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Abstract—We describe SAFIUS, a secure accountable file
system that resides over an untrusted storage. SAFIUS
provides strong security guarantees like confidentiality,in-
tegrity, prevention from rollback attacks, and account-
ability. SAFIUS also enables read/write sharing of data
and provides the standard UNIX-like interface for appli-
cations. To achieve accountability with good performance,
it uses asynchronous signatures; to reduce the space re-
quired for storing these signatures, a novel signature prun-
ing mechanism is used. SAFIUS has been implemented on a
GNU/Linux based system modifying OpenGFS. Preliminary
performance studies show that SAFIUS has a tolerable over-
head for providing secure storage: while it has an overhead
of about 50% of OpenGFS in data intensive workloads (due
to the overhead of performing encryption/decryption in soft-
ware), it is comparable (or better in some cases) to OpenGFS
in metadata intensive workloads.

I. INTRODUCTION

With storage requirements growing at around 40% ev-
ery year, deploying and managing enterprise storage is
becoming increasingly problematic. The need for ubiq-
uitous storage accessibility also requires a re-look at tra-
ditional storage architectures. Organizations respond to
such needs by centralizing the storage management: ei-
ther inside the organization, or by outsourcing the storage.
Though both the options are together feasible and can co-
exist, they both pose serious security hazards: the user can
no longer afford to implicitly trust the storage or the stor-
age provider/personnel with critical data.

Most systems respond to such a threat by protecting data
cryptographically ensuring confidentiality and integrity.
However, conventional security measures like confiden-
tiality and update integrity alone are not sufficient in man-
aging long lived storage: the storage usage needs to be ac-
counted, both in quality and quantity; also the inappropri-
ate accesses, as specified by the user, should be disallowed
and individual accesses should ensure non-repudiation. In
order for such storage to be useful, the storage accesses
should also provide freshness guarantees for updates.

In this work we show that it is possible to architect such

a secure and accountable file system over an untrusted stor-
age which is administrated in situ or outsourced. We call
this architect SAFIUS: SAFIUS is designed to leverage
trust onto an easily manageable entities, providing secure
access to data residing on untrusted storage. The critical
aspect of SAFIUS that differentiates it from rest of the so-
lutions is that storage clients themselves are independently
managed and need not mutually trust each other.

A. Data is mine, control is not!

In many enterprise setups, users of data are different
from the ones who control the data: data is managed by
storage administrators, who are neither producers nor con-
sumers of the data. This requires the users to trust stor-
age administrators without an option. Increased storage
requirements could result in an increase in the number of
storage administrators and users would be forced to trust a
larger number of administrators for their data. A survey1,
by Storagetek, revealed that storage administration was a
major cause of difficulty in storage management as data
storage requirements increased. Although outsourcing of
storage requirements is currently small, with continued ex-
plosion in the data storage requirements and sophistication
of technologies needed to make the storage efficient and
secure, enterprises may soon outsource their storage (man-
agement) for cost and efficiency reasons. Storage service
providers (SSPs) provide storage and its management as
a service. Using outsourced storage or storage services
would mean that entities outside an enterprise have access
to (and in fact control) enterprise’s data.

B. Need to treat storage as an untrusted entity

Hence, there is a strong need to treat storage as an un-
trusted entity. Systems like PFS[7], Ivy[5], SUNDR[3],
Plutus[4] and TDB[9] provide a secure filesystem over
an untrusted storage. Such a secure filesystem needs to
provide integrity and confidentiality guarantees. But, that
alone is not sufficient as the server can still disseminate

1http://www.storagetek.com.au/company/press/survey.html
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old, but valid data to the users in place of the most recent
data (rollback attack [4]). Further, the server, if malicious,
cannot be trusted to enforce any protection mechanisms
(access control) to prevent one user from dabbling with
another user’s data which he is not authorized to access.
Hence a malicious user in collusion with the server can
mount a number of attacks on the system unless prevented.

All systems mentioned above protect the clients from
the servers. But, we argue thatwe also need to protect the
server from malicious clients. If we do not do this, we may
end up in a situation where the untrusted storage server
gets penalized even when it is not malicious. If the system
allows arbitrary clients to access the storage, then it would
be difficult to control each of these clients to obey the pro-
tocol. The clients themselves could be compromised or
the users who use the clients could be malicious. Either
way the untrusted storage server could be wrongly penal-
ized. To our knowledge, most systems implicitly trust the
clients and may not be useful in certain situations.

C. SAFIUS - Secure Accountable filesystem over un-
trusted storage

We propose SAFIUS, an architecture that provides ac-
countability guarantees apart from providing secure access
to data residing on untrusted storage. By leveraging on
an easily manageable trusted entity in the system, we pro-
vide secure access to a scalable amount of data (that re-
sides on an untrusted storage) for a number ofindepen-
dently managedclients. The trusted entity is needed only
for maintaining some global state to be shared by many
clients; the bulk data path does not involve the trusted en-
tity. SAFIUS guarantees that a party that violates the secu-
rity protocol canalwaysbe identified precisely, preventing
entities which obey the protocol from getting penalized.
The party can be one of the clients which exports filesys-
tem interface to users or the untrusted storage.

The following are the high level features of SAFIUS
• It provides confidentiality, integrity and freshness guar-
antees on the data stored.
• It can identify the entities that violate the protocol.
• It provides sharing of data for reading and writing
among users.
• Clients can recover independently from failures without
affecting global filesystem consistency.
• It provides close to UNIX like semantics.

The architecture is implemented in GNU/Linux. Our
studies show that SAFIUS has a tolerable overhead for
providing secure storage: while it has an overhead of about
50% of OpenGFS for data intensive workloads, it is com-
parable (or better in some cases) to OpenGFS in metadata
intensive workloads.

II. D ESIGN

SAFIUS provides secure access to data stored on an un-
trusted storage with perfect accountability guarantees by
maintaining some global state in a trusted entity. In the
SAFIUS system, there arefileservers2 that provide filesys-
tem access to clients, with the back-end storage residing on
untrusted storage, henceforth referred to asstorage server.
Thefileserverscan reach thestorage serversdirectly. The
system also has lock servers, known asl-hash server(for
lock-hash server), a trusted entity that provides locking
service and also holds and serves some critical metadata.

A. Security requirements

Since the filesystem is built over an untrusted data store,
it is mandatory to have confidentiality, integrity and fresh-
ness guarantees for the data stored. These guarantees pre-
vent the exposure or update of data by the storage server
either by unauthorized users or by collusion between unau-
thorized users and the storage server. Wherever there is
mutual distrust between entities, protocols employed by
the system should be able to identify the misbehaving en-
tity (entity which violates the protocol) precisely. This fea-
ture is referred to asaccountability.

B. Sharing and Scalability

The system should enable easy and seamless sharing of
data between users in a safe way. Users should be able
to modify sharing semantics of a file on their own, without
the involvement of a trusted entity. The system should also
be scalable to a reasonably large number of users.

C. Failures and recoverability

The system should continue to function, tolerating fail-
ures of the fileservers and it should be able to recover from
failures of l-hash servers or storage servers. Fileservers
and storage servers can fail in a byzantine manner as they
are not trusted and hence can be malicious. The fileservers
should recover independently from failures.

D. Threat Model

SAFIUS is based on a relaxed threat model:
• Usersneed nottrust all the fileservers uniformly. They
need to trust only those fileservers through which they ac-
cess the filesystem. Even this trust is temporal and can be
revoked. It is quite impractical to build a system without
the user to fileserver trust3.

2They are termed fileservers as these machines can potentially serve
as NFS servers with a looser consistency semantics to end clients.

3The applications which access the data would not have any assur-
ance on the data read or written as it passes through an untrusted oper-
ating system
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THREAT MODEL

• No entity trusts the storage server and vice versa. The
storage server is not even trusted for correctly storing of
data.
• The users and hence the fileservers need not trust each
other and we assume that they do not. This assumption is
important for ease of management of the fileservers. The
fileservers can be independently managed and the users
have the choice and responsibility to choose which file-
servers to trust.
• The l-hash servers are trusted by the fileservers, butnot
vice versa.

Figure 1 illustrates an instance of this threat model.
UsersA1 andA2 trust the fileserverFS1, usersB1 and
B2 trust the fileserverFS2 and usersC1 andC2 trust
the fileserverFS3. UserB1 apart from trustingFS2 also
trustsFS1.

If we consider trust domains4 to be made of entities that
trust each other either directly or transitively then SAFIUS
guarantees protection across trust domains. The trust re-
lationship could be limited in some cases (sharing of few
files) or it could be complete (user trusting a fileserver).
This threat model provides complete freedom of admin-
istering the fileservers independently and hence eases the
manageability.

III. A RCHITECTURE

The block diagram of the SAFIUS architecture is shown
in figure 2. Every fileserver in the system has a filesystem
module that provides the VFS interface to the applications,
a volume manager through which the filesystem talks to
the storage server and a lock client module that interacts
with the l-hash server for obtaining, releasing, upgrading,
or downgrading of locks. The l-hash server, apart from
serving lock requests, also distributes the hash of inodes.
The l-hash server also has the filesystem module, volume

4If we treat the entities in the system as nodes of a graph and anedge
betweeni andj, if i trustsj, then each connected component of the
graph forms a trust domain

Volume manager
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ClientFS

Volume manager

Lock 
ClientFS
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Storage Server l−hash server

Fileserver 2

Fig. 2
SAFIUS ARCHITECTURE

manager module and a specialized version of lock client
module and can be used like any other fileserver in the
system. The lock client modules do not interact directly
among each other, as they do not have mutual trust. The
lock clients interact transitively through the l-hash server
which validates the requests. The fileservers can fetch the
hash of inode from the trusted l-hash server and hence
fetch any file block with integrity guarantees. In figure
2, the thick lines represent bulk data path and the thin lines
the metadata path. This model honours the trust assump-
tions stated earlier and can scale well because each file-
server talks to the block storage server directly.

A. Block addresses, filegroups and inode-table in SAFIUS

The blocks are addressed by theircontent hashessimi-
lar to systems like SFS-RO [1]. It gives awrite-onceprop-
erty and blocks cannot be overwritten without changing
the pointer to the block. SAFIUS currently uses SHA-1
as the content hash and assumes that SHA-1 collisionsdo
not happen. SAFIUS uses the concept of filegroups [4],
to reduce the amount of cryptographic keys that need to
be maintained. Since “block numbers” are content-hashes,
fetching the correct inode block would ensure that the file
data is correct. SAFIUS guarantees the integrity of the in-
ode block by storing the hash of the inode block in an inode
hash tablei-tbl. Each tuple of i-tbl is called asidata, and
consists of the inode’s hash and an incarnation number.i-
tbl is stored in the untrusted storage server; its integrity is
guaranteed by storing the hash of the i-tbl’s inode block in
a local stable storage in the l-hash server.

B. On-Disk structures: Inode and directory entry

Inode The inode of a file contains pointers to data
blocks either directly or through multiple levels of indirec-
tion, apart from other meta information found in standard
UNIX filesystems. The block pointers are SHA-1 hashes
of the blocks. These apart, it also contains a 4 byte fi-
legroup id, that points to relevant key information to en-



4

crypt/decrypt the blocks of this file.
The hash of an inode corresponds to the current version

of the file. If a file is updated, then one of its leaf data
block changes and hence its intermediate metablocks (as
it has a pointer to this leaf block) and ultimately the inode
block changes (this is similar to what happens in some log
structured filesystems, where writes are not done in-place,
like wafl [2]). Thus, updating a file can be seen as moving
from one version of the file to another, with the version
switch happening at a point in time when the file’s idata is
updated in the i-tbl.

Directory entry Directory entries in SAFIUS are simi-
lar to the directory entries in traditional filesystems. They
contain a name and the inode number corresponding to the
name.

C. Storage Server

The granularity at which the storage server serves data
is variable sized blocks. The storage server supports three
basic operations, namelyload, storeandfreeof blocks. A
block can bestoredmultiple times, i.e. clients can issue
any number ofstore requests to the same block and the
block has to befreed that many times before the physi-
cal block can be reused at the server. To prevent one user
from freeing a block belonging to another user, the storage
server maintains a perinode numberreference count on
each of the stored blocks. Each block contains a list of in-
ode numbers and their reference counts. Architectures like
SUNDR [3] maintain a per user reference count for the
blocks. Having a per user reference countdecimatesthe
possibility of seamless sharing which is one of our design
goals. For write sharing a file between two usersA andB
in SUNDR, the usersA andB must belong to a groupG
and the file is write shareable in the groupG. This groupG
has to be created and its public key need to be distributed
by a trusted entity. This restriction is due to per user ref-
erence count on the blocks and a per user table mapping
inode numbers to their hashes. Let usersA andB write
share a filef in SUNDR. If B modifies a blockk stored
by A earlier tol, thenB cannot freek, as it had notstored
it. SAFIUS has a per inode reference count on blocks, and
the storage server does the necessary access control to the
reference count updates by looking up the filegroup infor-
mation for sharing information. The trusted l-hash server
ratifies the access control enforced by the storage server.

The storage server authenticates the user (through pub-
lic key mechanisms) who performs the store or free oper-
ation. If the uid (of the user) performing the store or free
operation is same as the owner of the inode, then the op-
eration is valid. If this is not the case, then the storage
server has to verify if the current uid has enough permis-

sions to write to the file. If this check is not enforced, then
an arbitrary user can free the blocks belonging to files for
which he has no write access. The storage server achieves
this by maintaining a cache of inode numbers and their
corresponding filegroup ids. This cache is populated and
maintained with the help of storage server. This enables
seamless write sharing in SAFIUS.

D. l-hash server: i-tbl, filegroup tree

The l-hash server provides the basic locking service,
stores and distributes the idata of inodes to/from the itbl5.
The l-hash server also maintains a map of inode number
to filegroup id information in afgrp6 (filegroup) tree that
contains the filegroup data in the leaf blocks of the tree. In
addition, there is a persistent 64 bit monotonically increas-
ing fgrp incarnation number, a global count that indicates
the number of changes made to file sharing attributes. The
root of the filegroup Merkle tree and the fgrp incarnation
number are stored locally in the l-hash server. The root of
thefgrp treeis hashed with the fgrp incarnation number to
get fgrp hash.

E. Volume Manager

The volume manager does the job of translating the
read, write, and block free requests from the fileserver
to load, store or free operations that can be issued to the
storage server. The volume manager exports the standard
block interface to the filesystem module, but expects the
filesystem module to pass some additional information like
hash of an existing block (for reading and freeing) and fi-
legroup id of the block (for encryption or decryption).

F. Encryption and hashing

The blocks aredecryptedandencrypted, as they enter
and leave the fileserver machine respectively by the vol-
ume manager. On a write request the block is encrypted,
hashed and stored. On a read request the blocks are fetched
from the storage server, checked for integrity (by compar-
ing the block’s hash with that of its pointer) and is de-
crypted and handed over to the upper layer. The choice
of doing the encryption and decryption at the volume man-
ager layer was done to simplify the filesystem implementa-
tion and for performance reasons; to delay encryption and
avoid repeated decryptions on the same block.

G. Need for non-repudiation

Since the volume manager and the storage server are
mutually distrustful, we need to protect them from the

5i-tbl is the persistent table indexed by inode number and contains
the i-data corresponding to an inode

6It can be realized as a file in SAFIUS
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RSA SIGNING OVER VARIOUS BLOCK SIZES

other party’s malicious actions:
1. Load Misses: The volume manager requests a block
to be a loaded but the storage server replies back saying
that the block is not found. It could be that the fileserver is
lying (did not store the block at all) or the storage server is
lying.
2. Unsolicited stores: A block would be accounted in a
particular user’s quota, but the user can claim that he never
stored the block.

The first case is more serious as there is potential data
loss. Load operations do not alter the state of stored data
and the fileserver would require the necessary key to de-
crypt it. However, for obvious reasons, both store and free
operations have to be non-repudiating. We achieve this by
tagging each of store and free operation with a signature.

Let Du = {blknum, ino, uid, op, nonce, count}. For
a store or free operation, the volume manager sends
{Du, {Du}K−1

u

} as the signature. Hereblknumrefers to
the hash of the block that is to be stored or freed,ino
refers to the inode number to which the block belongsuid
refers to the user id of the user who is performing the op-
eration,nonceis a random number that is unique across
sessions and is established with the storage server,countis
the count of the current operation in this session andKu

−1

is the private key of the user.{Du}K−1
u

is Du signed by
the private key of the user. The count is incremented on
every store or free operation. The nonce distinguishes two
stores or frees to the same block which happens in two
different sessions, while count distinguishes two stores or
frees to the same block in the same session, hence allowing
any number of retransmissions. This signature captures the
current state of the operation in the volume manager. The
signature is referred to asrequest signature.

The storage server receives the signature, validates the
count, uid and nonce, and verifies the signature. It follows
the protocol described earlier to store or free the block. On
a successful operation, it prepares and sends a reply sig-
nature. LetDss = {Du, fgrphash}. The storage server

manager
Volume Storage

Server

1. Write

Local
Log

2. Log op/data

3. Store(B,X,ino,uid)

Fig. 4
SEQUENCE OF EVENTS ON AWRITE

sends{Dss, {Dss}Kss

−1} to the volume manager.Du is
the same as what the storage server received from the vol-
ume manager.Kss

−1 refers to the private key of the stor-
age server. The volume manager verifies thatDu it re-
ceives from the storage server is same as the one it had
sent and verifies the signature. The signature returned to
the volume manager is referred as thegrant signature.

The grant signature prevents the storage server from
denying the stores made to a block, and in case there were
free operations on the block that resulted in the block be-
ing removed, therequest signatureof the free operation
would defend the storage server. Unsolicited stores are
eliminated as the storage server will not have request sig-
natures for those blocks. Hence assuming that that the
RSA signatures are not forgeable, the protocol achieves
non-repudiation and hence provides perfect accountability
in SAFIUS.

H. Asynchronous signing

The protocol described above has a huge performance
overhead: two signature generations and two verifications
in the path of a store or a free operation. Since signature
is generated on the hash of a block rather than the block
itself, the time taken for actual signature generation, up to
a certain block size, masks the time taken for generating
the SHA-1-hash of the block. Figure 3 illustrates this. The
amount of time taken for signing a 32 byte block and the
amount of time taken for signing a 16KB are comparable.
However with higher block sizes, the SHA-1 cost shows
up and the signature generation cost increases linearly, as
can be seen for block sizes bigger than 16KB.

Instead of signing every operation, the protocol signs
groups of operations. The store and the free opera-
tions do not have signing or verification in their code
path and the cost of the signing is amortized among
number of store and free operations. LetBu =

{blknum, ino, op, nonce, count}, The fields in this struc-
ture are same as that was inDu. uid field is not in-
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cluded inBu as we group only operations belonging to
a particular user together and it is specified in a header
for the signature block. After a threshold number of op-
erations or after a timeout by default, the volume man-
ager packs blocks ofBus7 in to a block BDu. The
block BDu has a headerHu, Hu = {uid, count} with
uid referring to the uid of the user whose operations
are being currently bunched and signed, andcount the
number of operations in the current set. LetBDu be
defined as{Hu, Bu, Bu

′, Bu
′′, Bu

′′′, ..}. BDu is signed
with the user’s private key and{BDu, {BDu}Ku

−1} is
sent to the storage server as therequest signature. The
storage server verifies that these operations specified by
Bus are all valid (they did happen) and verifies the sig-
nature onBDu. If the operations are valid, then the
storage server generates a blockBDss, whereBDss =

{BDu, fgrphash}, and signs it using its private key.
It sends{BDss, {BDss}Kss

−1} to the volume manager
which verifies thatBDu is same as the one it had sent
in the request signatureand then verifies the signature.
It can be easily seen that signing of bunch of operations
is equivalent to signing of each of these operations, pro-
vided there are no SHA-1 collisions and hence achieves
non-repudiation.

I. Need for logging

When the operations are synchronously signed, once the
store or free operation completes, the operation cannot be
repudiated by the storage server. But with asynchronous
signing, a write or free operation could return before the
grant signature is received. If the storage server refuses
to send the grant signature or if it fails, the fileserver may
have to retry the operations and may also have to repeat
the process of exchanging request signature for grant sig-
nature. We need alocal log in the fileserver, where details
of the current operation are logged. We log the data for

7It contains blocksBu, Bu

′, Bu

′′
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SIGNATURE PRUNING PROTOCOL

a store request so that the store operation can be retried
under error conditions. So, before a store or free request
is sent to the server, we logBu and the uid. If the opera-
tion is a store operation, we additionally log the data too.
Once the grant signature is obtained for the bunch, the log
entries can be freed. Figure 4 illustrates the sequence of
events that happen on a write.

J. Persistence of signatures

The request and the grant signatures should be persis-
tent. If it were not persistent, we cannot identify which
entity violated the protocol. The volume manager sends
the grant signature andBDss to the l-hash server. It is the
responsibility of the l-hash server to preserve the signature.
Figure 5 illustrates this.

K. Signature pruning

The signatures that need to be preserved at the l-hash
server are on a per operation basis. However, the num-
ber of signatures generated is proportional to number of
store/free requests processed. A malicious fileserver can
repeatedly do a store and free to the same block to increase
the number of signatures generated. It is not possible to
store all these signatures as is. SAFIUS has apruning
protocol, executed between the l-hash server and the stor-
age server to ensure that the amount of space required to
provide accountability is a constant function of number of
blocks used, rather than the number of operations.

In this pruning protocol, the storage server and the l-
hash server agree upon per uid reference counts8 on ev-
ery stored block in the system. A store would increase
the reference count and free would decrement it. Each
of these references must have an associated request and
grant signature pair. If the l-hash server and the storage
serveragreeon these reference counts, then we can safely

8this is different from the per inode reference count maintained by
the storage server
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discard all the request and grant signatures corresponding
to this block. To achieve this, we maintain arefcnt tree,
a Merkle tree, in both the l-hash server and the storage
server. The leaf blocks of this refcnt tree store the block
numbers and the per uid reference counts associated with
the block (only if at least one reference count is non-zero).
If the root block of therefcnt treeis same in both the l-
hash server and storage server, then both parties must have
the same reference counts on the leaf blocks. Figure 6 il-
lustrates the signature pruning protocol. Since the storage
server has signed the root of the tree that it had generated,
there cannot be a load miss for a valid block from the stor-
age server side. Therefcnt treein the l-hash server helps
provide accountability. To save some space, therefcnt tree
does not store the reference count map for all blocks. It has
a table of unique reference count entries (mostly blocks
owned by one user only) and therefcnt tree’s leaf blocks
merely have a pointer to this table.

L. The filesystem module

The filesystem module provides the standard UNIX like
interface for the applications, so that applications need not
be re-written. However, owing to its relaxed threat model,
the file system has the following restrictions:
• Distributed filesystems like frangipani [8] and GFS [6]
have a notion of a per node log, which is in a universally
accessible location. Any node in the cluster can replay
the log. In the threat model that we have chosen, the file-
servers do not trust each other; so it is not possible for one
fileserver to replay the log of another fileserver to restore
filesystem consistency.
• Traditional filesystems have a notion of consistency in
which each block in the system is in use or is free. In case
of SAFIUS, this notion of consistency is tough to achieve.
• Given our relaxed threat model, it is the responsibility of
the fileservers to honour the filesystem structures. If they
do not, there is a possibility of filesystem inconsistency.
However, the SAFIUS architecture guarantees complete
isolation of the effects of the misbehaving entity to its own
trust domain.

M. Read/Write control flow

The fileservers get the root directory inode’s idata dur-
ing mount time. Subsequent file or directory lookups are
done in the same way as in a standard UNIX filesystems.

Reads:The inode’s idata fetched from the l-hash server
is the only piece of metadata that the fileserver needs to
obtain from the l-hash server. The filesystem module can
fetch the blocks it wants from the storage server directly
by issuing a read to the volume manager. During the read
call, when the fileserver requests a shared lock on the file’s

inode, the l-hash server, apart from granting the lock, also
sends the idata of the inode. Using this idata it can fetch the
inode block and hence the appropriate intermediate blocks
and finally the leaf data block, which contains the offset
requested.

Writes: Write operations from the fileserver usually
proceed by first obtaining an exclusive lock on the inode.
While granting the exclusive lock, the l-hash server also
sends the latest hash of the inode as a part of idata. Af-
ter the update of the necessary blocks including the inode
block, the hash of the new inode block corresponds to the
new version of the file. As long as the idata in the l-hash
server is not updated with this, the file is still in the old
version. When the new idata corresponding to this file –
hence inode, is updated in the i-tbl, the file moves to a new
version. The l-hash makes sure that the current user has
enough permissions to update the inode’s hash. Now the
old data blocks and metablocks that have been replaced
by new ones in the new version of the file have to be freed.
The write is not visible to other fileservers until the inode’s
idata is updated in the l-hash server. Since this is done be-
fore releasing the exclusive lock, any intermediate reads to
the file would have to wait.

N. Logging

Journaling is used by filesystems to speed up the task
of restoring the consistency of the filesystem after a crash.
Many filesystems use a redo log for logging their meta-
data changes. During recovery after a crash, the log data
is replayed to restore consistency. In SAFIUS, pending
updates to the filesystem during the time of crash do not
affect the consistency of the filesystem as long as the file-
servers do not free any block belonging to previous version
of the file and the inode’s idata is not updated. When the
inode’s idata is updated in the l-hash server, the file moves
to the next version and all subsequent accesses will see the
new version of the file. The overwritten blocks have to be
freed when the idata update in l-hash server is successful
and the new blocks that were written to should be freed if
the idata update failed for some reason. SAFIUS uses an
undo-only operation log to achieve this.

O. Store inode data protocol

To ensure that the system is consistent, the idata of an
inode in the i-tbl of the l-hash server has to be updated
atomically, i.e. the inode’s idata has to be either in the old
state or in the new state and the fileserver that is perform-
ing the update should be able to know whether the update
sent to the l-hash server has succeeded or not. Fileservers
take an exclusive lock on the file when it is opened for writ-
ing. After flushing the modified blocks of the file and be-
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STORE INODE DATA PROTOCOL

fore dropping the lock it holds, the fileserver executes the
store-inode dataprotocol with the l-hash server to ensure
consistency. The store inode data protocol is begun by the
fileserver sending the count and the list of inodes and their
idata to the l-hash server. The l-hash server stores inodes’
new idata in the i-tbl atomically (either all of these inodes’
hashes are updated or none of them are updated), employ-
ing a local log. It alsoremembersthe last txid received as
a part ofstore inode dataprotocol from each fileserver.

After receiving a reply from the l-hash server, the file-
server writes a commit record to the log and commits the
transaction, after which the blocks that are to be freed are
queued for freeing and log space is reclaimed. The l-hash
serverremembersthe latest txid from the fileservers to help
the fileservers know if their last execution ofstore inode
datahad succeeded. If the fileserver had crashed immedi-
ately after sending the inode’s hash, it has no way of know-
ing whether the l-hash server received the data and had up-
dated the i-tbl. If it had updated the i-tbl, the transaction
has to be committed and the blocks meant for freeing need
to be freed. If it is not the case, then the transaction has to
be aborted and the blocks written as a part of that transac-
tion have to be freed.

On recovery, the fileserver contacts the l-hash server to
get the last txid that had updated the i-tbl. If that txid
does not have a commit record in the log, then the commit
record is added now and the recovery procedure is started.
Since all the calls tostore inode dataprotocol are serial-
ized within a fileserver and the global changes are visible
only on updates to the i-tbl, this protocol will ensure con-
sistency of the filesystem. The store inode data protocol
takes a list of〈inode number, idata〉 pair instead of a single
inode number, idata pair. This is to ensure that dependent
inodes are flushed atomically. For instance, this is useful
during file creation and deletion, when the file inode is de-
pendent on the directory inode.

P. File Creation

File creation involves obtaining a free inode number,
creating a new disk inode and updating the directory entry
of the parent directory with the new name-to-inode map-
ping. Inode numbers are generated on the fileservers au-
tonomously without consulting any external entity. Each
fileserver stores a persistent bitmap of free local inode
numbers locally. This map is updated after an inode num-
ber is allocated for a new file or directory.

Q. File Deletion

Traditional UNIX systems provide adelete on close
scheme for unlinks. To provide similar semantics in a dis-
tributed filesystem, one has to keep track of open refer-
ences to a file from all the nodes and the file is deleted by
the last process which closes the file, among all the nodes.
This warrants that we need to maintain some global in-
formation regarding the open references to files. In a NFS
like environment, where the server is stateless, reading and
writing to a file that is unlinked from some other node re-
sults in astale file handleerror. SAFIUS’ threat model
does not permit similar unlink semantics. So we define
a simplified unlink semanticsfor file deletes in SAFIUS.
Unlink in SAFIUS removes the directory entry and decre-
ments the inode reference count, but it defers deletion of
the file as long as any process in thesame node, from
which unlink was called, has an open reference to the
file. The last process on the node, from which unlink was
called, deletes the file. Subsequent reads and writes from
other nodes to the file do not succeed and return stale file
handle error. There would not be any new reads and writes
to the file from the node that called unlink as the direc-
tory entry is removed and the last process that had an open
reference has closed the file. This semantics honours the
standardread after writeconsistency. As long as the file
is not deleted, a read call following a write returns the lat-
est contents of the file. After a file is deleted, subsequent
reads and writes to the file do not succeed, and henceread
after writeconsistency.

The inode numbers have to be freed for re-allocation.
As mentioned earlier, inode numbers identify the user and
the machine id who owns the file. If the node which un-
links the file is same as the one which has created it, then
the inode number can be marked as free in the allocation
bitmap. But if unlink happens in another machine, then the
fact that the inode number is free has to be communicated
to that machine. Since our threat model does not assume
two fileservers to trust each other, the information has to be
routed through the l-hash server. The l-hash server sends
the freed inode numberslist to the appropriate fileserver,
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during mount time (when the fileserver fetches the root di-
rectory inode’s idata).

R. Locking in SAFIUS

SAFIUS uses the Memexp protocol of OpenGFS [6]
with some minor modifications. The l-hash server ensures
that the current uid has enough permissions to acquire the
lock in the particular mode requested. The lock numbers
and the inode numbers have a one to one correspondence
and hence we can derive the inode number from the lock
number. Using the lock number, the l-hash server obtains
the filegroup id and hence the permissions.

OpenGFS has a mechanism of callbacks wherein a node
that needs a lock, currently held by another node, sends
a message to that node’s callback port. The node which
holds the lock downgrades the lock if the lock is not in
use. In SAFIUS, since the callback cannot be directly
sent (the two fileservers would be mutually distrusting),
the callbacks are routed through the l-hash server.

S. Lock client module

The lock module in the fileserver handles all the client
side activities of the lock protocol that was briefly de-
scribed in the previous section. Apart from this, it also
does the job of fetching the idata corresponding to an in-
ode number from the l-hash server. It also executes the
store inode data protocol with the l-hash server to ensure
atomic updates of list of inodes and their idata. Figure 7
illustrates the protocol. The protocol guarantees atomicity
of updates to a set of inodes and their idata.

IV. I MPLEMENTATION

SAFIUS is implemented in the GNU/Linux environ-
ment. Figure 8 depicts the various modules in SAFIUS
and their interaction. The base code used for the filesystem
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and lock server is OpenGFS-0.29 and base code used for
the volume manager is GNBD-0.0.91. The Memexp lock
server in OpenGFS was modified to be the l-hash server
to manage locks and to store and distribute idata of the in-
odes. The volume manager, the filesystem module and the
lock client module reside inside the kernel space, while the
storage server and l-hash server are implemented as user
space processes. The current implementation of SAFIUS
does not have any key management scheme and keys are
manually distributed. The itbl has to reside in the untrusted
storage as it has to hold the idata for all the inodes in the
system. Consequently, the itbl’s integrity and freshness
has to be guaranteed. We achieve this by storing the itbl
information in a special file in the root directory of the
filesystem (.itbl). The l-hash server stores the idata of this
file in its local stable storage. The idata of the itbl serve as
the bootstrap point for validating any file in this filesystem.

V. EVALUATION

The performance of SAFIUS has been evaluated with
the following hardware setup. The fileserver is a Pentium
III 1266 MHz machine with 896MB of physical memory.
A machine with a similar configuration serves as the l-
hash server, when the l-hash server and fileserver are dif-
ferent. A Pentium IV 1.8 GHz machine with 896MB of
physical memory functions as storage server. The storage
server is on a Gigabit Ethernet and the fileserver and l-hash
servers are on 100Mbps Ethernet. The fileserver and l-hash
servers have a log space of 700MB on a fibre channel SCSI
disk. The storage server uses a file on the ext3 filesystem
(over a partition on IDE hard disk) as its store. The file-

9http://opengfs.sourceforge.net/
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server, storage server and the l-hash server all run Linux
kernel. The performance numbers of SAFIUS are reported
in comparison with an OpenGFS setup. A GNBD device
served as the shared block device. For the OpenGFS exper-
iments, the storage server machine hosts the GNBD server
and the fileserver machine hosts the OpenGFS FS client.
The l-hash server machine runs the memexp lock server of
OpenGFS.

Basically two sets of configuration are studied: one in
which the l-hash server and the fileserver are the same
machine and another in which the l-hash server and the
fileserver are two different machines. In OpenGFS setup
the two configurations are: one in which the lock server
and the FS client were in the same machine and another
in which they were in two physically different machines.
A thread,gfs glockd in SAFIUS, wakes up periodically to
drop the unused locks. The interval in which this thread is
kicked in is used as a parameter of study. The performance
of SAFIUS configurations are reported with and without
encryption/ decryption. Hence, the performance numbers
reported are for eight different combinations for SAFIUS
and two different combinations for OpenGFS.
1. SAFIUS-I30: It is a SAFIUS setup in which the l-
hash server and the fileserver are the same machine. The
gfs glockd interval is 30 seconds.
2. SAFIUS-I10: It is a SAFIUS setup in which the l-
hash server and the fileserver are the same machine. The
gfs glockd interval is 10 seconds.
3. SAFIUS-D30: It is a SAFIUS setup in which the l-
hash server and the fileserver are different machines. The
gfs glockd interval is 30 seconds
4. SAFIUS-D10: It is a SAFIUS setup in which the l-
hash server and the fileserver are different machines. The
gfs glockd interval is 10 seconds
5. OpenGFS-I: It is an OpenGFS setup in which the
memexp lock server and the filesystem run on the same
machine
6. OpenGFS-D: It is an OpenGFS setup in which the
memexp lock server and the filesystem run on different
machines

SAFIUS-I30E, SAFIUS-I10E, SAFIUS-D30E, SAFIUS-
D10E are the SAFIUS configurations with encryp-
tion/decryption.

A. Performance of Volume manager - Microbenchmark

As described in Section II, SAFIUS volume manager
uses asynchronous signing to avoidsigning andverifica-
tion in the common store and free path. Experiments have
been conducted to measure the latencies of load and store
operations. An ioctl interface in the volume manager code
is used for performing loads and stores from the userland,

bypassing the buffer cache of the kernel. A sequence of
20000 store operations are performed with the data from
/dev/urandom. The fileserver machine is used for issu-
ing the stores. Figure 12 shows the plot of the latency
in Y-axis and the store operation sequence number along
X-axis. Approximately once every 1000 operations, there
is a huge vertical line, signifying a latency of more than
100ms10. This is when the signer thread kicks in to per-
form the signing. As observed in section II, the latency of a
signing operation is about 80ms on a Pentium IV machine.
As can be observed from figure 3, the cost of signing is
constant till the block size is 32KB and grows linearly af-
ter that. This increase corresponds to the cost of SHA-
1, which is amortized by the RSA exponentiation cost for
smaller block sizes. The plot in figure 12 also shows the
mean and median of the latencies measured. We also have
studied GNBD store latencies for various combinations.
The results are reported in Fig. 9. As to be expected,
synchronous signing incurs the highest overhead while the
asynchronous signing, on an average, appears to be only
30% costlier compared to no-signing.

The next subsection describes the performance studies
conducted for the filesystem module.

B. Filesystem Performance - Microbenchmark and Popu-
lar benchmarks

The performance of the filesystem module has been an-
alyzed by running the Postmark11 microbenchmark suite
and compilation of OpenSSH, OpenGFS and Apache web
server sources. As described in the beginning of this sec-
tion, numbers are reported for six configurations. Figure
16 shows the numbers obtained by running Postmark suite.
The Postmark benchmark has been run with the following
configuration:

set size 512 10000

set number 1500

set seed 2121

set transactions 500

set subdirectories 10

set read 512

set write 512

set buffering false

Currently, owing to the simple implementation of the
storage server, logical to physical lookups take a lot of time
and hence Postmark with bigger configurations take a long
time to complete. Hence we report Postmark results only
for the smaller configurations. SAFIUS beats OpenGFS in

10The Y-axis scale is trimmed, the latencies are about 170ms
11Benchmark from Network Appliance
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metadata intensive operations like create and delete. Cre-
ations and deletions in SAFIUS are not immediately com-
mitted (even to log) and are committed only when the lock
is dropped and hence the explanation. With the current
input configuration, reads and appends for SAFIUS-D30,
SAFIUS-I30, OpenGFS-I and OpenGFS-D seem to be the
same. Bigger configurations may show some difference.
SAFIUS-I10 and OpenGFS-D10 seem to perform poorly
for appends and reads due to flushing of data belonging
to files that would anyway get deleted. There is no dif-
ference between the l-hash server being in the same ma-
chine or in different machine for Postmark suite. For the
Postmark suite, there is not much difference between the
configurations that has encryption/decryption and the ones
that doesn’t have.

Next three performance tests involved compilation of
OpenSSH, OpenGFS and Apache web server. Three activ-
ities were performed on the source tree: untar (tar zxvf) of
source, configure and make. Time taken for each of these
operations for all the ten configurations described before
is reported. Figure 14 is the result of OpenSSH compila-

tion. All SAFIUS configurations take twice the amount of
time for untar compared to OpenGFS-I, while OpenGFS-
D takes four times the time taken by OpenGFS-I for un-
tar. OpenSSH compilation did not complete in SAFIUS-
I10E. Time taken for make in SAFIUS-D30 and SAFIUS-
D30E, seems to be almost same, while SAFIUS-I30E takes
10% more time than SAFIUS-I30. The best SAFIUS con-
figurations (SAFIUS-D30 and SAFIUS-D30E) are within
120% of the best OpenGFS configuration (OpenGFS-
D). The worst SAFIUS configurations (SAFIUS-I10E and
SAFIUS-D10E) are within 200% of worst OpenGFS con-
figuration (OpenGFS-I). The next performance test was
compilation of Apache source. Figure 13 shows the time
taken for untar, configure and make operations of Apache
source compilation. SAFIUS-D30 gives the best perfor-
mance for untar and OpenGFS-D gives the worst. This
is probably because of reduced interference for syncing
the idata writes. OpenGFS-D does the best for make and
configure. Among SAFIUS configurations, SAFIUS-D10
does the best for configure and SAFIUS-I30 does the best
for make. The last performance test is OpenGFS com-
pilation. makewas run from the src/fs subtree instead
of the toplevel source tree. Figure 15 shows the time
taken for untar, configure and make operations for com-
piling OpenGFS. SAFIUS-I30E and SAFIUS-I10E takes
about 120% of time taken by SAFIUS-I30 and SAFIUS-
I10 respectively for running configure and make. The best
SAFIUS configuration for running make (SAFIUS-D30)
takes around 115% of time taken by best OpenGFS con-
figuration (OpenGFS-I). The worst SAFIUS configuration
for running make (SAFIUS-I30E) takes about 115% of
time taken by worst OpenGFS configuration (OpenGFS-
D).

We can conclude, from the experiments run, that
SAFIUS seems to be comparable (or sometimes better)
to OpenGFS for metadata intensive operations and around
125% of the best OpenGFS configuration without encryp-
tion/decryption, and around 150% of the best OpenGFS
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configuration with encryption/decryption and for other op-
erations.

VI. CONCLUSIONS& FUTURE WORK

In this work the design and implementation of a se-
cure distributed filesystem over untrusted storage was dis-
cussed. SAFIUS provides confidentiality, integrity, fresh-
ness and accountability guarantees, protecting the clients
from malicious storage and the storage from malicious
clients. SAFIUS requires that trust be placed on the lock-
server (l-hash server), to provide all the security guaran-
tees; a not so unrealistic threat model. For the applications,
SAFIUS is like any other filesystem; it does not require
any change of interfaces and hence has no compatibility
issues. SAFIUS uses thel-hashserver to store and retrieve
the hash codes of the inode blocks. The hash codes reside
on the untrusted storage and the integrity of the system is
provided with the help of a secure local storage in thel-
hashserver. SAFIUS is flexible; users choose which client
fileserversto trust and how long. SAFIUS provides ease of
administration; thefileserverscan fail and recover without
affecting theconsistencyof the filesystem and without the
involvement of another entity. With some minor modifi-
cations, SAFIUS can easily provide consistent snapshots
of the filesystem (by not deleting the overwritten blocks).
The performance of SAFIUS is promising given the secu-
rity guarantees it provides. A detailed performance study
(under heavier loads), has to be done in-order to establish
the consistency in performance.

Possible avenues for future work are:
• Fault tolerant distributed l-hash server: The l-hash
server in SAFIUS can become a bottleneck and prevent
scalability of fileservers. It would be interesting to see
how the system performs when we have a fault tolerant
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distributed l-hash server in place of existing l-hash server.
The distributed lock protocol should work without assum-
ing any trust between fileservers.
• Optimizations in storage server: The current imple-
mentation of the storage server is a simple request re-
sponse protocol that serializes all the requests. It would
be a performance boost to do multiple operations in par-
allel. This may affect the write ordering assumptions that
exist in the current system.
• Utilities: Userland filesystem debug utilities and failure
recovery utilities have to be written.
• Key management: SAFIUS does not have a key man-
agement scheme and no interfaces by which the users can
communicate to the fileservers their keys. This would be
an essential element for the system.

The source code for SAFIUS is available on request.
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