

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 35** 2 (2017): **247**–255. ISSN-00378712 in press doi:10.5269/bspm.v35i2.24835

pre-g-bi-irresolute and pre-g-stable in ditopological texture spaces

Hariwan Zikri Ibrahim

ABSTRACT: We introduce and study new notions of continuity, compactness and stability in ditopological texture spaces based on the notions of pre-g-open and pre-g-closed sets and some of their characterizations are obtained.

Key Words: Texture, difunction, pre-g-bi-irresolute, pre-g-stability.

Contents

1 Introduction 247
2 Preliminaries 247
3 pre-g-bicontinuous, pre-g-bi-irresolute, pre-g-compact and pre-g-stable 250

1. Introduction

Textures and ditopological texture spaces were first introduced by L. M. Brown as a point-based setting for the study fuzzy topology. The study of compactness and stability in ditopological texture spaces was started to begin in [6]. In this paper, we introduce and study the concepts of pre-g-bicontinuity, pre-g-bi-irresolute, pre-g-compactness and pre-g-stability in ditopological textures spaces.

2. Preliminaries

The following are some basic definitions of textures we will need later on. **Texture space:** [6] Let S be a set. Then $\varphi \subseteq P(S)$ is called a texturing of S, and S is said to be textured by φ if

1. (φ, \subseteq) is a complete lattice containing S and φ and for any index set I and $A_i \in \varphi$, $i \in I$, the meet $\bigwedge_{i \in I} A_i$ and the join $\bigvee_{i \in I} A_i$ in φ are related with the intersection and union in P(S) by the equalities

$$\bigwedge_{i \in I} A_i = \bigcap_{i \in I} A_i$$
for all I , while
$$\bigvee_{i \in I} A_i = \bigcup_{i \in I} A_i$$
for all finite I .

2. φ is completely distributive.

2000 Mathematics Subject Classification: 35B40, 35L70

3. φ separates the points of S. That is, given $s_1 \neq s_2$ in S we have $L \in \varphi$ with $s_1 \in L$, $s_2 \notin L$, or $L \in \varphi$ with $s_2 \in L$, $s_1 \notin L$.

If S is textured by φ then (S, φ) is called a texture space, or simply a texture. **Complementation:** [6] A mapping $\sigma : \varphi \to \varphi$ satisfying $\sigma(\sigma(A)) = A$, for all $A \in \varphi$ and $A \subseteq B$ implies that $\sigma(B) \subseteq \sigma(A)$, for all $A, B \in \varphi$ is called a complementation on (S, φ) and (S, φ, σ) is then said to be a complemented texture.

For a texture (S, φ) , most properties are conveniently defined in terms of the p-sets

$$P_s = \bigcap \{ A \in \varphi : s \in A \}$$

and the q-sets,

$$Q_s = \bigvee \{A \in \varphi : s \notin A\}.$$

Ditopology: [6] A dichotomous topology on a texture (S, φ) , or ditopology for short, is a pair (τ, k) of subsets of φ , where the set of open sets τ satisfies

- 1. $S, \phi \in \tau$,
- 2. $G_1, G_2 \in \tau$ implies that $G_1 \cap G_2 \in \tau$, and
- 3. $G_i \in \tau, i \in I$ implies that $\bigvee_i G_i \in \tau$,

and the set of closed sets k satisfies

- 1. $S, \phi \in k$,
- 2. $K_1, K_2 \in k$ implies that $K_1 \cup K_2 \in k$, and
- 3. $K_i \in k, i \in I$ implies that $\bigcap K_i \in k$.

Hence a ditopology is essentially a "topology" for which there is no a priori relation between the open and closed sets.

For $A \in \varphi$ we define the closure [A] and the interior]A[of A under (τ,k) by the equalities

$$[A] = \bigcap \{K \in k : A \subseteq K\} \text{ and } |A| = \bigvee \{G \in \tau : G \subseteq A\}$$

We refer to τ as the topology and k as the cotopology of (τ, k) .

If (τ, k) is a ditopology on a complemented texture (S, φ, σ) , then we say that (τ, k) is complemented if the equality $k = \sigma(\tau)$ is satisfied. In this study, a complemented ditopological texture space is denoted by $(S, \varphi, \tau, k, \sigma)$.

In this case we have $\sigma([A]) = |\sigma(A)|$ and $\sigma([A]) = [\sigma(A)]$.

We denote by $O(S, \varphi, \tau, k)$, or when there can be no confusion by O(S), the set of open sets in φ . Likewise, $C(S, \varphi, \tau, k)$, C(S) will denote the set of closed sets.

Let (S_1, φ_1) and (S_2, φ_2) be textures. In the following definition we consider the product texture [3] $P(S_1) \otimes \varphi_2$, and denote by $\overline{P}_{(s,t)}$, $\overline{Q}_{(s,t)}$, respectively the p-sets and q-sets for the product texture $(S_1 \times S_2, P(S_1) \otimes \varphi_2)$.

Direlation: [5] Let (S_1, φ_1) and (S_2, φ_2) be textures. Then

- 1. $r \in P(S_1) \otimes \varphi_2$ is called a relation from (S_1, φ_1) to (S_2, φ_2) if it satisfies $\mathbf{R1} \ r \not\subseteq \overline{Q}_{(s,t)}, \ P_{s'} \not\subseteq Q_s$ implies that $r \not\subseteq \overline{Q}_{(s',t)}$. $\mathbf{R2} \ r \not\subseteq \overline{Q}_{(s,t)}$ implies that there exists $s' \in S_1$ such that $P_s \not\subseteq Q_{s'}$ and $r \not\subseteq \overline{Q}_{(s',t)}$.
- 2. $R \in P(S_1) \otimes \varphi_2$ is called a corelation from (S_1, φ_1) to (S_2, φ_2) if it satisfies $\mathbf{CR1} \ \overline{P}_{(s,t)} \not\subseteq R, \ P_s \not\subseteq Q_{s'}$ implies that $\overline{P}_{(s',t)} \not\subseteq R$. $\mathbf{CR2} \ \overline{P}_{(s,t)} \not\subseteq R$ implies that there exists $s' \in S_1$ such that $P_{s'} \not\subseteq Q_s$ and $\overline{P}_{(s',t)} \not\subseteq R$.
- 3. A pair (r, R), where r is a relation and R a corelation from (S_1, φ_1) to (S_2, φ_2) is called a direlation from (S_1, φ_1) to (S_2, φ_2) .

One of the most useful notions of (ditopological) texture spaces is that of difunction. A difunction is a special type of direlation.

Difunctions: [5] Let (f, F) be a direlation from (S_1, φ_1) to (S_2, φ_2) . Then (f, F) is called a difunction from (S_1, φ_1) to (S_2, φ_2) if it satisfies the following two conditions.

DF1 For $s, s' \in S_1$, $P_s \nsubseteq Q_{s'}$ implies that there exists $t \in S_2$ such that $f \nsubseteq \overline{Q}_{(s,t)}$ and $\overline{P}_{(s',t)} \nsubseteq F$.

DF2 For $t, t' \in S_2$ and $s \in S_1$, $f \nsubseteq \overline{Q}_{(s,t)}$ and $\overline{P}_{(s,t')} \nsubseteq F$ implies that $P_{t'} \nsubseteq Q_t$. **Image and Inverse Image:** [5] Let $(f, F) : (S_1, \varphi_1) \to (S_2, \varphi_2)$ be a diffunction.

1. For $A \in \varphi_1$, the image $f^{\rightarrow}A$ and the co-image $F^{\rightarrow}A$ are defined by

$$\begin{split} f^{\to}A &= \bigcap \{Q_t: \text{for all } s, f \not\subseteq \overline{Q}_{(s,t)} \text{ implies that } A \subseteq Q_s\}, \\ F^{\to}A &= \bigvee \{P_t: \text{for all } s, \overline{P}_{(s,t)} \not\subseteq F \text{ implies that } P_s \subseteq A\}. \end{split}$$

2. For $B \in \varphi_2$, the inverse image $f^{\leftarrow}B$ and the inverse co-image $F^{\leftarrow}B$ are defined by

$$f^{\leftarrow}B = \bigvee \{P_s : \text{for all } t, \underline{f} \nsubseteq \overline{Q}_{(s,t)} \text{ implies that } P_t \subseteq B\},$$

$$F^{\leftarrow}B = \bigcap \{Q_s : \text{for all } t, \overline{P}_{(s,t)} \nsubseteq F \text{ implies that } B \subseteq Q_t\}.$$

For a difunction, the inverse image and the inverse co-image are equal, but the image and co-image are usually not.

Bicontinuity: [4] The diffunction $(f, F): (S_1, \varphi_1, \tau_1, k_1) \to (S_2, \varphi_2, \tau_2, k_2)$ is called continuous if $B \in \tau_2$ implies that $F \leftarrow B \in \tau_1$, cocontinuous if $B \in k_2$ implies that $f \leftarrow B \in k_1$, and bicontinuous if it is both continuous and cocontinuous.

Surjective difunction: [5] Let $(f, F) : (S_1, \varphi_1) \to (S_2, \varphi_2)$ be a difunction. Then (f, F) is called surjective if it satisfies the condition

SUR. For $t, t' \in S_2$, $P_t \nsubseteq Q_{t'}$ implies that there exists $s \in S_1$ with $f \nsubseteq \overline{Q}_{(s,t')}$ and $\overline{P}_{(s,t)} \nsubseteq F$.

 $\overline{P}_{(s,t)} \nsubseteq F$.
If (f,F) is surjective then $F^{\to}(f^{\leftarrow}B) = B = f^{\to}(F^{\leftarrow}B)$ for all $B \in \varphi_2$ [[5], Corollary 2.33]

Definition 2.1. [5] Let (f, F) be a diffunction between the complemented textures $(S_1, \varphi_1, \sigma_1)$ and $(S_2, \varphi_2, \sigma_2)$. The complement (f, F)' = (F', f') of the diffunction (f, F) is a diffunction, where $f' = \bigcap \{\overline{Q}_{(s,t)} | \exists u, v \text{ with } f \not\subseteq \overline{Q}_{u,v}, \sigma_1(Q_s) \not\subseteq Q_u$ and $P_v \not\subseteq \sigma_2(P_t)\}$ and $F' = \bigvee \{\overline{P}_{(s,t)} | \exists u, v \text{ with } \overline{P}_{u,v} \not\subseteq F, P_u \not\subseteq \sigma_1(P_s) \text{ and } \sigma_2(Q_t) \not\subseteq Q_v\}.$

If (f, F) = (f, F)' then the diffunction (f, F) is called complemented.

Definition 2.2. [7] Let (S, φ, τ, k) be a ditopological texture space. A set $A \in \varphi$ is called pre-open (pre-closed) if $A \subseteq |A| \subseteq |A|$.

We denote by $PO(S, \varphi, \tau, k)$, or when there can be no confusion by PO(S), the set of pre-open sets in φ . Likewise, $PC(S, \varphi, \tau, k)$, or PC(S) will denote the set of pre-closed sets.

Definition 2.3. [2] Let (S, φ, τ, k) be a ditopological texture space. A subset A of a texture φ is said to be generalized closed (g-closed for short) if $A \subseteq G \in \tau$ then $[A] \subseteq G$.

Definition 2.4. [2] Let $(S, \varphi, \tau, k, \sigma)$ be a complemented ditopological texture space. A subset A of a texture φ is said to be generalized open (g-open for short) if $\sigma(A)$ is g-closed.

We denote by $gc(S, \varphi, \tau, k)$, or when there can be no confusion by gc(S), the set of g-closed sets in φ . Likewise, $go(S, \varphi, \tau, k, \sigma)$, or go(S) will denote the set of g-open sets.

Definition 2.5. [1] Let (S, φ, τ, k) be a ditopological texture space. A subset A of a texture φ is said to be pre-g-closed if $A \subseteq G \in PO(S)$ then $[A] \subseteq G$.

We denote by $pregc(S, \varphi, \tau, k)$, or when there can be no confusion by pregc(S), the set of pre-g-closed sets in φ .

Definition 2.6. [1] Let $(S, \varphi, \tau, k, \sigma)$ be a complemented ditopological texture space. A subset A of a texture φ is called pre-g-open if $\sigma(A)$ is pre-g-closed.

We denote by $prego(S, \varphi, \tau, k, \sigma)$, or when there can be no confusion by prego(S), the set of pre-g-open sets in φ .

Definition 2.7. [1] Let $(S, \varphi, \tau, k, \sigma)$ be a complemented ditopological texture space. For $A \in \varphi$, we define the pre-g-closure $[A]_{pre-g}$ and the pre-g-interior $]A[_{pre-g}$ of A under (τ, k) by the equalities

$$[A]_{pre-q} = \bigcap \{K \in pregc(S) : A \subseteq K\} \text{ and }]A[_{pre-q} = \bigcup \{G \in prego(S) : G \subseteq A\}.$$

3. pre-g-bicontinuous, pre-g-bi-irresolute, pre-g-compact and pre-g-stable $\,$

Definition 3.1. The diffunction $(f, F): (S_1, \varphi_1, \tau_1, k_1, \sigma_1) \to (S_2, \varphi_2, \tau_2, k_2, \sigma_2)$ is called:

- 1. pre-g-continuous (pre-g-irresolute), if $F^{\leftarrow}(G) \in prego(S_1)$, for every $G \in O(S_2)$ ($G \in prego(S_2)$).
- 2. pre-g-cocontinuous (pre-g-co-irresolute), if $f^{\leftarrow}(G) \in pregc(S_1)$, for every $G \in k_2$ ($G \in pregc(S_2)$).
- 3. pre-g-bicontinuous, if it is pre-g-continuous and pre-g-cocontinuous.
- 4. pre-g-bi-irresolute, if it is pre-g-irresolute and pre-g-co-irresolute.

Corollary 3.2. Let $(f,F):(S_1,\varphi_1,\tau_1,k_1,\sigma_1)\to (S_2,\varphi_2,\tau_2,k_2,\sigma_2)$ be a diffunction. Then:

- 1. Every continuous is pre-g-continuous.
- 2. Every cocontinuous is pre-g-cocontinuous.
- 3. Every pre-g-irresolute is pre-g-continuous.
- 4. Every pre-g-co-irresolute is pre-g-cocontinuous.

Proof. Clear.

Theorem 3.3. Let $(f, F): (S_1, \varphi_1, \tau_1, k_1, \sigma_1) \to (S_2, \varphi_2, \tau_2, k_2, \sigma_2)$ be a diffunction.

- 1. The following are equivalent:
 - (a) (f, F) is pre-g-continuous.
 - (b) $]F \to A[S_2 \subseteq F \to]A[S_1]_{pre-q}$, for all $A \in \varphi_1$.
 - (c) $f \leftarrow B[S_2 \subseteq] f \leftarrow B[S_1]$ for all $B \in \varphi_2$.
- 2. The following are equivalent:
 - (a) (f, F) is pre-g-cocontinuous.
 - (b) $f^{\rightarrow}[A]_{pre-q}^{S_1} \subseteq [f^{\rightarrow}A]^{S_2}$, for all $A \in \varphi_1$.
 - (c) $[F \leftarrow B]_{nre-a}^{S_1} \subseteq F \leftarrow [B]^{S_2}$, for all $B \in \varphi_2$.

Proof. We prove (1), leaving the dual proof of (2) to the interested reader. $(a) \Rightarrow (b)$. Let $A \in \varphi_1$. From [5], Theorem 2.24 (2a)] and the definition of interior,

$$f^{\leftarrow} | F^{\rightarrow}(A) |^{S_2} \subseteq f^{\leftarrow}(F^{\rightarrow}(A)) \subseteq A.$$

Since inverse image and co-image under a difunction is equal, $f^{\leftarrow}]F^{\rightarrow}(A)[^{S_2}=F^{\leftarrow}]F^{\rightarrow}(A)[^{S_2}$. Thus, $f^{\leftarrow}]F^{\rightarrow}(A)[^{S_2}\in prego(S_1)$, by pre-g-continuity. Hence

$$f^\leftarrow]F^\rightarrow(A)[^{S_2}\subseteq]A[^{S_1}_{pre-g}$$

and applying [[5], Theorem 2.24 (2b)] gives

$$]F^{\rightarrow}(A)[^{S_2}\subseteq F^{\rightarrow}(f^{\leftarrow}(]F^{\rightarrow}(A)[^{S_2})\subseteq F^{\rightarrow}]A[^{S_1}_{pre-g},$$

which is the required inclusion.

 $(b) \Rightarrow (c)$. Take $B \in \varphi_2$. Applying inclusion (b) to $A = f^{\leftarrow}(B)$ and using [[5], Theorem 2.24 (2b)] gives

$$|B|^{S_2} \subseteq |F^{\rightarrow}f^{\leftarrow}(B)|^{S_2} \subseteq F^{\rightarrow}|f^{\leftarrow}(B)|^{S_1}_{pre-q}$$

Hence, we have $f^{\leftarrow}]B[^{S_2}\subseteq f^{\leftarrow}F^{\rightarrow}]f^{\leftarrow}(B)[^{S_1}_{pre-g}\subseteq]f^{\leftarrow}(B)[^{S_1}_{pre-g}]$ by [[5], Theorem 2.24 (2a)].

 $(c) \Rightarrow (a)$. Applying (c) for $B \in O(S_2)$ gives

$$f^{\leftarrow}(B) = f^{\leftarrow}]B[^{S_2}\subseteq]f^{\leftarrow}(B)[^{S_1}_{pre-q},$$

so $F^{\leftarrow}(B) = f^{\leftarrow}(B) =]f^{\leftarrow}(B)[^{S_1}_{pre-q} \in prego(S_1)$. Hence, (f, F) is pre-g-continuous.

Theorem 3.4. Let $(f, F) : (S_1, \varphi_1, \tau_1, k_1, \sigma_1) \to (S_2, \varphi_2, \tau_2, k_2, \sigma_2)$ be a diffunction. Then:

- 1. The following are equivalent:
 - (a) (f, F) is pre-g-irresolute.
 - $(b)\]F^{\rightarrow}A[^{S_2}_{pre-g}\subseteq F^{\rightarrow}]A[^{S_1}_{pre-g},\ for\ all\ A\in\varphi_1.$
 - $(c)\ f^{\leftarrow}]B[^{S_2}_{pre-q}\subseteq]f^{\leftarrow}B[^{S_1}_{pre-q},\ for\ all\ B\in\varphi_2.$
- 2. The following are equivalent:
 - (a) (f, F) is pre-g-co-irresolute.
 - $(b)\ f^{\rightarrow}[A]^{S_1}_{pre-g}\subseteq [f^{\rightarrow}A]^{S_2}_{pre-g}, \ for \ all \ A\in\varphi_1.$
 - (c) $[F \leftarrow B]_{pre-g}^{S_1} \subseteq F \leftarrow [B]_{pre-g}^{S_2}$, for all $B \in \varphi_2$.

Proof. We prove (1), leaving the dual proof of (2) to the interested reader. $(a) \Rightarrow (b)$. Take $A \in \varphi_1$. Then

$$f^{\leftarrow}]F^{\rightarrow}A[^{S_2}_{pre-g}\subseteq f^{\leftarrow}(F^{\rightarrow}A)\subseteq A$$

by [[5], Theorem 2.24 (2a)]. Now $f^{\leftarrow}]F^{\rightarrow}A[^{S_2}_{pre-g}=F^{\leftarrow}]F^{\rightarrow}A[^{S_2}_{pre-g}\in prego(S_1)$ by pre-g-irresolute, so $f^{\leftarrow}]F^{\rightarrow}A[^{S_2}_{pre-g}\subseteq]A[^{S_1}_{pre-g}$ and applying [[5], Theorem 2.24 (2b)] gives

$$]F^{\rightarrow}A[^{S_2}_{pre-g}\subseteq F^{\rightarrow}(f^{\leftarrow}]F^{\rightarrow}A[^{S_2}_{pre-g}\subseteq F^{\rightarrow}]A[^{S_1}_{pre-g},$$

which is the required inclusion.

 $(b) \Rightarrow (c)$. Take $B \in \varphi_2$. Applying inclusion (b) to $A = f^{\leftarrow}B$ and using [[5], Theorem 2.24 (2b)] gives

$$]B[^{S_2}_{pre-g}\subseteq]F^{\rightarrow}(f^{\leftarrow}B)[^{S_2}_{pre-g}\subseteq F^{\rightarrow}]f^{\leftarrow}B[^{S_1}_{pre-g}.$$

Hence, $f^{\leftarrow}]B[^{S_2}_{pre-g}\subseteq f^{\leftarrow}F^{\rightarrow}]f^{\leftarrow}B[^{S_1}_{pre-g}\subseteq]f^{\leftarrow}B[^{S_2}_{pre-g}$ by [[5], Theorem 2.24 (2a)]. $(c)\Rightarrow(a)$. Applying (c) for $B\in prego(S_2)$ gives

$$f^{\leftarrow}B = f^{\leftarrow}]B[^{S_2}_{pre-g}\subseteq]f^{\leftarrow}B[^{S_1}_{pre-g},$$

so $F^{\leftarrow}B=f^{\leftarrow}B=]f^{\leftarrow}B[^{S_1}_{pre-g}\in prego(S_1).$ Hence, (f,F) is pre-g-irresolute.

Theorem 3.5. Let $(S_j, \varphi_j, \tau_j, k_j, \sigma_j)$, j = 1, 2, complemented ditopology and $(f, F) : (S_1, \varphi_1) \to (S_2, \varphi_2)$ be complemented diffunction. If (f, F) is pre-g-continuous then (f, F) is pre-g-cocontinuous.

Proof. Since (f, F) is complemented, (F', f') = (f, F). From [[5], Lemma 2.20], $\sigma_1((f')^{\leftarrow}(B)) = f^{\leftarrow}(\sigma_2(B))$ and $\sigma_1((F')^{\leftarrow}(B)) = F^{\leftarrow}(\sigma_2(B))$ for all $B \in \varphi_2$. The proof is clear from these equalities.

Corollary 3.6. Let $(S_j, \varphi_j, \tau_j, k_j, \sigma_j)$, j = 1, 2, complemented ditopology and $(f, F) : (S_1, \varphi_1) \to (S_2, \varphi_2)$ be complemented diffunction. If (f, F) is pre-g-irresolute then (f, F) is pre-g-co-irresolute.

Proof. Clear.

Definition 3.7. A complemented ditopological texture space $(S, \varphi, \tau, k, \sigma)$ is called pre-g-compact if every cover of S by pre-g-open sets has a finite subcover. Here we recall that $C = \{A_j : j \in J\}$, $A_j \in \varphi$ is a cover of S if $\bigvee C = S$.

Corollary 3.8. Let $(S, \varphi, \tau, k, \sigma)$ be a complemented ditopological texture space. Then:

- 1. Every pre-g-compact is compact.
- 2. Every g-compact is pre-g-compact.

Proof. Clear.

Theorem 3.9. If $(S, \varphi, \tau, k, \sigma)$ is pre-g-compact and $L = \{F_j : j \in J\}$ is a family of pre-g-closed sets with $\cap L = \varphi$, then $\cap \{F_j : j \in J'\} = \varphi$ for $J' \subseteq J$ finite.

Proof. Suppose that $(S, \varphi, \tau, k, \sigma)$ is pre-g-compact and let $L = \{F_j : j \in J\}$ be a family of pre-g-closed sets with $\cap L = \phi$. Clearly $C = \{\sigma(F_j) : j \in J\}$ is a family of pre-g-open sets. Moreover,

$$\bigvee C = \bigvee \{\sigma(F_i) : j \in J\} = \sigma(\cap \{F_i : j \in J\}) = \sigma(\phi) = S,$$

and so we have $J^{'} \subseteq J$ finite with $\bigvee \{\sigma(F_j) : j \in J^{'}\} = S$. Hence $\cap \{F_j : j \in J^{'}\} = \phi$.

Theorem 3.10. Let $(f, F): (S_1, \varphi_1, \tau_1, k_1, \sigma_1) \to (S_2, \varphi_2, \tau_2, k_2, \sigma_2)$ be an pre-g-irresolute diffunction. If $A \in \varphi_1$ is pre-g-compact then $f \to A \in \varphi_2$ is pre-g-compact.

Proof. Take $f \to A \subseteq \bigvee_{j \in J} G_j$, where $G_j \in prego(S_2)$, $j \in J$. Now by [[5], Theorem 2.24 (2a) and Corollary 2.12 (2)] we have

$$A \subseteq F^{\leftarrow}(f^{\rightarrow}A) \subseteq F^{\leftarrow}(\bigvee_{j \in J} G_j) = \bigvee_{j \in J} F^{\leftarrow}G_j.$$

Also, $F^{\leftarrow}G_j \in prego(S_1)$ because (f,F) is pre-g-irresolute. So by the pre-g-compactness of A there exists $J^{'} \subseteq J$ finite such that $A \subseteq \bigcup_{j \in J^{'}} F^{\leftarrow}G_j$. Hence

$$f^{\to}A \subseteq f^{\to}(\cup_{i \in J'} F^{\leftarrow}G_i) = \cup_{i \in J'} f^{\to}(F^{\leftarrow}G_i) \subseteq \cup_{i \in J'} G_i$$

by [5], Corollary 2.12 (2) and Theorem 2.24 (2b)]. This establishes that $f^{\rightarrow}A$ is pre-g-compact.

Corollary 3.11. Let $(f, F): (S_1, \varphi_1, \tau_1, k_1, \sigma_1) \to (S_2, \varphi_2, \tau_2, k_2, \sigma_2)$ be a surjective pre-g-irresolute diffunction. Then, if $(S_1, \varphi_1, \tau_1, k_1, \sigma_1)$ is pre-g-compact so is $(S_2, \varphi_2, \tau_2, k_2, \sigma_2)$.

Proof. This follows by taking $A = S_1$ in Theorem 3.10 and noting that $f^{\rightarrow}S_1 = f^{\rightarrow}(F^{\leftarrow}S_2) = S_2$ by [[5], Proposition 2.28 (1c) and Corollary 2.33 (1)].

Definition 3.12. A complemented ditopological texture space $(S, \varphi, \tau, k, \sigma)$ is called pre-g-stable if every pre-g-closed set $F \in \varphi \setminus \{S\}$ is pre-g-compact in S.

Corollary 3.13. Let $(S, \varphi, \tau, k, \sigma)$ be a complemented ditopological texture space. Then:

- 1. Every pre-q-stable is stable.
- 2. Every g-stable is pre-g-stable.

Proof. Clear.

Theorem 3.14. Let $(S, \varphi, \tau, k, \sigma)$ be pre-g-stable. If G is an pre-g-open set with $G \neq \phi$ and $D = \{F_j : j \in J\}$ is a family of pre-g-closed sets with $\bigcap_{j \in J} F_j \subseteq G$ then $\bigcap_{j \in J'} F_j \subseteq G$ for a finite subsets J' of J.

Proof. Let $(S, \varphi, \tau, k, \sigma)$ be pre-g-stable, let G be an pre-g-open set with $G \neq \phi$ and $D = \{F_j : j \in J\}$ be a family of pre-g-closed sets with $\cap_{j \in J} F_j \subseteq G$. Set $K = \sigma(G)$. Then K is pre-g-closed and satisfies $K \neq S$. Hence K is pre-g-compact. Let $C = \{\sigma(F)|F \in D\}$. Since $\cap D \subseteq G$ we have $K \subseteq \bigvee C$, that is C is an pre-g-open cover of K. Hence there exists $F_1, F_2, ..., F_n \in D$ so that

$$K \subseteq \sigma(F_1) \cup \sigma(F_2) \cup ... \cup \sigma(F_n) = \sigma(F_1 \cap F_2 \cap ... \cap F_n).$$

This gives $F_1 \cap F_2 \cap ... \cap F_n \subseteq \sigma(K) = G$, so $\bigcap_{j \in J'} F_j \subseteq G$ for a finite subsets $J' = \{1, 2, ..., n\}$ of J.

Theorem 3.15. Let $(S_1, \varphi_1, \tau_1, k_1, \sigma_1)$, $(S_2, \varphi_2, \tau_2, k_2, \sigma_2)$ be two complemented ditopological texture spaces with $(S_1, \varphi_1, \tau_1, k_1, \sigma_1)$ is pre-g-stable, and (f, F): $(S_1, \varphi_1, \tau_1, k_1, \sigma_1) \rightarrow (S_2, \varphi_2, \tau_2, k_2, \sigma_2)$ be an pre-g-bi-irresolute surjective diffunction. Then $(S_2, \varphi_2, \tau_2, k_2, \sigma_2)$ is pre-g-stable.

Proof. Take $K \in pregc(S_2)$ with $K \neq S_2$. Since (f, F) is pre-g-co-irresolute, so $f \leftarrow K \in pregc(S_1)$. Let us prove that $f \leftarrow K \neq S_1$. Assume the contrary. Since $f \leftarrow S_2 = S_1$, by [[5], Lemma 2.28 (1c)] we have $f \leftarrow S_2 \subseteq f \leftarrow K$, whence $S_2 \subseteq K$ by [[5], Corollary 2.33 (1 ii)] as (f, F) is surjective. This is a contradiction, so $f \leftarrow K \neq S_1$. Hence $f \leftarrow (K)$ is pre-g-compact in $(S_1, \varphi_1, \tau_1, k_1, \sigma_1)$ by pre-g-stability. As (f, F) is pre-g-irresolute, $f \rightarrow (f \leftarrow K)$ is pre-g-compact for the ditopology (τ_2, k_2) by Theorem 3.10, and by [[5], Corollary 2.33 (1)] this set is equal to K. This establishes that $(S_2, \varphi_2, \tau_2, k_2, \sigma_2)$ is pre-g-stable.

References

- 1. H. Z. Ibrahim, Strong Forms of Generalized closed sets in ditopological texture spaces, Journal of Advanced Studies in Topology, 6 (2) (2015), 61-68.
- H. I. Mustafa, F. M. Sleim, Generalized closed sets in ditopological texture spaces with application in rough set theory, Journal of Advances in Mathematics, 4 (2) (2013), 394-407.
- 3. L. M. Brown and R. Erturk, Fuzzy Sets as Texture Spaces, I. Representation Theorems, Fuzzy Sets Syst., 110 (2) (2000), 227-236.
- L. M. Brown, R. Erturk and S. Dost, Ditopological texture spaces and fuzzy topology, II. Topological Considerations, Fuzzy Sets Syst., 147 (2) (2004), 201-231.
- L. M. Brown, R. Erturk and S. Dost, Ditopological texture spaces and fuzzy topology, I. Basic Concepts, Fuzzy Sets and Systems, 147 (2) (2004), 171-199.
- L. M. Brown, M. Diker, Ditopological texture spaces and intuitionistic sets, Fuzzy Sets and Systems, 98 (1998) 217-224.
- M. Gohar, Compactness in ditopological texture spaces, Ph.D. Thesis, Hacettepe University, (2002).

Hariwan Zikri Ibrahim
Department of Mathematics,
Faculty of Science,
University of Zakho,
Kurdistan-Region, Iraq

 $E ext{-}mail\ address: hariwan_math@yahoo.com}$