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It is sometimes argued that, from an ecological point of view, population-, community-, 
and ecosystem-level endpoints are more relevant than individual-level endpoints for 
assessing the risks posed by human activities to the sustainability of natural resources. 
Yet society values amenities provided by natural resources that are not necessarily 
evaluated or protected by assessment tools that focus on higher levels of biological 
organization. For example, human-caused stressors can adversely affect recreational 
opportunities that are valued by society even in the absence of detectable population-
level reductions in biota. If protective measures are not initiated until effects at higher 
levels of biological organization are apparent, natural resources that are ecologically 
important or highly valued by the public may not be adequately protected. Thus, 
environmental decision makers should consider both scientific and societal factors in 
selecting endpoints for ecological risk assessments. At the same time, it is important to 
clearly distinguish the role of scientists, which is to evaluate ecological effects, from 
the role of policy makers, which is to determine how to address the uncertainty in 
scientific assessment in making environmental decisions and to judge what effects are 
adverse based on societal values and policy goals. 
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INTRODUCTION 

Ecological risk assessment is a process for evaluating the likelihood of adverse 
ecological effects[1,2]. It is designed to provide environmental decision makers with 
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a scientific evaluation of the risks posed to ecological resources by alternative 
management actions, ranging from the regulation of hazardous waste sites to the 
management of entire watersheds affected by multiple stressors. 

A critical component of the risk assessment process is the selection of 
assessment and measurement endpoints. Assessment endpoints are the environmental 
entities that are targets of the risk assessment, and measurement endpoints are the 
attributes that are actually measured[1,2]. For example, the reproductive success of 
Coho salmon is an assessment endpoint, while egg survival is a measurement 
endpoint. 

Although numerous documents provide guidelines for endpoint selection[1,2], 
there remains some confusion about the role of science in the process. Some 
investigators argue that, from a scientific point of view, population- and higher-level 
endpoints should take precedence based solely on their ecological relevance[3,4,5]. 
However, as the EPA�s ecological risk assessment guidelines make clear, scientific 
considerations are only part of the overall process of endpoint selection[2]. In many 
cases, social, economic, and policy considerations argue for the assessment of 
individual-level endpoints, as is the case for legally protected habitats or organisms, 
such as endangered species[6]. 

Even from a scientific perspective, there are compelling reasons for concluding 
that higher-level endpoints are not always appropriate or sufficient for assessing 
ecological risks. Whereas the measurement of higher-level endpoints may provide 
information about ecological condition, it may provide little information about the 
causes of observed effects. In contrast, individual-level endpoints are often preferred 
for ease and reliability of measurement and their relatively high statistical power to 
detect effects[7,8]. Moreover, individual effects are precursors to population and 
ecosystem effects, and thus individual-level effects help inform risk managers about 
potential future risks to higher levels of biological organization.  

In this paper, we consider how endpoint selection is constrained by the need to 
balance ecological and management relevance with measurement validity and 
practicality, including the amount of time and money needed to complete a 
scientifically valid study. We outline key scientific, social, and policy considerations 
in the selection of endpoints and discuss some reasons why individual-level 
endpoints are sometimes preferable. We conclude by proposing that it is important to 
consider all of these factors to ensure that the risk assessment process will support the 
overall goal of environmental protection. 

SCIENTIFIC CONSIDERATIONS IN SELECTING RISK 
ASSESSMENT ENDPOINTS 

According to the EPA�s Guidelines for Ecological Risk Assessment, selection of 
assessment endpoints should consider (1) susceptibility to the stressor, (2) ecological 
relevance, and (3) policy goals and societal values[2]. In this section, we consider 
issues related to ecological relevance. 
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Although important for evaluating overall ecological condition, there can be 
ambiguity and uncertainty in population-, community-, and ecosystem-level 
assessments resulting from natural variability, measurement difficulties, lack of data, 
and limitations of scientific understanding[9].  

Detection of higher-level effects is difficult in large part because of the natural 
variation inherent in biological populations[7,8]. For example, studies show that it 
can take at least a decade or two to detect a �signal� from the �noise� in fish 
population data[10]. Natural variation also means that it is often difficult to establish 
�baseline� or �average� conditions against which the significance of impacts can be 
evaluated[7,8,11]. Long-term monitoring can help reduce uncertainties, but this is 
costly and impractical in many contexts[9,12].  

Cause-effect relationships are also difficult to establish at higher levels of 
biological organization[13], although the stressor identification process has advanced 
in recent years[14]. Populations, communities, and ecosystems reflect effects of 
multiple stressors interacting in complex ways[15]. Characteristics of these entities 
integrate all stressor effects, and therefore it can be very difficult to attribute 
population- or higher-level ecological effects to any particular stressor. For example, 
distinguishing the relative impacts of various environmental stressors on declines of 
salmon (Oncorhynchus spp.) in the Pacific Northwest, lake trout (Salvelinus 
namaycush) in the Great Lakes, and many other fish species has proven to be very 
difficult despite years of study by numerous researchers[16].  

Defining the spatial and temporal boundaries of higher-level ecological entities 
is also difficult and often arbitrary[17]. For example, a fish population can be defined 
on the basis of the local stock or in terms of its regional extent. Mortalities of 
individuals may significantly reduce the local population, while effects on the 
regional population may remain undetectable.  

A prominent example of conflicts over population-level impacts has been the 
ongoing debate over the impacts on fish populations caused by larval entrainment in 
the cooling water intakes of power plants[18,19].   Most assessments of power plant 
entrainment have been based on population models with significant uncertainties, 
such as the potential role of density-dependent compensation in response to power 
plant mortality. As a result, there has been little agreement about whether or not 
adverse impacts are occurring, despite the enormous losses of aquatic organisms at 
power plant intakes. 

There is much less uncertainty in individual-level assessments[20]. In most 
cases, individuals can be defined with less ambiguity and greater ease. Measurement 
and sampling errors at the individual level are also less than those associated with 
estimates of populations[7,8]. As a result of greater data availability and reliability, 
environmental effects are more likely to be detected at the individual level than at 
higher levels of biological organization. 

For example, Bennett et al. [21] found a high percentage of abnormalities in 
larval striped bass that were thought to result from herbicide use in rice fields, as 
indicated by the absence of abnormalities following changes in culture practices that 
reduced herbicide release into rivers with striped bass. In addition, Bailey et al.[22] 
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FIGURE 1. Tradeoffs in endpoint selection. 
 

found that the decline of striped bass in California was correlated with increased 
herbicide use. Nevertheless, Kimmerer et al.[23] could find no evidence of a 
population-level response.   

Environmental decision makers must often balance the need for ecological 
relevance with the need for measurement ease and reliability in deciding what 
endpoints to evaluate (Fig. 1). In cases where a stressor directly affects individuals, 
but population or higher-level effects are unclear though potentially important, 
individual-level endpoints may need to take precedence. Indeed, effects on 
individuals can be important predictors of potential effects on populations or 
communities that cannot be measured directly. 

The Role of Social Values and Policy Goals in Endpoint Selection 

While scientific considerations are important, they are not the only factors that 
environmental decision makers must take into account in evaluating the potential for 
adverse effects. In fact, the EPA�s Ecological Risk Assessment Guidelines stress that 
the appropriate level of biological organization for an assessment depends on societal 
values and policy goals as well as data availability and ecological relevance[2]. 
Indeed, society clearly places value on ecological attributes that are not necessarily 
captured by assessing only higher levels of biological organization, and thus 
individuals may warrant protection even in lieu of population-level effects.  

For example, a survey following the Nestucca oil spill in the state of 
Washington found that local residents believed that preventing the death of seabirds 
from oil spills is important, even if seabird populations appear unaffected[24].  

Similarly, in a regional survey conducted as part of a natural resource damage 
assessment for Green Bay, people expressed high value (hundreds of millions of 
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dollars) for restoring bird and fish injuries from PCBs, even though they were 
explicitly told that there may not be population-level effects[25]. 

Regulatory Guidance 

The value that society places on individual organisms is reflected in many current 
regulations and statutes. As described below, the Clean Water Act (CWA), the 
Migratory Bird Treaty Act, the Comprehensive Environmental Response, 
Compensation and Liability Act (CERCLA), the Oil Pollution Control Act (OPA), 
the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA), and relevant case 
law authorize that effects at the individual organism level be assessed in making 
regulatory decisions.  

In some cases, risk assessments and regulatory programs consider effects on 
individuals to be important as indicators of effects on populations. In these cases, 
individual-level effects are a measurement endpoint for the population, which is the 
assessment endpoint. An example is provided by the National Pollution Discharge 
Elimination System (NPDES) permit program. Under section 301(b)(1)(c) of the 
CWA, effluent limits must be placed in NPDES permits as necessary to meet water 
quality standards. To implement this requirement, the EPA and most states rely on 
toxicity tests that determine the effects of discharges on individual organisms[26]. By 
evaluating the effects of pollutants on growth, reproduction, and mortality of 
individuals, the EPA uses individual impacts as surrogates and precursors of 
population and ecosystem impacts. 

In other cases, risk assessments and regulatory programs are intended to protect 
individual members of a species, regardless of potential effects on the population of 
the species. For example, the Migratory Bird Treaty Act, 16 U.S.C. §§ 703-712, 
prohibits, among other things, the killing of individual migratory birds [16 U.S.C. 
§703]. The act does not require evidence that bird mortalities affect a bird population; 
effects on individual organisms are the only test. 

Another example is provided by CERCLA [42 U.S.C. Section 9601 et seq.] and 
OPA [33 U.S.C. Section 2701 et seq.], which require that the public be compensated 
for natural resource injuries resulting from an oil spill or hazardous substance release. 
These regulations stipulate that the value of lost resources can include the value of 
injured individuals of marine species as well as the value that society places on just 
knowing that a natural area exists. 

A final example of regulations designed to protect individuals is provided by 
FIFRA, 7 U.S.C., which regulates the manufacture, distribution, and use of 
pesticides. The act is intended to protect the �water, air, land, and all plants and man 
and other animals living therein, and the interrelationships which exist among these� 
[7 U.S.C. §136 (j)] from unreasonable adverse effects [7 U.S.C. §136 (d)]. Under 
FIFRA, effects on biological populations are not a required element of risk 
assessment. A 1989 decision by the U.S. Court of Appeals for the Fifth Circuit 
illuminates how �unreasonable adverse effects� are interpreted under FIFRA. In 
1988, the EPA canceled registration for the pesticide diazinon unless registration was 
amended to prohibit use on golf courses and sod farms, based on the EPA�s 
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determination that the use of the pesticide in these cases posed an unreasonable risk 
to birds [53 Fed. Reg. 11119].  

Ciba-Geigy Corporation, diazinon�s major producer, petitioned the EPA�s 
determination for review by the courts. Among other issues, Ciba-Geigy presented 
the argument that a risk is unreasonable only if it endangers bird populations, not just 
individuals [55 Fed. Reg. 31137]. The court rejected Ciba-Geigy�s argument, stating 
that �FIFRA gives the Administrator sufficient discretion to determine that recurring 
bird kills, even if they do not significantly reduce bird populations, are themselves an 
unreasonable environmental effect� [874 F.2d 277]. 
 The court clearly sided with the EPA in its determination that effects at the 
individual organism level can be interpreted as unreasonable environmental effects. 

Risk Assessment in the Overall Context of Environmental 
Decision Making 

Current guidelines by the EPA and other environmental agencies indicate that 
whether estimated risks are considered �adverse,� �undesirable,� or �unacceptable� 
should be based on a range of factors, including management goals, policy 
considerations, societal values, and legal mandates, as well as underlying scientific 
understanding[2]. Thus, there is no universal definition of �adverse environmental 
impact,� nor can there be. Ultimately, the decision of what is �adverse� rests with 
policy makers, not scientists. As Rykiel[27] noted: �... science deals with true and 
false, whereas society deals with good and bad.� While someone must decide what 
ecological conditions are good or bad, it should not be scientists if we are to maintain 
scientific impartiality[28,29]. 

Environmental decision makers face a difficult task in choosing from among 
what are often competing social values. Even cost-benefit comparisons of 
management options provide few clear-cut answers. As Lackey[29] pointed out: �The 
marketplace, the most common adjudicator of societal preferences, is never totally 
unconstrained, nor do most participants have much understanding of the long-term 
ecological consequences of their individual market decisions. Thus, economics has 
an important role in resolving competing societal preferences, but is insufficient in 
itself.� Moreover, many biological resources that are valued by society are not traded 
in markets, and failure to account for these assets can seriously bias environmental 
decision making[30].  

When individual-level effects are considered, the regulatory scope for 
minimizing impacts to environmental resources is greater than it is for minimizing 
higher-level impacts. This is because individual effects are more likely to be 
detected. A focus on the most readily detected effects allows risk managers to 
undertake actions to reduce impacts before more serious damage to higher levels of 
organization can occur. 

Many resource agencies recognize that if protective measures are not initiated 
until effects at higher levels of biological organization are apparent, natural resources 
that are ecologically important or highly valued by society may not be adequately 
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protected. This has led these agencies to exercise a �precautionary approach� to 
environmental management[31]. The precautionary approach aims to prevent 
irreversible damage to the environment by implementing strict conservation measures 
even in the absence of unambiguous scientific evidence that environmental 
degradation is being caused by human stressors[32]. 

The precautionary approach is now being applied in fisheries management. For 
example, in a recent publication, the National Marine Fisheries Service (NMFS) 
noted that �all fishing activities have environmental impacts and that it is not 
appropriate to assume that these impacts are unimportant until proven 
otherwise[31].� The report concluded that the collapse of fish stocks worldwide has 
resulted in part because corrective actions were often delayed or not implemented 
when scientific information on stock status was in doubt. NMFS noted that, in 1995, 
the Food and Agriculture Organization (FAO) of the United Nations drafted an 
International Code of Conduct that emphasized that �the absence of adequate 
scientific information should not be used as a reason for postponing or failing to take 
conservation management measures.�[31] 

CONCLUSIONS 

While the purpose of an ecological risk assessment is to provide environmental 
decision makers with a scientific evaluation of the risks posed to ecological 
resources, science cannot answer the difficult question of how much impact is 
acceptable[29,33,34,35,36]. The distinction between the role of scientists in 
evaluating ecological effects and the role of policy makers in judging the adversity of 
effects is important, but often overlooked. To avoid unnecessary conflicts, it is 
critical to clearly separate the roles of scientists and policy makers in the risk 
assessment process. Failure to do so may not only undermine the objectivity 
necessary for valid risk assessment, but can ultimately interfere with the overriding 
goal of environmental protection. 
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