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Abstract

In this article, we describe techniques for visual data mining based on differential topology. Data scientists have been
working long on the analysis of data obtained from a wide variety of sources. The data is often represented as discrete
sample points of a function Rn → Rm, while the dimensions of the data domain and range have rapidly increased
due to recent advancement in computational power and measurement technology. Mathematical formulations of
differential topology effectively help us to analyze such data in a hierarchical fashion and to visually extract significant
features from it. We present new algorithms and application examples as well as existing ones, including the authors’
recent results, so that we can fully elucidate the potential power of this approach especially in data visualization.
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1 Introduction
Recent advancement of supercomputers provides us with
easy access to highly parallelized and efficient computa-
tional environments, and thus the associated computer
simulation usually produces large-sized high-dimensional
data. This so-called big data usually helps us to reproduce
exact and detailed behaviors of target phenomena, while it
may hide its important features in the sense that we can-
not easily locate such features locally due to its huge size.
This often leads us to a negative spiral of data size and
understanding of the target phenomena. Actually, tech-
niques for visually identifying important features within
such big data have been demanded, since they allow us to
elucidate such important features as visualization images
effectively.
As the demand increases, the concept of differential

topology has attracted considerable attention of many
researchers since 1990s. Indeed, this mathematical frame-
work has a unique capability to analyze such big data in
a hierarchical fashion by extracting its topological struc-
ture as a higher layer over the entire data. Recently, the
advantage has encouraged more and more researchers to
go into this research topic because of high potential for
the analysis of complicated data. In particular, the data
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representation based on differential topology is thought of
as one of top ten innovative techniques in the visualiza-
tion community. In this article, we present approaches for
extracting features of differential topology from discrete
samples of a function Rn → Rm, including existing and
new algorithms together with their application examples.

2 Overview
In general, scientific simulation data can be represented
as a set of discrete points obtained by sampling a func-
tion f : Rn → Rm, where Rn and Rm indicate the data
domain and range, respectively. Data analysis techniques
based on differential topology basically provide an effec-
tive means of encoding topological changes in the inverse
image f −1(c) (⊂ Rn) of f according to the change of c
(∈ Rm). One of the significant advantages of this type
of data analysis is its ability to extract not only singular
points where local topological changes arise in the inverse
image but also their connectivity over the entire data for
understanding its global structure.
Consider a discrete elevation model, which represents

a set of discrete samples on a terrain surface as shown in
Figure 1. In this case, we can denote the latitude and lon-
gitude of each sample by x and y coordinates, respectively,
and its corresponding height as z = f (x, y). Note that the
singular point of a scalar function is defined as a point
where the cross-sectional contour produces a topological
change, and thus it corresponds to a peak, a pit, or a pass as
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Figure 1 Analyzing a discrete elevation model. Features of
differential topology are extracted by tracking the topological change
in cross-sectional contours with respect to the height. The boundary
of the yellow region represents one of the cross sections of the terrain
surface at height 160: the region itself corresponds to height ≥ 160
and corresponds to the subgraph in the join tree marked yellow in
Figure 3.

shown in Figure 2. Furthermore, we can also track the con-
nectivity among the singular points to precisely locate the
splitting andmerging in the contour. In practice, the topo-
logical change in the inverse image of some scalar value is
often described as a tree structure called a contour tree [1]
as shown in Figure 3, which has successfully been applied
to various situations such as analyzing contour topology
of terrain surfaces [17], designing visualization param-
eters for volume rendering [19], and extracting spatial
embeddings of contours in volumes [20].
Constructing algorithms for computing such contour

trees of scalar functions Rn → R started from the mid
1990s, and early in 2000s Carr et al. [4] presented an
excellent algorithm for constructing contour trees, which
is fully sophisticated both in simplicity and in computa-
tional complexity and thus has been commonly employed
so far. Although this algorithm intrinsically has no limita-
tion on the dimension n of the data domain, it still suffers
from practical implementation issues when n is equal to
4 or more due to the troubles in composing connectivity
among discrete samples.

This technical problem was alleviated by algorithms
that were developed in the late 2000s, which aggressively
incorporated dimensionality reduction approaches from
the field of machine learning. These new algorithms suc-
cessfully eliminate the limit on the number of data dimen-
sions, and thus enabled computation of contour trees even
from time-varying and higher-dimensional data samples.
On the other hand, the dimension of the data range

has long been limited to 1, since it is considerably dif-
ficult to track the change in the inverse image in terms
of multiple function values simultaneously. Of course, we
can construct a contour tree for each of the multiple
function values individually while this scheme does not
provide any information about relationships among the
multiple function values. For example, it is preferable to
extract some coherent relationships between temperature
and pressure in some space when we try to extract features
of differential topology from data samples of a multivari-
ate function R3 → R2 in this case. In this article, we also
show that recent technical challenges can solve this prob-
lem by extracting the topological change in a fiber, which
is defined to be the intersection among the inverse images
of the given multiple function values.
These three types of approaches will be described in the

following sections.

3 Analyzing samples of a function R2 → R or
R3 → R

As an example of the first type of data, we consider dis-
crete samples of a scalar function f : R2 → R, which
represents a height field of a terrain surface as shown in
Figure 1. In the following, we assume that f is differen-
tiable of class C∞. A point p ∈ R2 is called a singular point
of the function f if

∂f
∂x

(p) = ∂f
∂y

(p) = 0.

We also define the number of negative eigenvalues of the
Hessian matrix at p, i.e.,

H(p) =

⎛
⎜⎜⎝
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∂2f
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Figure 2 Singular points of a 2-dimensional scalar field. (a) A peak (index 2). (b) A pass (index 1). (c) A pit (index 0).
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Figure 3 Extracting a contour tree. (a) A join tree. (b) A split tree. (c) An augmented contour tree. (d) A final contour tree.

to be the index of the singular point p. In the following,
we assume that the singular points are all non-degenerate,
i.e., the Hessian matrix is always non-degenerate. A scalar
function whose singular points are all non-degenerate is
called a Morse function, and it is known that the space of
Morse functions is dense in the space of all functions: any
given function can be approximated arbitrarily well by a
Morse function (for example, see [8]).
In the case of such a height field, the singular points

are classified into three categories as shown in Figure 2.
Note that in each category in Figure 2 the left hand
side illustration depicts a terrain shape around each type
of a singular point while the right hand side illustra-
tion shows the topological transition of the correspond-
ing contour with respect to the height. As the reader
can observe, a singular point corresponds to a point
where a topological change arises in the corresponding
contour.
Now we move on to the case of one dimension higher,

i.e., a set of discrete samples of a 3D scalar field f : R3 →
R. This case covers 3D volume data such as 3D medi-
cal images provided by measurement equipments (i.e. CT,
MRI, etc.) and 3D spatial data obtained through computer
simulations. In this case, a contour corresponds to an iso-
surface on which the scalar field values are all equal, and
the singular points are classified into four different groups
according to their indices, as long as the singular points
are all non-degenerate.

As described earlier, the primary advantage of data anal-
ysis based on differential topology is the capability to
extract not only local features such as singular points
but also the global structure of the entire data as the
mutual connection among the local features, which easily
allows us to represent the data in a hierarchical fashion.
In particular, a tree structure called contour tree [1] serves
as an effective tool for encoding topological changes in
the inverse image according to the scalar function value
changes, and thus has been employed in many visualiza-
tion problems.
For a given function f : Rn → R, by contracting each

connected component of the inverse images to a point, we
get a space Rf , which inherits the quotient topology from
Rn. It is known that Rf has the structure of a graph in gen-
eral and is often called the Reeb graph [12] of f . In some
contexts, it is a tree and is called a contour tree.
The standard version of an algorithm for constructing

contour trees has been invented by Carr et al. [4], and
consists of the following steps (Figure 3):

1. Constructing a join tree and a split tree,
2. Constructing an augmented contour tree,
3. Composing a final contour tree.

The first step is to construct a join tree, which describes
how connected components in the inverse image joins
as the function value decreases. In the case of discrete
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elevation samples shown in Figure 1, we first triangu-
late the sample points to interpolate the height field over
the 2D data domain first, and then compose a tree by
incorporating the discrete samples in the order of the cor-
responding function values. Suppose that we construct
the contour tree of the sample points contained in the
yellow region as shown in Figure 1 . We first pick up
the highest sample point at the height of 220 and add the
corresponding vertex to the join tree. We then insert the
second highest sample point at the height of 205 as a ver-
tex that is connected with the previously inserted vertex,
since it is also adjacent to that vertex in the triangulation
of the terrain data. The next highest point at the height of
200 will be incorporated into the tree as a disjoint vertex,
since it has no direct connection with the already reg-
istered vertices. Finally, when we insert the point at the
height of 160, two disjoint sets of vertices will be merged
into one. Figure 3(a) shows a join tree of the entire set of
discrete terrain data.
A split tree can be constructed in the same way if we

reorder the discrete samples in an ascending order with
respect to the function value, as shown in Figure 3(b) .
As demonstrated in Figure 3(c) , a preliminary version of
a contour tree called an augmented contour tree can be
constructed, by identifying the topological branches in the
inverse image by tracking the join tree from the top and
the split tree from the bottom. Figure 3(d) presents the
final version of the contour tree, which has been obtained
by removing non-branching vertices from the augmented
contour tree.
As additional options, we can introduce steps for

decomposing degenerate singular points into non-
degenerate ones [17,19] to better figure out the spatial
configuration of the inverse image [20], for simplify-
ing the contour trees by pruning minor edges for noise

removal [5,18], and for extracting change in genus of the
inverse image especially for the case of 3D volumes [11].
In this way, especially for functions R2 → R and

R3 → R, extracting features of differential topology can
be accomplished by composing a proximity graph over the
discrete samples first and then constructing a tree that
represents the splitting and merging of the inverse images
according to the function value changes. Figure 4 pro-
vides examples of contour trees extracted from 2D and 3D
scalar fields using the algorithm described above.

Remark 1. In practical applications, we are lead to ana-
lyze functions V → R, where V is a bounded domain in
R2 or R3. In such a case, the function often takes extreme
values near the boundary: consequently, by adding a vir-
tual point outside of V that takes a still more extreme
value, we can eliminate the domain boundary so that we
get a function on a manifold without boundary. Usually,
this kind of a technique is useful for analyzing scalar
functions, while this usually does not make sense for
multivariate functions.

4 Analyzing samples of a function Rn → R
The aforementioned algorithm is quite effective for dis-
crete samples of 2D/3D scalar fields, since we can linearly
interpolate the function value in the data domain easily
by decomposing it into triangles/tetrahedra. Nonetheless,
implementing the algorithm incurs other problems due to
the complexity for partitioning the data domain especially
when its dimension is equal to 4 or more.
This problem has recently been tackled by approaches

to projecting the high-dimensional data samples onto
screen space using dimensionality reduction tech-
niques [16], which have been available in the community
of machine learning. The basic idea behind this approach

Figure 4 Examples of contour trees extracted from discrete samples on functions R2 → R and R3 → R. (a) A digital elevation model around
Hakone area, which contains a crater lake (Lake Ashi) surrounded by mountains [17]. (b) Voxel samples at a 3D grid in a volume data, which is
obtained through a simulation of the probability distribution of a nucleon in the atomic nucleus 16O [18].
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is to introduce different metrics among the discrete data
samples so that we can effectively locate each sample
point on the contour tree to be constructed. This has
been accomplished by constructing a proximity graph
over the data samples to infer its manifold connectivity
and then projecting the samples onto the screen space to
stipple the contour tree.
In practice, we first construct the proximity graph by

searching for the nearest k-neighbors of each sample using
the new metric based on their spatial relationship and
function values, and then projecting the samples onto
the contour tree by approximating the distance between
every pair of sample points. As shown in Figure 5, the
dimensionality reduction process effectively permits us to
construct the contour tree from a set of discrete samples
embedded in the high-dimensional data domain. Figure 6
shows another example where the features of differential
topology are extracted from time-varying volume data.
We can also use the proximity graphs to directly define

the partial orders among data samples in terms of the
scalar function value. Nonetheless, it is still hard to select
appropriate types of graphs for constructing the manifold

connectivity, since we have to keep the graph as sparse
as possible to minimize the associated computational
cost. In practice, we can refer to [10] for several possible
types of vertex connectivities. The work also successfully
constructed a visual metaphor called topological land-
scape [21], which is a variant of a contour tree for a terrain
surface and is currently often employed for the visual
analysis of high dimensional data.

5 Analyzing samples of a function Rn → Rm

Data analysis based on differential topology has long been
primarily focused on data samples on univariate (scalar-
valued) functions f : Rn → R. Nonetheless, with the
recent advent of high-performance computers and sen-
sors of high resolution, we are more likely to tackle data
samples of multivariate functions f : Rn → Rm, m > 1.
For example, illuminating the global structure of 3D fields
of multiple scalar values such as temperature, pressure,
humidity, etc. poses a very important technical problem
for weather forecast, and the visual data mining based on
differential topology is again expected to help us to tackle
the challenging problems.

Figure 5 Constructing contour trees using manifold learning techniques [16]. (a) Discrete samples on the swiss roll data in 3D (left) and their
projections onto 2D plane via nonlinear dimensionality reduction. (b) Discrete samples in the height field and their projection onto a contour tree.
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Figure 6 Simulation data of proton - hydrogen atom collision [16]. (a) Contour tree extracted from the corresponding time-varying volume
data. (b) Snapshots of the feature time-varying volume data corresponding to the branch of the contour tree (highlighted in red).

A natural extension of the previous approach for mul-
tivariate data is to extract the intersection among inverse
images of multiple function values first, and then track
the topological changes inherent in that intersection with
respect to the multivariate function value changes.
For a multivariate function f : Rn → Rm and a point

c ∈ Rm, the inverse image

f −1(c) = {x ∈ Rn | f (x) = c}

is called a fiber [13]. Amore rigorous mathematical defini-
tion goes as follows. For two multivariate functions f0 and
f1 : Rn → Rm and points y0 and y1 in the range Rm, we say
that the fibers of f0 and f1 over the points y0 and y1, respec-
tively, are equivalent if for some open neighborhoods Ui
of yi in Rm, i = 0, 1, there exist C∞ diffeomorphisms � :
f −1(U0) → f −1(U1) and ϕ : U0 → U1 with ϕ(y0) = y1
which make the following diagram commutative:

(
f −1
0 (U0), f −1

0 (y0)
)

�−−−−→
(
f −1
1 (U1), f −1

1 (y1)
)

f0
⏐⏐�

⏐⏐�f1
(U0, y0)

ϕ−−−→ (U1, y1).

Therefore, a fiber of a differentiable multivariate func-
tion over a point in the range refers to such an equivalence
class. Note that this information encodes the semi-local
behavior of the function around the whole inverse image
of a point, and not just the inverse image as a set.

A point p ∈ Rn is a singular point if the rank of the
Jacobian matrix

(
∂fi
∂xj

(p)

)
1≤i≤m, 1≤j≤n

is strictly less than min{n,m}, where f = (f1, f2, . . . , fm)

and (x1, x2, . . . , xn) are the coordinates of Rn. In general,
we can characterize singular points as the points in the
domain where a topological change occurs in the fibers. A
fiber is a singular fiber if it contains a singular point. Fur-
thermore, the set of all singular points is called the Jacobi
set of f and is often denoted by J(f ). As the reader can eas-
ily imagine, recognizing singular fibers is very important
in visualizing a given set of large data.
In practice, the analysis of multivariate data samples

begins with extracting the Jacobi set, which has been
tackled by Edelsbrunner et al. [6,7]. They successfully
developed an algorithm for extracting such Jacobi sets
from functions to R2 by identifying sample points where
the gradients of the two corresponding scalar functions
are parallel to each other. However, the algorithm extracts
singular points only individually from the given data sam-
ples, and cannot identify the topological changes in fibers;
in particular, we cannot get any information on the types
of the singular points. Thus, identifying only the Jacobi
set does not help us very much to identify global struc-
tures inherent in the entire data. Therefore, it remained as
an important problem to identify the global structures of
a given large data by seeking the underlying connectivity
among the singular points or singular fibers.
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In order to represent a given set of data in a hierarchical
fashion, an extension of the Reeb graph is useful. For a
function f : Rn → Rm, by contracting each connected
component of its inverse images to a point, we get a space
Rf , which is called the Reeb space [7] of f . This is expected
to play an important role similar to that of a contour tree.
Quite recently, the above long lasting problem has been

solved again by Carr et al. [2,3], where they invented an
algorithm for constructing a joint contour net as a variant
of a Reeb space for data samples of a multivariate function
f : Rn → Rm, m > 1. The basic idea of this algorithm
is to quantize the image of function samples in the m-
dimensional range space Rm into a set of small blocks in
terms of them coordinate axes, and then seek the connec-
tivity of the fibers between every pair of adjacent blocks
along each coordinate axis, which finally allows us to com-
pose a joint contour net as a network structure over the
range space. Figure 7 shows such an example, where two
different function values are defined over a 3D polygonal
surface to characterize its shape with the corresponding
joint contour net. Here, the two function values are the
integral of geodesic distance over the polygonal shape [9]
and surface curvature, where the integral of geodesic dis-
tance represents how much the sample point is far away
from the object center. Figure 7(a) shows an ellipsoid and

its corresponding joint contour net projected to the 2D
range space. Since the surface curvature becomes large
as the sample point moves away from the object cen-
ter, the joint contour net is projected to a narrow region
between the left bottom corner and the right top corner.
Figure 7(b) presents 3D spectacles where the associated
joint contour net becomes more complicated, since the
3D shape model has variation in surface curvature. On the
other hand, singular points of the multivariate function
can be easily detected as the branches of the joint con-
tour net. An example is demonstrated in Figure 8, where
a certain explicit function V → R2 is analyzed with V
being a bounded domain in R3. For each case, the left win-
dow exhibits a singular fiber at some function value that is
marked in the right window.
The joint contour nets indeed allow us to track the

connectivity among the singular fibers, while precisely
identifying the topological type of each singular fiber still
remains to be tackled.
In fact, some classification results for singular fibers

have been obtained in singularity theory. For scalar func-
tions on 2D domains, we have seen a classification of local
topological changes of contour lines in Figure 2, under the
assumption that all the singular points are non-degenerate
(see Section 3). For functions V → R2, where V is a

Figure 7 Topological changes in the intersection of two isolines extracted from a function of two variables defined over 3D polygonal
surfacesM → R2. The images on the left and right show the 3D polygonal surfaceM and range R2 , respectively. Here, 16 × 16 resolution is
employed to quantize the 2D range space, which is spanned by the two function values, i.e., the integral of geodesic distance from the shape center
and surface curvature. (a) An ellipsoid surface and its corresponding joint contour net. (b) A spectacles polygonal surface and its corresponding
joint contour net.
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Figure 8 Topological changes in the intersection of two isosurfaces extracted from a function V→ R2, where V is a bounded domain in
R3. The images on the left and right show the function domain in R3 and the range R2 , respectively. Here, images of singular fibers are represented
as a line in the range [14]. (a) A single connected component in a fiber appears/disappears. (b) A pair of connected components merges/splits
within a fiber.

bounded domain in 3D space, recently a classification
of singular fibers and their topological changes has been
obtained in [15], under the assumption that the functions
are stable. A function f : V → R2 is stable if for any of
its C∞ approximation g (in the sense of the Whitney C∞
topology), there exist diffeomorphisms � : V → V and
ϕ : R2 → R2 such that g = ϕ ◦ f ◦�−1 (for details, see [8]).
Note that the space of stable functions is open and dense
in the space of all smooth functions V → R2.
The list of singular fibers for such stable functions

is as in Figures 9 and 10. Note that this classifies the
singular fibers up to equivalence, and therefore describes
completely the topological change of the fibers around
the singular fibers. Such a classification clearly helps us
to identify the type of a singular fiber for a given set
of data. By combining such classification results with
the technique of joint contour net, we can visualize a
given set of data in an efficient and robust way (for
details, see [14]). Figure 8 shows such a visualization
result: each curve in the right windows corresponds to
a specific singular fiber type in Figure 9 according to its
color.
Nevertheless, identifying the topological type of each

singular fiber is considerably hard, especially for higher
dimensional cases, where theoretical investigation has
been still devoted for more detailed classification of

singular fibers according to their topological types [13].
We are also working on this problem so that we can
provide learners of differential topology with an inter-
face for visually inspecting singular fibers of multivariate
functions on the screen space. Furthermore, by referring
to the topological types of the singular fibers embedded
in the data domain, we can effectively extract meaning-
ful features from multivariate data samples with minimal
cost.

Figure 9 First list of singular fibers for stable functions V → R2

for a 3D bounded domain V: those in this list appear along
curves in the range [15]. Both the black dot and the black square
represent a point: however, the former one is in the interior of V ,
while the latter one appears on the boundary of V . Void squares
represent tangencies with the boundary ∂V .
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Figure 10 Second list of singular fibers for stable functions V → R2 for a 3D bounded domain V: those in this list appear discretely [15].
Red squares correspond to the intersection points of the Jacobi set with the boundary ∂V .

6 Conclusion
It is naturally expected that extracting differential topo-
logical features of multivariate data will provide us with
various new information. It might not be so simple or
straightforward to interpret real multivariate data by
using differential topological features, compared with
the case of scalar functions. Nevertheless, with the help
of singularity theoretical progress in recent years, it is
expected that visualization of large multivariate data fea-
turing singular fibers will play essential role in visual data
mining.

Acknowledgements
The authors would like to thank Daisuke Sakurai, Hsiang-Yun Wu, Keisuke
Kikuchi, Hamish Carr, David Duke, and Takahiro Yamamoto for various
discussions, comments, and for helping to make some of the figures
appearing in this article. The first author has been supported in part by JSPS
KAKENHI Grant Number 23244008, 23654028. The first and second authors
have been supported in part by JSPS KAKENHI Grant Number 25540041.

Author details
1Institute of Mathematics for Industry, Kyushu University, 744, Motooka,
Nishi-ku, Fukuoka 819-0395, Japan. 2Graduate School of Information Science
and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo
133-8565, Japan.

Received: 23 March 2014 Revised: 4 April 2014 Accepted: 7 April 2014

References
1. Bajaj, CL., Pascucci, V., Schikore, DR.: The contour spectrum. In: Proc. IEEE

Vis.’97, pp. 167–173, (1997)
2. Carr, H., Duke, D.: Joint contour nets. Accepted for publication in IEEE

Transactions on Visualization and Computer Graphics (2013)
3. Carr, H., Duke, D.: Joint contour nets: Computation and properties. In:

Proceedings of the 6th IEEE Pacific Visualization Symposium (PacificVis
2013), pp. 161–168, (2013)

4. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions.
Comput. Geometry: Theory Appl. 24(2), 75–94 (2003)

5. Carr, H., Snoeyink, J., van de Panne, M.: Simplifying flexible isosurfaces
using local geometric measures. In: Proc. IEEE Vis. 2004, pp. 497–504,
(2004)

6. Edelsbrunner, H., Harer, J.: Jacobi sets of multiple Morse functions. In:
Cucker F., DeVore R., Olver P., Süli E. (eds.) Foundations of Computational
Mathematics, pp. 37–57. Cambridge University Press, (2002)

7. Edelsbrunner, H., Harer, J., Patel, AK.: Reeb spaces of piecewise linear
mappings. In: Proceedings of the Twenty-Fourth Annual Symposium on
Computational Geometry, pp. 242–250, (2008)

8. Golubitsky, M., Guillemin, V.: Stable Mappings and their Singularities. Grad.
Texts in Math, vol 14. Springer (1973)

9. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, TL.: Topology matching for
fully automatic similarity estimation of 3d shapes. In: Computer Graphics
(Proceedings of Siggraph 2001), pp. 203–212, (2001)

10. Oesterling, P., Heine, C., Jänicke, H., Scheuermann, G., Heyer, G.:
Visualization of high-dimensional point clouds using their density
distribution’s topology. IEEE Trans. Vis. Comput. Graph. 17(11), 1547–1559
(2011)

11. Pascucci, V., Cole-McLaughlin, K.: Efficient computation of the topology of
level sets. In: Proc. IEEE Vis. 2002, pp. 187–194, (2002)

12. Reeb, G.: Sur les points singuliers d’une forme de Pfaff complètement
intégrable ou d’une fonction numérique. Comptes Rendus Acad. Sci.
Paris. 222, 847–849 (1946)

13. Saeki, O.: Topology of Singular Fibers of Differentiable Maps. Lecture
Notes in Mathematics. vol. 1854. Springer (2004)

14. Saeki, O., Takahashi, S., Sakurai, D., Wu, Hsiang-Yun, Kikuchi, K.,
Carr, H., Duke, D., Yamamoto, T.: Visualizing multivariate data using
singularity theory. In: Wakayama M., Anderssen RS., Cheng J., Fukumoto Y.,
McKibbin R., Polthier K., Takagi T., Toh K-C. (eds.) The Impact of
Applications on Mathematics, Proceedings of the Forum of Mathematics
for Industry 2013. Mathematics for Industry, vol. 1, pp. 51–65. Springer,
(2013)

15. Saeki, O., Yamamoto, T.: Singular fibers of stable maps of 3-manifolds with
boundary into surfaces and their applications. preprint (2014)

16. Takahashi, S., Fujishiro, I., Okada, M.: Applying manifold learning to
plotting approximate contour trees. IEEE Trans. Vis. Comput. Graph.
15(6), 1185–1192 (2009)

17. Takahashi, S., Ikeda, T., Shinagawa, Y., Kunii, TL., Ueda, M.: Algorithms for
extracting correct critical points and constructing topological graphs
from discrete geographical elevation data. Comput. Graph. Forum.
14(3), 181–192 (1995)

18. Takahashi, S., Nielson, GM., Takeshima, Y., Fujishiro, I.: Topological volume
skeletonization using adaptive tetrahedralization. In: Proc Geometric
Modeling and Processing 2004, pp. 227–236, (2004)



Saeki and Takahashi Pacific Journal of Mathematics for Industry 2014, 6:4 Page 10 of 10
http://www.pacific-mathforindustry.com/content/6/1/4

19. Takahashi, S., Takeshima, Y., Fujishiro, I.: Topological volume
skeletonization and its application to transfer function design. Graphical
Models. 66(1), 22–49 (2004)

20. Takeshima, Y., Takahashi, S., Fujishiro, I., Nielson, GM.: Introducing
topological attributes for objective-based visualization of simulated
datasets. In: Proc. Volume Graphics 2005, pp. 137–236, (2005)

21. Weber, GH., Bremer, P-T., Pascucci, V.: Topological landscapes: a terrain
metaphor for scientific data. IEEE TVCG. 13(6), 1416–1423 (2007)

doi:10.1186/s40736-014-0004-y
Cite this article as: Saeki and Takahashi: Visual data mining based on
differential topology: a survey. Pacific Journal of Mathematics for Industry
2014 6:4.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Keywords

	1 Introduction
	2 Overview
	3 Analyzing samples of a function R2 R or R3 R
	4 Analyzing samples of a function Rn R
	5 Analyzing samples of a function Rn Rm
	6 Conclusion
	Acknowledgements
	Author details
	References

