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Abstract
We prove a general uniqueness theorem that can easily be applied to the proof of
(generalized) Hyers-Ulam stability of the additive, quadratic, cubic, or the
cubic-quadratic-additive type functional equation. By using this uniqueness theorem,
we can omit the repeated proof for uniqueness of the relevant solutions of those
equations.
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1 Introduction
In , Ulam [] posed a problem concerning the stability of functional equations: Give
conditions in order for a linear function near an approximately linear function to exist.
A year later, Hyers [] gave an answer to the problem of Ulam for additive functions de-
fined on Banach spaces. After Hyers’ result, many mathematicians have extended Ulam’s
problem to other functional equations and generalized Hyers’ result in various directions
(see [–]).

Let V and W be real vector spaces. For a given mapping f : V → W , we define

Af (x, y) := f (x + y) – f (x) – f (y),

Qf (x, y) := f (x + y) – f (x) + f (x – y) – f (y),

Cf (x, y) := f (x + y) – f (x + y) + f (x) – f (x – y) – f (y),

fo(x) :=
f (x) – f (–x)


,

f ()
o (x) :=

afo(x) – fo(ax)
a – a

,

f ()
o (x) := –

afo(x) – fo(ax)
a – a

,

fe(x) :=
f (x) + f (–x)
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for all x, y ∈ V . A mapping f : V → W is called an additive mapping, a quadratic map-
ping, and a cubic mapping if f satisfies the functional equation Af (x, y) = , Qf (x, y) = ,
and Cf (x, y) =  for all x, y ∈ V , respectively. We remark that the mappings g, h, k : R → R
given by g(x) = ax, h(x) = ax, and k(x) = ax are solutions of Ag(x, y) = , Qh(x, y) = , and
Ck(x, y) = , respectively.

A mapping f : V → W is called a cubic-quadratic-additive mapping if and only if f is
represented by the sum of an additive mapping, a quadratic mapping, and a cubic mapping.
A functional equation is called a cubic-quadratic-additive type functional equation if and
only if each of its solutions is a cubic-quadratic-additive mapping. The mapping f : R → R
given by f (x) = ax + bx + cx is a solution of the cubic-quadratic-additive type functional
equation.

In the study of the stability problems for cubic-quadratic-additive type functional equa-
tions, we frequently encounter the cases where we should prove the uniqueness of the
cubic-quadratic-additive mappings (see [–]). Research in this uniqueness problem still
has many untouched possibilities to explore.

In this paper, we prove a general uniqueness theorem that can be easily applied to the
stability of the cubic-quadratic-additive type functional equations. Using this uniqueness
theorem, we do not need to repeat the proof of uniqueness in studying the stability of
functional equations mentioned above.

2 Main results
In this section, let X and Y be real normed spaces and let V and W be real vector spaces.
In the following theorem, we prove that if, for any given mapping f , there exists a mapping
F (near f ) with some properties possessed by cubic-quadratic-additive mappings, then the
mapping F must be uniquely determined.

Theorem . Let a >  be a real constant, let � : V\{} → [,∞) be a function satisfying
one of the following conditions:

lim
n→∞

�(anx)
an = , ()

lim
n→∞ an�

(
x

an

)
= lim

n→∞
�(anx)

an = , ()

lim
n→∞ an�

(
x

an

)
= lim

n→∞
�(anx)

an = , ()

lim
n→∞ an�

(
x

an

)
=  ()

for all x ∈ V\{}, and let f : V → Y be a given mapping. If there exists a mapping F : V → Y
such that

∥∥f (x) – F(x)
∥∥ ≤ �(x) ()

for all x ∈ V\{} and

F ()
o (ax) := aF ()

o (x), Fe(ax) := aFe(x), F ()
o (ax) := aF ()

o (x) ()
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for all x ∈ V , then F is given by

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

limn→∞( f ()
o (anx)

an + fe(anx)
an + f ()

o (anx)
an ) if � satisfies (),

limn→∞(anf ()
o ( x

an ) + fe(anx)
an + f ()

o (anx)
an ) if � satisfies (),

limn→∞(anf ()
o ( x

an ) + anfe( x
an ) + f ()

o (anx)
an ) if � satisfies (),

limn→∞(anf ()
o ( x

an ) + anfe( x
an ) + anf ()

o ( x
an )) if � satisfies ()

()

for all x ∈ V\{}. In other words, F is the unique mapping satisfying the conditions ()
and ().

Proof Assume that F is a mapping satisfying () and () for a given mapping f : V → Y .
First, we consider the mapping F ()

o . If � : V\{} → [,∞) satisfies the condition (), then
it follows from () that

∥∥∥∥F ()
o (x) –

f ()
o (anx)

an

∥∥∥∥
=


an

∥∥F ()
o

(
anx

)
– f ()

o
(
anx

)∥∥

=


(a – a)an

∥∥aF
(
anx

)
– af

(
anx

)
– aF

(
–anx

)
+ af

(
–anx

)

– F
(
an+x

)
+ f

(
an+x

)
+ F

(
–an+x

)
– f

(
–an+x

)∥∥
≤ 

(a – a)an

(
a∥∥F

(
anx

)
– f

(
anx

)∥∥ + a∥∥F
(
–anx

)
– f

(
–anx

)∥∥
+

∥∥F
(
an+x

)
– f

(
an+x

)∥∥ +
∥∥F

(
–an+x

)
– f

(
–an+x

)∥∥)

≤ a�(anx) + a�(–anx) + �(an+x) + �(–an+x)
(a – a)an

→ , as n → ∞

for all x ∈ V\{}; that is, we see that F ()
o (x) = limn→∞ 

an f ()
o (anx) for all x ∈ V\{}.

If � : V\{} → [,∞) satisfies the condition (), (), or (), then it follows from () that

∥∥∥∥F ()
o (x) – anf ()

o

(
x

an

)∥∥∥∥
= an

∥∥∥∥F ()
o

(
x

an

)
– f ()

o

(
x

an

)∥∥∥∥
=

an

(a – a)

∥∥∥∥aF
(

x
an

)
– af

(
x

an

)
– aF

(
–x
an

)
+ af

(
–x
an

)

– F
(

x
an–

)
+ f

(
x

an–

)
+ F

(
–x

an–

)
– f

(
–x

an–

)∥∥∥∥
≤ an

(a – a)

(
a

∥∥∥∥F
(

x
an

)
– f

(
x

an

)∥∥∥∥ + a
∥∥∥∥F

(
–x
an

)
– f

(
–x
an

)∥∥∥∥
+

∥∥∥∥F
(

x
an–

)
– f

(
x

an–

)∥∥∥∥ +
∥∥∥∥F

(
–x

an–

)
– f

(
–x

an–

)∥∥∥∥
)
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≤ 
(a – a)

(
an+�

(
x

an

)
+ an+�

(
–x
an

)
+ an�

(
x

an–

)
+ an�

(
–x

an–

))

→ , as n → ∞

for all x ∈ V\{}; that is, we see that F ()
o (x) = limn→∞ anf ()

o ( x
an ) for all x ∈ V\{}.

Second, we consider the mapping Fe. If � : V\{} → [,∞) satisfies the condition () or
(), then it follows from () that

∥∥∥∥Fe(x) –
fe(anx)

an

∥∥∥∥
=


an

∥∥Fe
(
anx

)
– fe

(
anx

)∥∥ =


an

∥∥F
(
anx

)
– f

(
anx

)
+ F

(
–anx

)
– f

(
–anx

)∥∥

≤ 
an

∥∥F
(
anx

)
– f

(
anx

)∥∥ +


an

∥∥F
(
–anx

)
– f

(
–anx

)∥∥

≤ �(anx) + �(–anx)
an

→ , as n → ∞

for all x ∈ V\{}; that is, we see that Fe(x) = limn→∞ 
an fe(anx) for all x ∈ V\{}.

If � : V → [,∞) satisfies the condition () or (), we get

∥∥∥∥Fe(x) – anfe

(
x

an

)∥∥∥∥
= an

∥∥∥∥Fe

(
x

an

)
– fe

(
x

an

)∥∥∥∥
=

an



∥∥∥∥F
(

x
an

)
– f

(
x

an

)
+ F

(
–x
an

)
– f

(
–x
an

)∥∥∥∥
≤ an



∥∥∥∥F
(

x
an

)
– f

(
x

an

)∥∥∥∥ +
an



∥∥∥∥F
(

–x
an

)
– f

(
–x
an

)∥∥∥∥
≤ an



(
�

(
x

an

)
+ �

(
–x
an

))

→ , as n → ∞

for all x ∈ V\{}. Then Fe(x) = limn→∞ anfe( x
an ) for all x ∈ V\{} holds.

Finally, we consider the mapping f ()
o . If � : V\{} → [,∞) satisfies the condition (),

(), or (), then it follows from () that

∥∥∥∥F ()
o (x) –

f ()
o (anx)

an

∥∥∥∥
=


an

∥∥F ()
o

(
anx

)
– f ()

o
(
anx

)∥∥

=


(a – a)an

∥∥–aF
(
anx

)
+ af

(
anx

)
+ aF

(
–anx

)
– af

(
–anx

)

+ F
(
an+x

)
– f

(
an+x

)
– F

(
–an+x

)
+ f

(
–an+x

)∥∥
≤ 

(a – a)an

(
a
∥∥F

(
anx

)
– f

(
anx

)∥∥ + a
∥∥F

(
–anx

)
– f

(
–anx

)∥∥
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+
∥∥F

(
an+x

)
– f

(
an+x

)∥∥ +
∥∥F

(
–an+x

)
– f

(
–an+x

)∥∥)

≤ a�(anx) + a�(–anx) + �(an+x) + �(–an+x)
(a – a)an

→ , as n → ∞

for all x ∈ V\{}; that is, we see that F ()
o (x) = limn→∞ 

an f ()
o (anx) for all x ∈ V\{}.

If � : V\{} → [,∞) satisfies the condition (), then it follows from () and () that
∥∥∥∥F ()

o (x) – anf ()
o

(
x

an

)∥∥∥∥
= an

∥∥∥∥F ()
o

(
x

an

)
– f ()

o

(
x

an

)∥∥∥∥
=

an

(a – a)

∥∥∥∥–aF
(

x
an

)
+ af

(
x

an

)
+ aF

(
–x
an

)
– af

(
–x
an

)

+ F
(

x
an–

)
– f

(
x

an–

)
– F

(
–x

an–

)
+ f

(
–x

an–

)∥∥∥∥
≤ an

(a – a)

(
a
∥∥∥∥F

(
x

an

)
– f

(
x

an

)∥∥∥∥ + a
∥∥∥∥F

(
–x
an

)
– f

(
–x
an

)∥∥∥∥
+

∥∥∥∥F
(

x
an–

)
– f

(
x

an–

)∥∥∥∥ +
∥∥∥∥F

(
–x

an–

)
– f

(
–x

an–

)∥∥∥∥
)

≤ an

(a – a)

(
a�

(
x

an

)
+ a�

(
–x
an

)
+ �

(
x

an–

)
+ �

(
–x

an–

))

→ , as n → ∞

for all x ∈ V\{}; that is, we see that F ()
o (x) = limn→∞ anf ()

o ( x
an ) for all x ∈ V\{}. Since

F(x) = F ()
o (x)+Fe(x)+F ()

o (x), F is given by the equalities in () and F is uniquely determined
for any case. �

In general, it is not easy to apply Theorem . for practical applications. Hence, we in-
troduce a couple of corollaries which are useful for investigating the uniqueness problems
in the stability of the cubic-quadratic-additive functional equations.

Corollary . Let a >  be a real constant and let φ : V\{} → [,∞) be a function satis-
fying either

�(x) :=
∞∑
i=

φ(aix)
ai < ∞ ()

or

�(x) :=
∞∑
i=

aiφ

(
x
ai

)
< ∞ ()

for all x ∈ X\{}. For any given mapping f : V → Y , if there exists a mapping F : V → Y
satisfying the inequality

∥∥f (x) – F(x)
∥∥ ≤ �(x) ()
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for all x ∈ V\{} and the condition () for all x ∈ V , then F is a unique mapping satisfying
the conditions () and ().

Proof If φ satisfies (), then we have

lim
n→∞

�(anx)
an = lim

n→∞

∞∑
i=

φ(an+ix)
an+i = lim

n→∞

∞∑
i=n

φ(aix)
ai = ,

i.e., � satisfies the condition () for all x ∈ V\{}.
For the case when φ satisfies (), it holds that

lim
n→∞ an�

(
x

an

)
= lim

n→∞

∞∑
i=

an+iφ

(
x

an+i

)
= lim

n→∞

∞∑
i=n

aiφ

(
x
ai

)
= ,

i.e., � satisfies the condition () for all x ∈ V\{}. Hence, our assertion is true in view of
Theorem .. �

Corollary . Let a >  be a real constant, let φ,ψ : V\{} → [,∞) be functions satisfying
each of the following conditions:

∞∑
i=

aiψ

(
x
ai

)
< ∞,

∞∑
i=

φ(aix)
ai < ∞,

�̃(x) :=
∞∑
i=

aiφ

(
x
ai

)
< ∞, �̃(x) :=

∞∑
i=

ψ(aix)
ai < ∞

()

for all x ∈ V\{}, and let f : V → Y be an arbitrarily given mapping. If there exists a map-
ping F : V → Y satisfying the inequality

∥∥f (x) – F(x)
∥∥ ≤ �̃(x) + �̃(x) ()

for all x ∈ V\{} and the condition () for all x ∈ V , then F is a unique mapping satisfying
the conditions () for all x ∈ V and the inequality () for all x ∈ V\{}.

Proof If we put �(x) = �̃(x) + �̃(x), then it follows from () that


an �

(
anx

)
=

∞∑
i=


an–i φ

(
an–ix

)
+

∞∑
i=


an+i ψ

(
an+ix

)

for all x ∈ V\{}. We make a change of the summation indices in the preceding equality
with j = i – n and k = n + i to get


an �

(
anx

)

=


an

∞∑
j=–n

ajφ

(
x
aj

)
+

∞∑
k=n


ak ψ

(
akx

)

=


an

n∑
i=


ai φ

(
aix

)
+


an

∞∑
i=

aiφ

(
x
ai

)
+

∞∑
i=n


ai ψ

(
aix

)
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=


an

n–∑
i=

ai

an


ai φ
(
aix

)
+

n∑
i=n

ai

an


ai φ
(
aix

)
+


an �̃(x) +

∞∑
i=n


ai ψ

(
aix

)

≤ 
an

∞∑
i=


ai φ

(
aix

)
+

∞∑
i=n


ai φ

(
aix

)
+


an �̃(x) +

∞∑
i=n


ai ψ

(
aix

)

for any x ∈ V\{}. Hence, it follows from () that

lim
n→∞


an �

(
anx

)
= 

for all x ∈ V\{}. On the other hand, we use the above equality to get

lim
n→∞


an+ �

(
an+x

)
=


a lim

n→∞


an �
(
anax

)
= 

for all x ∈ V\{}. From the above two equalities, we conclude that

lim
n→∞


an �

(
anx

)
= 

for all x ∈ V\{}.
Similarly, we have

an�

(
x

an

)
=

∞∑
i=

an+iφ

(
x

an+i

)
+

∞∑
i=


ai–n ψ

(
ai–nx

)

for all x ∈ V\{}. If we make a change of the summation indices in the last equality with
j = i + n and k = i – n, then we get

an�

(
x

an

)

=
∞∑

j=n

ajφ

(
x
aj

)
+


an

∞∑
k=–n


ak ψ

(
akx

)

=
∞∑

i=n

aiφ

(
x
ai

)
+


an

n∑
i=

aiψ

(
x
ai

)
+


an

∞∑
i=


ai ψ

(
aix

)

=
∞∑

i=n

aiφ

(
x
ai

)
+


an

n–∑
i=

ai

an aiψ

(
x
ai

)
+

n∑
i=n

ai

an aiψ

(
x
ai

)
+


an �̃(x)

≤
∞∑

i=n

aiφ

(
x
ai

)
+


an

∞∑
i=

aiψ

(
x
ai

)
+

∞∑
i=n

aiψ

(
x
ai

)
+


an �̃(x)

for any x ∈ V\{}. Thus, it follows from () that

lim
n→∞ an�

(
x

an

)
= ,

lim
n→∞ an+�

(
x

an+

)
= a lim

n→∞ an�

(


an
x
a

)
= 
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for each x ∈ V\{}. Thus, we see that

lim
n→∞ an�

(
x

an

)
= 

for each x ∈ V\{}.
Altogether, � satisfies () for all x ∈ V\{}. Hence, Theorem . implies that our con-

clusion of this corollary is true. �

Corollary . Let a >  be a real constant, let φ,ψ : V\{} → [,∞) be functions satisfying
each of the following conditions:

∞∑
i=

aiψ

(
x
ai

)
< ∞,

∞∑
i=

φ(aix)
ai < ∞,

�̃(x) :=
∞∑
i=

aiφ

(
x
ai

)
< ∞, �̃(x) :=

∞∑
i=

ψ(aix)
ai < ∞

()

for all x ∈ V\{}, and let f : V → Y be an arbitrarily given mapping. If there exists a map-
ping F : V → Y satisfying the inequality

∥∥f (x) – F(x)
∥∥ ≤ �̃(x) + �̃(x) ()

for all x ∈ V\{} and the condition () for all x ∈ V , then F is a unique mapping satisfying
the conditions () for all x ∈ V and () for all x ∈ V\{}.

Proof If we put �(x) = �̃(x) + �̃(x), then it follows from () that


an �

(
anx

)
=

∞∑
i=


an–i φ

(
an–ix

)
+

∞∑
i=


an+i ψ

(
an+ix

)

for all x ∈ V\{}. We make a change of the summation indices in the preceding equality
with j = i – n and k = n + i to get


an �

(
anx

)

=


an

∞∑
j=–n

ajφ

(
x
aj

)
+

∞∑
k=n


ak ψ

(
akx

)

=


an

n∑
i=


ai φ

(
aix

)
+


an

∞∑
i=

aiφ

(
x
ai

)
+

∞∑
i=n


ai ψ

(
aix

)

=


an

n–∑
i=


ai+n φ

(
aix

)
+

n∑
i=n


an+i φ

(
aix

)
+


an �̃(x) +

∞∑
i=n


ai ψ

(
aix

)

≤ 
an

∞∑
i=


ai φ

(
aix

)
+

∞∑
i=n


ai φ

(
aix

)
+


an �̃(x) +

∞∑
i=n


ai ψ

(
aix

)
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for any x ∈ V\{}. Hence, by (), we get

lim
n→∞


an �

(
anx

)
= 

for all x ∈ V\{}. On the other hand, we use the above equality to get

lim
n→∞


an+ �

(
an+x

)
=


a lim

n→∞


an �
(
anax

)
= 

for all x ∈ V\{}.
From the above two equalities, we conclude that

lim
n→∞


an �

(
anx

)
= 

for all x ∈ V\{}.
Similarly, we have

an�

(
x

an

)
=

∞∑
i=

an+iφ

(
x

an+i

)
+

∞∑
i=


ai–n ψ

(
ai–nx

)

for all x ∈ V\{}. If we make a change of the summation indices in the last equality with
j = i + n and k = i – n, then we get

an�

(
x

an

)

=
∞∑

j=n

ajφ

(
x
aj

)
+


an

∞∑
k=–n


ak ψ

(
akx

)

=
∞∑

i=n

aiφ

(
x
ai

)
+


an

n∑
i=

aiψ

(
x
ai

)
+


an

∞∑
i=


ai ψ

(
aix

)

=
∞∑

i=n

aiφ

(
x
ai

)
+


an

n–∑
i=

ai

an aiψ

(
x
ai

)
+

n∑
i=n

ai

an aiψ

(
x
ai

)
+


an �̃(x)

≤
∞∑

i=n

aiφ

(
x
ai

)
+


an

∞∑
i=

aiψ

(
x
ai

)
+

∞∑
i=n

aiψ

(
x
ai

)
+


an �̃(x)

for any x ∈ V\{}. Thus, we obtain

lim
n→∞ an�

(
x

an

)
= ,

lim
n→∞ an+�

(
x

an+

)
= a lim

n→∞ an�

(


an
x
a

)
= 

for each x ∈ V\{}. Thus, we see that

lim
n→∞ an�

(
x

an

)
= 

for each x ∈ V\{}.
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Altogether, � satisfies () for all x ∈ V\{}. Hence, Theorem . implies that our con-
clusion of this corollary is true. �

3 Applications
In this section, we apply the theorem and corollaries of the last section to show that if for
any given mapping f , there exists an additive, a quadratic, a cubic, a quadratic-additive,
a cubic-additive, a cubic-quadratic, or a cubic-quadratic-additive mapping F near f , then
the mapping F is uniquely determined.

The proofs of the first three corollaries immediately follow from Corollaries ., ., and
., respectively, because each cubic-quadratic-additive mapping satisfies the conditions
in () provided a is a rational number.

Corollary . Let a >  be a rational number and let φ : V\{} → [,∞) be a function
satisfying the condition () or () for all x ∈ V\{}. Let f : V → Y be a given mapping. If
there exists a cubic-quadratic-additive mapping F : V → Y satisfying the inequality (),
then F is uniquely determined.

Corollary . Let a >  be a rational number and let φ,ψ : V\{} → [,∞) be functions
satisfying the conditions in () for all x ∈ V\{}. Let f : V → Y be a given mapping. If there
exists a cubic-quadratic-additive mapping F : V → Y satisfying the inequality (), then F
is uniquely determined.

Corollary . Let a >  be a rational number and let φ,ψ : V\{} → [,∞) be functions
satisfying the conditions in () for all x ∈ V\{}. Let f : V → Y be a given mapping. If there
exists a cubic-quadratic-additive mapping F : X → Y satisfying the inequality (), then F
is uniquely determined.

If p <  then �(x) := K‖x‖p satisfies (); if  < p <  then �(x) satisfies (); if  < p < 
then �(x) satisfies (); and if p >  then �(x) satisfies (). Hence, by Theorem ., we
get the following corollaries concerning the Hyers-Ulam-Rassias stability. For the detailed
concept of the Hyers-Ulam-Rassias stability, we refer to [, , , , ].

When we prove the Hyers-Ulam-Rassias stability, Y is usually assumed to be a Banach
space. In this paper, however, we only need to assume that Y is a real normed space pro-
vided the validity of inequality (), (), (), (), or () is already guaranteed.

Corollary . Let p /∈ {, , } and θ >  be real constants, let X, Y be real normed spaces,
and let f : X → Y be an arbitrarily given mapping. If there exists a mapping F : X → Y
satisfying the inequality

∥∥f (x) – F(x)
∥∥ ≤ θ‖x‖p ()

for all x ∈ X\{} and the conditions in () for all x ∈ X, then F is a unique mapping satisfying
the conditions in () for all x ∈ X and the inequality () for all x ∈ X\{}.

Since each of the cubic, additive, and cubic-additive mappings satisfies the conditions
in (), using Corollary ., we can easily prove the following corollary.
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Corollary . Let p /∈ {, , } and θ >  be real constants, let X, Y be real normed spaces,
and let f : X → Y be an arbitrarily given mapping. If there exists an additive, a quadratic,
a cubic, a quadratic-additive, a cubic-additive, a cubic-quadratic, or a cubic-quadratic-
additive mapping F : X → Y satisfying the inequality () for all x ∈ X\{}, then F is
uniquely determined.

If we set φ(x) = ε in Corollary ., then φ satisfies the condition (). Hence, Corollary .
implies the following result.

Corollary . Let V be a real vector space, let Y be a real normed space, and let f :
V → Y be an arbitrarily given mapping. If there exists an additive, a quadratic, a cubic,
a quadratic-additive, a cubic-additive, a cubic-quadratic, or a cubic-quadratic-additive
mapping F : X → Y satisfying the inequality

∥∥f (x) – F(x)
∥∥ ≤ ε

for all x ∈ V\{} and for some ε > , then F is uniquely determined.

Remark . In , Baker [] proved the Hyers-Ulam stability of a large class of func-
tional equations of the form

m∑
k=

fk(αkx + βky) = , ()

which includes the additive, the quadratic, the cubic, the quadratic-additive, the cubic-
additive, the cubic-quadratic, and the cubic-quadratic-additive type functional equations;
in fact, he proved the Hyers-Ulam stability of equation () without addressing the unique-
ness of the relevant solution of that equation, while the main aim of this paper is to prove
a general uniqueness theorem for those equations. From this viewpoint, we can say that
this paper complements the results of Baker.
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