



## Corrigendum to

## "Global and regional emission estimates for HCFC-22", Atmos. Chem. Phys., 12, 10033–10050, 2012

E. Saikawa<sup>1</sup>, M. Rigby <sup>2,1</sup>, R. G. Prinn <sup>1</sup>, S. A. Montzka<sup>3</sup>, B. R. Miller <sup>3</sup>, L. J. M. Kuijpers<sup>4</sup>, P. J. B. Fraser<sup>5</sup>, M. K. Vollmer <sup>6</sup>, T. Saito <sup>7</sup>, Y. Yokouchi<sup>7</sup>, C. M. Harth<sup>8</sup>, J. M.ühle<sup>8</sup>, R. F. Weiss <sup>8</sup>, P. K. Salameh <sup>8</sup>, J. Kim<sup>9,8</sup>, S. Li<sup>9</sup>, S. Park<sup>9</sup>, K.-R. Kim<sup>9</sup>, D. Young<sup>2</sup>, S. O'Doherty<sup>2</sup>, P. G. Simmonds<sup>2</sup>, A. McCulloch<sup>2</sup>, P. B. Krummel<sup>5</sup>, L. P. Steele <sup>5</sup>, C. Lunder<sup>10</sup>, O. Hermansen<sup>10</sup>, M. Maione <sup>11</sup>, J. Arduini<sup>11</sup>, B. Yao<sup>12</sup>, L. X. Zhou<sup>12</sup>, H. J. Wang<sup>13</sup>, J. W. Elkins<sup>3</sup>, and B. Hall<sup>3</sup>

<sup>1</sup>Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, MA, USA

<sup>2</sup>School of Chemistry, University of Bristol, Bristol, UK

<sup>3</sup>Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA

<sup>4</sup>Eindhoven Centre for Sustainability, Technical University Eindhoven, Eindhoven, The Netherlands

<sup>5</sup>Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia

<sup>6</sup>Laboratory for Air Pollution and Environmental Technology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Dubendorf, Switzerland

<sup>7</sup>National Institute for Environmental Studies, Tsukuba, Japan

<sup>8</sup>Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA

<sup>9</sup>Seoul National University, Seoul, South Korea

<sup>10</sup>Norwegian Institute for Air Research, Kjeller, Norway

<sup>11</sup>The University of Urbino, Urbino, Italy

<sup>12</sup>Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

<sup>13</sup>Georgia Institute of Technology, Atlanta, GA, USA

Correspondence to: E. Saikawa (esaikawa@mit.edu)

We have recently found a numerical error in our MOZART coarse-resolution simulation and we have rerun and recalculated the optimized emissions for the global inversion. While the changes are small, we are replacing Figs. 3 and 4 as well as Table 2 published in Atmos. Chem. Phys. The values that have changed are optimized emissions (blue line and the blue-shaded area) in Fig. 3, three posterior values and their shaded areas in Fig. 4, and posterior global emissions in the global inversion (Table 2, 3rd column from the left).

|      | Prior Global | Posterior Global                | Posterior Global                  | Global      | Regional consumption |      |                   |         |                  |                    |               |                  |         |
|------|--------------|---------------------------------|-----------------------------------|-------------|----------------------|------|-------------------|---------|------------------|--------------------|---------------|------------------|---------|
| Year | emissions    | emissions<br>(Global inversion) | emissions<br>(Regional inversion) | consumption | Asia                 | Asia | Central<br>Africa | America | North<br>America | Central<br>America | Latin<br>East | Middle<br>Europe | Oceania |
| 1990 | 217          |                                 |                                   |             |                      |      |                   |         |                  |                    |               |                  |         |
| 1991 | 227          |                                 |                                   |             |                      |      |                   |         |                  |                    |               |                  |         |
| 1992 | 235          |                                 |                                   |             |                      |      |                   |         |                  |                    |               |                  |         |
| 1993 | 236          |                                 |                                   |             |                      |      |                   |         |                  |                    |               |                  |         |
| 1994 | 241          |                                 |                                   |             |                      |      |                   |         |                  |                    |               |                  |         |
| 1995 | 237          | $221\pm31.9$                    |                                   |             |                      |      |                   |         |                  |                    |               |                  |         |
| 1996 | 239          | $238\pm33.0$                    |                                   |             |                      |      |                   |         |                  |                    |               |                  |         |
| 1997 | 242          | $250\pm28.9$                    |                                   |             |                      |      |                   |         |                  |                    |               |                  |         |
| 1998 | 246          | $237\pm20.2$                    |                                   |             |                      |      |                   |         |                  |                    |               |                  |         |
| 1999 | 250          | $249 \pm 21.2$                  |                                   |             |                      |      |                   |         |                  |                    |               |                  |         |
| 2000 | 255          | $297 \pm 25.1$                  |                                   |             |                      |      |                   |         |                  |                    |               |                  |         |
| 2001 | 267          | $279\pm21.8$                    |                                   | 329         | 133                  | 12.2 | 7.30              | 105     | 1.89             | 13.2               | 15.2          | 36.8             | 2.53    |
| 2002 | 279          | $282 \pm 16.7$                  |                                   | 298         | 128                  | 5.35 | 7.62              | 108     | 1.85             | 11.2               | 16.6          | 16.0             | 2.85    |
| 2003 | 289          | $284 \pm 14.9$                  |                                   | 321         | 134                  | 7.17 | 9.26              | 114     | 1.59             | 12.9               | 17.5          | 22.4             | 2.34    |
| 2004 | 302          | $294 \pm 15.2$                  |                                   | 354         | 163                  | 6.23 | 9.47              | 109     | 2.40             | 15.9               | 21.9          | 23.3             | 2.33    |
| 2005 | 331          | $336 \pm 16.0$                  | $222\pm24.1$                      | 409         | 213                  | 7.17 | 9.41              | 116     | 2.88             | 14.8               | 21.3          | 21.8             | 2.20    |
| 2006 | 352          | $341 \pm 16.9$                  | $310\pm23.3$                      | 432         | 232                  | 9.76 | 11.0              | 104     | 4.02             | 16.8               | 31.7          | 20.6             | 1.88    |
| 2007 | 376          | $378 \pm 17.8$                  | $351\pm22.6$                      | 505         | 273                  | 13.5 | 15.4              | 120     | 3.27             | 20.6               | 37.6          | 20.0             | 1.80    |
| 2008 | 404          | $374 \pm 18.9$                  | $315\pm23.4$                      | 468         | 244                  | 14.3 | 18.5              | 102     | 3.80             | 21.1               | 42.0          | 20.9             | 1.46    |
| 2009 | 437          | $389 \pm 25.8$                  | $367\pm26.1$                      | 478         | 275                  | 12.8 | 29.4              | 69.3    | 3.57             | 24.5               | 46.4          | 15.3             | 1.60    |

**Table 2.** Prior and Posterior Global Total Emissions and Annual Global/Regional Consumption of HCFC-22 ( $Ggyr^{-1}$ ). Consumption data is taken from UNEP (2011).



**Fig. 3.** Global total HCFC-22 emissions. Prior emission estimates using EDGAR v4, the growth rate between 1990–2000 (McCulloch et al., 2003), and HCFC-22 consumption between 2001–2009 (UNEP, 2011) are shown in diamonds. Polynomial fit of these "raw" prior values that we used in our global inversion are shown as a red line with a shaded (pink) 40 % uncertainty range. Optimized emissions from this study are shown in blue with our calculated posterior uncertainty. Previously published bank emission estimates (blue crosses) (IPCC/TEAP, 2005; UNEP, 2007), "bottom-up" emission estimates (green stars) (UNEP/TEAP, 2006), 1-box model emission estimates (pink circle) (Montzka et al., 2009), as well as new AGAGE 12-box model emission estimates (black line) are also shown for comparison.



**Fig. 4.** Global total prior (solid lines) and posterior (dash lines) HCFC-22 emissions using the following three sets of a priori emissions: polynomial fit prior (blue), "raw" prior (green), and linear fit prior (red).