thus, the upper bound
(1 � �T )S1 on the equilibrium payo¤ u1 is tied directly to when the seller will �rst have a strict
preference to cash-in. In other words, T is the �rst time the �ow dominance payo¤ exceeds the
savings from delay.

The left end point, the lower bound on u1 of (1 � �T�1)S1, is determined by buyer incentives.
Suppose that the seller o¤ered � units at a price above the supporting price, p� . Given that all
other buyers reject this o¤er, an individual buyer who deviates must assess the option value of
having � units in later periods. In a T � stage support, the seller is expected to make a cash-in
o¤er of � + 1 units next period and a deviating buyer will have to decide whether to accept or
reject this o¤er. A rejection means means that the deviating buyer will lack unit � + 1: Due to
the upgrade structure, a buyer who falls behind the market will not be able to make any future
purchases that yield positive surplus. Thus, accepting the � + 1 o¤er is best if u�+1 exceeds the
status quo position of v�

1�� . Clearly, when � � T , a deviating buyer rejects the o¤er in favor of the
status quo holding because u�+1 = uT is now below the value v�

1�� . This follows directly because
vT
1�� exceeds uT when u1 is below (1� �

T )S1, the same property that drove the seller�s incentive.

A T � stage support has more subtle buyer incentives in the initial phase, where � < T , since
both u�+1 and v�

1�� vary with � . Because the T � stage support capitalizes the surplus growth up
through period T , by taking u1 above the left end point, (1 � �T�1)S1, we generate utilities such
that (i) u� > v�

1�� for � = 1; :::; T � 1 and (ii)
v(T�1)
1�� < uT (see Lemma A3 in Appendix B).12 From

the buyer price wedge expression (1), a deviating buyer in period � � T � 1, expects to purchase
again in period � + 1. Thus, the most the deviating buyer would be willing to pay in � is just
the �ow value of the units, v� . In this way, the T � stage support provides buyers with a credible
threat when presented with a higher than expected price from the seller.

The key underlying forces behind the credible buyer threat are surplus growth and implicit
buyer coordination. With respect to surplus growth, in our �nite horizon and no quality growth
benchmarks, there is always a successful speed up deviation by the seller for any candidate equi-
librium with a positive buyer payo¤. By contrast, we have equilibria with positive buyer payo¤s
because surplus growth allows us to construct the T � stage support that maintains incentives by

12When u1 is at an endpoint of one the intervals in the algorithm, (i) and (ii) typically involve a weak
inequality.

21



making buyers and then the seller the residual claimant of the changes in surplus generated by new
quality units. With respect to coordination, in our single buyer benchmark case a buyer has a zero
payo¤. With multiple buyers, no single buyer can in�uence the state of the market and an individ-
ual buyer�s decision focuses on their position relative to the market, which matters because of the
upgrade payo¤ structure (we return to this point in the conclusion where we consider variations
on the upgrade structure). Because quality grows, buyers are forced to return to the market to
acquire new units, and we �nd that implicit coordination is supported when a buyer�s willingness
to pay depends on whether they hold more or less than other buyers. For example, when other
buyers are expected to refuse the current o¤er, a buyer who purchases today and also expects to
purchase tomorrow is then only willing to pay the �ow value for the units today.

Implicit coordination does not, of course, guarantee that buyers pay only the �ow value for
units in equilibrium. The price p� is determined by u� , and this is the highest price that a seller
can set before the buyers reject. This price must be at least v� , as implied by �ow dominance. The
price p� can be strictly above v� , but a seller cannot raise the price any further without losing all
current sales.

Lemma A4 in Appendix B demonstrates that we only need to check the support conditions
with respect to cash-in outcomes, � = � � t. The cash-in constraints are the most di¢ cult ones
to satisfy since partial cash-ins, � < t, will only delay the time when the seller can receive �1. To
see when the support conditions (3) will break down for a given T � Stage support, recall that
u1 = (1 � �T )S1 implies that uT = vT

1�� . If we try to push u1 any higher without changing T , the
seller will strictly prefer to delay a sale all the way until state (T + 1; 0) instead of selling in state
(1; 0).

We can now prove our main result for this section.

Proposition 2 Let � > 1=2. Then every u1 2 [0; �S1] can be supported in equilibrium. Speci�cally,
for each u1; there exists a unique T such that �+ �T�1 � 1 and u1 lies between

�
1� �T�1

�
S1 and�

1� �T
�
S1 and the T � stage support satis�es condition (3) for all (�; �) where 0 � � � � and

� � 1.

Signi�cantly, the minimum possible equilibrium payo¤ for the seller is the �ow dominance lower
bound from Lemma 1. Thus, there is an equilibrium in which the seller�s market power is reduced
to the static �ow value of each unit with all of the future surplus from a unit accruing to buyers.

In this section we examined the situation where innovation is relatively frequent, � � 1=2. Con-
sider the range of equilibrium payo¤s as innovation occurs at an increasingly rapid rate. Thus, we
let the time between innovations, � (period length) converge to 0. Recall that � = e�r�. Taking
care to adjust the �ow value of buyer surplus, v, for the rate of innovation via v =

R �
0 �e�r�d� =

�(1� e�r�)=r, where � is the instantaneous �ow value of quality to buyers, limiting outcomes can
be calculated directly. First, we observe that the �ow dominance lower bound on the seller payo¤
of v=(1 � �) (Lemma 2) converges to �=r. Thus, in the limit �ow dominance reduces to the seller
collecting a payment of � at each instant. This is, however, a vanishingly small fraction of the total
surplus, since v=(1 � �)2 grows without bound. Given this, it follows directly that in an e¢ cient
equilibrium the maximum buyer share of the surplus converges to 1. Thus, we have.

Corollary 1 In the limit, as upgrades become increasingly frequent (� ! 0), the seller�s min-
imum share of the surplus goes to zero and the buyers�maximum share goes to one.
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Intuitively, as innovation becomes increasingly frequent, the �ow value becomes a smaller and
smaller portion of the total surplus. This re�ects a necessary limitation on the extent of the seller�s
market power. Despite the fact that the surplus grows without bound, �ow dominance only ensures
a �nite pro�t for the seller. Thus there is no guarantee of market power, as measured by pro�t as
a share of the total surplus, when innovations arrive very frequently.

5.4 Infrequent Upgrades: � � 1=2

We now take up the case when innovations are infrequent, � � 1=2: Flow dominance will play a
stronger role, since the �ow value of a unit of quality, v, is now larger than the future discounted
value of a unit, �v

1�� . When � � 1=2, a buyer necessarily values one unit today more than two
units tomorrow, other things equal. Stated a bit di¤erently, given a prospect of receiving two units
tomorrow free of charge, there is always a positive price that a buyer would be willing to pay to
acquire, instead, one unit today. This immediately implies that the seller will necessarily be able
to induce a �speed up�in a number of situations where it is not possible to do so when the discount
factor is larger than 1=2. As we show in the next section, it rules out the possibility of delay in
equilibrium when � � 1=2.

The increased power of �ow dominance, the driving force behind the speed-up argument, does
not, however, imply a necessary increase in market power for the seller. We are still able to support
e¢ cient equilibria in which buyers receive any payo¤ u1 2 [0; �S1] and, as a result, the range of
equilibrium payo¤s for seller continues to include the �ow dominance lower bound. The speed-
up argument does change the qualitative nature of the equilibrium support. In particular, no
equilibrium can be supported with a constant buyer continuation payo¤ (i.e., u1 = u2 = ::: = �u);
the relatively low continuation value implies that buyers will not reject a deviation o¤er of a price
above p1 (for the candidate u1). Instead, equilibrium requires a relatively high continuation payo¤
for buyers so that the seller cannot successfully increase price in period one.

The following proposition formalizes the above argument.

Proposition 3 Suppose � � 1=2. Then any u1 2 [0; �S1] is supported as a buyer payo¤ in an
e¢ cient equilibrium with a continuation utility of u� = �u � 1��

� u1, for all � � 2.

Consider the limiting case as innovation becomes less and less frequent, �!1. This provides a
useful reference point for market power. As � rises, the value of the future sequence of innovation
upgrades declines (innovation occurs less frequently) and the current �ow value of v comes to
dominate the future surplus of �S1. In the limit, as �!1, we �nd that v ! �=r and we have a
unique equilibrium outcome in which �1 = p1 = v and u1 = 0. Formally, this is now equivalent to a
static model and the seller is able to extract all surplus from the buyers. Thus, the �ow dominance
lower bound on the seller�s payo¤ can be viewed in terms of limiting the seller�s market power to
that of a static monopolist who derives no added value from the upgrade market.

6 Delay and Ine¢ cient Equilibria

We now show that equilibria do not necessarily have to be e¢ cient. By Proposition 1, every
equilibrium is a t�cycle equilibrium. Consider, therefore, t � 2 so that equilibria exhibit (ine¢ cient)
delay. Then, on the equilibrium path, we have no sales in periods 1 through t�1 and (1; 0) through
(t � 1; 0) are �delay states.� In period t, when the quality gap has reached t, there is a sale of t
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units at a price pt. Thus, the continuation state after the sale is then (t+1; t) which, by Markovian
behavior, reduces to state (1; 0). This returns the quality gap to 1 and the cycle begins again.

Payo¤s in a t � cycle equilibrium are then �t =
pt
1��t for the seller, as the revenue �ow of pt

is received once every t periods, and ut = 1
1��t

h
vt
1�� � pt

i
for the buyers, as a purchase of t units

at a price pt is made once every t periods. Due to delay, the realized joint surplus in a t � cycle
equilibrium is less than the maximal surplus S1. Delay also implies that the continuation path from
any state in a t� cycle equilibrium always has a smaller realized surplus than that of the e¢ cient
path. Letting 	t denote the realized joint surplus in equilibrium at the time of a sale, the seller
and buyer payo¤s imply the equilibrium relationship

	t � �t + ut =
vt

(1� �)(1� �t)
:

Note that 	� = �t��	t for � = 1; :::; t � 1 in the delay states. Thus, 	1 = �t�1	t, 	2 = �t�2	t,
and so on as we approach the sale date of t. The same discounting pattern holds for seller pro�ts
and buyer utilities.

We �rst show that delay cannot occur in equilibrium when the discount factor is below 1=2.
We then consider seller and buyer incentives in the delay states and derive approach conditions
that must be satis�ed in an equilibrium. Next, as we did with e¢ cient equilibria, we construct a
�cash-in�continuation support for (o¤-equilibrium) states in which the quality gap exceeds t. We
then derive conditions for the sale at date t and, �nally, show existence.

6.1 Delay Equilibria and Upgrade Frequency

An equilibrium with delay has no sales until period t > 1. What prevents the seller from pro�tably
deviating to make a �speed-up�o¤er? Suppose the seller were to o¤er a bundle of t� 1 units for a
price of p̂ in state (t� 1; 0). If all other buyers reject such an o¤er, then a deviating buyer would
accept if

v(t� 1)� p̂+ �max
�
v(t� 1)
1� � ; ut

�
> �ut:

Intuitively, if �ut is relatively small when � is small then this will hold and the o¤er of p̂ would nec-
essarily be accepted by all buyers in any symmetric equilibrium. Would the o¤er then be pro�table
for the seller relative to delaying and selling in the next period? When � � 1=2, this is necessarily
the case.

Proposition 4 Suppose � � 1=2. Then there does not exist an equilibrium with delay.

When � � 1=2 the seller and the buyers both value current �ows more heavily than future
ones. Intuitively, upgrade innovations are su¢ ciently infrequent that a mutually bene�cial speed-
up deviation to avoid delay is possible. An individual buyer with t � 1 units on hand would not
purchase the t bundle in state (t; 0) and this makes the seller�s speed-up o¤er for t�1 units in state
(t� 1; 0) attractive to an individual buyer. When all buyers accept, the current revenue dominates
the payo¤ from waiting to sell in the next period.

The longer the delay, the easier it is to �nd a speed-up deviation for a given �. That is, as the
delay t rises, a speed-up deviation destroys a delay equilibrium for a range of � that exceeds 1=2.
This suggests that for a given delay, we will need a su¢ ciently high discount factor to support the
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equilibrium: as feasible upgrades become more frequent, it is possible that they are bundled on the
equilibrium path.

6.2 Delay and Approach Conditions

To have delay on the equilibrium path starting at state (1; 0), it must be that the seller can �nd no
o¤er that is acceptable to buyers and also pro�table relative to waiting to sell in state (t; 0) when
the quality gap has reached t units. Thus, we must derive approach conditions for the equilibrium.
For the buyers, we must specify cut-o¤ rules of when to accept o¤ers for � units in period � < t.
Given these cut-o¤ prices, p(�; �), the seller must �nd it optimal not to make any o¤ers until the
state is (t; 0): Note that it is never credible for buyers to reject all seller o¤ers due to �ow dominance.

The cut-o¤ rules for buyers in periods � < t are to reject any (upgrade) o¤er for � � � units at
a price greater than p(�; �), where p(�; �) satis�es

v�(1� �t�� )
(1� �) + �t�� max

�
v�

(1� �) ; ut
�
� �t��ut � p(�; �) � v�

(1� �) + �
t�(���)ut: (7)

Note that we have used the continuation properties �t��ut = u(� +1; 0) and �t�(���)ut = u(� +1�
�; 0) as the �rst sale on the equilibrium path occurs in state (t; 0). The left-hand-side of (7) provides
the lower bound on the cut-o¤ price; otherwise, an individual buyer would be better o¤ accepting
when other buyers reject. This bound re�ects the di¤erence in gross surplus for an individual buyer
between buying and rejecting, since other buyers are expected to reject and, hence, the continuation
state would be (� +1; 0). The �rst term is the buyer�s interim �ow payo¤, from � until t, generated
by � units while the second terms correspond to the option of buying (or not) with the other buyers
once the state reaches (t; 0). The right-hand-side provides an upper bound on the cut-o¤ price; if
it failed, an individual buyer would be better o¤ rejecting when others accept. Given that all other
buyers are expected to buy the package and the state will be (t+1; �), the bound re�ects the payo¤
di¤erence for an individual buyer between buying and not buying the o¤er for � units. Clearly, a
set of prices exists that satis�es (7) for � = 1; :::; � and � = 1; :::; t� 1. As with e¢ cient equilibria,
this is due to the implicit coordination on cut-o¤ prices among buyers.

Given the cut-o¤ prices, delay must be optimal for the seller. Thus, in state (� ; 0) for � < t, the
seller prefers the equilibrium path payo¤ of �� = �t���t to selling � units in period � at a price of
p = p(�; �) and receiving a payo¤ of p(�; �) + �t�(���)�t. We then have

�t�� (1� ��)�t � p(�; �) (8)

for � = 1; :::; � and � = 1; :::; t � 1. The next lemma greatly simpli�es the analysis of these buyer
and seller approach conditions.

Lemma 5 If the buyer and seller approach conditions, (7) and (8), hold for � = � , at each
� = 1; :::; t� 1, then the conditions hold for all feasible pairs (�; �).

As a result, we need only �nd t � 1 distinct prices, p(1; 1); :::; p(t � 1; t � 1) and it is su¢ cient
to deter the seller from selling the maximum feasible number of units, �cashing-in,� in each delay
period. Intuitively, if it is not pro�table to sell � units in period � , the �rst time it is possible to
do so, it will not be pro�table to sell � units in a later delay state. For example, if the seller does
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not o¤er one unit in state (1; 0), then there will be no temptation to sell one unit at a later date
when the additional unsold units will create a longer delay in the continuation state.

Delay implies that buyers necessarily receive a positive payo¤ in equilibrium.

Lemma 6 In any ine¢ cient t� cycle equilibrium it is necessary that ut > 0.

Thus, the seller cannot extract the full surplus of 	t and buyers must receive positive utility.
The intuition is quite simple. The approach condition for buyers at ut = 0 dictates that buyers will
accept any o¤er that provides positive utility. Then, the seller can successfully make a deviating
o¤er that extracts buyers in periods before t, thus speeding up sales and increasing pro�ts. For
example, in the case when the the cycle length is two periods, then conditions (7) and (8) imply
that u2 must exceed v

�(1+�) . At a smaller utility level, the seller would be able to o¤er 1 unit in
period 1 at a price that attracts buyers and provides a pro�table speed-up deviation.

In view of the need to provide a positive payo¤ for buyers, how can we ensure that the delay
incentives are satis�ed? Combining the buyer and seller approach conditions, (7) and (8), we see
that supporting prices exist if and only if

v�(1� �t�� )
(1� �) + �t�� max

�
v�

(1� �) ; ut
�
� �t��ut � p(� ; �) � �t�� (1� �� )�t (9)

for � = 1; :::; t� 1. Recalling �t + ut = 	t, (9) reduces to

(�t�� � �t)(	t � ut) �
v�(1� �t�� )
(1� �) + �t�� max

�
v�

(1� �) ; ut
�
� �t��ut (10)

for � = 1; :::; t � 1. Thus, satisfying the approach conditions for a t � cycle (delay) equilibrium
reduces to �nding a buyer utility for the sale date, ut, that satis�es (10) for a given t and �. Note
that buyer incentives can change signi�cantly during the approach when ut lies between v

1�� and
v(t�1)
1�� . Initially, when � is small, a deviating buyer who acquired � units would be willing to
purchase again at the sale date t. However, when � is closer to t, such a buyer would not purchase
again at t since the incremental surplus from t� � units is insu¢ cient.

This change in buyer deviation incentives highlights the fact that the approach condition can
have a binding constraint at an interior � . This is important for maintaining the seller�s incentives
during the approach. Intuitively, when ut is too large relative to �t the seller is unwilling to wait
until t for a sale and (10) will fail at � = 1 as a pro�table deviation o¤er will exist: a deviating buyer
would purchase again and a cut-o¤ price has a signi�cant component in the form of the interim
surplus. On the other hand, when ut is too small relative to �t the seller will �nd a pro�table
deviation at � closer to t. While a complete characterization of (10) is quite involved, it turns out
that many of the complications only arise at relatively low discount factors.13 Thus, we are able to
develop a su¢ cient condition on �t such that if �t is above a threshold then the approach conditions
(10) are satis�ed for an interval of utility levels. From Proposition 4, we know that delay equilibria
require relatively high discount factors. While the su¢ cient condition excludes some equilibria that

13This is because the conditions at � = 1 and � = t � 1 are not su¢ cient, in general, and we have to
consider when a binding constraint arises at an interior integer as well as the endpoints. The cases of t = 2
and t = 3 can be solved explicitly and reveal that the complications with integer constraints arise primarily
at the lowest discount factors for which (10) can be satis�ed.
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arise when � is at the low end of this range, it has the advantage of allowing us to study behavior
for all larger � without having to deal explicitly with the subtle pattern of binding incentives at
interior delay states.

The su¢ cient condition is generated by a slope condition on the terms involving discounted
payo¤s in t� � , the length of time until the sale, and this rate of change is proportional to ln �. We
de�ne a(d) � � ln

h
�d ln(d)

1�d

i
, and note that there exists a unique root d� 2 (0; 1) for the equation

d = a(d). We then introduce an upper and lower bound on buyer utility:

uA = 	t +
v

�t ln �

�
1� a(�t)
1� �

�
uA = 	t +

v

�t ln �

�
1� �t

1� �

�
:

This leads to the following result.

Lemma 7 If �t > d�, then there exist bounds uA and uA such that the approach conditions (10)
are satis�ed for any ut 2

�
uA; uA

�
in a t� cycle equilibrium.

Numerically, the equation root d� is about :439. For example, if t = 2; then � must be at leastp
:439 = 0:663. One can interpret the t � cycle as having two stages, the approach and the sale

date, where the discount factor between stages is �t. Hence, the longer delay in equilibrium, the
higher must be � so that the seller will not �nd a pro�table deviation. Speci�cally, � must exceed
d(t) � t

p
d�, which is clearly increasing in t.

Lemma 7 provides a lower and upper bound on the payo¤ to buyers. The bounds on utility, uA

and uA, depend on � and t and they are derived in Appendix C. At d�, uA = uA, and for all t and
� pairs where �t > d�; we have uA < uA. This pattern is shown for t = 2 in Figure 2.
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6.3 Existence and Payo¤s for Delay Equilibria

In full analogy to the analysis of e¢ cient equilibria, the cash-in (o¤ equilibrium) support condi-
tions for ine¢ cient t � cycle equilibria are given by buyer cut-o¤ rules that satisfy (1) and seller
pro�ts that satisfy (2). The only di¤erence relative to the e¢ cient case is that we must replace the
e¢ cient surplus S� with the realized surplus, 	� . Furthermore, the set of support utilities for o¤
the equilibrium path states greater than t need to be modi�ed for delay equilibria. For expositional
purposes, we provide the details in Appendix C. We can now turn directly to the existence of delay
equilibria. Su¢ cient conditions for approach states, (� ; 0) where � < t, are provided in Lemma 7
and summarized by the bounds, uA < ut < uA, on the equilibrium payo¤. We can combine the ap-
proach conditions with the cash-in support conditions to establish the existence of delay equilibria.

Proposition 5 Let t � 2 and suppose that �t > d�. Then every ut 2 (uA; uA) can be supported in
a t� cycle ine¢ cient equilibrium.

Thus, the binding constraints on what buyer utilities can be supported are generated solely by
the approach incentives. Intuitively, as � rises we can employ longer support lengths to support
higher buyer payo¤s.

The relationship between delay equilibria and market power is best understood in terms of the
rate of innovation. Note that the length of time between sales in a t � cycle equilibrium is given
by D � �t. As we let � decline, any given t � cycle will continue to exist, since �t = e�r�t > d�

will continue to hold, but the delay length D will go to zero. However, longer length cycles can be
supported as � declines. As with e¢ cient equilibria, we assess seller market power as the ratio of
seller pro�ts relative to realized equilibrium surplus; we also assess the e¢ ciency loss from delay,
namely �t�1	t=S1.

The utility bounds relative to realized equilibrium surplus, sb � uA=	t and sb � uA=	t, index
the range of variation in seller market power. Simplifying, we �nd an invariance property in that the
bounds depend only on the length of delay, D, and not on t and � individually. The limiting cases
for market power are when delay vanishes, D ! 0 (for example when �! 0 for a given t� cycle)
and when delay is maximized, D ! Dmax � (� ln d�)=r. Straightforward limit calculations yield
the following result.

Corollary 2 As equilibrium delay vanishes, the bounds on buyer utility converge to those for e¢ -
cient equilibria, sb ! 1 and sb ! 0 as D ! 0: As equilibrium delay approaches Dmax, the bounds
on buyer utility converge to each other at approximately :13 of the realized surplus. Further, the
maximum e¢ ciency loss from delay is approximately :35 and occurs as D ! Dmax and �! 0.

In the limit where the buyer utility is 13% of the realized surplus and thus the seller receives
87% of this surplus, the 35% e¢ ciency loss at the maximum delay implies that the seller would
prefer 57% of the e¢ cient surplus to 87% of the smaller delay surplus.

7 Discussion and Conclusion

We conclude with a discussion of the upgrade structure in our model and directions for future work.

Upgrades in our model are assumed to involve a strong form of downward complementarity.
Upon acquisition, unit 1 provides a buyer with a �ow of utility v per period, whereas acquiring
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unit 2 provides value only if unit 1 as also held by the buyer, and so on for any unit t and all prior
quality levels f1; 2; :::; t� 1g. Thus, quality unit t is always a complementary good with respect to
prior quality units (the downward direction) while the prior quality units do not require unit t in
order to provide value to a buyer. To gain insight into the role of this complementarity structure,
we consider two variations on the upgrade structure with each moving toward an opposite extreme.

First, suppose that quality unit t must be bundled with all prior units in any seller o¤er (an
extension of the upgrade structure of Fudenberg and Tirole (1998) and Ellison and Fudenberg
(2000)). That is, any o¤er for the current quality increment, unit t, is necessarily also an o¤er
for units f1; :::; tg. This might re�ect a necessary property of the production technology where a
quality increment cannot be �broken out� for separate sale. Consider, for instance, screen sizes
and television sets. If buyers value larger screen sizes, then a seller can o¤er models with larger
screen sizes as the technology improves. A buyer must, however, purchase the larger size television
since a small screen cannot be modi�ed or upgraded to become a larger one. We claim that such
an �unbreakable�upgrade model necessarily limits the market power of the seller.

The reason is that a buyer always has the option of passing on a current o¤er and waiting to
purchase a later o¤er. As long as the seller eventually o¤ers a higher quality, the cost of waiting
(relative to purchasing when other buyers do) is the lost �ow value. Any subsequent higher-quality
o¤er that attracts prior buyers will necessarily provide the buyer who delays with a strictly larger
surplus than that received by prior buyers. As a result, there is no equilibrium in which a monopoly
seller is able to extract the full surplus from buyers in a market where upgrades are unbreakable.

To see this more clearly, consider payo¤s for a candidate equilibrium that involves the e¢ cient
outcome. E¢ ciency requires that all buyers move from the (maximal) quality level � � 1 in period
� � 1 to level � in period � . Let p(� ; � � 1) be an equilibrium price for unit � when all buyers hold
f1; :::; � � 1g. Thus, buyer payo¤s in state (� ; � � 1) must satisfy

u(� ; � � 1) = v� � p(� ; � � 1) + � [v (� + 1)� p(� + 1; �)] + :::

An individual buyer always has the deviation option of rejecting the o¤er p(� ; � � 1) and then
resuming purchases in period � + 1. Because the seller�s o¤er for unit � + 1 in period � + 1 must
include units f1; :::; �g, the deviating buyer will then acquire unit � : This yields u(� + 1; �) since
following the equilibrium path results in quality holdings and payments that are identical to those
of other buyers. But then we must have

v (� � 1) + �u(� + 1; �) � u(� ; � � 1) = v� � p(� ; � � 1) + �u(� + 1; �))
p(� ; � � 1) � v

and the seller can charge no more than the �ow value of one unit in equilibrium. Thus, when the
seller is unable to make pure upgrade o¤ers - o¤ers where the current quality increment is not
bundled with prior quality units - then market power is necessarily constrained. Full extraction
of total surplus by the seller requires implementing the e¢ cient path and, in this case, the seller
would be limited to prices that re�ect only the �ow value and not the present discounted value to
buyers from quality increments. Alternatively, the seller may choose, in equilibrium, to delay and
sacri�ce e¢ ciency.14 In either case, full extraction of the (e¢ cient) total surplus is not possible and

14This is what happens in a two-period version of the �unbreakable� goods model. For large discount
factors, the seller delays until period 2 and then o¤ers units f1; 2g at the extraction price. For low discount
factors, however, unit 1 is sold in period 1 at price v and then period 2 has extraction pricing for units f1; 2g.
Note, however, that if the seller can o¤er contracts contingent on a buyer�s current holdings, then the full
surplus can be extracted.
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the market power of the seller is limited.

To summarize, an individual buyer who lacks previous quality increments always has the option
of restoring his position vis a vis other buyers whenever they make a future purchase. If buyers
with a higher status quo quality level are willing to purchase a future (bundled) o¤er, then the
deviating buyer will have a strict preference to make such a purchase since he has fewer units. In
such a setting, a continuation value in excess of current holdings is a necessary property.

The other extreme involves the case of �independent�goods in which a buyer receives a �ow
utility of v from a good independently of whether the buyer holds any other units. In this case,
there is a complete absence of complementarity across quality levels and the quality units 1; 2; :::
are e¤ectively independent goods. Then, as one might expect, the speed-up logic of Fudenberg,
Levine and Tirole (1985) implies that the seller regains the ability to extract buyers because the
buyers lack a credible threat for refusing a seller o¤er. Consider, for example, payo¤s in a Markov
equilibrium for the e¢ cient path and suppose the equilibrium has a cash-in support at price p� in
state (� ; 0). If buyers are to reject a price p > p� for � units in state (� ; 0), then we must have

(v� � p) + �v� + �2
�

v�

1� � + u1
�

� �u�+1 =
v(� + 1)

1� � � p�+1 + �u1 )

u� � �(1� �)u1 � �u�+1

since an individual buyer can accept the o¤er at price p (while other buyers reject), skip the cash-in
o¤er in the continuation state of (� + 1; 0), and then resume purchasing in state (� + 2; � + 1).
Because the goods are independent, there is no payo¤ consequence due to complementarity from
the deviating buyer�s lack of unit � + 1. But this immediately implies the recursion�

� +
1� �
��

�
u1 � u�+1

and, as with our benchmark case of a single buyer, the threat to refuse the price increase is not
credible since buyer utility would have to grow faster (at rate 1=�� ) than joint surplus. Thus,
with independent goods, the lack of complementarity restores market power for the seller and we
necessarily have u1 = 0. Intuitively, complementarity is essential for building a credible threat to
refuse price increases as a deviating individual buyer faces the extra cost of having to acquire the
missing unit to avoid falling behind the market. This is what makes buyer coordination possible
with our upgrade structure.

We now consider directions for future work. We have assumed homogeneous buyers in our
model. This was done primarily to focus on the question of market power in a dynamic upgrade
model in what one would expect to be the ideal situation for a seller to capture the full (e¢ cient)
joint surplus. Allowing for buyer heterogeneity is an important direction for subsequent work. In
practice, it is common for sellers in upgrade markets to o¤er simultaneously di¤erent versions or
quality levels of their products. This is typically taken to be a form of price discrimination but there
has been very little theoretical work on such a dynamic pricing problem. We are currently exploring
this problem in our model by allowing for buyer heterogeneity with high or low valuation buyers who
are privately informed of their type. This allows for an endogenous determination of pricing and
whether the buyer segments remain distinct over time or whether the seller chooses to price over a
cycle that periodically brings high and low types together at a common quality level (a generational
cycle). An interesting feature of equilibrium price discrimination in this dynamic context is that
incentive constraints can bind in both directions (with low-value buyer types choosing to mimic
high-value buyer purchases as well the standard downward incentive constraint).
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Another direction involves contracting issues. If we allow for the possibility of contractual
contingencies in seller o¤ers, then our upgrade model with downward complementarity and the
�unbreakable� upgrade model become more similar. Suppose, for example, that an o¤er can be
made contingent on the current quality level held by a buyer. Then, the seller can eliminate the
option for a buyer to �rejoin�the equilibrium path after falling behind in the �unbreakable�model
by conditioning the equilibrium path o¤er for unit � + 1 in state (� + 1; �) so that the o¤er is only
available to a buyer who holds quality � . Such an o¤er is much like the upgrade o¤er for unit � +1
in our model where the unit is only valuable to a buyer if they also possess all prior units.

Another aspect of contracting that merits discussion is the possibility that, by conditioning
o¤ers on current holdings, a seller may be able to curtail the ability of buyers to coordinate in
equilibrium and thus eliminate equilibria with low seller payo¤s. In this regard, our equilibria are
robust. Recall that the credible threat to reject seller o¤ers with high prices is based on buyer
coordination on the expectation of a su¢ ciently high future surplus (when all buyers reject the
o¤er). Consider, for example, the support condition (3) for an e¢ cient equilibrium and the impact
of contract contingencies on buyer holdings. An individual buyer who fails to purchase when others
do will fall behind the equilibrium path, but such a buyer is already extracted in our analysis.
On the other hand, a buyer who purchases when others do not will be ahead of the equilibrium
path and, in our analysis, such a buyer does have a strict preference for purchasing the subsequent
equilibrium support cash-in o¤er from the seller. The seller could then use a contractual contingency
to isolate such a buyer. But if the contingency is used to make an o¤er that extracts the deviating
buyer then this will only serve to reduce the initial incentive to purchase when others do not (refer
to the max condition for g(� ; �) in (3)). Thus, the support condition (3) continues to be satis�ed
by our T -stage utility path and buyers can still coordinate on future surplus to reject o¤ers with
high prices.15

Finally, we assumed an exogenous rate for the increase in quality. Of course, a model that
addresses the question of how rewards for a given quality innovation are determined is a necessary
step toward an endogenous determination of quality change. Intriguingly, our model suggests that
an absence of prospects for subsequent innovation can enhance current market power as buyers
have no reason to wait (and coordinate) on subsequent higher quality o¤ers from the seller. But
innovation is necessary to generate the upgrade products in the �rst place. In this regard, the
discount factor in relation to the frequency of innovation suggests a trade o¤ since a more rapid
rate of innovation (shorter �periods�) expands the set of equilibria in the direction of more limited
market power for the seller. Understanding how the rate of innovation and the resulting impact on
market power determines the incentive for investing in innovation is a critical issue for understanding
market performance and for assessing public policy choices and welfare in upgrade markets.

15Contracting is featured more prominently in the analysis of Fudenberg and Tirole and Fudenberg and
Ellison where period 2 o¤ers can distinguish between buyers who purchased in period 1 and those who did
not. These models allow for buyer heterogeneity and, thus, the contract contingency is much more salient
for in�uencing buyers with di¤erent valuations than in our model where buyers are homogenous. It is worth
noting that in the semi-anonymous regime of Fudenberg and Tirole, where a buyer has the option of hiding a
past purchase, then the seller will be unable to force harsher terms on a buyer who is ahead of the equilibrium
path.
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8 Appendix A- Preliminary Results.

In this Appendix we prove Lemmas 1, 2, and 3 as well as Proposition 1.

Proof of Lemma 1. Depending on the history, buyers may also hold a subset, possibly null, of
units fQ+ 2; :::; � � 1g. Without unit Q + 1, a buyer who rejects the upgrade o¤er will receive a
�ow payo¤ of vQ and have the same quality holdings in period � + 1: A buyer who accepts will
receive a �ow payo¤ of v� in period � and hold f1; :::; �g next period. We will show that accepting
yields a strictly higher payo¤ than rejecting, for any strategy choices of other buyers and the seller
following the upgrade o¤er.

Obviously, accepting yields a higher �ow payo¤ in period � since v� � p > vQ. Consider the
continuation payo¤. An accepting buyer (i) begins with more units than a non-accepting buyer
and (ii) has the option of mimicing the strategy of any non-accepting buyer (any seller o¤er may
purchased by any buyer). By the upgrade payo¤ structure, the continuation payo¤ of an accepting
buyer is therefore at least as large as that of a non-accepting buyer. This is because the mimicing
option implies the same payments, but the accepting buyer will never hold fewer units.

It is now clear that every buyer will choose to accept the upgrade o¤er. Given any strategy
choices of other buyers and the seller following the upgrade o¤er, a buyer who accepts always has a
weakly larger payo¤ from � +1 onward, with respect to the continuation sequence of o¤ers implied
by the strategies, and a strictly larger �ow payo¤ in period � . Note that, by the zero measure
property, the continuation sequence of o¤ers does not depend on the choice of a speci�c individual
buyer to accept or reject the upgrade o¤er. �

Proof of Lemma 2. By Lemma 1, at the start of the game the seller can o¤er unit 1 for a price
of p1 < v and every buyer will accept. Also, by Lemma 1, in period 2 when all buyers hold unit
1 the seller can o¤er unit 2 for a price of p2 < v and every buyer will accept. By induction, in
any period � and for any history in which all buyers hold units f1; :::; � � 1g we can apply Lemma
1 to see that the seller can sell unit � for a price p� < v. Each price can be arbitrarily close to
v, so letting v � � = p� for all � , the seller�s payo¤ from the start of the game must be at least
(v � �)(1 + � + �2 + :::) = (v � �)=(1� �). As this must hold for any � > 0, we are done.

For the continuation result, simply apply Lemma 1 with p� = (v � �) (� �Q) in period � and
then use the same argument as above in period � + 1. �

Proof of Lemma 3. It is su¢ cient to prove the result for states of the form (� ; 0), since any state
of the form (�;Q) has the same quality increments and payments as (� � Q; 0). Consider state
(� ; 0) and a continuation path (�; q��1) for � � � + 1. By Lemma 2, we know the seller�s payo¤ in
state (� ; 0) is positive. This implies that q��1 > 0 for some �. Otherwise, we have q��1 = 0 for all
� and buyers never acquire unit 1. Hence, buyer payments to the seller must be zero. As a result,
the seller�s payo¤ would be zero, which is not possible. Thus, q��1 > 0 for some �. Relabel so that
� denotes the �rst such period, and we have q��1 > 0 and q�0�1 = 0 for �0 < �. Thus, the quality
gap rises from � in state (� ; 0) to � � 1 in state (� � 1; 0) and then goes to a gap of � � q��1,
which is less than or equal to the previous gap of � � 1, in state (�; q��1). By equilibrium, the
continuation path from (�; q��1) has the same quality increments as state (� � q��1; 0). Thus, the
quality gap will thereafter cycle repeatedly from size � � q��1 up to � � 1 and the continuation
path from (� ; 0) has a bounded quality gap. �

Proof of Proposition 1. Starting from state (1; 0), we know from Lemma 3 that the quality
gap is bounded and, therefore, that there is a �rst date, say t, at which a sale involving unit 1
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takes place. If t = 1, we are done as equilibrium (MPE) implies we have a 1-cycle equilibrium. So,
consider t > 1. By construction, the maximal quality held by buyers before period t is zero, so the
state is (t; 0), and qt > 0 results from sales in period t. A potential complication with state (t; 0)
that does not occur with (1; 0) is that (t; 0) corresponds to histories in which buyers acquired no
quality units as well as histories in which they acquired some subset of f2; :::; t� 1g. By de�nition,
however, Markovian behavior requires that the seller o¤er in (t; 0) and buyer acceptance choice(s)
are the same across these histories since strategies only depend on the state (t; 0).

Suppose that the sale at date t does not result in qt = t or, in other words, buyers do not acquire
the full feasible set of units f1; 2; :::; tg. This implies that, for some � where 1 � � < t, buyers hold
units f1; :::; �g but not unit � + 1 as they enter period t+ 1. Also, let p denote the total payment
made by a buyer to the seller for all bundles purchased in state (t; 0). Finally, note that whether
or not any of the units in f� + 2; :::; tg are held by buyers before period t or acquired in t, the state
in period t+ 1 will be (t+ 1; �).

By construction, the equilibrium buyer continuation payo¤ from state (t; 0) is given by

u (t; 0) = v� � p+ �u (t+ 1; �)

as the quality �ow utility is v� and the payment is p in (t; 0), and next period�s state is (t+ 1; �).
We will show that the seller has a pro�table deviation in period t� 1, namely, o¤ering the feasible
(as � < t) upgrade bundle to quality � (units 1; :::; �) for some price p̂.

Before proceeding with the main argument, we need to develop two properties of buyer payo¤s.
First, the equilibrium path will follow a cycle, since state (t+ 1; �) has the same quality gap as
state (t+ 1� � ; 0). Thus, the maximal buyer quality remains at � until period t+� , when the state
reaches (t+ � ; �), at which time the maximal buyer quality rises to 2� and the cycle begins again.
Equilibrium also implies that a buyer only needs to make purchases in the states where maximal
quality rises in order to achieve the equilibrium buyer payo¤. As noted above, the history of play
only matters to the extent that it impacts maximal buyer quality. Thus, the bundle(s) o¤ered by
the seller in any state of the form (t+ k�; k�), where k = 1; 2:::; must, at a minimum, always include
the next � units of quality. In particular, this is true for the history where buyers hold exactly the
�rst k� quality units (and no other units), since the maximal quality for this history is k� . Thus,
an individual buyer never needs to hold more than these units in order to be able to reach the
next equilibrium path level of maximal quality via purchases in state (t+ k�; k�). Furthermore,
such a buyer can always choose from the same o¤ered bundle(s) and price as any other buyer.
It follows directly that the continuation payo¤ of a buyer only depends on holding the current
maximal quality and it is independent of whether the buyer holds higher but non-contiguous units.
This is the �rst property of buyer payo¤s that we will need.

The second property is that, in equilibrium, the seller only receives revenues in states of the
form (t+ k�; k�), where k = 1; 2::: In (t+ k�; k�), in equilibrium, the seller o¤er must include units
fk� + 1; :::; k� + �g and all buyers must acquire these units. Thus, no buyer ever pays a positive
price for any bundle in states (1; 0) through (� ; 0), since only units in f2; :::; �g can be o¤ered by
the seller in equilibrium and these units will necessarily be acquired via state of the art upgrade
bundle in state (t; 0) when buyers also acquire unit 1. The same logic then applies for the next �
units, and so on.

We now proceed with the main deviation argument. To keep things simple, let us �rst consider
the case where the history for state (t; 0) has buyers holding no quality units. For the seller deviation
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in period t� 1, choose the price p̂ for the bundle of units f1; :::; �g so that

û � v� � p̂+ �v� + �2u (t+ 1; �) = �u (t; 0) + �;

for a small � > 0. Combining this with the earlier expression for u (t; 0), we �nd that p̂ = v�+�p��.
We claim that in any equilibrium continuation after this o¤er, all buyers will accept. By symmetry
of strategies, in response to this o¤er in state (t� 1; 0), all buyers must either accept or reject.
Suppose the buyer strategy calls for a rejection and consider the decision of an individual buyer.
Because no other buyer accepts, the continuation state will be (t; 0). By accepting, the payo¤ for
an individual buyer is �u(t; 0) + ". To see this, note �rst that the individual buyer receives a �ow
of v� � p̂ = ��p+ � in period t� 1. In period t by (optimally) making no purchase in period t, the
buyer receives a �ow of v� .

Finally, consider the continuation state (t+ 1; �). A complication is that, in addition to the
�rst � units, the outcome in state (t; 0) may involve buyers acquiring units in f� + 2; :::; tg. By
making no purchases in period t, the deviating buyer will lack these units in the future while other
buyers possess them. But, this is of no consequence in equilibrium: a buyer holding exactly � units
obtains the same continuation payo¤ of u (t+ 1; �), by our �rst property of buyer payo¤s.

Now, adding the terms in periods t� 1, t, and t+ 1 for a deviating buyer, we arrive at û as in
the above equation. Thus, accepting the seller�s deviation o¤er in period t� 1 for � units results in
a higher payo¤ than rejecting and waiting whenever " > 0. Thus, all buyers rejecting the o¤er is
never an equilibrium continuation. In a symmetric equilibrium, it must be that all buyers accept
the o¤er in t� 1.

Now, to see that the deviation is pro�table for the seller, note that the payo¤ to the deviation
o¤er in period t� 1 (where all buyers accept) is

�̂ = p̂+ ��(t; �) = v� + �p� "+ �2�(t+ 1; �) = v� � "+ ��(t; 0) > ��(t; 0);

where we have used the de�nition of p̂ and the equilibrium hypothesis for (t; 0), which implies
�(t� 1; 0) = ��(t; 0) and �(t; 0) = p+ ��(t+ 1; �). Thus, we cannot have � < t in equilibrium.

Finally, we must verify that the same deviation will work for the seller when the history for
state (t; 0) has buyers holding quality units (but not unit 1). By equilibrium, seller�s payo¤s �(t; �)
and �(t+1; �) are independent of these holdings. The only remaining possible complication is that
the deviation o¤er in t� 1 sacri�ces revenues that would otherwise have been received by the seller
from an o¤er of units in f2; :::; t� 1g. Equilibrium, however, rules out any such revenues for the
seller as we showed above. �

9 Appendix B - E¢ cient Equilibria.

In this Appendix we �rst prove Lemma 4, which provides su¢ cient conditions for equilibrium
existence. We then prove a several lemmas dealing with properties of the T � stage support.
This is followed by proofs of Propositions 2 and 3 for existence of equilibrium with frequent and
infrequent innovation, respectively.

(i) Su¢ cient Conditions for Equilibrium

Proof of Lemma 4. To establish existence of an equilibrium we need to show that (i) our
candidate upgrade o¤er is optimal for the seller with respect to the o¤er set 
� , and (ii) construct
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a continuation equilibrium for states where buyers are distributed asymmetrically providing, for
any such state, both an optimal o¤er for the seller and optimal buyer responses for any given seller
o¤er.

Now, de�ne an upgrade o¤er B as any o¤er in 
� , with the property that if (z; pz) 2 B, then
M(z) = supfi j i 2 z g. By construction, every bundle in B is an upgrade bundle, since the
maximal contiguous quality in z coincides with the largest quality unit in z. Thus, we can denote
any (z; pz) 2 B by (b; pb) ; where b � supfi j i 2 zg is the upgrade level for z and pb � pz is the
price. Note that an upgrade o¤er need not include all of the feasible upgrade bundle levels 1; :::; � .
A buyer will optimally choose at most one bundle in B.

The restriction to upgrade o¤ers can be shown to be without loss of generality. This is because
we construct continuation equilibria in which only upgrade o¤ers are made by the seller. Thus,
even if a period � o¤er includes non-upgrade bundles, all players expect that every possible period
� + 1 continuation state will involve only upgrade o¤ers. Furthermore, in every possible period
� +1 continuation state, every buyer will move to a quality holding of at least � in the continuation
equilibrium outcome. Consequently, a buyer will value bundles in an o¤er only to the extent that
the bundle allows the buyer to move to a higher quality level in period � . If a buyer�s purchases
in � result in the acquisition of non-contiguous quality levels, these non-contiguous units have no
current or future payo¤ e¤ect due to the structure of the continuation equilibria.

More generally, if buyers are asymmetrically distributed across maximal quality levels and if
buyers hold non-contiguous quality units (above a buyer�s maximal level), we can still work with
upgrade o¤ers without loss of generality. This is because any o¤er in conjunction with a buyer�s
current maximal quality and non-contiguous holdings can always be reduced to an implied set of
payments for achievable (higher) maximal quality levels. With the continuation equilibria noted
above, any resulting non-contiguous quality units will have no payo¤ impact.

To demonstrate (i), it is su¢ cient to show that the seller cannot pro�tably deviate in state
(� ; 0) to some other upgrade o¤er (with multiple upgrade bundles). First, de�ne a buyer preference
relation, �B, for any two upgrade bundles by

(b; pb) �B (i; pi) () vb� pb + �u(� + 1; b) � vi� pi + �u(� + 1; b j i);

where u(� + 1; b j i) is equal to vi
1�� if i < b and equal to max

n
vi
1�� ; u(� + 1; b)

o
if i � b. Note

that the �B relation re�ects implicit coordination in that an individual buyer has no incentive to
choose (i; pi) if all other buyers choose (b; pb). Now, de�ne an upgrade (b; pb) 2 B to be a buyer
continuation equilibrium (BCE ) in state (� ; 0) for o¤er B if (b; pb) �B (i; pi) 8 (i; pi) 2 B. We must
show that for any o¤er B there exists a BCE such that the seller cannot gain in state (� ; 0) by
deviating to o¤er B instead of making the cash-in o¤er of p� . The proof is lengthy so we only
provide a sketch. First, one shows that any two upgrade o¤ers are comparable under �B. Next,
one can show that

arg max
(b;pb)2B

�
vb

1� � � pb + �u�+1�b
�

is a BCE (existence is trivial as B has a �nite number of bundles; if it is not unique then select
the argmax with largest upgrade level). Essentially, this follows because the argmax is the highest
possible coordinated payo¤ for buyers and because utility di¤erences across a T -stage support
satisfy the bound u� � u�0 � v(���0)

1�� .

We then have two cases for the o¤er B. If every (b; pb) 2 B satis�es pb � Gb � g(b; u�+1), then
it is easy to show that (0; 0), where all buyers refuse to purchase, is a BCE for B. This is equivalent
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to a delay outcome and we know from (3) that the seller prefers to make the cash-in o¤er p� . If
pb < Gb for some (b; pb) 2 B then we �rst �nd the argmax speci�ed above for the subset of all such
bundles in B, call it (b�; pb�). We then show that (b�; pb�) �B (i; pi) 8 (i; pi) where pi � Gi. Then,
(b�; pb�) is a BCE for B and the resulting seller payo¤ of pb� + �u�+1�b� is, by (3), not pro�table
relative to p� . This completes (i).

Consider (ii) and any state in which buyers are asymmetrically distributed across quality levels.
Since all buyers with the same maximal contiguous quality level are treated identically in the
continuation it is su¢ cient to keep track only of market shares. Thus, let us denote such a state by
(� ; �) where � = (�0; :::; ���1) speci�es for each � = 0; :::; � � 1 the fraction �� 2 [0; 1] of buyers
entering period � with maximal quality level of �. By hypothesis, 1 > �0 > 0 and

P��1
�=0 �� = 1.

We specify a continuation equilibrium for (� ; �) as follows. The seller makes an upgrade o¤er
f(b�; p�)g�=0;:::;��1 where each (b�; p�) is an upgrade from � to � , that is the bundle f� + 1; :::; �g,
for price

p� =
v(� � �)
1� � + �u1:

For buyer strategies, we specify that a buyer with � units chooses to accept (b�; p�). It is straightfor-
ward to verify that, when all other buyers follow this strategy, it is optimal for an individual buyer
with � to do so as well. Since these upgrade o¤ers leave each buyer with a payo¤ of v�= (1� �),
the payo¤ to the seller is equal to the continuation surplus of S� less these individual-rationality
payo¤s aggregated across buyers according to the distribution �. By feasibility, this is an upper
bound on the seller�s payo¤ in any continuation.

Finally, to complete the argument that the above upgrade o¤er is an optimal choice for the
seller, we need to specify a BCE if the seller makes some other upgrade o¤er. Allowing for par-
tial upgrades, denote such an o¤er by B = f(b; �; pb;�) j � � b � � ; 0 � pb;�g in (� ; �), where each
(b; �; pb;�) denotes an upgrade bundle for units f� + 1; :::; bg at price pb. Since the o¤er B has up-
grades that begin at di¤erent levels and a buyer is free to purchase multiple bundles, we construct
from B for each possible buyer quality level � = 0; :::; � � 1, the set B� of all upgrade bundles that
move � to a higher quality level; note B� might contain only the refusal option for some �:We then
have each buyer with quality level � choose to accept the (largest index)

argmax
B�

�
vb

1� � � pb;�
0

�
:

Then, these choices can be shown to form a BCE for B. The proof is trivial if the buyer choices
result in a nondegenerate distribution across quality levels since the buyers are then held to their
individual-rationality payo¤s in the continuation state. If not, then all buyers move to some common
quality level, say b̂, and we must use the continuation payo¤ u�+1�b̂ from the T -stage support. �

(ii) Properties of the T � stage Support

Lemma A1 Consider a T -stage support, where u� = uT � u for � � T . If the support con-
dition (3) holds at � = T for � = 0; :::; T , then (3) holds at � > T for � = 0; :::; � .

Proof. We begin by establishing two claims. These are su¢ cient to prove the lemma for T = 1.
We then establish a third claim and prove the lemma for T � 2.

First, we show that if (3) holds at (0; �), then it holds at (0; � + 1). By (3) at (0; �) we have

v� � u� � �u�+1 + g(0; u�+1) = (1� �)u

36



and this directly implies that (3) holds at (0; � + 1), since

v(� + 1) � u�+1 � �u�+2 + g(0; u�+2) = (1� �)u.

The second claim is that if (3) holds at (0; �), then it holds at (�; �) for � = 1; :::; � + 1� T . Since
� � � + 1� T if and only if T � � + 1� �, the quality gap in the continuation state, (� + 1; �), is
at least T and therefore u�+1�� = �u. The support condition at (�; �) is then

S� � �S�+1�� � u� � �u�+1�� + g(�; u�+1) ,

v� +
�v�

1� � � u(1� �) + g(�; u):

At � = 0, we have g(0; u) = 0. Thus, the (0; �) condition is v� � u(1 � �). Now consider
� = 1; :::; � + 1� T: We have two cases. First, if u � v�

1�� , then support at � becomes

v� +
�v�

1� � � u(1� �) + v�

1� � � �u,

v(� � �) � (1� 2�)u,

which always holds for � � � and � � 1=2. Second, if u > v�
1�� , then maxf

v�
1�� ; ug = u and support

at � becomes

v� +
�v�

1� � � u(1� �) + v� ,

v� + v�

�
�

1� � � 1
�

� u(1� �):

Since v� � u(1� �), by support at � = 0, and �
1�� � 1 for � � 1=2, we have established the second

claim.

We can now prove Lemma A1 for T = 1. By hypothesis, (3) holds for � = 0 and 1 at T = 1.
Consider � > 1. By the �rst claim, (3) holds for � = 0 at � . By the second claim, (3) then holds
for � = 1; ::; � + 1� T . Since � + 1� T = � in this case, we are done.

From now on take T � 2. The third claim is that if (3) holds at � for � = (� + 2 � T ) to
� = � , then it holds at � + 1 for � = (� + 2 � T ) + 1 to � = � + 1. Note that the quality gap
in the continuation state (� + 1; �) is less than T exactly when � � � + 1 � T . Hence, we have
u�+1�� 2 fu1; :::uT�1g, and we are on the rising utility part of the T� stage support. Also, note
that u�+1 = �u.

Condition (3) holds at (�; �) if and only if

S� � �S�+1�� � u� � �u�+1�� + g(�; u�+1),

v� +
�v�

1� � � u� �u�+1�� + g(�; u);

and at (� + 1; � + 1) if and only if

v(� + 1) +
�v(� + 1)

1� � � u� �u�+1�� + g(� + 1; u):

For the (�; �) condition to imply the (� + 1; � + 1) condition, it is su¢ cient to show that

v

1� � � g(� + 1; u)� g(�; u)
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There are three cases that we need to check.

1) If u � v�
1�� , then g(�+1; u) =

v(�+1)
1�� � �u and g(�; u) = v�

1�� � �u, hence the condition holds
with equality.

2) If v�
1�� < u � v(�+1)

1�� , then g(� + 1; u)� g(�; u) = v(�+1)
1�� � �u� v�, which is less than v

1�� if
and only if v�

1�� < u.

3) If v(�+1)1�� < u, then g(� + 1; u)� g(�; u) = v(� + 1)� v� < v
1�� .

Thus, we have established the third claim.

To complete the proof, consider � = T + 1 and suppose (3) holds at T for � = 0; :::; T . We
know from the third claim that since, (3) holds at T for � = 2; :::T , it must hold at T + 1 for
� = 3; :::T + 1. From the �rst claim, the support holds at (0; T + 1), since it holds at (0; T ).
From the second claim, we know the support at (0; T + 1) is su¢ cient for support at (�; T + 1) for
� = 1; :::; � +1� T . But, � +1� T = 2 in this case and thus (3) holds for all (�; T +1). The same
logic applies between any � and � + 1. �

Lemma A2 Consider a T � stage support. Then for any � � T , we have

u� =
1

���1

�
u1 �

v

1� �

�
1� ���1

1� � � (� � 1)���1
��

:

Proof. It is clearly valid at � = 1. To verify for � + 1, assume it holds at � and we then have

u�+1 =
1

�
[u� � v� ] =

1

��

�
u1 �

v

1� �

�
1� ���1

1� � � (� � 1)���1
��
� v�

�

=
1

��

�
u1 �

v

1� �

�
1� ���1

1� � � (� � 1)���1 + ����1(1� �)
��

=
1

��

�
u1 �

v

1� �

�
1� ��

1� � � ��
�

��
(11)

and the formula is valid for � + 1. �

Lemma A3 The T � stage support sequence (u1; :::; uT ) de�ned by u1 = (1 � �T�1)S1 satis-
�es (i) u� =

�
1� �T��

�
S1+

v(��1)
1�� , (ii) u� �

v�
1�� if and only if � � �T�� and (iii) uT�1 � v(T�1)

1��
and uT�2 � v(T�1)

1�� � v.

Proof. We have u1 � v
1��

h
1��T�1
1��

i
and u� = v� + �u�+1 for � = 1; :::T . We �rst show (i). This

holds for u1 by construction. Assume that it holds for u� and consider u�+1. Then

u�+1 =
1

�
[u� � v� ] =

1

�

�
v

1� �

�
1� �T��

1� � + (� � 1)
�
� v�

�

=
v

�(1� �)2
�
� + �� � �T�� � �2�

�
=

v

1� �

"
1� �T�(�+1)

1� � + �

#
:

Next, we show (ii): u� � v�
1�� if and only if � � �T�� . Using (i) for u� , we have

v

1� �

�
1� �T��

1� � + (� � 1)
�
� v�

1� � ,
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1� �T��

1� � + (� � 1) � � , � � �T�� :

For (iii), apply the previous formula for u� in terms of u1 at � = T � 1 and simplify, and then use
(5) to �nd uT�2 in terms of uT�1 and simplify. �

Lemma A4 Consider a T � stage support with (i) u� � v�
1�� for � = 1; :::; T � 1 and (ii)

v(T�1)
1�� < uT <

vT
1�� . If the support condition (3) holds at (� ; �) for � = 1; :::; T , then the T � stage

support satis�es (3) for all (�; �), where 0 � � � � and � � 1.

Proof. Note that we choose T so that (i) and (ii) of Lemma A4 are satis�ed. By Lemma A1, it
is su¢ cient to show (3) holds for � � T . Consider � = 0 and � = 1; :::; T . Since g(0; u� ) = 0, we
see that (3) reduces to v� � u� � �u�+1 for � < T . This holds with equality by construction of a
T -stage support. At � = T , (3) reduces to vT � uT (1� �) and this holds by (i) of the lemma.

Now consider 1 � � � � with � < T . We claim (3) at (�; �) implies (3) at (�; � + 1). The
condition for (�; �) is

S� � �S�+1�� � u� � �u�+1�� + g(�; u�+1),

v(� � �) + �v�

1� � � u� � �u�+1��;

since, by (i) and (ii), u�+1 > v�
1�� for any � � � < T . At (�; � + 1), we need

S�+1 � �S�+2�� � u�+1 � �u�+2�� + g(�; u�+2),

v(� � � + 1) + �v�

1� � � u�+1 � �u�+2��;

since u�+2 > v�
1�� for any � � � < T . By the T � stage support, the (�; � + 1) condition becomes

v(� � � + 1) + �v�

1� � � 1

�
(u� � v�)� u�+1�� + v(� + 1� �),

v� +
�2v�

1� � � u� � �u�+1��;

Thus, we need only show that v� + �2v�
1�� � v(� � �) + �v�

1�� . This clearly holds for any � 2 [0; 1] and
any non-negative �.

Consequently, (3) at (1; 1) implies (3) at (1; �) for � = 2; :::; T , (3) at (2; 2) implies (3) at (2; �)
for � = 3; :::; T , and so on up through (T � 1; T � 1). Thus, (3) at (� ; �) for � = 1; :::; T is su¢ cient
and the lemma is established. �

(iii) Existence of Equilibrium

Proof of Proposition 2. First, note that conditions (i) and (ii) of Lemma A4 are valid when�
1� �T�1

�
S1 � u1 �

�
1� �T

�
S1. This follows by applying Lemma A3 to the reference sequences,

u� , for T and for T + 1. Then, by Lemma A4, it is su¢ cient to verify condition (3) at (� ; �) for
� = 1; :::; T .

It is immediate that (3) at � = 1 requires �S1 � u1. Hence, we are done if T = 1. Now, consider
T � 2 and note that the same observation implies that (3) holds at (1; 1).

Now, consider (3) at (� ; �) for � � T � 1. Then u�+1 > v�
(1��) and we have g(� ; u�+1) = v� .

Thus, the equilibrium support condition (3) becomes

�v�

1� � + �u1 � u� .
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We claim that condition (� ; �) implies condition (� + 1; � + 1) for � � T � 2. In other words, we
claim that �v�

1�� + �u1 � u� implies
�v(�+1)
1�� + �u1 � u�+1. Recall that u�+1 = 1

� (u� � v�). So,
condition (� + 1; � + 1) can be written as

�2v(� + 1)

1� � + �2u1 + v� � u� .

Thus, it is su¢ cient to show that �
2v(�+1)
1�� + �2u1 + v� > �v�

1�� + �u1. But, this holds if and only if
�S1 +

v�
� > u1, which is always the case for � � 1. Thus, (3) holds at (1; 1) and this implies (3)

holds at (� ; �) for � = 2; :::; T � 1.

We are then left with the (T; T ) condition, which reduces to

�u1 � (1� �)uT ,

since g(T; uT+1) = vT
1�� � �uT by Lemma A3. We know that the condition holds at (T � 1; T � 1)

and we have

�v(T � 1)
1� � + �u1 � uT�1 = v(T � 1) + �uT ,

1

�

�
�v(T � 1)
1� � � (T � 1)v + �u1

�
� uT :

Thus, it is su¢ cient for (T; T ) to show that

�

1� �u1 �
1

�

�
�v(T � 1)
1� � � (T � 1)v + �u1

�
: (12)

Simplifying and noting that � � 1=2, condition (12) holds if and only if �u1 � v(T � 1):

From u1 � (1� �T�1)S1, it is su¢ cient to show that �(1� �T�1)S1 � v (T � 1). At T = 2 this
reduces to � � 1=2. Now, we carry out an induction: assume it holds for T if � + �T�1 > 1 and
show that it holds for T +1 if �+ �T > 1. So, we must show that �(1� �T )S1 � vT or, equivalently,
that

�(1 + :::+ �T�1) > T (1� �):
The condition at T is �(1� �T�1)S1 � v (T � 1), which holds if and only if

(1� �) + �(1 + :::+ �T�2) > T (1� �):

But,
�(1 + :::+ �T�1) > (1� �) + �(1 + :::+ �T�2), � + �T > 1;

which establishes the induction. Thus, the (T; T ) condition holds, and we have therefore shown
that the T�stage support satis�es (3) for all (�; �), where 0 � � � � and � � 1.

To see that every buyer payo¤, u1 2 [0; �S1] can be supported in this way, simply note that
each � 2 [1=2; 1] lies in exactly one of the �� cuto¤ sequence intervals. With � 2 [�� ; ��+1), we then
see that every u1 2 [0; �S1] lies in exactly one of the

��
1� �T�1

�
S1;
�
1� �T

�
S1
�
intervals, where

T ranges from 1 up to the index on the �� root. �
Proof of Proposition 3. By construction of an e¢ cient equilibrium, for u1 2 [0; �S1] we have

a payo¤ of �1 =
p1
1�� for the seller and u1 =

1
1��

h
v
1�� � p1

i
for the buyers. It is su¢ cient for an

equilibrium to show that the support condition

S� � �S�+1�� � u� � �u�+1�� + g(�; u�+1)
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holds for � = 0; 1; :::; � at each � � 1. To verify that the support condition holds, we note three
useful facts: (i) �u 2

h
0; v
1��

i
, as follows from the range for u1, (ii) g(0; �u) = 0 and g(�; �u) = v�

1�����u
for � � 1, also by the range for u1 (iii) S� � �S�+1�� = v� + �v�

1�� , by de�nition of surplus.

Begin with � = 0. For � = 1, the support condition reduces to v � �u1. But � < 1=2 implies
v > �2S1, so we are done as u1 � �S1. For � > 1, the support condition reduces to v� � (1� �)�u.
It is su¢ cient to show this holds at � = 2, which reduces to 2v

1�� � �u, and we are done by the upper
bound on �u.

Now consider � = 1; :::; � � 1 and � > 1. The condition reduces to v (� � �) � (1 � 2�)�u. As
�u � v

1�� , we need only show that at � = 2 we have 1 �
1�2�
1�� . This reduces to � > 0.

Finally, the case of � = � corresponds to the equilibrium path and continuation outcomes. The
condition reduces, by construction, to

�� = S� � u� � � (S1 � u1) + g(� ; �u) = ��1 +
v�

1� � � ��u:

Since �1 =
p1
1�� , �� = p� +��1, �u = v�

1�� �p� +�u1 by construction of the candidate equilibrium,
this reduces to �u1 � (1� �)�u and this holds with equality. �

10 Appendix C - Ine¢ cient Equilibria.

This Appendix has four parts. We begin with infrequent innovation and prove Proposition 4. Next,
we prove results for the approach conditions. We then provide the analysis of the o¤ equilibrium
support. Finally, we prove Proposition 5 to show existence of equilibria for frequent innovation.

(i) Infrequent Innovation ( � � 1=2).

Proof of Proposition 4. We �rst show that v(t�1)
1�� > ut is necessary in any delay equilibrium

when � � 1=2. By equilibrium construction, a �rst sale in state (t; 0) of t units implies �1 = �t�1�t
and

�t + ut =
vt

(1� �)
�
1� �t

� :
By �ow dominance, we have �1 � v

1�� and, hence, �t �
v

�t�1(1��) . Combining with the joint payo¤
expression from above, we have

ut �
vt

(1� �)
�
1� �t

� � v

�t�1 (1� �)
:

It is then su¢ cient to show that v(t�1)1�� exceeds the right-hand-side in the above expression. Sim-
plifying the resulting inequality, this holds if

1 > �t�1
�
1 + � + t�t � �t

�
:

At t = 2 this reduces to 1 > �
�
1 + � + �2

�
. It holds at � = 1=2 since 1 > 7=8 and, hence, for all

smaller �. By induction, it holds for all t > 2 if

�t�1
�
1 + � + t�t � �t

�
> �t

�
1 + � + (t+ 1)�t+1 � �t+1

�
,

1 > �2 + �t + t�t(�2 � 1):

41



But �2 + �t < 1 for � � 1=2 and the second term is negative. Therefore, we have v(t�1)
1�� > ut.

Now suppose the seller o¤ers t� 1 units for a price of p̂ = v(t�1)
1�� � �ut � � in state (t� 1; 0). It

cannot be that all buyers reject this o¤er since

v(t� 1)� p̂+ �max
�
v(t� 1)
1� � ; ut

�
> �ut ,

v(t� 1)
1� � � �ut > p̂:

Thus, in a symmetric equilibrium, it must be that all buyers accept the o¤er and, hence, the
continuation state is (t; t� 1). The payo¤ to the seller is then �̂ = p̂+ ��1. This exceeds ��t if

v(t� 1)
1� � + ��1 > � (�t + ut) :

Substituting for the equilibrium joint surplus and using �1 � v
1�� , by �ow dominance, it is su¢ cient

to show
v(t� 1)
1� � + �

v

1� � >
�vt

(1� �)
�
1� �t

� ,
t (1� �) > (1� �)

�
1� �t

�
+ t�t: (13)

At t = 2; (13) reduces to 1 > �
�
1 + � + �2

�
; which is valid for all � � 1=2. To show that an

induction argument holds, note that (13) at t+ 1 is

(t+ 1) (1� �) > (1� �)
�
1� �t+1

�
+ (t+ 1)�t+1 ,

t (1� �) > �t+2 + t�t+1:

So, to show that the induction argument is valid, and we need only show

(1� �)
�
1� �t

�
+ t�t > �t+2 + t�t+1 ,�

1� � � �t
�
+ �t+1 (1� �) + t�t (1� �) > 0:

The �rst term is positive for � � 1=2 and the other two terms are clearly positive. Thus, the
deviation is pro�table for the seller. �

(ii) Approach Conditions.

Proof of Lemma 5. Beginning with the seller approach conditions, (8), note that �t�� is strictly
increasing in � : Thus, we can set p(�; �) = p(�; �) and the condition holds for � < � . Now, for the
buyer approach conditions, (7), note that the right hand side is increasing in � : We claim that the
left hand side is decreasing in � . When v�

(1��) � ut, then the left hand side is v�
(1��) � �

t��ut, which

is falling in � . If v�
(1��) < ut, then the left hand side is

v�(1��t�� )
(1��) , which is also strictly decreasing

in � . Again setting p(�; �) = p(�; �) for � < � is su¢ cient. �
Proof of Lemma 6. Note that when ut = 0, for any deviation o¤er by the seller in period � for �

units, condition (7) immediately reduces to p(�; �) = v�
(1��) . Thus, take � = � = t� 1 and consider

condition (8). Since �t = 	t, when ut = 0, we have

�(1� �t�1)	t �
v(t� 1)
(1� �) ,

1� �t

1� � � t
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after simpli�cation. Clearly, this is always false for t � 2 and any �. �
Proof of Lemma 7. In (10), � assumes integer values 1; :::; t�1. Let us replace � with a continuous

variable, x, that assumes values in the interval [0; t]. This greatly simpli�es the derivation of the
su¢ ciency condition. It is useful to de�ne three functions:

A(x; u; �; t) � (�t�x � �t)
�

vt

(1� �)(1� �t)
� u

�
B(x; �; t) � vx

1� � (1� �
t�x)

C(x; u; �; t) � vx

1� � � �
t�xu;

where u � ut. For (�; t), consider u 2 [0; vt
1�� ]; we treat the case of u >

vt
1�� later in the proof. In

terms of x, condition (10) becomes

A(x; u; �; t) � B(x; �; t) for 0 � x � (1� �)u
v

;

A(x; u; �; t) � C(x; u; �; t) for
(1� �)u

v
< x � t:

First, consider when A(x; u; �; t) � B(x; �; t) for all x in the interval
h
0; (1��)uv

i
. Suppressing

arguments, note that A is increasing and convex in x; and equals 0 when x = 0, while B is strictly
concave in x and equals 0 when x = 0. Thus, if we have @A

@x �
@B
@x at x = 0, then A � B must hold

for all positive x. Calculating the partial derivatives, this yields the condition

�uA � v

(1� �)

�
t

1� �t
� 1� �t

(� ln �)�t
�
� u: (14)

Next, consider when A(x; u; �; t) � C(x; u; �; t) for all x in the interval [ (1��)uv ; t]. This condition
simpli�es to

�t(1� �)u
v

� x� t(�t�x � �t)
1� �t

� h(x; t; �): (15)

It is easy to show h(x; t; �) is strictly concave and equals 0 at x = 0 and x = t. Thus, h(x; t; �) has a
unique interior maximum at some x�(�; t) which is implicitly de�ned by �x

�
(1��t) = ��t ln �t: Note

that when condition (14) holds, the term in brackets must be positive; this implies that �t > @h
@x at

x = 0. Refer to Figure 3.

De�ne uA by

uA � v

�t(1� �)
h(x�; t; �)

=
v

�t(1� �)

"
x� � t�t�x

� � t�t

1� �t

#

= 	t +
v
�
1� a(�t

�
)

�t(1� �) ln �
;

where the function a(�t) is as de�ned in the text. Then any u � uA will necessarily satisfy (15).
See Figure 3.
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Figure 2: Payo¤ Lower Bound for Approach Conditions
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In order to �nd when (14) and (15) hold at a candidate u, we compare the bounds to obtain,

uA � uA , �t � a
�
�t
�
,

It is easy to show that a (d) is strictly decreasing for d 2 (0; 1) and, by L�Hospital�s Rule, that
limd!1 a(d) = 0. Then, the equation d = a (d) has a unique root, d� in (0; 1) : Thus, we have
established that �t � d� implies the interval

�
uA; uA

�
is non-empty.

The last step of the proof is to consider the range of values for u that can be supported. A
straightforward argument establishes that uA < vt

1�� holds for �
t � d�. The comparison of uA

with vt
1�� reveals that u

A crosses vt
1�� exactly one time, from below, at the root of the equation

� ln �t = (��t�1)2; numerically, the root is :572, which exceeds d�. Thus, for �t below this root, we
have uA < vt

1�� and any u 2
�
uA; uA

�
satis�es the approach condition (10). For �t above this root,

we have uA > vt
1�� > uA and there are two cases. First, by the above analysis, any u 2

�
uA; vt

1��

�
satis�es the approach condition (10). Second, for the case of u 2

h
vt
1�� ; u

A
�
, the approach condition

(10) requires that A(x; u; �; t) � B(x; �; t) for all x in the interval [0; t]; note that since u is large,
the case of (1��)uv < x � t never arises. Clearly, we have A(x; u; �; t) � B(x; �; t) and utilities in
this payo¤ range satisfy (10). �

(iii) O¤ Equilibrium Support (Cash-in o¤ers)

Now, we deal with o¤ equilibrium states (� ; 0) where � > t. Since we are using cash-in supports,
the payo¤s are �� = p� + ��1 for the seller and u� = v� � p� + �u(� + 1; �) = v�

1�� � p� + �u1 for
buyers. Note that from (� ; 0) the surplus on the continuation path is

	� �
v�

1� � + �	1 = �� + u� for � > t

and that cash-in states contrast with delay states, � < t, where we have 	� � �t��	t:

Recall from the text that we must satisfy (1) and (2). Thus, we seek a utility sequence that
satis�es the analog of (3), as given by

	� � �	�+1�� � u� � �u�+1�� + g(�; u�+1) (16)

for � � t and � = 0; :::; � .

Analogous to our support utility sequence for e¢ cient equilibria, we de�ne a T � stage support
sequence, where T � t+ 1, for ine¢ cient equilibria by

u� = �u�+1 +	� � �	�+1 for � = t; :::; T � 1; (17)

and
u� = uT for � � T:

For the special case of T = t, we specify a constant sequence u� = ut for all � . As before, the seller
is indi¤erent with respect to delay and the cash-in up to period T , and the seller prefers to cash-in
in period T provided that the buyers�utilities, uT , are not too large.

We can satisfy (16) by an appropriate choice of the support length T for a given � and buyer
payo¤. Recalling Figure 1 for e¢ cient equilibria, we �nd a similar structure for the relationship
between ut, �, and the length of a T . For any given � we can support successively higher buyer
payo¤s by increasing the support horizon, T . In particular as ut rises, then T must also rise until
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we achieve ut 2 [	t � �T�tS1;	t � �T�t+1S1]. Thus, we demonstrate

Lemma A5 Let T � t and suppose � + �T � 1. Let buyer utilities follow a T � stage support
sequence of horizon T , where ut satis�es (i) 0 � ut � 	t � �S1 for T = t and (ii) 	t � �T�tS1 �
ut � 	t � �T�t+1S1 for T > t. Then (16) holds for every � � t and � = 0; :::; � :

Proof. We only sketch the arguments, since they are similar to those of the e¢ cient case. First,
we note that if expression (16) holds when buyer utility �rst becomes constant at � = T and for all
� � T , then it holds for all � > T for all � � � . This follows from arguments very similar to those
used in Lemma A1. We must, however, replace S� with 	� : Also, we need to take into account
a new range of large �, � � T + 1 � t, where the continuation state involves delay. Thus, it only
remains to verify the support conditions for � = t; :::; T .

Second, it is straightforward to show that every partial cash-in constraint, where 0 < � < � , is
implied by the cash-in constraint � = � and the delay constraint � = 0 for each � = t; :::; T � 1:
Recall that delay constraints for � = t; :::; T �1 hold by construction of the T �stage support. The
delay constraint, (16) for � = T and � = 0; reduces to

�v

1� � � (1� �)(	T � uT ):

This holds if uT � 	T � �S1, which is implied by the assumed range for ut. Thus, only the cash-in
constraints � = t; :::; T remain to be checked. Also, (16) is easy to verify for the special case of
t = T . Henceforth, we take T > t.

We begin with the cash-in constraint at � = T . The condition for � = T and � = T is

g(T; uT ) � (1� �T )(	T � uT ): (18)

By the range for ut and the T � stage construction, we �nd that uT must be less than vT
1�� . Thus,

(18) becomes

(1� � � �T )uT � (1� �T )	t �
vT

1� � :

This holds since the l.h.s. is negative, by the lemma hypothesis, and, via calculations, the r.h.s. is
positive. Thus, we have veri�ed that condition (16) holds for � = T and � = T .

Verifying (16) is more subtle when � < T . We need the following two claims for the relationship
between u� and

v(��1)
1�� for � = t; :::; T (the proofs involve only routine algebra with the T � stage

utility path and are hence omitted). The �rst claim is

Claim 1. (i) If u� <
v(��1)
1�� , then u�+1 <

v�
1�� for all � = t+ 1; :::; T ; (ii) if u�+1 � v�

1�� , then

u� � v(��1)
1�� for all � = t; :::; T:

This claim provides a simple algorithm for verifying the interior support constraints. Recall
that uT < vT

1�� . If uT >
v(T�1)
1�� , then Claim 1 implies u� >

v(��1)
1�� for all � � T � 1: If uT < v(T�1)

1�� ,

however, then we move to � = T � 2 and compare uT�1 with v(T�2)
1�� . If uT�1 is greater, then

u� >
v(��1)
1�� for all � � T � 2: If not, continue down until either u� < v(��1)

1�� or � = t: If at every

� , it is always the case that u� <
v(��1)
1�� , then we are in the "small" utility case. Otherwise, there

always exists a �̂ such that if � � �̂ , then u�+1 < v�
1�� and if � < �̂ , then u�+1 > v�

1�� . Since

uT <
vT
1�� there is always a �̂ � t such that u� <

v(��1)
1�� .
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Claim 2. (i) Suppose u� <
v(��1)
1�� , then if (16) holds at � it holds at � � 1 for any � � T . (ii)

Suppose u� >
v(��1)
1�� , then if (16) holds at � � 1 it holds at � for any � � T .

We now employ these results to complete the proof of Lemma A5. We need to show (16) holds
at � = t; :::; T � 1: There are two cases. First, suppose ut+1 > vt

1�� . Then it is straightforward to
show that (16) holds at � = t: Now apply (ii) in Claim 1 at � = t and (ii) in Claim 2 to see that
(16) holds at � = t+ 1; :::; T � 1. The second case is ut+1 � vt

1�� . From before, we know (16) holds
at � = T . We can now apply the (i) in Claim 1 at � = T and (i) in Claim 2 to see that (16) holds
at � = T � 1; :::; t. This completes the proof. �

(iv) Equilibrium Existence

We have the following lemma that provides su¢ cient conditions for equilibrium existence.

Lemma A6 Suppose a sequence of buyer utilities u� satis�es (10) and (16) for some t � 2
and for all � and � , such that 0 � � � � for any � � 1: Then there exists an ine¢ cient t� cycle
equilibrium with supporting prices p(�; �).

Proof. The approach conditions are satis�ed by Lemma 7 for ut 2
�
uA; uA

�
. With (16) satis�ed

as well, we know that no single-bundle deviation is pro�table for the seller. As with the e¢ cient
case, we must now show that the seller cannot pro�tably deviate to an upgrade o¤er set in state
(� ; 0). While the logic is similar to that for e¢ cient equilibria, the proof is more complicated and
we only provide a brief sketch. We must distinguish between approach states, where � < t, and
support states where � � t. We de�ne a BCE based on the same buyer preference relation �B
but now u(� + 1; b) and u(� + 1; b j i) must account for whether there is a delay or a cash-in the
continuation state. We can then show the same argmax construction yields a BCE. Next, note
that any upgrade o¤er can be written in the form B = I [ J [ K where an upgrade to b is in I if
pb � Gb, in J if pb � Hb, and in K if Gb < pb < Hb. The threshold prices, following the buyer and
seller decisions in the text at (16), are speci�ed by

Gb =

8<:
vb
1��

�
1� �t��

�
+ �t�� max

n
vb
1�� ; ut

o
� �t��ut if � < t

vb+ �max
n
vb
1�� ; u�+1

o
� �u�+1 if � � t

and

Hb =

�
�t��

�
1� �b

�
( t � ut) if � < t

( � � u� )� �
�
 �+1�b � u�+1�b

�
if � � t

:

The proof then proceeds by considering the various cases for the decomposition B = I [J [K.
For instance, if J is empty then we are done as the argmax property can be applied to I [ K and
we can specify that buyers choose this BCE, which is priced below Hb. The most di¢ cult case
arises when none of the component sets in I [ J [ K is empty. We can show that there always
exists a BCE priced below Hb in this case.

The next step is to specify continuation equilibrium strategies at asymmetric buyer states,
(� ; �); see part (i) of Appendix B for the de�nition. These states are complicated by the fact
that joint surplus is not maximized in an ine¢ cient t� cycle equilibrium. This contrasts with the
e¢ cient case, where the (� ; �) o¤ers fully extracted buyers relative to equilibrium payo¤s for the
continuation state of (� + 1; �) ; since feasibility will no longer imply this is an optimal o¤er for the
seller. Instead, we specify a continuation equilibrium that leaves buyers asymmetric. Thus, this
part of the support neither returns to the equilibrium path nor to a cash-in support state.
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Let �m � inf f�� j �� > 0; g denote the smallest non-zero mass of buyers in � and if the inf is
not unique let m be the largest index (e.g., if �� = 1=� for all � then �m = 1=� and m = � � 1).
We specify that the seller o¤ers a collection of upgrades f(b�; p�)g�=0;:::;��1with prices of

pm =
v (� � 1�m)

1� � ; and p� =
v (� � �)
1� � for � 6= m:

It is straightforward to verify that all buyers optimally accept and that the continuation state
is of the form (� + 1; �0) where �0 = (0; :::; 0; �m; 1� �m). Thus, in period � + 1 the smallest mass
group is at quality level � � 1 units, while all other buyers are at � . We then apply the same logic
to specify o¤ers for (� + 1; �0) and all resulting states so that the distribution of buyers is always
concentrated in the same proportions (�m; 1� �m) at the two highest quality levels.

The argument that this is an optimal strategy for the seller is involved, so we only o¤er a brief
sketch. For any arbitrary seller o¤er in (� ; �) and pattern of buyer choices, one can bound the
seller payo¤ via individual rationality of the buyer choices, using the hypothesis that the seller
makes the o¤er in the continuation state in period � + 1 that induces a concentration of buyers at
the two highest quality levels (if the buyer choices lead to a degenerate distribution, then payo¤s
must instead follow the t� cycle equilibrium path and cash-in support). Then, since the repeated
concentration of buyers in proportions (�m; 1� �m) at the two highest quality levels allows the
seller to extract all surplus generated on this path, the associated seller payo¤ can be shown to be
at least as large as the bound derived from individual buyer rationality for any other seller o¤er. In
this regard, note that every equilibrium with delay (t � 2) has a buyer quality level that is strictly
below the mean for the (�m; 1� �m) concentration.

Finally, �nding a BCE for an arbitrary upgrade o¤er B in state (� ; �) follows the same basic
approach as that for an e¢ cient equilibrium. The only di¤erence is that we must take care to
account for any possible delay if the continuation state is degenerate. �

Proof of Proposition 5. De�ne B(t; T; �) � 	t � �T�tS1, the upper bound of the payo¤s that
can be supported with a T � stage support: We will show that B(t; T; �) � uA(t; �), whenever �
satis�es the approach conditions, thus proving the proposition. Comparing, B(t; T; �) � uA(t; �),

(1� �t)(1� �)
�T

� � ln � (19)

It is clear that both sides of (19) are positive, falling in � and equal to 0 at � = 1. The l.h.s. of
(19) is rising in T and t. Di¤erentiating both sides of (19) with respect to � we �nd that the slope
of the l.h.s. is greater/less than the slope of the r.h.s. if and only if

�T + �t+1 ? T (1� �) + � � (T � t)�t(1� �) (20)

In (20), the l.h.s. is positive and convex in � and the r.h.s. is decreasing in �. Thus, the l.h.s. and
the r.h.s. of (19) cross a single time in �. It easy to see that (19) is negative in a neighborhood
of 1 and positive at � = t

p
d� for any T � t. So, there is a b(t; T ) 2 ( t

p
d�; 1) such that (19) holds

whenever � � b(t; T ). Clearly, b(t; T ) is increasing in T .

Now, we will show that b(t; T ) > �T for all t � 2: At b = b(t; T ) we have

1� b
bT

=
� ln b
1� bt

The r.h.s. is falling in b. Since for any b this is less than 1, b(t; T ) > �T , the result is proved. �
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