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Abstract

Given that the pathogenesis of ankylosing spondylitis (AS) remains unclear, the aim of this study was to detect the potentially
functional pathway cross-talk in AS to further reveal the pathogenesis of this disease. Using microarray profile of AS and
biological pathways as study objects, Monte Carlo cross-validation method was used to identify the significant pathway cross-
talks. In the process of Monte Carlo cross-validation, all steps were iterated 50 times. For each run, detection of differentially
expressed genes (DEGs) between two groups was conducted. The extraction of the potential disrupted pathways enriched by
DEGs was then implemented. Subsequently, we established a discriminating score (DS) for each pathway pair according to
the distribution of gene expression levels. After that, we utilized random forest (RF) classification model to screen out the top
10 paired pathways with the highest area under the curve (AUCs), which was computed using 10-fold cross-validation
approach. After 50 bootstrap, the best pairs of pathways were identified. According to their AUC values, the pair of pathways,
antigen presentation pathway and fMLP signaling in neutrophils, achieved the best AUC value of 1.000, which indicated that this
pathway cross-talk could distinguish AS patients from normal subjects. Moreover, the paired pathways of SAPK/JNK signaling
and mitochondrial dysfunction were involved in 5 bootstraps. Two paired pathways (antigen presentation pathway and fMLP
signaling in neutrophil, as well as SAPK/JNK signaling and mitochondrial dysfunction) can accurately distinguish AS and control
samples. These paired pathways may be helpful to identify patients with AS for early intervention.

Key words: Ankylosing spondylitis; Monte Carlo cross-validation; Differentially expressed genes; Random forest classification;
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Introduction

Ankylosing spondylitis (AS) is a chronic inflammation
disorder that attacks sacroiliac joints and spine (1) with a
0.3% incidence rate in the Asian population (2). AS causes
severe back pain, stiffness and new bone formation, and
results in progressive joint ankylosis further decreasing
quality of life (3). Unfortunately, the disease condition, includ-
ing disease activity, progression and prognosis, are very
hard to define in AS (4). Until now, the underlying mole-
cular processes driving the AS progress are still unclear.
Consequently, investigation on the pathogenesis of AS is
urgently needed.

In recent years, genetic-associated research has
detected several new genes related to AS. Of note, some
of these genes seem specific for AS, but others have
pleiotropic associations (5,6). Moreover, these studies
offer little information concerning changes in gene activity
during the progression of the disease. Fortunately, gene
expression profiling provides a ‘‘snapshot’’ of cellular

activity, supplying information on molecular mechanisms
mediating disease changes, and can produce diagnostic
gene sets. A number of recent studies have defined tran-
scriptional profiles generated from peripheral blood mono-
nuclear cells for AS. GSE25101 is one of the microarray
profiles of AS that was reported by Pimentel-Santos et al.
(7), who identified a set of differentially expressed genes
(DEGs), which were highly connected with AS, partially
regulating the inflammatory process and joint destruction.
In 2015, Zhao et al. (8) used the same microarray profile of
GSE25101 to predict the potential AS-related genes, such
as RPL17, MRPL22, PSMA6 and PSMA4. In 2015, also
using the same data, Shi et al. (9) identified 284 DEGs
correlated with AS (such as MYH9, BCL11B and CD4),
and detected the pathway for immune response regula-
tion. Nevertheless, so far, most studies that assessed the
genetics of AS focused on a single gene or a single path-
way. However, pathway cross-talk is frequently neglected.
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In general, different pathways interact with each other,
and an abnormity in one pathway may influence the
activities of many other related pathways. Understanding
pathway interactions might be beneficial to explore the
pathogenesis of AS. No reliable method is used to
quantify the cross-talks for pathway pairs (10). However,
integrating DEGs information and pathway information
with Monte Carlo cross-validation has been proposed to
quantify the cross-talk between pathways pairs (11).
Monte Carlo cross-validation provided by Shao (12) has
been demonstrated to decrease the risk of overfitting the
model, and has been used to evaluate the prediction
ability of the selected model.

Thus, in the current study, to explore the pathogenesis
of AS, we undertook the microarray data analysis of AS to
identify the significant pathways considering the functional
dependency among pathways using Monte Carlo cross-
validation. We believe that our results may contribute to a
better understanding of the molecular processes driving
AS progression.

Material and Methods

Using microarray profile as well as biological pathways
as study objects, Monte Carlo cross-validation method was

used to identify the significant pathways. In this process, all
steps were iterated 50 times. For each run, we implemented
differential expression analysis (DEA), pathways enrich-
ment analysis, calculation of a discriminating score (DS),
and random forest (RF) classification. After 50 runs, the
top 10 pathway pairs with the best area under the curve
(AUC) values were identified (significant paired path-
ways). The flow chart of the analysis is shown in Figure 1.

Microarray data
The expression profile of GSE25101 deposited by

Pimentel-Santos et al. (7) was downloaded from Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/),
based on the GPL6947 platform of Illumina Human HT-
12 V3.0 expression BeadChips. In the GSE25101, there
were 16 active AS patients and 16 normal controls with
matched gender and age. Included AS patients had Bath
Ankylosing Spondylitis Disease Activity Index (BASDAI)
scores 44 and Bath Ankylosing Spondylitis Functional
Index (BASFI) scores 44. The raw probe annotation files
were obtained for subsequent analysis.

Differential expression analysis
The raw probe sets were pre-processed by means of

robust multiarray averaging method. Then, the probes were

Figure 1. Flowchart displaying a brief overview of the main protocol. DE: differential expression; DS: discriminating score.
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mapped to the genomics, and the human gene symbols
were obtained. Afterwards, Bayesian approach (13) was
utilized to detect DEGs. With the goal of avoiding the
multiple testing bias, which might cause false positive
results, the Benjamini-Hochberg method (14) was used for
multiple correction, and false discovery rate (FDR) distribu-
tion for each gene was obtained. Eventually, |log2FC| 41
and FDR o0.05 were set as the cut-off criteria to extract
DEGs between AS and control samples.

Pathway enrichment analysis
To extract a cluster of pathways significantly enriched

by DEGs, pathway enrichment analysis from DEGs was
conducted. First, a total of 589 biological pathways were
derived from the Ingenuity Pathways Analysis (IPA) software
(http://www.ingenuity.com/) (15). Then, we assessed the
enrichment effect based on Fisher’s exact test, aiming
to place DEGs in an IPA pathway and to screen out
the pathways responsible for coordinating their activity.
The pathways with Po0.01 were identified. Afterwards,
the raw P values were corrected for multiple testing
through Benjamini-Hochberg procedure (14). In the current
study, the pathways with FDR o0.05 were considered as
differential pathways.

DS for pathway cross-talk
The DS is often used to compare the expression levels

in the samples with amplification and the samples with-
out amplification (16). The DS indicates the relationships
between pathway pairs. Therefore, we calculated the DS
to further analyze the pathway cross-talks in our study. In
detail, we computed a DS by comparing the expression
levels of each pathway pair involved in DEGs in each
sample based on the formula used in a previous study by
Orsetti et al. (16). A larger DS denotes a higher difference
in activity of the pairs.

Selecting the best pathway pairs
RF is a powerful classifier utilized to handle two issues

of variable selection, and it has become a standard anal-
ysis tool in bioinformatics (17). Thus, in the present work,
we employed a RF model on the pathway pairs to estimate
the classification performance of this method according to
AUC index. The 10-fold cross-validation method was utilized
to calculate AUC based on mtry and ntree parameters. The
‘mtry’, is the number of variables randomly sampled as
candidates at each split, and is equal to sqrt(p), where p is
the variable count in the data matrix. The ‘ntree’, is the
count of trees grown, amounted to 500. Subsequently, we
sorted all AUC values in descending order, and the top 10
pathway pairs were extracted.

As reported, during the validation analysis, the ratio of
6 to 4 is a commonly used distribution proportion (18).
Thus, the Monte Carlo cross-validation method randomly
assigned 60% of the original microarray profile to make
up for the training set and assigned the remaining 40%

to form the testing data. This procedure was iterated
50 times, randomly producing new training and testing
sets each time. For each run, we used a training set to
extract DEGs, the pathways enriched by DEGs, and the
DS values for the top 10 pathway pairs with the best AUCs
between AS and control groups; we utilized the testing
data to validate the top 10 pathway pairs. At the end of the
50 runs, the top 10 pathway pairs sorted in descending
rank were extracted in 50 bootstraps. Eventually, the list of
the top 10 pathway pairs ranked for all 50 bootstraps were
considered as the significant ones.

Results

DEGs identification and pathway enrichment analysis
After robust microarray analysis, 11,586 genes were

identified for differential expression analysis. According
to |log2FC| 41 and FDR o 0.05, 19 genes were found to
be differentially expressed between AS and control samples,
as listed in Table 1. Moreover, 46 significant pathways
enriched by DEGs were detected. Table 2 displays the
names of significant pathways enriched from DEGs, the
corresponding FDR values, count of genes for each path-
way, and count of common genes between DEGs and
genes in the pathways. Then, we computed a DS via com-
paring the expression levels of each pair of pathways
involved in DEGs in each sample. The distribution of
DS values is shown in Supplementary Table S1. The DS
values of 4 pathway cross-talks were higher than 0.1,
which included the role of NFAT in regulation of the immune
response/prostanoid biosynthesis (DS=0.212938), the role

Table 1. List of differentially expressed genes (DEGs).

Genes Log false change False discovery rate

IL2RB2 –1.055680 0.000366

GNG1131 1.452149 0.000369
ADGRG16 –1.214451 0.000772
S100A1225 1.438137 0.001421

KIR2DL31 –1.046953 0.001876
TMA728 1.121291 0.002057
CHMP513 1.014122 0.002439

PRF11 –1.018001 0.002573
LSM322 1.051145 0.003032
PPBP4 1.233433 0.003703

UQCRBP123 1.154782 0.004073
COX7B25 1.174587 0.005779
RPL2325 1.071111 0.012291
MCEMP17 1.078964 0.012743

LY9627 1.206473 0.022822
PTGDS9 –1.115798 0.023302
COMMD628 1.108966 0.027617

RAP1GAP18 1.336118 0.037313
DEFA45 1.013721 0.049562
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of NFAT in regulation of the immune response/eicosanoid
signaling (DS=0.212938), the role of NFAT in regulation of
the immune response/EIF2 signaling (DS=0.182708), and

the role of NFAT in regulation of the immune response/
activation of IRF by cytosolic pattern recognition receptors
(DS=0.111934).

Table 2. Pathways enriched by differentially expressed genes (DEGs).

Pathway Gene in pathway FDR No. of common gene

Role of NFAT in regulation of the immune response 160 0.000919 2
Prostanoid biosynthesis 9 0.002692 1
G protein signaling mediated by tubby 31 0.009248 1

Graft-versus-host disease signaling 39 0.009842 1
Antigen presentation pathway 34 0.010139 1
Glutamate receptor signaling 56 0.016358 1
Activation of IRF by cytosolic pattern recognition receptors 60 0.017539 1

Eicosanoid signaling 60 0.017834 1
Antiproliferative role of somatostatin receptor 2 60 0.017834 1
CCR5 signaling in macrophages 62 0.018129 1

T helper cell differentiation 62 0.018424 1
IL-4 signaling 70 0.020781 1
Altered T cell and B cell signaling in rheumatoid arthritis 76 0.021075 1

Ephrin B signaling 73 0.021663 1
Crosstalk between dendritic cells and natural killer cells 84 0.024013 1
Adrenergic signaling 85 0.024893 1

G beta gamma signaling 88 0.026066 1
SAPK/JNK signaling 88 0.026066 1
IL-1 signaling 91 0.026944 1
iCOS-iCOSL signaling in T helper cells 97 0.028407 1

Type I diabetes mellitus signaling 101 0.029868 1
fMLP signaling in neutrophils 106 0.031035 1
G_s signaling 108 0.031327 1

CD28 signaling in T helper cells 107 0.031327 1
Androgen signaling 110 0.031618 1
PKC_ signaling in T lymphocytes 107 0.031618 1

CCR3 signaling in eosinophils 112 0.032784 1
P2Y purigenic receptor signaling pathway 118 0.034821 1
G_i signaling 120 0.035112 1

Cardiac _-adrenergic signaling 132 0.038884 1
Relaxin signaling 132 0.038884 1
G_q signaling 143 0.041778 1
Tec kinase signaling 149 0.041799 1

CXCR4 signaling 151 0.042376 1
Dendritic cell maturation 159 0.042953 1
EIF2 signaling 171 0.043119 1

CREB signaling in neurons 169 0.043452 1
RhoGDI signaling 172 0.043842 1
Ephrin receptor signaling 172 0.043916 1

Role of NFAT in cardiac Hypertrophy 174 0.044702 1
IL-8 signaling 183 0.044828 1
Breast cancer regulation by stathmin1 190 0.044924 1
Thrombin signaling 187 0.045471 1

Huntington’s disease signaling 215 0.047115 1
Cardiac hypertrophy signaling 217 0.047967 1
Phospholipase C signaling 219 0.049534 1

Common gene: the overlap between DEGs and genes in the pathway. FDR: false discovery rate.
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Identifying the best pathway pairs
With the goal of assessing the classification ability of

this approach, we used 10-fold cross-validation to calcu-
late the AUC values for pathway pairs using the RF model.
Each pathway pair was then ranked based on its corres-
ponding AUC value. Of note, there were 35 pairs of
pathways with AUC not less than 0.800. It is known
through the literature that AUC 40.7 is determined as
good, and an AUC of 1.0 suggests a perfect classification
(19). Greater AUCs indicate better disease classification,
that is, a stronger correlation between the pathways and
the given disease. Hence, to better understand the molec-
ular mechanisms of AS, we focused more in the top 10
pathway pairs, as reported by Colaprico et al. (11). Table 3
demonstrates the top 10 paired pathways with the best
classification performance for AS and control samples for
all 50 runs. The pair ‘antigen presentation pathway’ and
‘fMLP signaling in neutrophils’ had the best AUC value of
1.0. Moreover, the pair ‘activation of IRF by cytosolic pattern
recognition receptors’ and glucocorticoid receptor signaling’
revealed a good classification ability with a 0.995 AUC.
Similar performance was observed in the pair ‘T helper cell
differentiation’ and ‘CXCR4 signaling’ with AUC of 0.992.

After this, the top 10 pairs of pathways were extracted
based on the occurrence frequency in the 50 bootstraps
X3. According to this procedure, the pair ‘SAPK/JNK
signaling’ and ‘mitochondrial dysfunction’ were involved
in 5 bootstraps, the pair ‘mitochondrial dysfunction’ and
‘G beta gamma signaling’ appeared in 4 runs, and the pair

‘mitochondrial dysfunction’ and ‘G protein signaling mediated
by Tubby’ also appeared in 4 runs. Importantly, among these
top 10 pathway pairs, the ‘mitochondrial dysfunction’ inter-
acted with 6 different pathways. Specific information is shown
in Table 4.

Discussion

AS, as a common rheumatic disorder, leads to inflam-
matory back pain, thereby reducing the quality of life (20).
The potential molecular mechanism of AS remains unclear.
In recent years, gene expression profiles have been widely
used to identify disease-related biomarkers (21,22), several
of them having similar functions, however reproducibility is
poor. In this condition, these biomarkers may not have
precise classification ability. With the goal of solving this
challenge, extraction of biological pathways involved in a
given phenotype is a key process. Pathway-based bio-
signatures are more reproducible and frequently obtain
better classification ability than single gene biomarkers (19).
However, currently, most approaches regard the pathways
to be independent, not considering the interactions between
them, called ‘‘cross-talk’’ (23). The cross-talks among path-
ways indicate the regulatory interaction among different
pathways. Of note, detection of cross-talks among pathways
better reveal the pathway functions and contribute more
to the understanding of the synergistic effects on cellular
processes, compared with individual pathways (24). Further-
more, several reports demonstrated the potential function

Table 3. Top 10 pathway pairs with the highest AUC values.

Pairs of pathways AUC

(1a) Antigen presentation pathway
(1b) fMLP signaling in neutrophils

1.000

(2a) Activation of IRF by cytosolic pattern recognition receptors
(2b) Glucocorticoid receptor signaling

0.995

(3a) T helper cell differentiation

(3b) CXCR4 signaling

0.992

(4a) Altered T cell and B cell signaling in rheumatoid arthritis
(4b) Colorectal cancer metastasis signaling

0.988

(5a) Type I diabetes mellitus signaling
(5b) G_s signaling

0.988

(6a) Type I diabetes mellitus signaling

(6b) Relaxin signaling

0.988

(7a) fMLP signaling in neutrophils
(7b) CD28 signaling in T helper cells

0.986

(8a) CD28 signaling in T helper cells

(8b) Androgen signaling

0.982

(9a) PKC_ signaling in T lymphocytes
(9b) Relaxin signaling

0.879

(10a) Eicosanoid signaling
(10b) Granulocyte adhesion and diapedesis

0.873

AUC: area under the curve.
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of pathway cross-talks in therapeutic strategies (25,26).
Although there are many merits of pathway cross-talk in
disease treatment, pathways amount of cross-talk interac-
tions have not been completely studied. Most importantly,
no available technique can quantify the cross-talks for
pathway pairs (10). Integrating DEGs information and the
pathway information with Monte Carlo cross-validation has
been proposed to quantify the cross-talk between pathways
pairs (11). Consequently, in the present work, Monte Carlo
cross-validation analysis was employed to uncover the best
paired pathways that could distinguish between AS and
control samples. We found 35 paired pathways with AUCs
not less than 0.800, after evaluating the top 10 paired
pathways. Thus, the pathogenesis of AS may be related
with the expression alterations of these paired pathways.

The pathway pair ‘antigen presentation pathway’ and
‘fMLP signaling in neutrophils’ got the best AUC value of
1.000, which indicated that this pathway cross-talk could
distinguish AS patients from the normal subjects. As report-
ed, exogenous antigens are presented by major histocom-
patibility complex (MHC) class I molecules (27). Signifi-
cantly, MHC class I molecules have been suggested to play
important roles in immune surveillance by binding to CD8+

T cells, which act in concert towards antigen processing as
well as antigen presentation machinery (28,29). HLA-27 and
ERAP1 are central members in the antigen presentation
machinery, which have been shown to contribute to the AS
risk (30). HLA-27 can regulate the migration of neutrophil
and neutrophils exert key functions in the innate immune
response (31). A previous study published by Biasi et al.

exhibited an increased response to fMLP by circulating
neutrophils in AS patients (31). Accordingly, the cross-talk
between antigen presentation pathway and fMLP signaling
in neutrophils might be strongly correlated with the etiology
of AS, probably via regulating the immune response.

Bone formation (for example, syndesmophytes) is a
common feature of AS (32). Furthermore, bone formation
and development depend on the balance between osteo-
blasts-mediated bone formation and osteoclasts-induced
bone resorption, and this bone homeostasis is disrupted in
an inflammation environment (33,34). TNF-a, as a key pro-
inflammatory cytokine, is responsible for the inflammation-
related bone loss, and TNF-a can suppress BMP-mediated
osteoblastogenesis through activating the SAPK/JNK path-
way (35). Furthermore, endoplasmic reticulum (ER) stress
can provide the links with the inflammatory responses, and
result in the activation of JNK by reactive oxygen species
(ROS) (36). Furthermore, mitochondria can contribute to the
production of ROS (37). As documented, ROS attacks are
directed primarily towards the polyunsaturated fatty acids
of the membrane lipids, inducing lipid peroxidation, which
further results in the disorganization of cell structure and
function (38). Additionally, ROS have been indicated to be
possible mediators of tissue damage, which is related to AS
(39). Therefore, we infer that the alteration of the pathway
pair ‘SAPK/JNK signaling’ and ‘mitochondrial dysfunction’
might induce AS onset and progression by affecting inflam-
matory and oxidative metabolism as mentioned above.

Nevertheless, several study limitations must be noted.
First, the sample size was rather small. Second, this was a

Table 4. Top 10 pathway pairs with occurrence number not less than 3.

Pathway pairs Total occurrence number

(1a) EIF2 signaling
(1b) LXR/RXR activation

3

(2a) Glutamate receptor signaling

(2b) Mitochondrial dysfunction

3

(3a) EIF2 signaling
(3b) iNOS signaling

3

(4a) IL-1 signaling

(4b) Mitochondrial dysfunction

3

(5a) CCR5 signaling in macrophages
(5b) Mitochondrial dysfunction;

3

(6a) EIF2 signaling
(6b) Hepatic fibrosis/hepatic stellate cell activation

3

(7a) EIF2 signaling

(7b) MIF regulation of innate immunity

3

(8a) G protein signaling mediated by Tubby
(8b) Mitochondrial dysfunction

4

(9a) G beta gamma signaling;
(9b) Mitochondrial dysfunction

4

(10a) SAPK/JNK signaling
(10b) Mitochondrial dysfunction

5
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preliminary study of mechanisms underlying AS and
results were achieved based on in silico analysis without
validation in animal models or patient tissues. Thus, these
pathway pairs should be further investigated using western
blotting or PCR-based experiments to reveal the pathway
changes in AS.

In conclusion, our analysis provided new knowledge for
AS and identified several bio-signatures for this disease.

Based on our results, the detected pathway cross-talks
might be helpful to identify patients with AS for early
intervention. However, these paired pathways call for future
functional studies.

Supplementary material

Click here to view [pdf].
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