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Abstract. Accurate and long-term rainfall estimates are the main inputs for several applications, from crop
modeling to climate analysis. In this study, we present a new rainfall data set (SM2RAIN-CCI) obtained from
the inversion of the satellite soil moisture (SM) observations derived from the ESA Climate Change Initiative
(CCI) via SM2RAIN (Brocca et al., 2014). Daily rainfall estimates are generated for an 18-year long period
(1998–2015), with a spatial sampling of 0.25◦ on a global scale, and are based on the integration of the ACTIVE
and the PASSIVE ESA CCI SM data sets.

The quality of the SM2RAIN-CCI rainfall data set is evaluated by comparing it with two state-of-the-art
rainfall satellite products, i.e. the Tropical Measurement Mission Multi-satellite Precipitation Analysis 3B42
real-time product (TMPA 3B42RT) and the Climate Prediction Center Morphing Technique (CMORPH), and
one modeled data set (ERA-Interim). A quality check is carried out on a global scale at 1◦ of spatial sampling
and 5 days of temporal sampling by comparing these products with the gauge-based Global Precipitation Clima-
tology Centre Full Data Daily (GPCC-FDD) product. SM2RAIN-CCI shows relatively good results in terms of
correlation coefficient (median value > 0.56), root mean square difference (RMSD, median value < 10.34 mm
over 5 days) and bias (median value <−14.44 %) during the evaluation period. The validation has been carried
out at original resolution (0.25◦) over Europe, Australia and five other areas worldwide to test the capabilities of
the data set to correctly identify rainfall events under different climate and precipitation regimes.

The SM2RAIN-CCI rainfall data set is freely available at https://doi.org/10.5281/zenodo.846259.

1 Introduction

Accurate estimation of rainfall is of paramount importance
for many applications, e.g. natural hazards risk assessment
and mitigation, famine and disease monitoring, water re-
sources management, weather forecasting, and climate mod-
eling (Dinku et al., 2007).

Ground stations provide accurate local estimates of rain-
fall (Villarini et al., 2008) and are considered the most accu-
rate source of rainfall data for modeling and process moni-

toring. However, two main issues limit their usefulness. First,
they are characterized by a nonhomogenous coverage (Kidd
et al., 2016) throughout the globe and, second, they are only
representative of a limited area around the gauge. These lim-
itations impact the use of rain gauge data mainly over large
and remote areas. Another source of rainfall information are
ground meteorological radar instruments, which are able to
provide measurements that are more representative of the ac-
tual rainfall spatial variability. However, ground meteorolog-
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ical radar is also affected by issues that reduce the quality of
the rainfall estimates such as beam blockage and frozen hy-
drometeors. In addition, ground-based observations are sub-
jected to high costs of maintenance related to setting up, cal-
ibration and fixing of rain gauges and radars. These issues
can limit the use of ground rainfall estimates, especially in
developing countries.

Satellite rainfall estimates can offer a valuable alternative
to ground-based observations and today provide measure-
ments at an increased spatial and temporal resolution. For
example, the recent NASA–JAXA joint Global Precipitation
Measurement (GPM, Hou et al., 2014) mission delivers rain-
fall products in near-real time with a spatial sampling of 0.1◦

every 30 min, by using a constellation of satellite sensors.
A large number of satellite rainfall products have been de-
veloped in the past, e.g. the near-real-time Tropical Rainfall
Measurement Mission Multi-satellite Precipitation Analysis
(TMPA 3B42RT, Huffman et al., 2007); the Precipitation Es-
timation from Remotely Sensed Information using Artificial
Neural Networks (PERSIANN, Hsu et al., 1997); the Cli-
mate Prediction Center MORPHing technique, (CMORPH,
Joyce et al., 2004); and the Climate Hazards Group InfraRed
Precipitation with Station (CHIRPS, Funk et al., 2015) prod-
ucts. These products are being used worldwide for several ap-
plications, such as drought and famine monitoring, weather
forecasts and natural hazard risk mitigation. When provid-
ing a sufficiently long observation period, they are also used
for climatological applications like the PERSIANN-Climate
Data Record (Ashouri et al., 2015), which have provided
continuous rainfall estimates since 1983. Despite the rela-
tive advantages of having an estimate of rainfall in every
place on the Earth, satellite rainfall estimates, like ground
observations, are not free of errors. In fact, the instantaneous
satellite-based retrievals of precipitation, which is a process
subject to high spatial and temporal variability, makes the re-
construction of the accumulated rainfall on longer temporal
scales (e.g., daily accumulated rainfall) challenging (Tren-
berth and Asram, 2014). Another issue is related to the es-
timation of light rainfall, especially over land, which is im-
pacted by the land surface emissivity (Kucera et al., 2013).
These aspects negatively affect the rainfall estimates at the
measurement area limiting their use, especially for opera-
tional purposes, like natural hazards assessment. The use of
a constellation of satellites, as adopted in the GPM mission,
is able to mitigate the issue of the accumulated rainfall es-
timation through more frequent satellite overpasses during a
day, thus reducing the errors associated with the retrievals
(Panegrossi et al., 2016).

A way to improve the quality of satellite rainfall estimates
has been explored recently by means of different approaches
and relies on the use of satellite surface soil moisture (SSM)
data (Crow et al., 2009, 2011; Pellarin et al., 2013; Brocca
et al., 2013, 2014; Wanders et al., 2015; Zhan et al., 2015).
These approaches exploit the strong relationship between
SSM and rainfall to correct and/or estimate rainfall by us-

ing satellite surface SM (soil moisture) data. Among these
methods, SM2RAIN (Brocca et al., 2013) is the only tech-
nique that directly provides rainfall estimates from SSM ob-
servations while the others are correction-based techniques.
SM2RAIN has been used to estimate precipitation from var-
ious single-sensor SSM products, e.g. from ASCAT and
SMOS (Brocca et al., 2013, 2014, 2016; Ciabatta et al., 2015,
2017; Koster et al., 2016; Massari et al., 2017).

With the aim of providing valuable tools for climate
change monitoring, the European Space Agency (ESA) has
established the so-called Climate Change Initiative (CCI)
project. The objective is to exploit Earth observation data
sets for providing useful information to policy makers about
several essential climate variables (ECVs). Within the CCI
programme, three long-term SM products (> 37 years) have
been developed by merging SSM retrievals from both active
and passive microwave instruments carried by various satel-
lite platforms (Liu et al., 2011, 2012; Wagner et al., 2012).
More specifically, the CCI SM project provides three dif-
ferent products, namely active (obtained by merging radar-
estimated SM), passive (obtained by merging radiometer-
estimated SM) and combined (obtained by merging the ac-
tive and passive data sets). The availability of these SM data
records opens up new opportunities for creating independent
long-term rainfall data sets based on SM2RAIN.

The objective of this study is to present and evaluate
a quasi-global long-term SM2RAIN-CCI rainfall data set
obtained from the inversion of the ESA CCI SM via the
SM2RAIN algorithm (Brocca et al., 2014). The SM2RAIN-
CCI rainfall data set is compared against several precipita-
tion products, e.g. TMPA 3B42RT, CMORPH, ERA-Interim,
the Global Precipitation Climatology Centre Full Data Daily
(GPCC-FDD) product (Schamm et al., 2015) and the re-
cently developed Multi-Source Weighted-Ensemble Precip-
itation (MSWEP, Beck et al., 2017). The analysis is per-
formed on a global scale at 1◦ spatial sampling, during
the period 1998–2015. In addition, a regional-scale analy-
sis at 0.25◦ spacing is performed by comparing SM2RAIN-
CCI estimates against high-quality ground-based observa-
tions over Europe, India and Australia.

2 Data and methods

2.1 Data set generation

2.1.1 State-of-the-art rainfall data sets

In this study, five state-of-the-art rainfall products including
models and satellite-based and ground-based observations
are intercompared with the new SM2RAIN-CCI data set. In
particular, the following products are considered as bench-
marks:

1. GPCC-FDD, available at 1◦ spatial sampling during the
period 1988–2013 (ground based data set) at daily tem-
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poral resolution, used for calibrating SM2RAIN and for
quality check;

2. MSWEP v1.2, available from 1 January 1979 to 3 De-
cember 2015 at 0.25◦ spatial sampling on a 3-hourly ba-
sis (combination of models, ground measurements and
satellite observations), used as an independent bench-
mark for the yearly global analysis;

3. E-OBS rainfall data set (Haylock et al., 2008), available
from 1950 at 0.25◦ spatial resolution on a daily basis,
used for validation over Europe;

4. rainfall data provided by the India Meteorological De-
partment (IMD), available on a daily basis during the
period 2002–2015, used for validation over India;

5 the Australian Water Availability Project (AWAP) ob-
served rainfall data set during the period 2010–2013,
used for validation over Australia.

Three rainfall data sets are additionally used for cross-
comparison with the SM2RAIN-CCI product:

1. TMPA 3B42RT (hereinafter referred to as TRMMRT),
available from 1 March 2000 to present at 0.25◦ spatial
resolution for the ±50◦ latitude band every 3 h (only
satellite);

2. CMORPH raw data (hereinafter referred to as
CMORPH), available from 1 January 2000 to present at
0.25◦ spatial resolution for the±60◦ latitude band every
3 h (only satellite);

3. ERA-Interim reanalysis product, available from 1 Jan-
uary 1978 to present at 0.77◦ spatial sampling on a daily
basis (Dee et al., 2011) (reanalysis).

Due to the different spatial sampling and coverage (both
in space and in time), the assessment is carried out during
the period 1998–2013 for the±50◦ latitude band (due to data
availability TRMMRT and CMORPH are considered starting
from 2000).

The GPCC-FDD data set is a gauge-based product. The
number of stations used in the data set varies throughout the
years. In total, data from more than 60 000 stations are used.
GPCC-FDD is provided on a global scale over a grid with 1◦

spatial sampling and on a daily basis. The product is avail-
able for the period 1988–2013. Here, GPCC-FDD is used for
SM2RAIN calibration and quality check because it is com-
pletely independent from any satellite data and it does not
contain any missing values (Herold et al., 2017). For further
details, the reader is referred to Schamm et al. (2015).

MSWEP is a recently developed precipitation data set that
combines precipitation information from several sources,
including GPCC-FDD, TRMMRT, CMORPH and ERA-
Interim. The estimates obtained through satellite sensors,
global models and in situ stations are merged by the use

of integration weights. The product is available from 1979
to 2015 with a spatial sampling of 0.25◦. More information
about MSWEP can be found in Beck et al. (2017).

TRMMRT provides rainfall estimates by taking advantage
of multiple satellite sensors, i.e., the TRMM Microwave Im-
ager (TMI), the Special Sensor Microwave Imager (SSM/I),
the Advanced Microwave Scanning Radiometer – Earth Ob-
serving System (AMSR-E) and the Advanced Microwave
Sounding Unit B (AMSU-B). The microwave estimates are
blended with infrared (IR) observations derived from sensors
on board of Geostationary Earth Orbit (GEO) platforms to
obtain rainfall estimates at higher temporal and spatial res-
olution. The product is provided for the ±50◦ latitude band
over a grid with a 0.25◦ spacing every 3 h. Daily accumu-
lated rainfall is computed by summing up all rainfall esti-
mates within 1 day. In this study the TMPA-3B42RT version
7 is used. For more details about the TRMMRT product, the
reader is referred to Huffman et al. (2007).

CMORPH uses precipitation estimates derived from the
same microwave sensors used for TRMMRT generation and
uses GEO-IR data to propagate the microwave estimates at
the times between two successive microwave satellite over-
passes. The product is considered at daily temporal resolu-
tion over the 0.25◦ sampling TRMMRT grid for the ±60◦

latitude band. In this study, CMORPH version 1.0 raw data
are considered. The reader is referred to Joyce et al. (2004)
for more details about CMORPH.

ERA-Interim is a reanalysis product provided by the
European Centre for Medium-Range Weather Forecasts
(ECMWF). It is based on a global atmospheric model in
which different types of observations are routinely assim-
ilated. The product is available from 1979 with a spa-
tial resolution of about 0.77◦. The data used have been
downloaded from the ECMWF API (http://apps.ecmwf.int/
datasets/data/interim-full-daily/levtype=sfc/) and resampled
over the 0.25◦ CCI grid. For further details about ERA-
Interim, the reader is referred to Dee et al. (2011).

2.1.2 ESA CCI soil moisture

The ESA CCI (http://www.esa-soilmoisture-cci.org/) pro-
vides long-term SM data sets for the period 1978–2015 (Liu
et al., 2011; Dorigo et al., 2015, 2017). The products are
provided on a global scale with a spatial sampling of 0.25◦

with daily temporal sampling in three different configura-
tions. The passive microwave product (hereinafter referred to
as “PASSIVE”) is provided for the period 1978–2015 and it
is generated by merging SM products derived from the Scan-
ning Multichannel Microwave Radiometer (SMMR, operat-
ing at 6.6 and 10.7 GHz, Owe et al., 2001), the SSM/I (op-
erating at 19.35 GHz, Owe et al., 2008), the TMI (operat-
ing at 10.65 GHz and above, Gao et al., 2006), the AMSR-E
(operating at 6.9 and 10.65 GHz, Owe et al., 2008) and its
successor AMSR2 (operating at 6.93, 7.3 and 10.65 GHz),
WindSat (operating between 6.8 and 37 GHz, Li et al., 2010
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and Parinussa et al., 2012), and the ESA Soil Moisture and
Ocean Salinity mission (SMOS, Kerr et al., 2012). Although
the PASSIVE data set is obtained by considering some of the
sensors used for creating the TMPA products, this will not
impact the comparison between TRMMRT and SM2RAIN-
CCI as different microwave frequencies are taken into ac-
count for rainfall estimation. The active data set (hereinafter
referred to as “ACTIVE”) is provided for the period 1991–
2015 and it is generated by merging active microwave satel-
lite retrievals from the European Remote Sensing satellites
(ERS-AMI, operating at 5.3 GHz) and from the Advanced
Scatterometer (ASCAT, operating at 5.255 GHz, Wagner et
al., 2013) onboard the Metop-A and -B satellites. The third
data set (hereinafter referred to as “COMBINED”) is ob-
tained by merging the ACTIVE and PASSIVE products. The
merging of the individual data sets is performed by means
of a weighted averaging which is parameterized using a
triple collocation (TC, Stoffelen, 1998) approach (Gruber et
al., 2017). In this study, we consider the ESA CCI SM prod-
uct at version v03.2. For further details regarding the ESA
CCI SM product development, sensor availability and per-
formances the reader is referred to Liu et al. (2011, 2012),
Dorigo et al. (2015, 2017) and Wagner et al. (2012).

2.2 ESA CCI soil moisture pre-processing

Before applying the SM2RAIN algorithm the following pre-
processing steps are applied to the ESA CCI SM data sets.
A static mask (Fig. 1) is used to mask out periods with high
frozen soil and snow probability, rainforest areas, and areas
with high topographic complexity. The latter two are pro-
vided within the ESA CCI SM data portal. Notice that deserts
are particularly challenging for SM retrieval from active in-
struments. Therefore, we use the passive data set only in such
areas (see Sect. 2.3), which typically provides more reliable
retrievals over desert areas (Dorigo et al., 2010). Moreover,
a dynamic mask is applied to SSM data on a daily basis in
order to remove observations characterized by issues in the
retrieval (frozen soil, dense vegetation). This mask is pro-
vided alongside each of the ESA CCI SM products. After
the application of the dynamic mask, many temporal gaps
are found within the SM time series. In order to reduce the
data gaps, the time series are interpolated to 00:00 UTC on a
daily basis. A maximum data gap of 3 days is considered for
the linear interpolation. Data gaps larger than 3 days are left
empty, i.e., no rainfall estimation is carried out within these
intervals. Prior to 1998, the SM data sets are characterized by
a low temporal coverage and a reduced data quality (Dorigo
et al., 2015). Thus, the SM2RAIN-CCI product is gener-
ated only for the period 1998–2015. The original ACTIVE
and PASSIVE CCI SM data sets have been read and prepro-
cessed by using routines developed in Python® language by
the TUWIEN Remote Sensing Research Group (Ciabatta et
al., 2016). After the preprocessing steps, the ESA CCI SM
data are ready to be used as input in SM2RAIN.

Figure 1. Data mask used for remove areas (red areas) character-
ized by issues in the soil moisture retrieval.

2.3 SM2RAIN algorithm and SM2RAIN-CCI rainfall
product generation

The SM2RAIN algorithm (Brocca et al., 2013, 2014) allows
rainfall estimates to be derived from SM observations. It is
based on the inversion on the following soil water balance
equation:

p(t)= Z∗ds(t)/dt + a · s(t)b, (1)

where p(t) is the estimated rainfall, Z∗ is the soil water ca-
pacity (soil depth times soil porosity), s(t) is the relative
soil saturation, t is the time, and a and b are two parame-
ters describing the nonlinearity between soil saturation and
drainage. Z∗, a and b are estimated through calibration. The
algorithm is based on the assumption that, during rainfall,
evapotranspiration is negligible and surface runoff occurs
only when the soil is fully saturated (Brocca et al., 2015).
SM2RAIN has also the main limitation of not being able to
estimate rainfall if the soil is close to saturation, since no SM
variations can be observed after rainfall events in such con-
ditions.

The algorithm has proved to accurately estimate rainfall
both on a regional (Abera et al., 2016; Brocca et al., 2013,
2015, 2016; Ciabatta et al., 2015, 2017) and on a global scale
(Brocca et al., 2014; Koster et al., 2016). For further details
about the SM2RAIN formulation, the reader is referred to
Brocca et al. (2013, 2014).

The SM2RAIN parameters are obtained by minimizing the
root mean square difference (RMSD) between the 5-day es-
timated rainfall and the GPCC-FDD data during three cali-
bration periods 1998–2001, 2002–2006 and 2007–2013 on a
pixel-by-pixel basis. We considered 5 days of accumulation
to reduce the amount of data and speed up the calibration
step. The use of different calibration periods relies on the
different data and sensors that we used for building the AC-
TIVE and PASSIVE SSM data sets (Table 1, see also Dorigo
et al., 2012). The calibration is performed on a pixel-by-pixel
basis separately for ACTIVE and PASSIVE. SM2RAIN was
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Table 1. Available sensors and temporal intervals considered for the SM2RAIN algorithm application.

Sensor (active/passive) Temporal interval

AMI-WS/SSMI & TMI 1 January 1998 to 30 June 2002
AMI-WS/AMSR-E 1 July 2002 to 31 December 2006
ASCAT-A & ASCAT B/AMSR-E & Windsat & SMOS & AMSR2 1 January 2007 to 31 December 2013
AMI-WS/SSMI & TMI & AMSR-E 1 January 1992 to 31 December 2006
ASCAT-A & ASCAT-B/AMSR-E & Windsat & SMOS & AMSR2 1 January 2007 to 31 December 2013

Figure 2. Analysis framework.

also applied to the COMBINED SSM data set, but we ob-
served a slight reduction of performance with respect to the
individual ACTIVE and PASSIVE products (see Table 2),
and hence the COMBINED SSM data set is not consid-
ered here. The deterioration is due to the different merging
techniques; while the ACTIVE and PASSIVE products are
merged in one product at the rainfall level by maximizing the
Pearson’s correlation against the benchmark, the CCI COM-
BINED SSM is created by adopting a triple-collocation anal-
ysis to the original SM time series. In order to match the dif-
ferent spatial resolutions of the considered data sets, GPCC-
FDD was regridded to the 0.25◦ CCI grid by using the grid-
data function implemented in MATLAB® R2012a, through
linear interpolation. After the application of SM2RAIN to
the ACTIVE and PASSIVE SM data sets, the two obtained
rainfall products are integrated through the following:

PSM2RAIN−CCI = kPACT+ (1− k)PPAS, (2)

where PACT and PPAS are the two rainfall data sets obtained
through the application of SM2RAIN to the ACTIVE and
the PASSIVE SM data sets, respectively, and PSM2RAIN−CCI
is the final SM2RAIN-CCI rainfall data set. The integra-
tion weights (k) are estimated through the following (Kim
et al., 2015):

k =
ρAB− ρAP · ρAB

ρPB− ρAP · ρAB+ ρAB− ρAP · ρPB
, (3)

where ρ is the Pearson correlation coefficient between two
data sets with the subscript A, P and B denoting the AC-
TIVE, the PASSIVE and the benchmark (GPCC-FDD in this
case) rainfall estimates, respectively. When one of the two
data sets (PACT or PPAS) is not available at a certain location
(e.g., due to unfavorable retrieval conditions), then only the
available one is used for the generation of the combined rain-
fall product. The workflow is depicted in Fig. 2. The data are
available in netCDF format via the CCI SM FTP server. The
rainfall data are provided in millimeters per day, over land
at 0.25◦ of sampling. The SM2RAIN-CCI data set temporal
coverage will be extended when new ESA CCI SM updates
will be released.

3 SM2RAIN-CCI performance

The SM2RAIN-CCI rainfall data set is available from 1 Jan-
uary 1998 to 31 December 2015 with daily temporal reso-
lution. The data are provided over a 0.25◦ grid on a global
scale, given the native spatial resolution of SM observation
of 25 and 50 km. The spatiotemporal coverage is reported
in Fig. 3. As can be seen, there is an increase of avail-
able data after 2002 and 2007, corresponding to the start
of the AMSR-E and ASCAT operations, respectively. Before
2002, the ESA CCI SM products are characterized by a small
amount of data, due to longer revisit times of the used satel-
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Table 2. Statistical summary of correlation coefficient (R) and root mean square difference (RMSD) for ACTIVE, PASSIVE and COM-
BINED rainfall data sets against GPCC-FDD during the three calibration periods 1998–2001, 2002–2006 and 2007–2013. For each score,
the median, mean, minimum, maximum and standard deviation values are reported.

Data set Period R (–) RMSD (mm)

Median Mean Min. Max. SD Median Mean Min Max SD

1998–2001 0.56 0.50 −1.00 1.00 0.26 10.15 12.56 0.76 157.84 11.11
Active 2002–2006 0.56 0.50 −1.00 1.00 0.29 9.33 12.14 0.13 151.48 11.08

2007–2013 0.63 0.57 −0.23 0.90 0.22 9.34 10.95 0.44 89.15 8.31

1998–2001 0.47 0.44 −1.00 1.00 0.23 10.40 12.94 0.13 126.65 10.90
Passive 2002–2006 0.55 0.50 −1.00 1.00 0.22 10.12 12.59 0.44 122.01 10.56

2007–2013 0.55 0.51 −0.44 1.00 0.21 10.26 12.58 0.34 117.55 10.61

1998–2001 0.52 0.49 −1 1 0.20 10.47 12.73 0.47 115.20 10.53
Combined 2002–2006 0.57 0.53 −1 1 0.20 9.86 12.21 0.28 130.83 10.17

2007–2013 0.63 0.60 −0.26 0.88 0.17 9.48 11.15 0.41 102.03 8.79

Figure 3. Hovmöller plot showing the spatial–temporal data avail-
ability, in percentage of the total annual available data (upper panel)
and the mean daily rainfall (in millimeters per day, lower panel) of
the SM2RAIN-CCI rainfall data set for different latitude bands.

lites. Before that date, the rainfall estimates obtained through
SM2RAIN should be used with caution because of the like-
lihood of missing precipitation events. The lack of data over
tropical areas and at high latitudes is due to the application
of the mask described above. Figure 3 also shows the mean
daily rainfall for the SM2RAIN-CCI data set during the anal-
ysis period. As can be seen, an increase in the daily values

can be observed after 2007, especially over the tropical areas,
where the seasonality is well reproduced, due to the higher
number of satellite overpasses.

When compared to the GPCC-FDD rainfall data set,
SM2RAIN-CCI shows relatively good performance for 5-
day rainfall accumulation in terms of both correlation and
RMSD, as drawn in Fig. 4 for the ±50◦ latitude bands dur-
ing the three calibration periods at 1◦ of spatial resolution,
in order to check the impact of the different spatial resolu-
tion considered for the benchmark. The scores are summa-
rized in Table 3. SM2RAIN-CCI rainfall shows relatively
good agreement with GPCC-FDD, especially over Africa,
Australia, India and South America in terms of correlation
(R). The RMSD pattern is related to the rainfall regimes. The
highest values are located in those regions characterized by
high total annual precipitation, e.g. tropical areas. The com-
parison also provides better performance for the 2007–2013
period than for the 1998–2001 and 2002–2006 periods due
to the better temporal coverage of the ESA CCI SM prod-
ucts and their improved accuracy (Dorigo et al., 2015). As
can be seen in Fig. 4, the median R (RMSD) obtained for
the 1998–2001 calibration period is 0.54 (10.94 mm), while
for the 2007–2013 period, a median value of 0.65 (9.6 mm)
is obtained. Indeed, due to the nature of the SM2RAIN algo-
rithm, more frequent satellite overpasses are expected to pro-
vide more reliable rainfall estimates. SM2RAIN-CCI shows
a lower performance over the Sahara desert and at high lati-
tudes, due to lower SM data quality over these regions. The
performance of the parent products ACTIVE and PASSIVE
are reported in Table 3. Figure 4 also displays the lower
performances obtained for the eastern US. A similar perfor-
mance pattern was also found by Massari et al. (2017), who
calculated global correlation of different rainfall data sets by
applying the extended TC (McColl et al., 2014) analysis.

A cross-comparison of SM2RAIN-CCI with GPCC,
TRMM, CMORPH, ERA-Interim and MSWEP is reported
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Table 3. Statistical summary of correlation coefficient (R) and root mean square difference (RMSD) for SM2RAIN-CCI against GPCC-FDD
during the three calibration periods 1998–2001, 2002–2006 and 2007–2013. For each score, the median, mean, minimum, maximum and
standard deviation values are reported.

Period R (–) RMSD (mm)

Median Mean Min. Max. SD Median Mean Min. Max. SD
1998–2001 0.53 0.50 −1.00 1.00 0.20 10.29 12.71 0.54 125.22 10.65
2002–2006 0.56 0.52 −1.00 0.90 0.21 9.96 12.49 0.45 123.34 10.52
2007–2013 0.65 0.62 −0.15 0.91 0.17 9.16 10.81 0.47 90.45 8.50

Figure 4. Global Pearson correlation (left column) and root mean square difference (right column) maps obtained between GPCC-FDD
and the SM2RAIN-CCI rainfall data set for 5-day accumulated rainfall during the periods 1998–2001 (a, d), 2002–2006 (b, e) and 2007–
2013 (c, f).

in Fig. 5. The figure displays the 1◦× 1◦ (±50◦) correla-
tion maps of 5 days of accumulated rainfall (left column)
and the differences in the mean annual rainfall (right col-
umn) between SM2RAIN-CCI and the other rainfall data
sets. The difference in the mean annual rainfall are calcu-
lated by subtracting the mean annual rainfall of each data set
to the one provided by SM2RAIN-CCI. The analysis shows
that SM2RAIN-CCI rainfall estimates are in good agreement
with the state-of-the-art data sets in terms of both R and
mean annual rainfall. Nonnegligible differences can be ob-

served over the Sahara desert, eastern US, South America,
the tropical areas and over Europe, where SM2RAIN-CCI
provides a smaller amount of rainfall than the other rainfall
data sets. However, very good performance can be observed
over Africa, Brazil, western US, India and Australia, in terms
of both R and mean annual rainfall. A detailed summary of
statistical scores is reported in Table 4.

Seven macroregions worldwide have been selected to
check the capability of the SM2RAIN-CCI in estimating
rainfall under different climatic conditions. Therefore, mean
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Figure 5. Correlation maps for 5 days of accumulated rainfall (left column) and differences in mean annual rainfall (right column) ob-
tained by comparing (from top to bottom) SM2RAIN-CCI and GPCC (a, b), SM2RAIN-CCI and TRMMRT (c, d), SM2RAIN-CCI and
CMORPH (e, f), SM2RAIN-CCI and ERA-Interim (g, h), and SM2RAIN-CCI and MSWEP (i, j) at 1◦ spatial resolution during the period
1 March 2000–31 December 2013.

monthly rainfall (MMR) was computed from GPCC-FDD
and SM2RAIN-CCI during the period 1998–2013 within
these regions, illustrated as green boxes in Fig. 6. From
Fig. 6, one can see that the temporal rainfall patterns agree

well in all considered macroregions. SM2RAIN-CCI pro-
vides a general underestimation before 2007, due to the in-
creased number of data gaps. Indeed, if the GPCC-FDD
MMR is estimated only when SM observations are available
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Table 4. Statistical summary of correlation coefficient (R) and difference in mean rainfall for the analyzed data sets against SM2RAIN-CCI
during the period 2000–2013. For each score, the median, mean, minimum, maximum and standard deviation values are reported.

Data set R (–) Rainfall difference (mm)

Median Mean Min. Max. SD Median Mean Min. Max. SD

GPCC-FDD 0.62 0.59 −0.06 0.87 0.16 −59.12 −127.67 −5474.30 360.66 257.67
TRMMRT 0.54 0.53 −0.06 0.89 0.18 −136.84 −176.16 −4944.90 1211.40 284.59
CMORPH 0.51 0.50 −0.29 0.89 0.19 −15.46 −55.31 −3678.20 1405.50 286.33
ERA-I 0.58 0.56 −0.17 0.85 0.16 −37.64 −136.91 −10 195.00 691.64 413.91
MSWEP 0.69 0.66 −0.05 0.91 0.16 −71.72 −132.13 −4633.60 1271.10 257.22

Figure 6. Mean monthly rainfall estimated by GPCC-FDD (blue line) and the new CCI-derived rainfall data set (red line) over the six
analysis boxes throughout North America (A), South America (B), Europe (C), Sahel (D), Asia (E), India (F) and Australia (G) during the
period 1998–2013. The blue lines draw the mean monthly rainfall estimated by GPCC-FDD when both a ground-based and a SM-derived
rainfall estimate is available.
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Figure 7. Yearly box plots for the correlation coefficients (R) and root mean square differences (RMSDs, in mm) between SM2RAIN-CCI
and MSWEP obtained on a global scale at 0.25◦ spatial resolution during the period 1998–2015. For each box, the red line represents the
median values and the blue box represents the 25th and 75th percentile, while the black dotted whiskers extend to the most extreme data
points.

(i.e. when both GPCC-FDD and SM2RAIN-CCI provide a
rainfall estimate), the two estimates are very close to each
other, for the entire analysis period.

3.1 SM2RAIN-CCI performance over time

Figure 7 shows box plots of R and RMSD values between
SM2RAIN-CCI and MSWEP on a yearly scale. The use of an
independent benchmark removes the effect of the algorithm
calibration against GPCC-FDD data set and (partly) the ef-
fect of in situ stations density on the benchmark reliability.
The comparison is carried out over the ±50◦ latitude band.
The SM2RAIN-CCI rainfall product generally agrees well
with MSWEP. An increasing trend in the performance can
be observed over time during the analysis period, highlight-
ing the impact of data availability on estimation uncertainty.
The most significant improvements can be observed in 2003
and 2007, corresponding to the start of AMSR-E and ASCAT
operations, respectively. Figure 7 shows that the SM2RAIN-
CCI product provides the lowest R (0.57) during 2001 and
the highest (0.80) during 2013. Similar patterns are found
for the RMSD score. The improvements are not just recog-
nizable in the median values, but also in the spread of R and
RMSD values within each year.

3.2 Regional-scale assessment

For the regional-scale assessment, three macroareas with a
high rain gauge station density are selected, which are Eu-
rope, India and Australia. SM2RAIN-CCI estimates are com-
pared against data from these ground-based measurements
on the 0.25◦ scale. Three ground-based rainfall data sets are

considered here to test the skills of SM2RAIN-CCI to iden-
tify precipitation events independently from GPCC-FDD,
used for calibration.

The comparison over Europe is carried out by considering
the so-called E-OBS rainfall data set (Haylock et al., 2008)
as a benchmark. This data set provides daily rainfall esti-
mates over the European area at 0.25◦ spatial resolution start-
ing from 1950. The estimates are obtained by interpolating
rainfall values from gauge stations over Europe via a three-
step kriging procedure. For this analysis, we consider the re-
gion between −9.875◦W and 24.875◦ E longitude and be-
tween 28.125 and 59.875◦ N latitude. Due to the TRMM or-
bit geometry, the considered TRMMRT data set covers only
the area between 28.125 and 49.875◦ N latitude. The analy-
sis is carried out during the period 2002–2015, in order to
avoid considering partly the data calibrated during the period
1998–2001. Figure 8 shows R and RMSD statistics against
E-OBS for 5 days of accumulated rainfall. As can be seen,
SM2RAIN-CCI provides a median R lower than 0.5, close
to that provided by TRMMRT and CMORPH. All rainfall
products show a large variability in terms of R, ranging be-
tween−0.4 and almost 1. In terms of RMSD, all the products
show median values close to 10 mm, with values ranging be-
tween approximately 5 and 20 mm. ERA-Interim provided
very good performance, in terms of both R and RMSD, due
to the stratiform-dominated precipitation regime over Europe
which is well identified by atmospheric models, guaranteeing
good performance of the ERA-Interim reanalysis product. It
is worth noting that ERA-Interim does not use rain gauge
data, but only other meteorological variables. MSWEP pro-
vided the best performance over Europe, due to the merging
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Figure 8. Correlation coefficient (a, c, e) and root mean square
difference (RMSD, b, d, f) box plots obtained by comparing
SM2RAIN-CCI (in red), TRMMRT (in green), CMORPH (in blue),
ERA-Interim (in black) and MSWEP (in magenta) with gauge-
based data sets over Europe (a, b), India (c, d) and Australia (e, f).

of different rainfall products. In general, SM2RAIN-CCI per-
forms quite well in southern Europe (Italy, Spain and south-
ern France). In central and northern Europe, observations are
subject to a high selective masking of frozen soil and snow,
which reduces the temporal observation density and hence
also the SM2RAIN retrieval accuracy.

The analysis over India is carried out during the period
2002–2015 using observed rainfall data provided by the In-
dia Meteorological Department. The considered region spans
from 70 to 90◦ E longitude and from 5 to 25◦ N latitude. As
can be seen in Fig. 8, R values are generally higher than
those obtained over Europe, most likely due to the strong
seasonal signal. The SM2RAIN-CCI data set shows a me-
dian R of 0.60, which is slightly lower than that achieved by
TRMMRT, CMORPH, ERA-Interim and MSWEP. In terms

of RMSD, values are generally higher than over Europe,
which result from the larger annual precipitation amount.
SM2RAIN-CCI performs very well over India and is less re-
liable along the coast and in the northern parts of the country
due to the impact of the Himalayas.

Over Australia, the Australian Water Availability Project
rainfall data, observed during the period 2010–2013, are
used as benchmarks. The analysis box spans from 120 to
160◦ E longitude and from 10 to 40◦ S latitude. The analy-
sis shows very good results in terms both of R and RMSD
(Fig. 8). SM2RAIN-CCI provides a median R of 0.71 which
is higher than that obtained with TRMMRT and CMORPH.
Moreover, R values are consistently higher than 0.5 in
the entire macroregion. In terms of RMSD, median value
of 11.90 mm is obtained for SM2RAIN-CCI, while TR-
MMRT and CMORPH provided median values of 16.56 and
13.52 mm, respectively. The large variability of errors is re-
lated to the different rainfall regimes in Australia, i.e. tropi-
cal climate in the northern sector and drier conditions in the
inland part. In tropical rainfall regimes, the SM2RAIN algo-
rithm is often subject to close-to-saturation soil conditions,
which lead to a general underestimation of precipitation. Re-
sults are consistent with those of Tarpanelli et al. (2017),
who applied the SM2RAIN algorithm to multiple satellite
SM products over India.

4 Data availability

The soil moisture derived rainfall dataset is freely available
at https://doi.org/10.5281/zenodo.846259.

5 Conclusions

This study presents a new rainfall data set obtained through
the application of the SM2RAIN algorithm (Brocca et
al., 2014) to the ACTIVE and the PASSIVE ESA CCI SM
products, named SM2RAIN-CCI (Dorigo et al., 2017), dur-
ing the period 1998–2015. The algorithm is calibrated us-
ing the GPCC-FDD data set. Due to the different charac-
teristics of the satellite sensors used for creating the input
SM data sets, three different calibrations periods are con-
sidered: (1) 1998–2001, (2) 2002–2006 and (3) 2007–2013.
SM2RAIN-CCI data set is available on a global scale (over
land) with a daily temporal sampling on a 0.25◦ regular grid.
A mask is applied to the data set in order to remove pixels and
observations characterized by high topographic complexity,
frozen soil and high snow probability.

The SM2RAIN-CCI data set is compared to three differ-
ent global (or quasi-global) state-of-the-art rainfall products
in order to check its capability in rainfall estimation. In gen-
eral, the SM2RAIN-CCI shows relatively good performance
in precipitation estimation, especially during the 2007–2013
period (see Figs. 4 and 5). On a global scale and for the en-
tire analysis period, 5-day SM2RAIN-CCI rainfall estimates
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provide a median R of 0.67 when compared to MSWEP (see
Fig. 7).

The product is further evaluated over three macroareas
(Europe, India and Australia) where it provides satisfactory
results, in terms of both R and RMSD, when compared to
spatially interpolated high-density rain gauge measurement
networks (see Fig. 8). Higher errors are found over India and
Australia due to the larger total rainfall amounts of precip-
itation. However, the analysis also showed relatively good
results over five other considered macroregions (see Fig. 5)
when compared to GPCC-FDD. In these regions, the impact
of reduced temporal coverage on retrieval accuracy is clearly
visible.

The multi-sensor data sets provided by ESA CCI and the
application of SM2RAIN could open up new perspectives
and opportunities in the use of satellite rainfall products over
developing countries or in remote areas with nonexisting or
spatially sparse ground monitoring networks. The new prod-
uct is potentially suitable for several applications in the do-
mains of climate (due to the long temporal coverage) and hy-
drology (due to good capabilities in accumulated rainfall es-
timation), complementing other state-of-the-art rainfall prod-
ucts. It is worth nothing that due to the calibration strategy,
the data set is not suitable for trend analysis. Moreover, the
SM2RAIN-CCI is completely independent from other exist-
ing state-of-the-art precipitation products, therefore offering
an additional long-term data set that can be used for indepen-
dently evaluating these global-scale precipitation products as
shown by Massari et al. (2017).
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